May 10, 1994

Resear ch

SRC Report 124

A Block-sorting L ossless.
Data Compression Algorithm

M. Burrowsand D.J. Wheeler

dlilgliltlall

Systems Research Center
130 Lytton Avenue
Palo Alto, Caifornia 94301

Systems Research Center

The charter of SRC is to advance both the state of knowledge and the state of the
art in computer systems. From our establishment in 1984, we have performed basic
and applied research to support Digital’s business objectives. Our current work
includes exploring distributed personal computing on multiple platforms, network-
ing, programming technol ogy, system modelling and management techniques, and
selected applications.

Our strategy is to test the technical and practical value of our ideas by building
hardware and software prototypesand using them asdaily tools. Interesting systems
are too complex to be evaluated solely in the abstract; extended use allows us to
investigate their propertiesin depth. This experienceis useful in the short term in
refining our designs, and invaluable in the long term in advancing our knowledge.
Most of the major advancesin information systems have come through thisstrategy,
including personal computing, distributed systems, and the Internet.

We aso perform complementary work of a more mathematical flavor. Some of
it is in established fields of theoretical computer science, such as the anaysis
of agorithms, computational geometry, and logics of programming. Other work
explores new ground motivated by problemsthat arise in our systems research.

We have a strong commitment to communicating our results; exposing and testing
our ideas in the research and development communities leads to improved un-
derstanding. Our research report series supplements publication in professional
journals and conferences. We seek users for our prototype systems among those
with whom we have common interests, and we encourage collaboration with uni-
versity researchers.

Robert W. Taylor, Director

A Block-sorting L ossless.
Data Compression Algorithm

M. Burrows and D.J. Whedler

May 10, 1994

David Wheeler isa Professor of Computer Science at the University of Cambridge,
U.K. Hiselectronic mail addressis: djw3@cl.cam.ac.uk

©Digital Equipment Corporation 1994.

Thiswork may not be copied or reproduced in wholeor in part for any commercial
purpose. Permission to copy in wholeor in part without payment of feeis granted
for nonprofit educational and research purposes provided that all such whole or
partial copies include the following: a notice that such copying is by permission
of the Systems Research Center of Digital Equipment Corporation in Palo Alto,
Cdlifornia; an acknowledgment of the authors and individual contributors to the
work; and all applicable portions of the copyright notice. Copying, reproducing,
or republishing for any other purpose shall require alicense with payment of feeto
the Systems Research Center. All rights reserved.

Authors abstract

We describe a block-sorting, |ossless data compression algorithm, and our imple-
mentation of that algorithm. We compare the performance of our implementation
with widely available data compressors running on the same hardware.

Thealgorithmworksby applying a reversibl etransformation to ablock of input
text. The transformation does not itself compress the data, but reorders it to make
it easy to compress with simple a gorithms such as move-to-front coding.

Our a gorithm achi eves speed comparabl e to a gorithmsbased on thetechniques
of Lempel and Ziv, but obtains compression close to the best statistical modelling
techniques. The size of the input block must be large (a few kilobytes) to achieve
good compression.

Contents

1

2

3

I ntroduction
Thereversible transfor mation
Why the transformed string compresses well

An efficient implementation

41 COompression oo it
42 Decompression.

Algorithm variants
Perfor mance of implementation

Conclusions

1 Introduction

The most widely used data compression algorithms are based on the sequentia
data compressors of Lempel and Ziv [1, 2]. Statistical modelling techniques may
produce superior compression [3], but are significantly slower.

Inthis paper, we present atechniquethat achieves compression within apercent
or so of that achieved by statistical modelling techniques, but at speeds comparable
to those of algorithms based on Lempel and Ziv's.

Our agorithm does not process its input sequentially, but instead processes a
block of text as asingle unit. Theideaisto apply areversible transformation to a
block of text to form a new block that contains the same characters, but is easier
to compress by simple compression algorithms. The transformation tendsto group
characters together so that the probability of finding a character close to another
instance of the same character is increased substantialy. Text of this kind can
easily be compressed with fast locally-adaptive a gorithms, such as move-to-front
coding [4] in combination with Huffman or arithmetic coding.

Briefly, our algorithm transforms a string S of N characters by forming the N
rotations (cyclic shifts) of S, sorting them lexicographically, and extracting the last
character of each of therotations. A string L isformed from these characters, where
theith character of L isthe last character of the ith sorted rotation. In addition to
L, the algorithm computes the index | of the origina string Sin the sorted list of
rotations. Surprisingly, there isan efficient algorithm to compute the original string
Sgivenonly L and I.

The sorting operation bringstogether rotationswith the same initial characters.
Since the initial characters of the rotations are adjacent to the final characters,
consecutive charactersin L are adjacent to similar stringsin S. If the context of a
character is a good predictor for the character, L will be easy to compress with a
simple locally-adaptive compression agorithm.

In the following sections, we describe the transformation in more detail, and
show that it can be inverted. We explain more carefully why this transformation
tends to group characters to alow a simple compression agorithm to work more
effectively. We then describe efficient techniques for implementing the transfor-
mation and its inverse, alowing this algorithm to be competitive in speed with
Lempel-Ziv-based ad gorithms, but achieving better compression. Finaly, we give
the performance of our implementation of this agorithm, and compare it with
well-known compression programmes.

Thealgorithm described here was discovered by one of theauthors (Wheeler) in
1983 whilehewasworkingat AT& T Bell Laboratories, thoughit hasnot previously
been published.

2 Thereversibletransfor mation

This section describes two sub-algorithms. Algorithm C performs the reversible
transformation that we apply to ablock of text beforecompressingit, and Algorithm
D performstheinverseoperation. A later section suggestsamethod for compressing
the transformed block of text.

In the description below, we treat strings as vectors whose elements are char-
acters.

Algorithm C: Compression transfor mation

Thisalgorithmtakesasinput astring Sof N characters 01, ..., N —1] selected
from an ordered alphabet X of characters. To illustrate the technique, we also give
a running example, using the string S = ‘abraca’, N = 6, and the aphabet
X — {/a/,/b/,lcl,/r /}-

C1. [sort rotations]
Form a conceptual N x N matrix M whose elements are characters, and
whose rows are the rotations (cyclic shifts) of S, sorted in lexicographical
order. At least one of the rows of M containsthe origina string S. Let | be
the index of thefirst such row, numbering from zero.

In our example, theindex | = 1 and the matrix M is

row
0 aabrac
1 abraca
2 acaabr
3 bracaa
4 caabra
5 racaab

C2. [find last characters of rotations]
Let thestring L bethelast column of M, with characters L[Q], ..., L[N —1]
(equal to M[O, N — 1], ...,M[N — 1, N — 1]). The output of the transfor-
mationisthepair (L, 1).

In our example, L = ‘caraab’ and | = 1 (from step C1).

Algorithm D: Decompression transfor mation

We use the exampl e and notation introduced in Algorithm C. Algorithm D usesthe
output (L, 1) of Algorithm C to reconstruct its input, the string S of length N.

D1

D2.

[find first characters of rotations]

Thisstep calculates thefirst column F of the matrix M of Algorithm C. This
isdoneby sorting the charactersof L toform F. We observethat any column
of thematrix M isapermutation of the original string S. Thus, L and F are
both permutations of S, and therefore of one another. Furthermore, because
therows of M are sorted, and F isthefirst column of M, the charactersin F
are a so sorted.

In our example, F = ‘aaabcr’.

[build list of predecessor characters]

To assist our explanation, we describe this step in terms of the contents of
the matrix M. The reader should remember that the complete matrix is not
available to the decompressor; only the strings F, L, and theindex | (from
the input) are needed by this step.

Consider the rows of the matrix M that start with some given character ch.
Algorithm C ensured that the rows of matrix M are sorted lexicographically,
so the rows that start with ch are ordered lexicographically.

We define the matrix M’ formed by rotating each row of M one character to
theright,soforeachi =0,...,N—1,andeach j =0,..., N —1,

M'[i, i1 = MIi, (j — 1) mod N]

In our example, M and M’ are:

row M M’

0 aabr ac caabra
1 abraca aabr ac
2 acaabr racaab
3 bracaa abraca
4 caabra acaabr
5 racaab bracaa

Like M, each row of M’ isarotation of S, and for each row of M thereis
a corresponding row in M’. We constructed M’ from M so that the rows

of M’ are sorted lexicographically starting with their second character. So,
if we consider only those rows in M’ that start with a character ch, they
must appear in lexicographical order relative to one another; they have been
sorted lexicographically starting with their second characters, and their first
characters are all the same and so do not affect the sort order. Therefore, for
any given character ch, therowsin M that begin with ch appear in the same
order astherowsin M’ that begin with ch.

Inour example, thisisdemonstrated by therowsthat beginwith*a’. Therows
‘aabrac’, ‘abraca’, and ‘acaabr’ arerows0, 1, 2in M and correspond to
rowsl, 3,4in M’

Using F and L, the first columns of M and M’ respectively, we calculate
avector T that indicates the correspondence between the rows of the two
matrices, inthesensethatforeachj =0, ..., N—1,row j of M’ corresponds
torow T[j] of M.

If L[j] isthekth instance of ch in L, then T[j] = i where F[i] is the kth
instance of ch in F. Note that T represents a one-to-one correspondence
between elementsof F and elementsof L, and F[T[j]] = L[j].

Inour example, Tiss (4 0 5 1 2 3.

D3. [form output S
Now, for eachi = 0,..., N — 1, the characters L[i] and F[i] are the last
and first characters of the row i of M. Since each row is a rotation of
S, the character L[i] cyclicly precedes the character F[i] in S. From the
constructionof T,wehave F[T[j]] = L[]]. Substitutingi = T[j], wehave
L[T[j]] cyclicly precedes L[j]in S.
Theindex | isdefined by Algorithm C such that row | of M is S. Thus, the
last character of Sis L[1]. We use the vector T to give the predecessors of
each character:

foreachi =0,...,N—1: N —-1—i] = L[T'[I]].

where TO[x] = x, and T'*[x] = T[T'[x]]. Thisyields S, theoriginal input
to the compressor.

In our example, S="‘abraca’.

We could havedefined T so that the string Swould be generated from front to back,
rather than the other way around. The description above matches the pseudo-code
given in Section 4.2.

The sequence T'[I] fori = 0,..., N — 1isnot necessarily a permutation of
the numbers O, ..., N — 1. If the origina string S is of the form ZP for some
substring Z and some p > 1, then the sequence T'[I] fori = 0,..., N — 1 will
also be of theform Z'P for some subsequence Z'. That is, the repetitionsin Swill
be generated by visiting the same elements of T repeatedly. For example, if S =
‘cancan’, Z =‘can’ and p = 2, thesequence T'[I] fori =0, ..., N — 1 will be
[2,4,0,2,4,0].

3 Why thetransformed string compresses well

Algorithm C sorts the rotations of an input string S, and generates the string L
consisting of the last character of each rotation.

To see why this might lead to effective compression, consider the effect on a
singleletter in acommon word in ablock of Englishtext. We will use the example
of the letter ‘'t ’ in the word ‘t he’, and assume an input string containing many
instancesof ‘t he’.

When the list of rotations of the input is sorted, al the rotations starting with
‘he ’ will sort together; alarge proportion of them are likely toend in ‘t*. One
region of thestring L will therefore contain adisproportionately large number of ‘t °
characters, intermingled with other characters that can proceed ‘he * in English,
such asspace, ‘'s’, ‘T',and‘S'.

Thesame argument can beappliedtoal charactersinal words, so any localized
region of thestring L islikely to contain alarge number of afew distinct characters.
Theoveral effect isthat the probability that given character ch will occur at agiven
point in L is very high if ch occurs near that point in L, and is low otherwise.
This property is exactly the one needed for effective compression by a move-to-
front coder [4], which encodes an instance of character ch by the count of distinct
characters seen since the next previous occurrence of ch. When applied to the
string L, the output of a move-to-front coder will be dominated by low numbers,
which can be efficiently encoded with a Huffman or arithmetic coder.

Figure 1 shows an example of the algorithm at work. Each lineisthefirst few
characters and final character of a rotation of aversion of this document. Note the
grouping of similar charactersin the column of final characters.

For compl eteness, we now give details of one possibleway to encode the output
of Algorithm C, and the corresponding inverse operation. A complete compression
agorithm is created by combining these encoding and decoding operations with
Algorithms C and D.

final
char sorted rotations

(L)

Q

to deconpress. It achi eves conpression
to performonly conparisons to a depth
transformation} This section describes
transformati on} W use the exanple and
treats the right-hand side as the nost
tree for each 16 kbyte input block, enc
tree in the output stream then encodes
turn, set $L[i]$ to be the

turn, set $R[i]$ to the

unusual data. Like the algorithm of Mn
use a single set of probabilities table
using the positions of the suffixes in
value at a given point in the vector $R
we present nodifications that inprove t
when the block size is quite large. Ho
whi ch codes that have not been seen in
with ch appear in the {\em sane order
w th ch. I n our exam
with Huffman or arithnetic coding. Bri
with figures given by Bell \cite{bell}.

c o —"T—7T=—7om o —Tom 9P o T TP® LY O O O O
333305 3030303303305 5 o5 o5 oS

Figure 1: Example of sorted rotations. Twenty consecutive rotations from the
sorted list of rotations of a version of this paper are shown, together with the final
character of each rotation.

Algorithm M: Move-to-front coding

This algorithm encodes the output (L, I) of Algorithm C, where L is a string of
length N and | isanindex. It encodes L using a move-to-front algorithm and a
Huffman or arithmetic coder.

The running example of Algorithm C is continued here.

M1.

M2.

[move-to-front coding]

This step encodes each of the characters in L by applying the move-to-
front technique to the individua characters. We define a vector of integers
R[Q], ..., R[N —1], which arethe codesfor thecharacters L[O], ..., L[N —
1].

Initidize alist Y of characters to contain each character in the alphabet X
exactly once.

Foreachi = 0,..., N — 1inturn, set R[i] to the number of characters
preceding character L[i] inthelist Y, then move character L[i] to the front
of Y.

Taking Y = ['a’,’b’,’c’,/r’] initidly, and L =‘car aab’, we compute the
vectorR: (2 1 3 1 0 3.

[encode]

Apply Huffman or arithmetic coding to the elements of R, treating each
element as a separate token to be coded. Any coding technique can be
applied as long as the decompressor can perform the inverse operation. Call
the output of thiscoding process OUT. The output of Algorithm C isthe pair
(OUT, 1) where | isthevaue computed in step C1.

Algorithm W: M ove-to-front decoding

Thisalgorithmisthe inverse of Algorithm M. It computes the pair (L, 1) from the
pair (OUT, 1).

We assume that theinitia value of thelist Y used in step M1 isavailableto the
decompressor, and that the coding scheme used in step M2 has an inverse operation.

W1.

[decode]
Decode the coded stream OUT using the inverse of the coding scheme used
instep M2. Theresultisavector R of N integers.

Inourexample, Riss. (2 1 3 1 0 3).

W?2. [inverse move-to-front coding]
The goal of this step is to calculate a string L of N characters, given the
move-to-front codes R[0], ..., R[N — 1].

Initializealist Y of characters to contain the characters of the alphabet X in
the same order asin step M 1.

Foreachi = 0,..., N — 1linturn, set L[i] to be the character a position
R[i] inlist Y (humbering from 0), then move that character to thefront of Y.
The resulting string L is the last column of matrix M of Algorithm C. The
output of thisalgorithmisthepair (L, 1), whichistheinput to AlgorithmD.

Taking Y = ['a’,’b’,’c’,’r’] initidly (as in Algorithm M), we compute the
string L =‘caraab’.

4 An efficient implementation

Efficient implementations of move-to-front, Huffman, and arithmetic coding are
well known. Here we concentrate on the unusual stepsin AlgorithmsC and D.

41 Compression

Themost important factor in compression speedisthetimetaken to sort therotations
of theinput block. A simpleapplication of quicksort requireslittleadditional space
(one word per character), and works fairly well on most input data. However, its
worst-case performance is poor.

A faster way to implement Algorithm C isto reduce the problem of sorting the
rotations to the problem of sorting the suffixes of arelated string.

To compress astring S, first form the string S, which isthe concatenation of S
with EOF, anew character that does not appear in S. Now apply AlgorithmCto S.
Because EOF isdifferent from all other charactersin S, the suffixesof S sortinthe
same order as therotations of S. Hence, to sort the rotations, it suffices to sort the
suffixes of S. This can be donein linear time and space by building a suffix tree,
which then can be walked in lexicographical order to recover the sorted suffixes.
We used McCreight’s suffix tree construction algorithm[5] in animplementation of
Algorithm C. Its performance iswithin 40% of the fastest techniquewe have found
when operating on text files. Unfortunately, suffix tree algorithms need space for
more than four machine words per input character.

Manber and Myers give a simple agorithm for sorting the suffixes of a string
in O(Nlog N) time [6]. The agorithm they describe requires only two words per

input character. The algorithm works by sorting suffixes on their first i characters,
then using the positionsof the suffixesin the sorted array asthe sort key for another
sort on thefirst 2i characters. Unfortunately, the performance of their algorithmis
significantly worse than the suffix tree approach.

The fastest scheme we have tried so far uses a variant of quicksort to generate
the sorted list of suffixes. Its performanceis significantly better than the suffix tree
when operating on text, and it uses significantly less space. Unlike the suffix tree
however, its performance can degrade considerably when operating on some types
of data. Like the agorithm of Manber and Myers, our algorithm uses only two
words per input character.

Algorithm Q: Fast quicksorting on suffixes

This algorithm sorts the suffixes of the string S, which contains N characters
S0, ..., N—1]. Theagorithmworks by applying amodified version of quicksort
to the suffixes of S.

First we present a simple version of the algorithm. Then we present modifica-
tions that improve the speed and make bad performance less likely.

Q1. [form extended string]
Let k be the number of characters that fit in a machine word.

Form the string S from S by appending k additional EOF charactersto S,
where EOF does not appear in S.

Q2. [form array of words]
Initidlizean array W of N words W[O, ..., N — 1], such that W[i] contains
the characters Sfi, ..., i + k — 1] arranged so that integer comparisons on
the words agree with lexicographic comparisons on the k-character strings.

Packing characters into words has two benefits: It allows two prefixes to be
compared k bytes at a time using aligned memory accesses, and it allows
many slow cases to be eliminated (described in step Q7).

Q3. [form array of suffixes]
In this step we initialize an array V of N integers. If an element of V
contains j, it represents the suffix of S whose first character is S[j]. When
thealgorithmis complete, suffix V[i] will be theith suffix in lexicographical
order.

Initializean array V of integerssothat foreachi =0, ..., N—1: V[i] =i.

Q4.

Q5.

Q6.

Q7.

[radix sort]
Sort the elements of V, using the first two characters of each suffix as the
sort key. This can be done efficiently using radix sort.

[iterate over each character in the al phabet]
For each character ch in the alphabet, perform steps Q6, Q7.

Oncethisiteration is complete, V representsthe sorted suffixes of S, and the
agorithm terminates.

[quicksort suffixes starting with ch]

For each character ch’ in the alphabet: Apply quicksort to the elements of V
startingwith ch followed by ch'’. Intheimplementation of quicksort, compare
the elements of V by comparing the suffixes they represent by indexing into
thearray W. At each recursion step, keep track of the number of characters
that have compared equal in the group, so that they need not be compared

again.

All the suffixes starting with ch have now been sorted into their final positions
inV.

[update sort keys]

For each element V[i] corresponding to a suffix starting with ch (that is, for
which §VIJi]] = ch), set W[V[i]] to avalue with ch in its high-order bits
(as before) and with i in its low-order bits (which step Q2 set to thek — 1
charactersfollowing theinitia ch). The new value of W[V[i]] sortsinto the
same position asthe old value, but hasthe desirable property that it isdistinct
from al other valuesin W. This speeds up subsequent sorting operations,
since comparisons with the new elements cannot compare equal.

Thisbasic agorithm can be refined in anumber of ways. An obviousimprove-
ment isto pick the character ch in step Q5 starting with the least common character
in S, and proceeding to the most common. This allows the updates of step Q7 to
have the greatest effect.

As described, the agorithm performs poorly when S contains many repeated
substrings. We deal with this problem with two mechanisms.

The first mechanism handles strings of a singlerepeated character by replacing
step Q6 with the following steps.

Q6a. [quicksort suffixes starting ch, ch’ where ch # ch']

For each character ch’ £ ch inthea phabet: Apply quicksort to the elements
of V starting with ch followed by ch’. In the implementation of quicksort,

10

Q6b.

Q6c.

compare the eements of V by comparing the suffixes they represent by
indexing into the array W. At each recursion step, keep track of the number
of characters that have compared equal in the group, so that they need not be
compared again.

[sort low suffixes starting ch, ch]

This step sorts the suffixes starting runs which would sort before an infinite
string of ch characters. We observethat among such suffixes, longinitial runs
of character ch sort after shorter initial runs, and runs of equal length sort in
the same order as the characters at the ends of the run. Thisordering can be
obtained with asimple loop over the suffixes, starting with the shortest.

Let V[i] represent the lexicographically least suffix starting with ch. Let |
be the lowest value such that suffix V[j] startswith ch, ch.

while not (i =j) do
if (Mi] >0) and (S[V[i]-1] = ch) then
VIjl = Mi]-1
joi=g o+

end;

All the suffixes that start with ch, ch and that are lexicographically lessthan
an infinite sequence of ch characters are now sorted.

[sort high suffixes starting ch, ch]

This step sorts the suffixes starting runs which would sort after an infinite
string of ch characters. Thisstepisvery like step Q6b, but with the direction
of the loop reversed.

Let V[i] represent the lexicographically greatest suffix starting with ch. Let
j bethe highest value such that suffix V[j] starts with ch, ch.

while not (i =j) do
if (V[i] >0) and (S[V[i]-1] = ch) then
Vil = V[i]-1;
jor=j -1
end;
i =i -1
end;

All the suffixes that start with ch, ch and that are lexicographically greater
than an infinite sequence of ch characters are now sorted.

11

The second mechanism handles long strings of a repeated substring of more
than one character. For such strings, we use a doubling technique similar to that
used in Manber and Myers' scheme. We limit our quicksort implementation to
perform comparisons only to a depth D. We record where suffixes have been left
unsorted with a bit in the corresponding elements of V.

Once steps Q1 to Q7 are compl ete, the e ements of the array W indicate sorted
positionsup to D x k characters, since each comparison compares k characters. If
unsorted portionsof V remain, we simply sort them again, limiting the comparison
depth to D as before. Thistime, each comparison compares D x k characters, to
yield alist of suffixes sorted on their first D2 x k characters. We repeat thisprocess
until the entire string is sorted.

The combination of radix sort, a careful implementation of quicksort, and the
mechanisms for dealing with repeated strings produce a sorting algorithm that is
extremely fast on most inputs, and is quite unlikely to perform very badly on red
input data.

We are currently investigating further variations of quicksort. The following
approach seems promising. By applying the technique of Q6a—Q6c to all overlap-
ping repeated strings, and by caching previously computed sort orders in a hash
table, we can produce an algorithm that sorts the suffixes of a string in approxi-
mately the same time as the modified algorithm Q, but using only 6 bytes of space
per input character (4 bytes for a pointer, 1 byte for the input character itself, and
1 byte amortized space in the hash table). This approach has poor performance in
the worst case, but bad cases seem to be rare in practice.

4.2 Decompression

Steps D1 and D2 can be accomplished efficiently with only two passes over the
data, and one pass over the aphabet, as shown in the pseudo-code below. In the
first pass, we construct two arrays: C[alphabet] and P[O, ..., N —1]. C[ch] isthe
total number of instancesin L of characters preceding character ch in the alphabet.
P[i] is the number of instances of character L[i] in the prefix L[O,...,i — 1] of
L. In practice, thisfirst pass could be combined with the move-to-front decoding
step. Giventhearrays L, C, P, thearray T defined in step D2 is given by:

foreachi =0,...,N—1:TJ[i] = P[i] + C[L[i]]

In asecond passover the data, we usethe starting position | to complete Algorithm
D to generate S.

Initialy, al dements of C are zero, and the last column of matrix M is the vector
L[O,..., N —1].

12

for i :=0to N1 do
Pli] :=dL[i]];
aLfi]] :=dqLri]] +1

end;
Now C[ch] isthe number of instancesin L of character ch. The value PJi] isthe
number of instances of character L[i] inthe prefix L[O, ...,i — 1] of L.
sum : = 0;
for ch := FIRST(al phabet) to LAST(al phabet) do
sum:= sum + (ch];
Cch] := sum- Cch];
end;

Now C[ch] isthetotal number of instancesin L of characters preceding ch in the
aphabet.
o=y
for j := N1 downto O do
S[jl = L[i];
i = P[i] + dL[i]]
end
The decompressed resultisnow O, ..., N —1].

5 Algorithm variants

In the example given in step C1, we treated the left-hand side of each rotation as
the most significant when sorting. In fact, our implementation treats the right-hand
side as the most significant, so that the decompressor will generate its output S
from left to right using the code of Section 4.2. This choice has almost no effect
on the compression achieved.

The agorithm can be modified to use a different coding scheme instead of
move-to-front in step M1. Compression can improve dightly if move-to-front
is replaced by a scheme in which codes that have not been seen in a very long
time are moved only part-way to the front. We have not exploited this in our
implementations.

Although simple Huffman and arithmetic coders do well in step M2, a more
complex coding scheme can do dlightly better. Thisis because the probability of
a certain value at a given point in the vector R depends to a certain extent on the
immediately preceding value. In practice, the most important effect is that zeroes
tendto occur inrunsin R. We can take advantage of this effect by representing each
run of zeroes by a code indicating the length of the run. A second set of Huffman
codes can be used for values immediately following a run of zeroes, since the next
value cannot be another run of zeroes.

13

Size CPU time/s Compressed | bits/
File (bytes) | compress | decompress | size (bytes) | char
bib 111261 16 0.3 28750 | 2.07
bookl | 768771 | 144 25 238989 | 2.49
book2 | 610856 | 10.9 18 162612 | 2.13
geo 102400 19 0.6 56974 | 4.45
news 377109 6.5 12 122175 | 2.59
obj1 21504 04 0.1 10694 | 3.98
obj2 246814 4.1 0.8 81337 | 2.64
paperl 53161 0.7 0.1 16965 | 2.55
paper2 82199 11 0.2 25832 | 251
pic 513216 54 12 53562 | 0.83
progc 39611 0.6 0.1 12786 | 2.58
progl 71646 | 1.1 0.2 16131 | 1.80
progp 49379 0.8 0.1 11043 | 1.79
trans 93695 16 0.2 18383 | 1.57
Total | 3141622 | 51.1 94 856233 | -

Table 1: Results of compressing fourteen files of the Calgary Compression Corpus.

Block size bits/character
(bytes) book1 | Hector corpus
1k 4.34 4.35
4k 3.86 3.83
16k 343 3.39
64k 3.00 2.98
256k 2.68 2.65
750k 249 -
MY - 243
4M - 2.26
16M - 213
64M - 2.04
103M - 201

Table 2: The effect of varying block size (N) on compression of book1 from the
Calgary Compression Corpus and of the entire Hector corpus.

14

6 Performanceof implementation

In Table 1 we give the results of compressing the fourteen commonly used files
of the Calgary Compression Corpus [7] with our algorithm. Comparison of these
figures with those given by Bell, Witten and Cleary [3] indicate that our algorithm
does well on non-text inputs as well as text inputs.

Our implementation of Algorithm C uses the techniques described in Sec-
tion 4.1, and a simple move-to-front coder. In each case, the block size N isthe
length of the file being compressed.

We compress the output of the move-to-front coder with a modified Huffman
coder that uses the technique described in Section 5. Our coder calculates new
Huffman treesfor each 16 kbyteinput block, rather than computing onetreefor its
whole input.

In Table 1, compression effectiveness is expressed as output bits per input
character. The CPU time measurements were made on a DECstation 5000/200,
which hasaMIPS R3000 processor clocked at 25MHz with a64 kbyte cache. CPU
timeisgiven rather than el apsed time so the time spent performing I/O is excluded.

In Table 2, we show the variation of compression effectiveness with input block
sizefor twoinputs. Thefirst inputisthefilebook1 from the Calgary Compression
Corpus. The second is the entire Hector corpus [8], which consists of alittle over
100 MBytes of modern English text. The table shows that compression improves
with increasing block size, even when the block size is quite large. However,
increasing the block size above afew tensof millionsof characters hasonly asmall
effect.

If theblock sizewere increased indefinitely, we expect that the algorithmwould
not approach the theoretical optimum compression because our simple byte-wise
move-to-front coder introduces some loss. A better coding scheme might achieve
optimum compression asymptotically, but thisis not likely to be of great practical
importance.

Comparison with other compression programmes

Table 3 compares our implementation of Algorithm C with three other compression
programmes, chosen for their wide availability. The same fourteen files were
compressed individually with each al gorithm, and the resultstotalled. The bits per
character values are the means of the values for the individual files. This metric
was chosen to allow easy comparison with figures given by Bell [3].

15

Total CPU time/s Total compressed | mean
Programme | compress | decompress size (bytes) bits/char
compress 9.6 52 1246286 3.63
gzip 42.6 49 1024887 271
Alg-C/D 51.1 9.4 856233 2.43
comp-2 603.2 614.1 848885 247

compress is version 4.2.3 of the well-known LZW-based tool [9, 10].
gzipisversion 1.2.4 of Gailly’'sLZ77-based tool [1, 11].

Alg-C/D isAlgorithms C and D, with our back-end Huffman coder.
comp-2 is Nelson’s comp-2 coder, limited to a fourth-order model [12].

Table 3: Comparison with other compression programmes.

7 Conclusions

We have described a compression technique that works by applying a reversible
transformation to a block of text to make redundancy in the input more accessible
to simple coding schemes. Our agorithmisgeneral-purpose, in that it doeswell on
both text and non-text inputs. The transformation uses sorting to group characters
together based on their contexts; this technique makes use of the context on only
one side of each character.

To achieve good compression, input blocks of severa thousand characters are
needed. The effectiveness of the algorithm continues to improve with increasing
block size at least up to blocks of several million characters.

Our agorithm achieves compression comparable with good statistical mod-
dlers, yet is closer in speed to coders based on the agorithms of Lempel and
Ziv. Like Lempel and Ziv's dgorithms, our algorithm decompresses faster than it
COMPresses.

Acknowledgements

We would like to thank Andrei Broder, Cynthia Hibbard, Greg Nelson, and Jim
Saxe for their suggestions on the algorithms and the paper.

16

References

[1]

(2]

3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

J. Zivand A. Lempel. A universal algorithm for sequential data.compression.
IEEE Transactions on Information Theory. Vol. IT-23, No. 3, May 1977,
pp. 337-343.

J. Ziv and A. Lempel. Compression of individual sequences via variable
rate coding. IEEE Transactions on Information Theory. Vol. IT-24, No. 5,
September 1978, pp. 530-535.

T. Bdll, I. H. Witten, and J.G. Cleary. Modeling for text compression. ACM
Computing Surveys, Vol. 21, No. 4, December 1989, pp. 557-5809.

J.L. Bentley, D.D. Seator, R.E. Tarjan, and V.K. Wei. A locally adaptive data
compression algorithm. Communications of the ACM, Vol. 29, No. 4, April
1986, pp. 320-330.

E.M. McCreight. A space economical suffix tree construction a gorithm. Jour-
nal of the ACM, Vol. 32, No. 2, April 1976, pp. 262-272.

U. Manber and E. W. Myers, Suffix arrays. A new method for on-line string
searches. SIAM Journa on Computing, Volume 22, No. 5, October 1993, pp.
935-948.

I. H. Witten and T. Bell. The Calgary/Canterbury text compression cor-
pus. Anonymousftpfromft p. cpsc. ucal gary. ca: /pub/text.com
pressi on. cor pus/text.conpression.corpus.tar.Z

L. Glassman, D. Grinberg, C. Hibbard, J. Meehan, L. Guarino Reid, and
M-C. van Leunen. Hector: Connecting Words with Definitions. Proceedings
of the 8th Annual Conference of the UW Centre for the New Oxford English
Dictionary and Text Research, Waterloo, Canada, October, 1992. pp. 37—
73. Also available as Research Report 92a, Digital Equipment Corporation
Systems Research Center, 130 Lytton Ave, Palo Alto, CA. 94301.

T.A. Welch. A techniquefor high performance data compression. |EEE Com-
puter, Vol. 17, No. 6, June 1984, pp. 8-19.

Peter Jannesen et al. Compress, Version 4.2.3. Posted to the Internet news-
group conp. sour ces. r evi ewed, 28th August, 1992. Anonymousftp from
gat ekeeper . dec. com /pub/m sc/ nconpress-4.2.3

17

[11] J. Gailly et a. Gzip, Version 1.2.4. Anonymousftpfromprep. ai . mi t . edu:
[pub/gnu/gzip-1.2.4.tar.gz

[12] Mark Nelson. Arithmetic coding and statistical modeling. Dr. Dobbs Journal.
February, 1991. Anonymous ftp from wuar chi ve. wust|.edu: /mr-
rors/ nmsdos/ ddj mag/ ddj 9102. zi p

18

