
July 29, 1994

SRC
Research
Report 126

The 1993 SRC Algorithm Animation Festival

Marc H. Brown

d i g i t a l
Systems Research Center
130 Lytton Avenue
Palo Alto, California 94301

Systems Research Center

The charter of SRC is to advance both the state of knowledge and the state of the art
in computer systems. From our establishment in 1984, we have performed basic
and applied research to support Digital’s business objectives. Our current work
includes exploring distributed personal computing on multiple platforms, network-
ing, programming technology, system modelling and management techniques, and
selected applications.

Our strategy is to test the technical and practical value of our ideas by building
hardware and software prototypes and using them as daily tools. Interesting systems
are too complex to be evaluated solely in the abstract; extended use allows us to
investigate their properties in depth. This experience is useful in the short term in
refining our designs, and invaluable in the long term in advancing our knowledge.
Most of the major advances in information systems have come through this strategy,
including personal computing, distributed systems, and the Internet.

We also perform complementary work of a more mathematical flavor. Some of
it is in established fields of theoretical computer science, such as the analysis
of algorithms, computational geometry, and logics of programming. Other work
explores new ground motivated by problems that arise in our systems research.

We have a strong commitment to communicating our results; exposing and testing
our ideas in the research and development communities leads to improved un-
derstanding. Our research report series supplements publication in professional
journals and conferences. We seek users for our prototype systems among those
with whom we have common interests, and we encourage collaboration with uni-
versity researchers.

Robert W. Taylor, Director

Abstract

This report describes the 1993 SRC Algorithm Animation Festival. The festival
continues an experiment in developing algorithm animations by non-experts, started
the previous year, and described in SRC Research Report #98. This year nineteen
researchers at Digital Equipment Corporation’s Systems Research Center worked
for two weeks on animating algorithms. Most of the participants had little (if any)
experience writing programs that involved graphics. This report explains why we
organized the festival, and describes the logistics of the festival and the advances
in our algorithm animation system. This report presents the complete code for
a simple, but non-trivial, animation of first-fit binpacking. Finally, this report
contains snapshots from the animations produced during the festival.

1 Background

In SRC Research Report #98, we reported on the 1992 SRC Algorithm Animation
Festival [2], held during the summer of ’92 at Digital Equipment Corporation’s
Systems Research Center (SRC). The primary goal of that animation festival was
to promote the Modula-3 programming language, by developing a comprehensive
set of interactive animations of fundamental algorithms to accompany a university-
level data structures or algorithms course.

It was not our goal (or expectation) that professors would change their algo-
rithms or data structures courses to use Modula-3, just because there existed some
potentially useful courseware that was implemented in Modula-3. Rather, we
hoped that professors would use the systems, and, at some point, look at the source
code—perhaps to animate their own algorithm, to add a new view, or perhaps to
simply modify one of the algorithms or views that we provided.

Although we did not achieve our goal of building a comprehensive set of
animations for a complete course, we did develop quite a few intriguing ani-
mations of fundamental algorithms. The algorithms included string searching,
priority queues, parsing, hashing, network flow, convex hulls, closest points,
graph traversals, balanced trees, binpacking, and of course, sorting. The ani-
mations, along with the Zeus algorithm animation system [1], have been ftp’d from
gatekeeper.dec.com by over 300 sites. About a dozen of those sites have
used the software for teaching. At the University of Illinois, in fact, students in
Prof. Sam Kamins’ compiler course were given the option of implementing an
animation of a part of a compiler as their final project, rather than the usual “build a
toy compiler for a toy language.” At Dortmund University, Profs. Anulf Mester and
Peter Herrmann led a year-long project with eleven students developing animations
of distributed algorithms and communication protocols [9].

More important than the breadth of our algorithms coverage was the discovery
that the animation festival had a number of intangible, positive results within our
research laboratory: SRC researchers had an opportunity to work closely with
colleagues with very different technical backgrounds and interests, and many of
the participants developed new appreciation for and skill in using graphics and
animation as communication media. As a result, we decided to offer a second
algorithm animation festival during the summer of ’93. This report describes the
’93 animation festival.

The remainder of this report is organized as follows: The next section describes
the logistics of the animation festival, followed by observations about the partici-
pants and the projects. Then, we describe the advances we made to our algorithm
animation system, and show the complete code for an animation of first-fit bin-

1

packing. Finally, we offer some concluding thoughts. The figures at the end of this
report are screen dumps from the animations produced by the participants during
the animation festival. (The animation from one of the groups is not included,
pending a patent application.) Because a static image cannot do justice to an
interactive animation, each figure contains a fairly detailed caption. A videotape
showing some of the animations will be available in the near future as a SRC
research report.

2 The ’93 Animation Festival

This section describes the structure of the festival, and presents an overview of the
software that was used.

The structure of the ’93 festival followed that of the ’92 festival: the first week
was devoted to teaching the participants about algorithm animation, and the second
week to implementing animations. The participants demonstrated their work to
the rest of SRC during the following weeks.

Most participants learned all that they needed to know about the mechanics of
using Zeus for preparing an algorithm animation, and about using the Zeus control
panel, from the 2-hour tutorial on Monday morning. The afternoon of the first day
was used to get participants not familiar with the SRC Modula-3 programming
environment up-to-speed. There was an hour-long lecture about GraphVBT, a
high-level animation package [7]; an hour-long lecture about FormsVBT, a user-
interface toolkit; and an hour-long introduction to Modula-3. The user-interface
toolkit is needed for developing control panels for specifying input to an algorithm.

There were two one-hour lectures on Tuesday afternoon: developing code
views and data views in Zeus, and using GEF [8]. GEF is an interpreted, Lisp-like,
embedded language. Because GEF is interpreted, turnaround is fast. Because GEF
is based on GraphVBT, animation operations and graphical elements are easy to
create and manipulate.

There were also two one-hour lectures on Wednesday afternoon. The first
lecture was on the various advanced input styles that Zeus supports, and the second
lecture was on Obliq, an interpreted, embedable language [5].

The final lectures, on Thursday morning, consisted of an hour devoted to
techniques for creating effective algorithm animations, followed by a “culture”
hour devoted to viewing a collection of classic algorithm animations.

There were two fundamental changes from the previous festival: The first
change was that each lecture was followed by exercises reinforcing the material.
The exercises were useful in ensuring that the participants learned about all the

2

tools, not just about the subset they thought they would need. The second change
was that participants paired up immediately, rather than waiting until the second
week when they started working on an animation. All teams had a non-trivial
animation of binpacking by lunch time on Tuesday.

During the second week, participants and instructors met at the end of each
day for some R&R, that is “rushes and refreshments.” This was an opportunity for
participants to demonstrate what they had done that day and to get feedback from
other participants and the instructors.

Of the 19 participants, three were Ph.D. students who were at SRC as part of
its Summer Research Internship program, one was a member of Digital’s Western
Research Laboratory (WRL) in Palo Alto, one was a faculty member at Staten
Island College, and the others were fulltime members of the research staff at SRC
with a variety of research interests.

Last year, we provided the participants with a list of “most wanted algorithms.”
Because we were not trying to cover any specific algorithms this year, we offered
neither direction nor constraints in choosing an algorithm to animate.

Two groups animated algorithms they were currently working on (Figs. 2and
7). One group had always wanted to develop a particular algorithm, and the festival
gave them the perfect excuse (Fig. 5). Two groups animated algorithms that they
had developed within the previous couple of years in other contexts (Fig. 6 and 8),
two other groups worked on algorithms that members found intriguing (Figs. 4
and 9). Finally, one group did an educational simulation (Fig. 1), and another did
a computer game (Fig. 3).

All of the participants, except one, used the Zeus algorithm animation system.
The exception (Fig. 7), a member of the research staff at WRL, started with a
working implementation of a label-placement algorithm in Scheme, and added
many Zeus-like features to the program in a program-specific way. (Furthermore,
the label-placement algorithm [6] was developed by a researcher at Digital’s Cam-
bridge Research Laboratory.)

The essence of animating an algorithm in Zeus is to separate the algorithm from
each view and to create a narrow interface, specific to each algorithm, between them.
More specifically, an algorithm is annotated with procedure calls that identify
the fundamental operations that are to be displayed. An annotation, called an
interesting event, has parameters that identify program data. A view is a subclass
of a window, with additional methods that are invoked by Zeus whenever an
interesting event happens in the algorithm. Each view is responsible for updating
its graphical display appropriately, based on the interesting events. Views can also
propagate information from the user back to the algorithm.

It is important to realize that the mechanics of producing an algorithm animation

3

is the easiest part of animating an algorithm. A harder (and more enjoyable) part is
deciding on effective and informative visualizations. This is necessarily an iterative
process, and one that requires constant feedback from many different people. (An
even harder, and yet even more enjoyable, part is to incorporate the animations into
a lecture; we did not address this problem in the animation festival, however.)

In order to address the reality that designing views is an iterative process, we
provided two embedded interpreted languages, GEF and Obliq, for writing views.
Two groups used GEF and six groups used Obliq. Only one group used Modula-3,
due to performance limitations of the interpreted languages. (Since the festival, the
GEF system has been retired, primarily because Obliq subsumes the functionality
of GEF, and offers many more features.) The reaction to using GEF and Obliq for
writing views was unanimous enthusiasm.

3 An Example Animation

This section contains the code for an animation of first-fit binpacking, as shown on
the facing page. There are seven source files, written in five different languages.
Although some of the languages will be unfamiliar to you, nonetheless, they are
hopefully understandable without much difficulty. The purpose in presenting the
code here is to give you an understanding of what’s involved in preparing an
animation for Zeus; it is not meant to be a tutorial on preparing Zeus animations.
A tutorial will appear as a SRC research report in the near future.

The file m3makefile, written in quake, contains a declaration of the various
pieces of the application. Here it is:

import (zeus)
zume (Binpack)
oblume (Binpack, SimplePacking)
oblume (Binpack, ProbeAndPack)
module (AlgFF)
resource (binpackinput.fv)
implementation (Main)
bundle (BinpackBundle)
program (binpack)

You just need to type “m3build” to the shell in order to rebuild the entire ap-
plication. The m3build command reads in the contents of the m3makefile,
runs various filters and compilers, and eventually creates an application named
binpack.

4

5

The file Binpack.evt defines the interesting events for binpacking algo-
rithms in Zeus’s Event Description Language:

OUTPUT Setup (nBins, nWts: INTEGER[Fmt.Int]);
(* Call once at the beginning to identify

for views how many diff weights there
will be for packing, and the maximum
number of bins that will be used. The
bins are numbered starting at 0, and each
bin can hold at most 1.0 unit of weight. *)

OUTPUT NewWeight (id: INTEGER[Fmt.Int];
wt: REAL[Fmt.Real]);

(* Got a new weight to try packing into a bin.
Id’s are between 0 and nWts-1. It is not
guaranteed that the id’s will be sequential. *)

OUTPUT Pack (wt: REAL[Fmt.Real];
bin: INTEGER[Fmt.Int];
total: REAL[Fmt.Real]);

(* Pack the current weight into the specified bin,
raising the amount stored in that bin to the
specified total. *)

OUTPUT Probe (wt: REAL[Fmt.Real];
bin: INTEGER[Fmt.Int];
total: REAL[Fmt.Real]);

(* Check whether the current weight can fit into
the specified bin, which has the specified total.
The bin is between 0 and nBins. *)

(*
** The following regular expression defines the
** output event stream generated by a Binpack alg:
**
** Setup (NewWeight Probe+ Pack)*
**
*)

Zeus processes this file and produces a variety of objects and files that mediate the
communication from an algorithm to the views. The derived files are automatically
compiled and linked into the application. There are two derived files that we’ll
make use of later: BinpackIE and BinpackAlgClass.

6

The fileAlgFF.m3 contains the Modula-3 source code for a first-fit binpacking
algorithm, annotated with the interesting events

MODULE AlgFF;

IMPORT Algorithm, FormsVBT, Random, Thread, VBT, ZeusPanel;
IMPORT BinpackAlgClass, BinpackIE;

PROCEDURE New (): Algorithm.T =
BEGIN RETURN NEW(BinpackAlgClass.T,

run := Run,
data := ZeusPanel.NewForm("binpackinput.fv")).init()

END New;

PROCEDURE Run (alg: Algorithm.T) RAISES {Thread.Alerted} =
<* FATAL FormsVBT.Error, FormsVBT.Unimplemented *>
VAR

B: INTEGER; (* number of bins *)
N: INTEGER; (* number of weights to pack *)
bin: INTEGER; (* index into array of bins *)
amt: REAL; (* current weight *)
totals: REF ARRAY OF REAL; (* b’th bin has totals[b] *)
rand := NEW(Random.Default).init(); (* random number generator *)

BEGIN
LOCK VBT.mu DO

N := FormsVBT.GetInteger(alg.data, "N");
B := FormsVBT.GetInteger(alg.data, "B");

END;
BinpackIE.Setup(alg, B, N);
totals := NEW(REF ARRAY OF REAL, B);
FOR b := 0 TO B - 1 DO totals[b] := 0.0 END;
FOR w := 0 TO N - 1 DO

amt := rand.real();
BinpackIE.NewWeight(alg, w, amt);
bin := 0;
BinpackIE.Probe (alg, amt, 0, totals[0]);
WHILE totals[bin] + amt > 1.0 DO
INC(bin);
IF bin = B THEN RETURN END;
BinpackIE.Probe (alg, amt, bin, totals[bin])

END;
totals[bin] := totals[bin] + amt;
BinpackIE.Pack(alg, amt, bin, totals[bin])

END
END Run;

BEGIN
ZeusPanel.RegisterAlg(New, "First-Fit", "Binpack");

END AlgFF.

The algorithm uses procedures defined in BinpackIE for inserting event an-
notations. The algorithm uses the object defined in BinpackAlgClass as a
supertype of the first-fit binpacking algorithm.

7

The algorithm makes reference to the file binpackinput.fv, which con-
tains a description of a graphical user-interface with two numeric widgets:

(VBox
(HBox

(Text RightAlign "Number of weights: ")
(Numeric (Min 1) (Max 1000) %N =26))

(Glue 10)
(HBox

(Text RightAlign "Number of bins: ")
(Numeric (Min 1) (Max 100) %B =15)))

The user-interface description is written in FormsVBT. It is visible in the middle
of the Zeus control panel, in the lower-right of the screen dump.

The file SimplePacking.obl contains a view, written in Obliq:

let view = {

graphvbt => graph_new(),

Setup => meth (self, nBins, nWts)
graph_setWorld(self.graphvbt, 0.0, real_float(nBins), 1.0, 0.0);
graph_setMargin(self.graphvbt, 2.0);
end,

Pack => meth (self, wt, bin, total)
let xpos = 0.5 + real_float(bin);
let ypos = total-(wt/2.0);
let v = graph_newVertex(self.graphvbt);
graph_setVertexSize(v, 1.0, wt);
graph_moveVertex(v, xpos, ypos, false);
graph_setVertexBorder(v, 0.01);
graph_setVertexColor(v, color_named("Blue"));
graph_redisplay(self.graphvbt);
end,

};

This view is very simple. It shows how the weights have been packed into the
bins. There is no animation per se; each time the algorithms determine the bin into
which a weight should go, a new blue rectangle (corresponding to the weight) is
drawn.

8

The file ProbeAndPack.obl is a more polished view:

let view = {

graphvbt => graph_new(),
font => ok,
currVertex => ok,
packedColor => color_named("Pink"),
initialColor => color_named("VeryLightGray"),

Setup => meth (self, nBins, nWts)
graph_setWorld(self.graphvbt,

-2.0, float(nBins), 2.0, 0.0);
graph_setMargin(self.graphvbt, 2.0);
self.font := graph_newFont (self.graphvbt,

"Helvetica", 0.5, "Roman", "Bold", "*");
let v0 = graph_newVertex(self.graphvbt);
graph_setVertexSize(v0, 0.0, 0.0);
graph_moveVertex(v0, -10.0, 1.0, false);
let v1 = graph_newVertex(self.graphvbt);
graph_setVertexSize(v1, 0.0, 0.0);
graph_moveVertex(v1, float(nBins)+10.0, 1.0, false);
let e = graph_newEdge(v0, v1);
graph_setEdgeWidth(e, 0.01);
graph_redisplay (self.graphvbt);
end,

NewWeight => meth (self, id, wt)
let v = graph_newVertex (self.graphvbt);
graph_setVertexSize(v, 1.0, wt);
graph_moveVertex(v, -1.0, 1.0, false);
graph_setVertexFont(v, self.font);
graph_setVertexBorder(v, 0.01);
graph_setVertexLabel(v, fmt_int(id));
graph_setVertexColor(v, self.initialColor);
graph_setVertexLabelColor(v, color_rgb(0.0, 0.0, 0.0));
graph_redisplay(self.graphvbt);
self.currVertex := v;
end,

Probe => meth (self, wt, bin, total)
let xpos = 0.5 + float(bin);
let ypos = float(total) + (wt / 2.0);
graph_moveVertex(self.currVertex, xpos, ypos, true);
zeus_animate(self.graphvbt, 0.0, 1.0);
end,

Pack => meth (self, wt, bin, total)
graph_setVertexColor(self.currVertex, self.packedColor);
graph_redisplay(self.graphvbt);
end,

};

When the algorithm is given a new weight to process, a rectangle corresponding
to the weight is drawn at the left in gray. As the algorithm probes the non-empty

9

bins, the weight smoothly slides to the bin to see if there is room. Finally, when
the algorithm decides which bin to place the weight in, the color of the rectangle
changes. There are two instances of this view in the screen dump. Notice how the
view scales itself to fit into the window.

The most important thing to realize about the views is that the code is short and
high-level. Moreover, making a one-line change in the view, for instance, changing
the width of the border, is literally a 5-second turnaround.

Finally, the mainline for the application is in the Modula-3 file Main.m3:

MODULE EXPORTS Main;
IMPORT ZeusPanel, Rsrc, BinpackBundle;
BEGIN
ZeusPanel.Interact(

"Binpacking",
Rsrc.BuildPath("$BINPACKPATH", BinpackBundle.Get()));

END Main.

4 Conclusions

The participants in the animation festival seemed to have genuinely enjoyed the
experience. Our current plans are to hold a ’94 animation festival over one week
(rather than two), and to expand the target domain from algorithms to include
systems as well as algorithms. In addition, we have recently completed a sophisti-
cated animation package for specifying 3-D animations, so we anticipate that some
participants will explore using 3-D graphics.

5 System Availability

The Zeus system and many of the animations developed during the ’92 and ’93 an-
imation festivals are available via anonymous ftp from gatekeeper.dec.com.
They are located in the directory pub/DEC/Modula-3/release.

You can find out information about Modula-3 in the Usenet news group
comp.lang.modula3. If you do not have access to Usenet, you can be added
to a relay mailing list by sending a message to m3-request@src.dec.com.

10

6 Acknowledgments

The instructors in the ’93 Animation Festival were Steve Glassman, John DeTre-
ville, and Marc Brown.

The participants were Yuan Yu, Sam Weber, Jim Saxe, Ricardo Sanchez, Tom
Rodeheffer, Sharon Perl, Greg Nelson, Eric Muller, Tim Mann, Mark Manasse,
Roberta Klibaner, Jim Horning, Allan Heydon, Stephen Harrison, Hania Gajewska,
Dave Detlefs, Joao Comba, Luca Cardelli, and Joel Bartlett.

Hania, Allan, Greg, and Jim Saxe deserve special recognition for having par-
ticipated in both the ’92 and ’93 Animation Festivals.

Thanks to Allan, Dave, Luca, Jim Saxe, Joel, Mark, Tim, and Sam for providing
the figure captions.

11

References

[1] Marc H. Brown, Zeus: A System for Algorithm Animation and Multi-View
Editing, In Proc. 1991 IEEE Workshop on Visual Languages, pages 4–9, Oc-
tober 1991.

[2] Marc H. Brown, The 1992 SRC Algorithm Animation Festival, In Proc. 1993
IEEE Symposium on Visual Languages, pages 116–123, August 1993. Also
appears as Research Report #98, Digital Equipment Corp., Systems Research
Center, Palo Alto, CA (March 1993).

[3] Marc H. Brown and Robert Sedgewick, A System for Algorithm Animation,
Computer Graphics, 18(3):177–186, July 1984.

[4] M. Burrows and D. J. Wheeler. A Block-sorting Lossless Data Compression
Algorithm. Research Report #124, Digital Equipment Corp., Systems Research
Center, Palo Alto, CA (May 1994).

[5] Luca Cardelli. Obliq: A language with distributed scope. Research Report
#122, Digital Equipment Corp., Systems Research Center, Palo Alto, CA
(April 1994).

[6] Jon Christensen, Joe Marks, and Stuart Shieber, Placing Text Labels on Maps
and Diagrams, In Graphic Gems, Vol. 4, Academic Press, 1994.

[7] John D. DeTreville, The GraphVBT Interface for Programming Algorithm
Animations, In Proc. 1993 IEEE Symposium on Visual Languages, pages 26–
31, August 1993.

[8] Steven C. Glassman, A Turbo Environment for Animating Algorithms, In Proc.
1993 IEEE Symposium on Visual Languages, pages 32–36, August 1993.

[9] Arnulf Mester. ZADA: Zeus-based animations of distributed algorithms and
communication protocols.
http://ls4-www.informatik.uni-dortmund.de/RVS/zada.html,
May 31, 1994.

13

Fig. 1: An Animated Biology Lesson. This snapshot shows two different biology
lessons. Each lesson is implemented as a separate Zeus animation.

The window in the upper-right is a lesson on dominant and recessive genes.
Initially, there are four fruit flies, two male and two female. Each fly is labelled with
its genotype, and shows its phenotype (how these genes are expressed) visually.
We are interested in four characteristics of fruit flies. Each characteristic is shown
visually in the drawing of the fly, and encoded in the genotype label, with capital
letters for dominant genes and small letters for recessive genes. The characteristics
are eye color (“R” for red and “w” for white); eye shape (“C” for circle and “b” for
barred); wing shape (“N” for normal and “v” for vestigial); and sex (“Y” for male
and “x” for female). Sex is shown visually by a blue or pink body color.

A mating pair is chosen randomly and slides to the center of the screen;
these then produce four “eggs” whose genotype is chosen from the genotypes
of the parents by the same random selection that sexual reproduction uses. The
eggs “hatch” and each new fly’s phenotype is determined by its genotype. The
bar graphs are histograms of which characteristics are expressed in the offspring.
They are essentially the kind of data from which Mendel deduced the existence of
dominant and recessive genes.

The window in the lower-left is from a lesson on the details of sexual
reproduction. The animation shows how mitosis takes a diloid cell with a full
complement of genetic material, and divides it into two haploid cells, each with
one (randomly selected) member of each of the chromosome pairs in the nucleus.
This cell duplicates each chromosome and divides again, producing real sex cells,
sperms or ovae.

14

15

Fig. 2: A Packet Routing Simulator. The screen dump here is from an animation of
a packet routing simulation. The animation is designed to illustrate the performance
of various packet routing heuristics on store-and-forward networks of arbitrary
topology.

The PacketRoute.obl view on the upper-right shows a circle for each node
of the network, a line for each inter-node connection in the network, and small
squares corresponding to the current locations of the packets. At each routing step,
the squares move along some link from their current node to a neighboring node.

The PacketTrace.obl view on the left shows the same network, but in this
view, each packet leaves behind a colored “trail” as the animation progresses so
you can see the complete path taken by each packet. In this view, the packets are
represented by colored circles of varying sizes so that the trails of several packets
are visible even if they cross the same link during the routing (see, for example,
the link at the bottleneck of the hourglass).

Finally, the ManyPacketsMove.obl view in the lower right shows statistics
about the performance of the routing heuristics. For each of the 5 packets in this
simulation, a pair of columns is displayed. The height of the left column in the pair
corresponds to the length of the shortest path that packet could travel to get from
its specified source to its destination. The height of the right column in the pair
corresponds to the number of links the packet has traveled so far. The right column
of the fourth packet has a small “cap” to indicate that the packet has reached its
destination. Because the two columns for this packet are the same height, we can
see that the routing heuristics directed this packet along one of the shortest possible
paths.

16

17

Fig. 3: Hexpawn: Man versus Machine. In this screen dump, we see a hexpawn
game being played between a human (as player A), and the minimax algorithm (as
player B). The computer has just moved, and the resulting board position is shown
in the Game Board view in the upper-right.

The ViewGameTreeB.oblview at the bottom shows the minimax computation
that led to the last move by B. The root of the game tree shows the position that the
board was in before B’s move. The game tree was computed to a depth of four, and
then the nodes were evaluated. Each node was given a value ranging from �1 to
1, where �1 indicates a sure loss for B, and1 a sure win. The value assigned
to each node is indicated by the color of its border: red indicates�1, yellow is 0,
blue is1, and other values are indicated by colors between these on the spectrum.

When this screen dump was generated, there were three possible moves that
B could have made from the last board position, as shown by the fact that the root
of the game tree has three children. The first child was evaluated as1, while the
other children had value �1. Therefore, the minimax algorithm chose to make
the first of these moves.

The standard Zeus control panel is in the upper-left window. Notice the
various parameters that the user can set for configuring how the animation will run.

18

19

Fig. 4: Bresenham’s Line-Drawing Algorithm. This animation shows Bresen-
ham’s line-drawing algorithm, used to display a line on a raster-display.

The Line view in the lower-right shows the ideal line (in green) and very
large pixels. The Incremental Real view in the bottom-left shows the part of the
line currently being processed, and with more detail. The red and yellow arrows
indicate the local variables that the algorithm maintains in order to determine where
the next pixel should be drawn—to the east or northeast. The small view in the
middle shows the rasterized line with smaller pixels.

The window in the upper-left is the Zeus control panel, and the window in the
upper-right is the Transcript view, provided automatically by Zeus. The Transcript
view prints each event that goes from the algorithm to the views.

20

21

Fig. 5: The k-Shortest Paths Algorithm. The k-shortest paths algorithm finds
the shortest path (and the 2nd shortest, the 3rd shortest, : : : , and the kth shortest)
from a starting vertex to all other vertices, in a directed graph with all positive edge
weights. In this example, k = 3 and the starting vertex is a.

The example graph contains five vertices; the edges of the graph are shown
in heavy white lines, and the weight of each edge is the Euclidean distance between
the edge’s endpoints. The snapshot shows the 3 shortest paths from vertex a to
all other vertices. The concentric rings at each vertex represent the termini of the
3 shortest paths to that vertex; the shortest path terminates at the innermost ring,
the second-shortest path terminates at the middle ring, and the third-shortest path
terminates at the outer ring. The source of an edge indicates, both by color and by
starting position, each of the k-shortest paths.

Perhaps the easiest way to read the picture is from the end of the path back
to the source. For example, to find the second shortest path from a to b, we first
note that the second shortest path into b comes from the middle ring of c, that is,
the second shortest path into c (the green arc). To get to the middle ring of c we
follow the center ring from d (the red arc). And to get to the center ring of d, we
just follow the edge from a (the red arc). Thus, the path is a-d-c-b. Similarly, the
third shortest path from a to b uses the outer (blue) arc from c. To get there, we
follow the inner (red) arc from e, which came from d, which came from a. Thus,
the whole path is a-d-e-c-b.

The lighter colored rings and edges depict computations still in progress; in
the picture above, we are in the process of settling on the second-shortest path to e.

22

23

Fig. 6: Checking for Recursive Subtypes. Simple types can be represented as
trees with type operators at the nodes and basic types at the leaves. Recursive
types can be similarly represented as graphs, with loops expressing recursion. This
animation illustrates an algorithm that checks whether two recursive types are in a
subtype relation.

The algorithm works by traversing both types simultaneously with a two-
headed cursor (the cyan bar) while remembering the pairs of nodes already visited
(not shown) in order to stop looping. The direction of subtyping swaps every
time the cursor descends the left branch of a function space node (arrow), since
the function space type operator is anti-monotonic in its left argument. The cyan
triangle represents the current direction of subtyping. The recursion stack is
apparent in the M3 Code view in the upper-right. The standard Zeus control panel
is in the upper-left window. Note the input parameters that the user can manipulate.

24

25

Fig. 7: Map Labeling. These two screen dumps show an animation of using
simulated annealing to label point features on a map.

In the top snapshot, the four transparent yellow rectangles show possible
label positions, and they move about the map as the algorithm processes conflicting
labels (shown in red). The corresponding lines in the code view are highlighted
appropriately. At this moment, the algorithm is attempting to improve the map by
repositioning the label “Chalons-sur-Marne” from left to right. Since this move
makes the map worse by adding a conflict with “Lac de Madine”, the program is
“flipping a coin” to decide if the move should be rejected. This has a probability
of .701 as shown in the Data view window.

The bottom snapshot shows the map labeled with no conflicts at the end of
the run. The fine grain view of algorithm execution shown in the top snapshot
has been replaced by graphs showing the number of unobstructed labels after each
repositioning attempt. Here, a previous run with the standard cooling schedule
(top graph) is compared with the less efficient current run that used an accelerated
cooling schedule (bottom graph). Vertical yellow bars denote the end of each
temperature cycle.

26

Fig. 8: Wheeler’s Block-Sort Lossless Data Compression. This screen dump is
from an animation of Wheeler’s Block-Sort Lossless Data Compression algorithm[4].

The Compress.obl view at the left illustrates the compression phase. The
string to be compressed, bandana, is shown at the top. In the middle, we see
a matrix whose rows contain all the possible cyclic permutations of the string, in
sorted lexicographic order. The original string is highlighted in pink, and the row’s
index is circled. All places in the original string that contain two instances of the
same substring (e.g., an) will results in the last column of this matrix containing
two adjacent (or nearly adjacent) copies of the substring’s first character. Below the
matrix we see the results of encoding the string from the last column of the matrix
(i.e., ndbanaa) to take advantage of this property. This string is preceded by copy
of the complete alphabet (abnd), and then each character of the string is replaced
by the number of distinct characters between it and the preceding occurrence of
the same character. The resulting sequence of counts (1123310) is likely to
contain a disproportionate number of zeroes and other small numbers, so it can be
compressed very effectively using a standard Huffman compression algorithm.

The Decompress.obl view at the top-right illustrates the decompression
phase. The algorithm first decodes the sequence of counts, giving back the last
column of the matrix. This column is then sorted, producing a copy of the original
matrix’s first column, and displayed to the right of the other column. The two
adjacent columns produce all the digraphs in the original string. The algorithm
then uses color to distinguish the multiple copies of same letter. For example, the
first “a” in each column is red, the second is green, and the third is blue. Finally,
the algorithm reassembles the original string by overlapping matching characters
with matching colors. The remembered row index from the original matrix tells us
where to start this process. The screen dump shows the reassembly process after it
has reassembled just the a and the b.

The WhyDecompressWorks.obl view at the bottom-right illustrates the crux
of the decompression phase: that the original string will be reassembled by overlap-
ping matching characters with matching colors. This happens as long as multiple
instances of each letter maintain their same relative order. For instance, the three
a’s in both the left and right matrices appear in the order red-green-blue, from top
to bottom.

28

29

Fig. 9: Wheeler’s “Revenge”. This screen dump shows another lossless data
compression algorithm. The Zeus Photo Album view at the top records a graphical
history of the other view at various key stages in the algorithm’s progress.

The compressor (shown in the left in the large view) runs an automaton that
guesses what the next input character is. If it guesses correctly, the compressor
outputs a “hit” marker; otherwise, it outputs a “miss” marker along with the input
character that caused the miss. The bottom of the view shows the progress of the
algorithm: In this snapshot, the characters a-bug- have already been processed.
There were hits on the initial “a” and on the second hyphen. An uncompressed
version of the string would require 48 bits: 8 bits for each of the 6 characters. The
compressed version requires only 38 bits: each hit requires 1 bit and each miss 9
bits, 1 bit for the marker and 8 bits for the character itself.

The decompressor (shown in the right) reads the compressed input while
also running the same automaton as the compressor runs. If the marker in the
compressed input is a “hit,” the decompressor gets the uncompressed character
from its own automaton. Otherwise, the decompressor finds the uncompressed
character on the compressed input stream, right after the “miss” marker.

In order to “guess” the next character, the automaton hashes the last three
characters of the input stream to index an array. In the snapshot, the automation is
using the characters ug-; the hash function returns a 3, indicating a “guess” of a
u for the next character. However, this “guess” is wrong, and a “miss” marker and
the character i will be put into the compressed output.

What makes this compression algorithm work is that the automaton adapts
itself to the input stream by changing the contents of the array in the case of a
miss. For example, in this snapshot, the u in the array will be replaced by the i.
This increases the likelihood of hits, assuming that the input is more likely to see
another g-i triple than another g-u triple. The Zeus Photo Album view shows the
array adapting after each miss.

30

31

