September 1, 1994

SRC repart |

A Library for Visualizing
Combinatorial Structures

Marc A. Ngjork and Marc H. Brown

dlilgliltlall

Systems Research Center
130 Lytton Avenue
Palo Alto, Caifornia 94301

Systems Research Center

The charter of SRC is to advance both the state of knowledge and the state of the
art in computer systems. From our establishment in 1984, we have performed basic
and applied research to support Digital’s business objectives. Our current work
includes exploring distributed personal computing on multiple platforms, network-
ing, programming technol ogy, system modelling and management techniques, and
selected applications.

Our strategy is to test the technical and practical value of our ideas by building
hardware and software prototypesand using them asdaily tools. Interesting systems
are too complex to be evaluated solely in the abstract; extended use allows us to
investigate their propertiesin depth. This experienceis useful in the short term in
refining our designs, and invaluable in the long term in advancing our knowledge.
Most of the major advancesin information systems have come through thisstrategy,
including personal computing, distributed systems, and the Internet.

We aso perform complementary work of a more mathematical flavor. Some of
it is in established fields of theoretical computer science, such as the anaysis
of agorithms, computational geometry, and logics of programming. Other work
explores new ground motivated by problemsthat arise in our systems research.

We have a strong commitment to communicating our results; exposing and testing
our ideas in the research and development communities leads to improved un-
derstanding. Our research report series supplements publication in professional
journals and conferences. We seek users for our prototype systems among those
with whom we have common interests, and we encourage collaboration with uni-
versity researchers.

Robert W. Taylor, Director

A Library for Visualizing
Combinatorial Structures

Marc A. Ngjork and Marc H. Brown

September 1, 1994

A preliminary version of this report will appear in the proceedings of the 1994
| EEE Visualization' 94 conference, October 1994.

Color versions of Figures 1 and 3 appear in SRC Research Report 110.

(©Digital Equipment Cor poration 1994

Thiswork may not be copied or reproduced in wholeor in part for any commercial
purpose. Permission to copy in wholeor in part without payment of feeis granted
for nonprofit educational and research purposes provided that all such whole or
partial copies include the following: a notice that such copying is by permission
of the Systems Research Center of Digital Equipment Corporation in Palo Alto,
Cdlifornia; an acknowledgment of the authors and individual contributors to the
work; and all applicable portions of the copyright notice. Copying, reproducing,
or republishing for any other purpose shall require alicense with payment of feeto
the Systems Research Center. All rights reserved.

Abstract

Thisreport describes ANIM3D, a 3D animation library targeted at visualizing com-
binatorial structures. In particular, we are interested in algorithm animation. Con-
structing a new view for an algorithm typically takes dozens of design iterations,
and can be very time-consuming. Our library eases the programmer’s burden by
providing high-level constructs for performing animations, and by offering an in-
terpretive environment that eliminatesthe need for recompilations. Thisreport also
illustrates ANIM3D’s expressiveness by developing a 3D animation of Dijkstra’s
shortest-path algorithminjust 70 linesof code. An accompanying videotape shows
thelibrary in use.

1 Background

Algorithm animation is concerned with visualizing the internal operations of a
running program in such a way that the user gains some understanding of the
workings of the algorithm. Due to lack of adequate hardware, early agorithm
animation systems were restricted to black-and-white animations at low frame
rates [6]. As hardware has improved, smooth motion [11, 15], color [1], and
sound [4] havebeen used toincreasethelevel of expressivenessof thevisualizations.

Constructing an enlightening visualization of an algorithmin action is atricky
proposition, involving both the artistic and pedagogical skillsof theanimator. Most
successful views undergo dozens of design iterations. Based on our experiencesin
the 1992 and 1993 SRC Algorithm Animation Festivals[2, 3] (20 SRC researchers
participated each year), we found that a high-level animation library, coupled with
an interpreted language, was instrumental in developing high-quality views[12].

A high-level animation library alows users to focus on what they want to
animate, without having to spend too much time on the how. An interpreted
language significantly shortens the time needed for each iteration in the design
cycle because users do not need to recompile the view after modifyingits code. In
fact, in our agorithm animation system, users just need to hit the “run” buttonin
the control panel to see their changesin action.

In 1992, we began to explore how 3D graphics could be used to further increase
the expressivenessof visualizations[5]. Weidentified threefundamental uses of 3D
for agorithm visuaization: Expressing fundamenta information about structures
that are inherently two-dimensional ; uniting multipleviewsof theunderlying struc-
tures; and capturing a history of a two-dimensional view. Fig. 1 shows snapshots
of some of the 3D animations we devel oped.

We found that building enlightening 3D viewsis even harder than buildinggood
2D views. One obviousreason isthat we (and most people) are much less used to
designingin 3D thanin 2D. But amore pragmatic problem wasthat our 3D software
infrastructure was quite impoverished: We used a small, object-oriented graphics
library for displaying static 3D scenes. Thislibrary (like the rest of our algorithm
animation system) was written in Modula-3 and used PEXIib as its underlying
graphics system. This architecture was limiting both in terms of turnaround time
and in terms of animation support. Therefore, drawing on our prior experience in
2D algorithm animation, we built ANIM3D, a3D object-oriented animation library.

ANIM3D supports several window systems (X and Trestle [13]) and severd
graphics systems (PEX and OpenGL). The base library isimplemented in Modul a
3; clientscan either directly call into thisbaselibrary, or accessit through Obliq[7],
an interpreted embedded language. Using ANIM3D, the size of a prototypical 3D

Figure 1: These snapshots are examples of the type of views for which ANIM3D is very well suited.
Each view requires from 50 to 200 lines of code to produce. The top-left snapshot shows a divide-
and-conquer algorithm for finding the closest pair of a set of pointsin the plane. Thethird dimension
is used here to show the recursive structure of the algorithm. The top-right snapshot shows a view
of Heapsort. Each element of the array is displayed as a stick whose length and color is proportional
to its value. With clever placement, the tree structure of the heap is visible from the front and the
array implementation of the tree is revealed from the side. Thebottom-left snapshot showsak-d tree,
for k = 2. When viewed from the top, the walls reveal how the plane has been partitioned by the
tree; when viewed from the front or side, we see the tree. The bottom-right snapshot shows a view
of Shakersort. The vertical sticks show the current values of elementsin the array, and the plane of
“paint chips’ underneath provides a history of the execution. The sticks stamp their color onto the
chipsplane, which is pulled forward as the execution progresses.

animation (Dijkstra's shortest-path algorithm) decreased from about 2000 lines of
Modula-3 to 70 lines of Oblig, and the part of the design cycle time devoted to
compiling, linking, and restarting the application from about 7 minutes to about 10
seconds of reloading by the Obliq interpreter (on a DECstation 5000/200).

Although ANIM3D was designed with algorithm animation in mind, it is a
genera -purpose animation system. We believe it to be particularly well suited for
visualizing and animating combinatorial structures.

The remainder of this report is structured as follows. After presenting an
overview of ANIM3D, we show how to use thelibrary to construct a simple anima-
tion. Theanimation is of atrivial solar system. We then build a 3D visualization
of Dijkstra'sagorithm for finding the shortest path in agraph. This animation can
also serve as anintroductionto our methodol ogy for animating algorithms. Finally,
we discuss how ANIM3D compares with other general -purpose animation systems
and with other algorithm animation systems.

2 An Overview of Anim3D

ANIM3D is built upon three basic concepts. graphical objects, properties, and
callbacks.

A graphical object, or “GO”, can be a geometric primitive such as a line,
polygon, sphere, or cone, a light source, a camera, or a group of other GOs.
Graphica objectsform adirected acyclic graph; typically, theroots of the DAG are
the top-level windows, the internal nodes are groups of other GOs, and the leaves
are geometric primitives, lights, or cameras. The GO class hierarchy is as follows:

G oupGO— Root GO

Ot hoCaner aG0
Per spCaner aGO

Anbi ent Li ght GO
Vect or Li ght GO
Poi nt Li ght GO
Spot Li ght GO

Li neGO
Mar ker GO

Pol ygonGO

BoxGO

Spher eGO
Sur f aceGO—— { ConeGO

Cyl i nder GO

Di skGO

Tor usGO

Caner aGO——— {
Li ght GO——— {

NonSur f aceGO— {

A property consists of two parts: a name and a value. Property names are
constants, such as“ Surface Color” or “ Sphere Radius” Property values are objects

3

(inan obj ect-ori ented programming sense) representing col ors, 3D points, reals, etc.
Because property values are objects, they are mutable and can be shared by severa
GOs. Inaddition, property valuesaretime-variant: theactual value encapsul ated by
the property value depends on the current animation time, a system-wide resource.

Associatedwith each graphical object o isaproperty mapping, apartial function
from property names to property values. A property associated with o affects not
only the appearance of o, but &l so the appearance of all those descendants of o that
do not explicitly override the property.

Although it is legal to associate any property with any graphical object, the
property does not necessarily affect the object. For example, associating a“ Sphere
Radius’ property with an ambient light source does not affect the appearance or
behavior of thelight. However, associating this property with agroup ¢ potentially
affects all spheres containedin g.

Graphical objects are reactive, that is, they can respond to events. We distin-
guish three different kinds of events: mouse events are triggered by pressing or
releasing mouse buttons, position events are triggered by moving the mouse, and
key events are triggered by pressing keyboard keys.

Events are handled by callbacks. There are three types of callbacks, corre-
sponding to the three kinds of events. Associated with each graphical object are
three callback stacks. The client can define or redefine the reactive behavior of a
graphical object by pushinganew call back onto theappropriatestack. The previous
behavior of the graphical object can easily be reestablished by popping the stack.

Consider amouse event ¢ that occurs within the extent of a top-level window
w. Associated with w isaRoot GOr. Thetop callback on r’s mouse callback stack
will be invoked (if the callback stack is empty, the event will simply be dropped).
The callback might perform an action, such as starting to spin the scene, or it might
delegate the event to one of »’s children.

3 Using Anim3D

Both Modula-3 and Obliq support the concepts of modules and classes. (Oblig
is based on prototypes and delegation, not classes and inheritance; however, it is
expressive enough to simulate them.) For each kind of graphical object, thereis
a Modula-3 module in ANIM3D. This module contains the class of the graphical
object, and a set of its associated functions and variables. For each Modula-3
module, thereisa“wrapper” that makes it accessible as a module from Oblig.
The module GO contains the class of al graphical objects. There are various
methods associated with them: methods for defining, undefining, and accessing

Figure 2: The ANIM3D Solar System

propertiesin the property mapping of a graphical object, and methods for pushing
and poppingthethree callback stacks of the graphical object aswell asfor dispatch-
ing events to their top callback objects. In addition, there is one property named
GO.Tr ansf or m which names the spatial transformation property and is meaning-
ful for al graphical objects. Unlike other properties, a transformation property
does not “override’ other transformations that are closer to the root, but is rather
composed with them.

The module G- oupGO contains the class of all graphical object groups, that
is, graphical objects that are used to group other graphical objects together. The
G oup@0 class has methods for adding elements to a group and removing them
again. The module aso contains a function New, which creates a new group and
returnsit.

A 3D window isregarded asaspecial form of group, that containsall the objects
in a scene (we therefore cal it the “root” of the scene), and has some additional
properties, such as the color of the background, whether depth cueing isin effect,
etc. Also associated with each window is the camera that is currently active, and
a“graphics base,” an abstraction of the underlying windows and graphics system.
Finally, theRoot GOmodulecontainsfunctionsNewand NewSt d. Thelatter creates
anew scene root object with reasonable default elements, callbacks, and properties
(a perspective camera, two white light sources, top-level reactive behavior that
allowsthe user to rotate and move the scene, and various surface properties).

Both PEX and OpenGL distinguish between lines and surfaces: surfaces are
affected by light sources, lines are not. There are a variety of properties common
to all surfaces. their color, transparency, reflectivity, shading model, and so on.
Although it is legal to attach these properties to non-surfaces, it will not affect
them. In order to emphasize that these properties are meaningful only for surfaces,
we provide a module Sur f ace GO, which contains the superclass of all graphical
objects composed of surfaces, along with their related properties. We also provide
aNonSur f aceGOmodule for lines and markers.

Themodule Spher e GOcontainsthe class of spheres, whichisasubclassof the
Sur f ace@0class. In addition to the definition of the sphere class, Spher eGOcon-
tains a function New for creating new sphere objects, and property names Cent er
and Radi us, which are used to identify the properties determining the center and
the radius of the sphere.

Here is a complete Obliq program to display a planet and its moon. The user
can control the camera using the mouse. This scene is displayed in the top-left
snapshot of Fig. 2.

let root = Root GO NewStd();

let planet = SphereGO New([0,0,0],1);
Sur f ace@0_Set Col or (pl anet, "1 i ght bl ue");
root . add(pl anet);

| et moon = SphereGO New([3,0,0],0.5);
Sur f ace@0_Set Col or (noon, "of fwhi te");
root . add(noon) ;

Property values can be time-variant; that is, their value depends on the time of the
animation clock. Time-variant property values can either be unsynchronized or
synchronized.

An unsynchronized property val ue starts to change at the moment it is created,
and animatesthegraphical object o aslong asitisattachedto o. Theanimation does
not need to be triggered by any special command. For instance, unsynchronized
property values can be used to rotate the scene or some part of it for an indefinite
period of time.

Synchronized property values, on the other hand, are used to animate several
aspects of a scene in a coordinated fashion. Each synchronized property vaueis
“tied” to an animation handle, and many values can be tied to the same handle.
A synchronized property value object accepts animation requests, messages that
ask it to changeits current value, beginning at some starting time and lasting for a
certain duration. When a client sends an animation request to a property value, the
request is not immediately satisfied, but instead stored in a request queue local to
the property value. Sending the message ani mat e to an animation handle causes
all property values controlled by this handleto be animated in synchrony. The call
to ani mat e returnswhen al animations are completed.

When added to the program above, the following few lines create a 25-second
animation. The planet rotates six times about its axis, while the moon revolves
once around the planet. In order to show the rotation better, we add a red torus
around the planet, aligned to the axis of rotation. See Fig. 2.

let torus = Torus@ New([0,0,0],[1,0,0],1,0.1);
root. add(torus);

Sur f ace@0_Set Col or (torus, "red");

I et ah = AninHandl e_New();

I et planettransform = TransfornProp_NewSync(ah);
pl anet . set Prop(GO_Transform pl anettransform;
torus. set Prop(GO_Transform pl anettransfornj;

I et noontransform = Transfor nProp_NewSync(ah);
nmoon. set Prop(GO_Tr ansf or m noont ransfornj;

noont r ansf orm get Beh().rotateY(2*Pl, 0, 25);

pl anettransform get Beh().rotateY(12*Pl, 0, 25);
ah. ani mate();

Note that we chose to attach the same transformation property to both the torus
and the planet. Alternatively, we could have made a group containing both, and
attached the transformation property just to this group.

4 Case Study: Shortest-Path Algorithm Animation

This section containsacase study of using ANIM3D with the Zeus algorithm anima-
tion system [1] to develop an animation of Dijkstra’'s shortest-path algorithm. We
first describe the algorithm, then sketch the desired visualization of the algorithm,
and finally, present the actual implementation of the animation.

41 TheAlgorithm

The single-source shortest-path problem can be stated as follows: given a directed
graph G = (V, F) with weighted edges, and a designated vertex s, caled the
source, find the shortest path from s to all other vertices. The length of a path is
defined to be the sum of the weights of the edges along the path.

The following algorithm, due to Dijkstra[10], solves this problem (assuming
all edge weights are non-negative):

for all v € V .do D(v) := o0
D(s):=0;5:=0
whileV \ S # (do
let w € V' \ S suchthat D(u) isminimal
S:=SU{u}
for all neighborsv of « do
D(v) := min{D(v), D(u)+ W(u,v)}
endfor
endwhile

In this pseudo-code, D(v) isthe distancefrom s to v, W (u, v) isthe weight of the
edgefrom « to v, and S isthe set of verticesthat have been explored thusfar. V'\ .S
denotesthose elementsin V' that arenot asoin S.

4.2 TheDesred Visualization

Aninteresting 3D animation of thisalgorithmisshowninFig. 3. Thevertices of the
graph are displayed as white disksin the zy plane. Above each vertex v isagreen
column representing D (v), the best distancefrom s to v known so far. Initialy, the
columns above each vertex other than s will be infinitely (or at least quite) high.

Figure 3: These snapshotsare from the animation of Dijkstra’s shortest-path algorithm described in
section 4. The top-left snapshot shows the data just before entering the main loop. The top-right
snapshot shows the algorithm about one-third complete. In the bottom-left snapshot, the algorithm
is about 2/3 complete, and the snapshot at the bottom-right shows the algorithm upon completion.

An edge from u to v with weight W (u, v) is shown by awhite arrow which starts
at the column over « at height 0 and ends at the column over v at height W (u, v).

Whenever avertex « isselected to be added to S, the color of the corresponding
disk changes from white to red. The addition D(u) + W (u,v) is animated by
highlighting the arrow corresponding to the edge («, v) and lifting it to the top of
the column (i.e. raising it by D(u)). If D(u) + W (u,v) issmaller than D(v), the
end of the arrow will still touch the green column over D(v), otherwise, it will not.
Intheformer case, we shrink the column over v to height D () + W (u, v) to reflect
the assignment of a new valueto D(v), and color the arrow red, to indicate that it
became part of the shortest-path tree. Otherwise, the arrow simply disappesars.

Upon completion, the 3D view shows a set of red arrows which form the
shortest-path tree, and a set of green columns which represent the best distance
D(v) from s to v.

4.3 Implementation of the Animation

Inthe Zeusframework, strategically important points of an algorithm are annotated
with procedure callsthat generate “interesting events.” These eventsare reported to
the Zeus event manager, which in turn forwards them to all interested views. Each
view respondsto interesting events by drawing appropriateimages. The advantages
of thismethodol ogy are described el sewhere [6].

4.3.1 Thelnteresting Events

The interesting events for Dijkstra's shortest-path algorithm (and many other
shortest-path a gorithms) are as follows:

> addVertex(u, z, y, d) adds avertex « (where v is an integer identifying
the vertex) to the graph. The vertex is shown at position (z, y) in the 2y
plane. In addition, D(u) isdeclared to be d.

> sel ect Vert ex(u) indicatesthat « wasadded to 5.
> addEdge(u, v, w) addsan edge from u to v with weight w to the graph.

> rai seEdge(u, v, d) visualizestheaddition D(u) + W (u, v) by raising the
edge (u, v) by d (where the caller passes D(u) for d).

> | ower Di st (u, d) indicatesthat D(u) getslowered tod.

> pronot eEdge(u, v) indicatesthat theedge (u, v) ispart of the shortest-path
tree.

10

>> denot eEdge(u, v) indicatesthat the edge (u, v) isnot part of the shortest-
path tree.

In addition, we need another event for house keeping purposes:

> start(m) iscaled at the very beginning of an algorithm’s execution; it
initializesthe view to hold up to m vertices and up to m? edges.

4.3.2 Annotating the Algorithm
Here is an annotated version of the algorithm we showed in Section 4.1:

views.start (|V])
forall v € V .do D(v) := o0
D(s):=0;5:=0
for all v € V dovi ews. addVer t ex(v, vy, vy, D(v))
for al (u,v) € F dovi ews. addEdge(u, v, W(u, v))
whileV \ S # (do
let w € V'\ S suchthat D(u) isminimal
S:=SU{u}
vi ews. sel ect Vert ex(w)
for all neighborsv of « do
vi ews. rai seEdge(u, v, D(u))
if D(v) < D(u) + W (u,v)then
vi ews. denot eEdge(u, v)
else
D(v) := D(u) + W(u,v)
Vi ews. pr onot eEdge(u, v)
vi ews. | ower Di st (v, D(v))
endif
endfor
endwhile

In thispseudo-code, vi ews isthe dispatcher provided by Zeus. Thedispatcher will
notify all viewsthe user has selected for the algorithm.
433 TheView

A view is an object that has a method corresponding to each interesting event, and
a number of data fields. In this view, the data fields are as follows: a Root GO
object that contains all graphical objects of the scene, together with a camera and

11

light sources, arrays of graphical objects holding the disks (vertices), columns
(distances), arrows (graph edges), and shortest-path tree edges; and an “animation
handle” for triggering animations. Thisleads usto askeletal view:

let view = {
scene => Root GO NewStd(),
ah => Ani nrHandl e_New(),
verts => ok, (* initialized by nethod start *)
dists => ok, (* initialized by nmethod start *)
parent => ok, (* initialized by nethod start *)
edges => ok, (* initialized by nethod start *)

start => neth(self,n) ... end,
addVer t ex => neth(self,u,x,y) ... end,
selectVertex => meth(self,u) ... end,
addEdge => neth(sel f,u,v,w) ... end,
rai seEdge => neth(self,u,v,z) ... end,
| ower Di st => neth(self,u,z) ... end,
pronot eEdge => neth(self,u,v) ... end,
denot eEdge => neth(self,u,v) ... end

}s

The Zeus system has a control panel that allows the user to select an algorithm
and attach any number of viewsto it. Whenever the user creates a new 3D view,
a new Obliq interpreter is started, and reads the view definition. The agorithm
and al views run in the same process, but in different threads; thread creation is
very light-weight. The expression above creates anew object vi ew, and initializes
vi ew. scene to be aRoot GO, and vi ew. ah to be an animation handle.

The remainder of this section fleshes out the eight methods of vi ew, which
correspond to the eight interesting events:

12

> Thest art methodisresponsibleforinitializingvi ew. vert s,vi ew. di st s,
andvi ew. par ent tobearraysof sizem, andvi ew. edges tobean m x m

array. The elements of the newly created arrays are initialized to the dummy
valueok. Hereisthe code:

start => neth(self,m
self.verts := array_new(m ok);

self.dists := array_new(m ok);

self.parent := array_new(m ok);

sel f.edges := array2_new(m m ok);
end

> TheaddVert ex method adds a new vertex to the view. Vertices are repre-
sented by white disks that lie in the zy plane. Above each vertex, we also
show a green column of height d, provided that d is greater than 0. The

location of the cylinder’s base is constant, while its top is controlled by an
animatabl e point property value.

addVertex => neth(self,u,x,y,d)
self.verts[u] := DiskG New[x,y,0], [0,0,1], 0.2);
sel f.scene. add(sel f.verts[u]);
if d>0 then
let top = PointProp_NewSync(self.ah,[x,y,d]);
self.dists[u] := CylinderG New[x,y,0], top, 0.1);
Sur f aceGO _Set Col or (sel f.dists[u],"green");
sel f.scene. add(sel f.dists[u]);
end;
end

> Thesel ect Vert ex method indicates that a vertex « has been added to the
set S by coloring u’s disk red:

sel ect Vert ex => net h(sel f, u)

Sur f aceGO_Set Col or (sel f.verts[u],"red");
end

13

> The addEdge method adds an edge (represented by an arrow) from vertex
u 1o vertex v. The arrow starts at the disk representing «, and ends at the
column over v at height w. An arrow is composed of a cone, a cylinder, and
two disks; its geometry is computed based on the “Center” property of the
disksrepresenting the verticesto whichit is attached. Thefollowing diagram
illustratesthis relationship:

o o
/ ¢
AN e
w
P a2
~7

And hereisthe code for the method:

addEdge => neth(self,u,v,w

let a = Disk@) GetCenter(self.verts[u]).get();
let b = Disk@) GetCenter(self.verts[v]).get();
let ¢ = Point3_Plus(b,[0,0,W);

let d = Point3_M nus(c, a);

let e = Point3_M nus(c, Point3_Scal e(d,0.4));

let grp = G oupGO_New();
grp. set Prop(GO_Transform TransfornProp_NewSync(sel f.ah));
grp. add(D skGO_New(a, d,0.1));
grp. add(Cyl i nder GO_New(a, e, 0.1));
grp. add(D skGO_New(e, d, 0.2));
grp. add(ConeGO_New(e, ¢, 0.2));
sel f.edges[u][Vv] := grp;
sel f.scene. add(grp);
end

14

> Ther ai seEdge method highlightstheedgefrom « to v by coloringit yellow,
and then lifting it up by z. The arrow is moved by sending a “translate”
request to its transformation property. The translation is controlled by the
animation handle sel f . ah, and shall take 2 seconds to complete. Calling
sel f. ah. ani mat e() causesall animationrequestscontrolledby sel f . ah
to be processed.

rai seEdge => neth(self,u,v, z)
Sur f aceGO_Set Col or (sel f. edges[u] [Vv], "yel | ow");
let pv = GO _GetTransforn(self.edges[u][V]);
pv. getBeh().translate(0,0,z,0,2);
sel f.ah. ani mate();

end

> Themethod| ower Di st indicatesthat thecost D (u) of vertex u gotlowered,
by shrinking the green cylinder representing D (). Thisis done by sending
al i nMoveTo (“move over alinear path to”) request to the“Point2” property
of the cylinder.

| owerDi st => neth(sel f, u, z)
let pv = Cylinder G0 GetPoint2(self.dists[u]);
let p = pv.get();
pv. get Beh().linMveTo([p[O], p[l], z], O, 2);
sel f.ah. ani mate();

end

> The method pr onot eEdge indicates that (u, v), the edge that is currently
highlighted, shall become part of the shortest-path tree. This is indicated
by coloring the edge red. If there already was ared edge leading to v, it is
removed from the view.

pronot eEdge => net h(sel f, u, v)
Sur f aceGO_Set Col or (sel f. edges[u][Vv], "red");
if self.parent[v] isnot ok then
sel f. denot eEdge(sel f. parent[v], Vv);
end;
sel f.parent[v] := u;
end

15

> Finaly, the method denot eEdge removes the edge (u, v) from the view:

denot eEdge => net h(sel f, u, v)
sel f.scene. renmove(sel f.edges[u][V]);
end

Thiscompletesour example. Thecompleteview isabout 70 linesof code, compared
to theroughly 2000 lines of the PEX|ib-based version that generated the animations
presented in [5]. This measure is fairly honest; we did not add any functionality
(such asanew classAr r owG0) to the baselibrary in order to optimizethisexample.
Furthermore, turnaround time during the design of this view was limited only by
the design process per se (and our typing speed), whereas compiling a singlefile
and relinking with the Zeus system takes several minutes.

5 Related Work

There are two areas that have influenced ANIM3D: general-purpose 3D animation
libraries and a gorithm animation systems that have been used for developing 3D
views.

The most closely related general-purpose animation library is Openlnven-
tor [17, 18], an aobject-oriented graphics library with a C++ API. Openlnventor,
like ANIM3D, represents a scene as a DAG of “nodes’. Geometric primitives,
cameras, lights, and groupsare all specia typesof nodes. However, there are three
key differences between ANIM3D and Openlnventor:

e ANIM3D includes an embedded interpretive language, which isinstrumental
for achieving fast turnaround and short design cycles.

e Openlnventor views properties (such as colors and transformations) as or-
dinary nodes in the scene DAG. This means that the order of nodes in a
group becomes important. In thisrespect, ANIM3D is more declarative than
Openlinventor: the order in which objects are added to a group does not
matter.

e In anumber of aspects, Openlnventor requires the programmer to do more
work than ANIM3D requires. For example, Openlnventor clients have to
explicitly redraw a scene whereas ANIM3D uses a damage-repair model to
automatically redraw just those primitives that need to be redrawn.

16

Nonetheless, Openlnventor is a very impressive commercial product that greatly
simplifies 3D graphics. Many of the ideas of Openlnventor can be found in work
done at Brown University [16, 19].

Therearethree a gorithm animation systemsthat have been used for devel oping
3D views, Pavane, Polka3D, and GASP,

In Pavane [8], the computational model is based on tuple-spaces and mappings
between them. Entering tuplesinto the “animation tuple space’ has the side-effect
of updating the view. A small collection of 3D primitives are available (points,
lines, polygons, circles, and spheres), and the only animation primitives are to
change the positions of the primitives.

Polka3D [14], like Zeus, followsthe BALSA model for animating algorithms.
Algorithms communicate with views using “interesting events,” and viewsdraw on
the screen in response to the events. The graphicslibrary is similar to ANIM3D in
goasand features, but it appearsto be abit slimmer and more focused on algorithm
animations. Unlikeour system, views are not interpreted, so turnaround timeis not
instantaneous.

The GASP [9] system is tuned for developing animations of computational
geometry algorithms involving three (and two) dimensions. Because a primary
god of the system isto isolate the user from details of how the graphicsis done, a
user islimited to choosing from among a col l ection of animation effects supplied by
the system. Theviewing choicesaretypicaly stored in aseparate” style’ filethat is
read by the system at runtime; thus, GASP providesrapid turnaround. However, it
does not provide the flexibility to develop arbitrary views with arbitrary animation
effects.

6 Conclusion

Thefirst part of thisreport described ANIM3D, an object-oriented 3D animation li-
brary targeted at visualizing combinatoria structures, and in particular at animating
algorithms. The second part presented a case study showing how to use ANIM3D
within the Zeus al gorithm animation system for producing a 3D visualization of a
graph-traversal algorithm.

ANIM3D is based on three concepts: scenes are described by DAGs of graph-
ical objects, time-variant property values are the basic animation mechanism, and
callbacks are the mechanism by which clients can specify reactive behavior. These
concepts provide asimple, yet powerful framework for building animations.

ANIM3D providesfast turnaround by incorporating an interpretivelanguagethat
allowsthe user to modify the code of aprogram even asit runs. Previousexperience

17

has shown us that powerful animation facilitiesand fast turnaround time are crucial
for enabling non-expert users to construct new algorithm animations.

18

References

[1]

[2]

(3]

[4]

(5]

(6]

[7]

(8]

[9]

[10]

[11]

Marc H. Brown. Zeus: A System for Algorithm Animation and Multi-View
Editing. 1991 |EEE Workshop on Visual Languages (October 1991), 4-9.

Marc H. Brown. The 1992 SRC Algorithm Animation Festival. 1993 IEEE
Symposiumon Visual Languages (August 1993), 116-123.

Marc H. Brown. The 1993 SRC Algorithm Animation Festival. Research
Report 126, Digital Equipment Corp., Systems Research Center, Palo Alto,
CA (1994).

Marc H. Brown and John Hershberger. Color and Sound in Algorithm Ani-
mation. Computer, 25(12):52—63, December 1992.

Marc H. Brown and Marc Ngjork. Algorithm Animation Using 3D Interac-
tive Graphics. ACM Symposium on User Interface Software and Technol ogy
(November 1993), 93-100.

Marc H. Brown and Robert Sedgewick. A System for Algorithm Animation.
Computer Graphics, 18(3):177-186, July 1984.

Luca Cardelli. Oblig: A language with distributed scope. Research Report
122, Digital Equipment Corp., Systems Research Center, Palo Alto, CA (June
1994).

Gruia-Catalin Roman, Kenneth C. Cox, C. Donald Wilcox, and Jerome Y.
Plun. Pavane: A System for Declarative Visuaization of Concurrent Com-
putations. Journal of Visual Languages and Computing, 3(2):161-193, June
1992.

David Dobkin and Ayellet Ta. GASP—A System to Facilitate Animating
Geometric Algorithms. Technical Report, Department of Computer Science,
Princeton University, 1994.

E. W. Dijkstra. A note on two problemsin connexion with graphs. Numerische
Mathematik, 1:269-271, 1959.

Robert A. Duisberg. Animated Graphica Interfaces Using Tempora Con-
straints. ACM CHI ' 86 Conf. on Human Factorsin Computing (April 1986),
131-136.

19

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Steven C. Glassman. A Turbo Environment for Producing Algorithm Anima-
tions. 1993 |EEE Symp. on Visual Languages (August 1993), 32—36.

Mark S. Manasse and Greg Nelson. Trestle Reference Manual. Research
Report 68, Digital Equipment Corp., Systems Research Center, Palo Alto,
CA, December 1991.

John T. Stasko and Joseph F. Wehrli. Three-Dimensional Computation Visu-
aization. 1993 IEEE Symposiumon Visual Languages (August 1993), 100 —
107.

JohnT. Stasko. TANGO: A Framework and System for Algorithm Animation.
Computer, 23(9):27-39, September 1990.

Paul S. Strauss. BAGS: The Brown Animation Generation System. Technica
Report CS-88-22, Brown University, May 1988.

Paul S. Strauss. IRIS Inventor, a 3D Graphics Toolkit. OOPSLA 93 Conf.
Proc., (September 1993), 192—200.

Paul S. Strauss and Rikk Carey. An Object-Oriented 3D Graphics Toolkit.
ACM Computer Graphics (S GGRAPH '92) (July 1992), 341-349.

Robert C. Zeleznik et al. An Object-Oriented Framework for the Integration
of Interactive Animation Techniques. ACM Computer Graphics (S GGRAPH
'91), (July 1991), 105-111.

20

