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Authors' Abstract

There are situations in programmingwhere some dynamic typing is needed, even
in the presence of advanced static type systems. We investigate the interplay
of dynamic types with other advanced type constructions, discussing their inte-
gration into languages with explicit polymorphism (in the style of system F ),
implicit polymorphism (in the style of ML), abstract data types, and subtyping.
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1 Introduction

Dynamic types are sometimes used to palliate de�ciencies in languages with
static type systems. They can be used instead of polymorphic types, for ex-
ample, to build heterogeneous lists; they are also exploited to simulate object-
oriented techniques safely in languages that lack them, as when emulatingmeth-
ods with procedures. But dynamic types are of independent value, even when
polymorphic types and objects are available. They provide a solution to a
kind of computational incompleteness inherent to statically-typed languages,
o�ering, for example, storage of persistent data, inter-process communication,
type-dependent functions such as print, and the eval function.

Hence, there are situations in programming where one would like to use
dynamic types even in the presence of advanced static type systems. In this
paper we investigate the integration of dynamic types into languages with ex-
plicit polymorphism (in the style of system F [10]), implicit polymorphism (in
the style of ML [16]), abstract data types, and subtyping. Our study extends
earlier work [1], but keeps the same general approach and the same basic lan-
guage constructs: dynamic, for tagging a value with its type, and typecase, for
comparing a type tag with a pattern and branching according to whether they
match.

The interaction of polymorphism and dynamic types gives rise to problems
in binding type variables. We �nd that these problems can be more clearly
addressed in languages with explicit polymorphism. Even then, we encounter
some perplexing di�culties (as indicated in [1]). In particular, there is no unique
way to match the type tag of a dynamic value with a typecase pattern. Our
solution consists in constraining the syntax of typecase patterns, thus providing
static guarantees of unique solutions. The examples we have examined so far
suggest that our restriction is not an impediment in practice.

Drawing from the experience with explicit polymorphism, we consider lan-
guages with implicit polymorphism in the ML style. The same ideas can be
used, with some interesting twists. In particular, we are led to introduce tuple
variables, which stand for tuples of type variables.

The treatment of abstract data types does not present any new typing or
matching di�culties. Instead, it raises an interesting question: whether the type
tag of a dynamically typed value should be matched abstractly or concretely
(that is, using knowledge of the value's actual run-time type). We explore the
consequences of both choices.

Subtyping is exploited in combination with dynamic types in languages with
restricted typecase patterns, such as Simula-67 [3] and Modula-3 [8]. There, a
tag matches a pattern if it is a subtype of the pattern. This sort of matching does
not work out well with more general typecase patterns. We �nd it preferable to
match type tags against patterns exactly, and then perform explicitly prescribed
subtype tests.

In addition to [1], several recent studies consider languages with dynamic
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types [12, 14, 21]. The work most relevant to ours is that of Leroy and Mauny,
who de�ne and investigate two extensions of ML with dynamic types. We
compare their designs to ours in section 4.

Section 2 is a brief review of dynamic typing in simply typed languages, based
on [1]. Section 3 considers the addition of dynamic typing to a language with
explicit polymorphism [10]. Section 4 then deals with a language with implicit
polymorphism. Sections 5 and 6 discuss abstract data types and subtyping,
respectively. We conclude in section 7.

2 Review

The integration of static and dynamic typing is fairly straightforward for mono-
morphic languages. The simplest approach introduces a new base type Dynamic
along with a dynamic expression for constructing values of type Dynamic (infor-
mally called \dynamics") and a typecase expression for inspecting them. The
typechecking rules for these expressions are:

� ` a 2 T

� ` dynamic(a:T ) 2 Dynamic
(Dyn-I)

� ` d 2 Dynamic �; x:P ` b 2 T � ` c 2 T

� ` typecase d of (x:P ) b else c 2 T
(Dyn-E)

The phrases (x:P ) and else are branch guards; P is a pattern|here, just a
monomorphic type; b and c are branch bodies. For notational simplicity, we have
considered only typecase expressions with exactly one guarded branch and an
else clause; a typecase involving several patterns can be seen as syntactic
sugar for several nested instances of the single-pattern typecase.

In the most direct implementation, the semantics of a dynamic is a pair
consisting of a value and its type. The semantics of typecase d of (x:A) b

else e is then: break d into a value c and a type C, and if C matches A then
bind x to c and execute b, otherwise execute e. In the simplest version of this
semantics, C matches A if they are identical; in languages with subtyping, it is
common to allow C to be a subtype of A instead.

Constructs analogous to dynamic and typecase have appeared in a number
of languages, including Simula-67 [3], CLU [15], Cedar/Mesa [13], Amber [4],
Modula-2+ [20], Oberon [23], and Modula-3 [8]. These constructs have sur-
prising expressive power; for example, �xpoint operators can already be de�ned
at every type in a simply typed lambda-calculus extended with Dynamic [1].
Important applications of dynamics include persistence and inter-address-space
communication. For example, the following primitives might provide input and
output of a dynamic value from and to a stream:

extern 2 Writer�Dynamic!Unit

intern 2 Reader!Dynamic
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Moreover, dynamics can be used to give a type for an eval primitive [11, 18]:

eval 2 Exp!Dynamic

We obtain a much more expressive system by allowing typecase guards
to contain pattern variables. For example, the following function takes two
dynamics and attempts to apply the contents of the �rst (after checking that it
is of functional type) to the contents of the second:

dynApply =

�(df:Dynamic) �(da:Dynamic)

typecase df of

fU,Vg (f:U!V)

typecase da of

fg (a:U)

dynamic(f(a):V)

else ...

else ...

Here U and V are pattern variables introduced by the �rst guard. In this example,
if the arguments are:

df = dynamic((�(x:Int)x+2):Int!Int)

da = dynamic(5:Int)

then the typecase guards match as follows:

Tag: Int!Int

Pattern: U!V

Result: fU = Int; V = Intg

Tag: Int

Pattern: Int

Result: fg

and the result of dynApply is dynamic(7 : Int).
A similar example is the dynamic-composition function, which accepts two

dynamics as arguments and attempts to construct a dynamic containing their
functional composition:

dynCompose =

�(df:Dynamic) �(dg:Dynamic)

typecase df of

fU,Vg (f:U!V)

typecase dg of

fWg (g:W!U)

dynamic(f � g:W!V)

else ...

else ...
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3 Explicit Polymorphism

This formulation of dynamic types may be carried over almost unchanged to
languages based on explicit polymorphism [10, 19]. For example, the following
function checks that its argument df contains a polymorphic function f taking
lists to lists. It then creates a new polymorphic function that accepts a type
and a list x of values of that type, instantiates f appropriately, and applies f to
the reverse of x:

�(df:Dynamic)

typecase df of

fg (f:8(Z) List(Z)!List(Z))

�(Y) �(x:List(Y)) f[Y](reverse[Y](x))

else �(Y) �(x:List(Y)) x

Here List and reverse have the obvious meanings; they are not primitives of
the language treated below, but can be encoded. The type abstraction operator
is written �. Type application is written with square brackets. The types of
polymorphic functions begin with 8. For example, 8(X)X!X is the type of the
polymorphic identity function, �(X) �(x : X) x.

3.1 Higher-order pattern variables

First-order pattern variables, by themselves, do not appear to give us su�cient
expressive power in matching against polymorphic types. For example, we might
like to generalize the dynamic-application example from section 2 so that it can
accept a polymorphic function and instantiate it appropriately before applying
it:

dynApply2try =

�(df:Dynamic) �(da:Dynamic)

typecase df of

fg (f:8(Z): : :!: : :)

typecase da of

fWg (a:W)

dynamic(f[W](a): ...)

else ...

else dynApply(df)(da)

But there is no single expression we can �ll in for the domain of f that will
make dynApply2try apply to both

df = dynamic (�(Z) �(x:Z�Z) <snd(x),fst(x)>: ...)

da = dynamic(<3,4>: ...)

and
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df = dynamic((�(Z) �(x:Z!Z) x): ...)

da = dynamic((�(x:Int) x): ...)

In the former case, the expected type for f is 8(X)(X�X)!(X�X); in the latter
case, it is 8(X)(X!X)!(X!X). These two types are incompatible.

Thus we are led to introducing higher-order pattern variables. A higher-
order pattern variable ranges over pattern contexts|patterns abstracted with
respect to some collection of type variables. With higher-order pattern variables,
we can express polymorphic dynamic application:

dynApply2 =

�(df:Dynamic) �(da:Dynamic)

typecase df of

fF,Gg (f:8(Z)F(Z)!G(Z))

typecase da of

fWg (a:F(W))

dynamic(f[W](a):G(W))

else ...

else dynApply(df)(da)

For example, if

df = dynamic(id:8(X)X!X)

da = dynamic(3:Int)

then the typecase expressions match as follows:

Tag: 8(X)X!X

Pattern: 8(Z)F(Z)!G(Z)

Result: fF = �(X) X; G = �(X) Xg

Tag: Int

Pattern: F(W) (which reduces to W)
Result: fW = Intg

and the result of the application

dynApply2(df)(da)

is

dynamic(id[Int](3) : Int)

Following standard notational conventions, we write �(X)X for the identity func-
tion on types, reserving lowercase letters for expressions at the level of terms
and � for term-level abstractions.
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It is now easy to deal with the two inputs given above. If

df = dynamic (�(Z) �(x:Z�Z) <snd(x),fst(x)>:

8(X)(X�X)!(X�X)))

da = dynamic(<3,4>:Int�Int)

then the match is:

Tag: 8(X)(X�X)!(X�X)

Pattern: 8(Z)F(Z)!G(Z)

Result: fF = �(X) X�X; G = �(X) X�Xg

Tag: Int

Pattern: F(W) (which reduces to W�W)
Result: fW = Int�Intg

If

df = dynamic((�(Z) �(x:Z!Z) x): 8(X)(X!X)!(X!X))

da = dynamic((�(x:Int) x): Int!Int)

then the match is:

Tag: 8(X)(X!X)!(X!X)

Pattern: 8(Z)F(Z)!G(Z)

Result: fF = �(X) X!X; G = �(X) X!Xg

Tag: Int

Pattern: F(W) (which reduces to W!W)
Result: fW = Int!Intg

3.2 Syntax

We now present dynamic types in the context of a second-order polymorphic
�-calculus, system F . The syntax of F with type Dynamic (including some
third-order constructs used in patterns) is given in Figure 1. In examples we
also use base types, cartesian products, and lists in types and patterns, but we
omit these in the formal treatment.

We regard as identical any pair of formulas that di�er only in the names
of bound variables. For brevity, we sometimes omit kinding declarations and
empty pattern-variable bindings. Also, it is technically convenient to write the
pattern variables bound by a typecase expression as a syntactic part of the
pattern, rather than putting them in front of the guard as we have done in
the examples. Thus, typecase e1 of fVg(x:T)e2 else e3 should be read
formally as typecase e1 of (x:fV:TypegT)e2 else e3.
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K ::= Type the kind of types

T ::= Z type variables
j F �rst-order pattern variable
j T!T function types
j 8(Z : K) T quanti�ed types
j F (Tn) (n > 0) application of a type operator
j Dynamic the dynamic type

J ::= K kind of simple pattern types
j Kn!K (n > 0) functional kinds

P ::= fF1 : J1; : : : ; Fn : JngT patterns

a ::= x variables
j �(x : T ) a abstraction
j a(a) application
j �(Z : K) a type abstraction
j a[T ] type application
j dynamic(a : T ) tagging
j typecase a of (x : P ) a else a tag matching

Figure 1: Syntax for system F with Dynamic

3.3 Tag closure

One critical design decision for a programming language with type Dynamic

is the question of whether type tags must be closed (except for occurrences
of pattern variables), or whether they may mention universally bound type
variables from the surrounding context.

In the simplest scenario, dynamic(a:A) is legal only when A is a closed type.
(The type A may be polymorphic, of course, so long as all the type variables it
mentions are also bound within A; for example, 8(Z) Z is a legal tag.) Similarly,
we would require that the guard in a typecase expression be a closed type.

If the closure restriction is not instituted, then types must actually be passed
as arguments to polymorphic functions at run time, so that code can be compiled
for expressions like:

�(X) �(x:X) dynamic(<x,x>:X�X)

where the type X � X must be generated at run time. For languages where
type information is not retained at run time, such as ML, the closure restriction
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becomes essential (see section 4). For now, we consider the unrestricted case,
where tags may contain free type variables.

3.4 De�niteness and matching

When pattern variables may range over functions on types, there is in general
no guarantee of unique matches of patterns against tags. For example, when
the pattern F(Int) is matched against the tag Bool, the pattern variable F is
forced to be �(X)Bool. But when the same pattern is matched against the tag
Int, we �nd that F can be either �(X)X or �(X)Int. There is no reasonable
way to choose. Worse yet, consider F(W) or F(W!Int) for a pattern variable W.

Two sorts of solutions come to mind:

� At run time, we may look for matches and fail if none or more than one
exist. Unfortunately, failures could be somewhat unpredictable.

� At compile time, we may allow only patterns that match each tag in
at most one way. This condition on patterns is called de�niteness in a
preliminary version of this work [2]. As de�niteness seems hard to decide
at compile time, an approximation to de�niteness may be used instead.

As in [2], we choose a compile-time solution. We propose a condition on patterns
su�cient to guarantee de�niteness ((1) and (2), below), in combination with
an appropriate de�nition of matching ((3), below). This condition is more
restrictive than that of [2], and in some cases it may entail some code duplication.
On the other hand, it is easier to describe, it su�ces for our examples, and in
general it does not seem to a�ect expressiveness.

Our condition on patterns is:

1. each pattern variable introduced in a pattern is used in the same pattern;

2. in each of these uses, the arguments of the pattern variable are distinct
type variables bound in the same pattern (not pattern variables).

Note that as far as inner typecase expressions are concerned, pattern variables
of outer typecase expressions are just constants, and they may appear in any
positions where constants may appear.

For example, we allow:

fF : Type!Typeg8(Z) F(Z)
fF : Type!Typeg8(Z) H(F(Z))
fG : Type� Type!Typeg8(Z) 8(W) G(W; Z)

(where H is a pattern variable of arity 1 introduced by an enclosing typecase).
But we do not allow:

fF : Type!TypegF(Int)
fF : Type!Type; H : Type!Typeg8(Z) F(H(Z))
fG : Type� Type!Typeg8(Z) G(Z; Z)
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because, according to requirement (2), F must be applied to a type variable
rather than to Int or to H(Z), and G must be applied to two distinct type
variables rather than to Z twice.

At run time, we must solve the problem of matching a tag against a pattern.
The cases where the pattern's outermost construct is a type variable,!, or 8 are
all evident. Hence, the problem of matching a tag against a pattern is reduced
to matching subproblems of the form F(X1; : : : ; Xk) = A, where F is a pattern
variable introduced in the pattern, X1; : : : ; Xk are distinct type variables, and A

is a subexpression of the tag. We require:

3. the free type variables of a tag subexpression matching a pattern variable
are exactly the arguments to the pattern variable

or, in this instance, X1; : : : ; Xk are the free type variables of A. If this holds, we
take F = �(X1) : : :�(Xk) A as the solution for the subproblem. This solution is
evidently unique, and thus de�niteness is guaranteed. Moreover, requirement (3)
implies that the function �(X1) : : :�(Xk) A has the desirable properties of being
closed and of using all of its arguments.

For example, we obtain a success with

Tag: 8(Z) 8(W) Z!(Z!Z)
Pattern: fF : Type!Typeg8(Z) 8(W) F(Z)
Result: fF = �(X) X!(X!X)g

but failures with

Tag: 8(Z) 8(W) Z!(W!W)
Pattern: fF : Type!Typeg8(Z) 8(W) F(Z)
Result: failure

and

Tag: 8(Z) 8(W) Int!(Int!Int)
Pattern: fF : Type!Typeg8(Z) 8(W) F(Z)
Result: failure

In the second example, W is a free variable of the tag subexpression Z!(W!W)
but not an argument in F(Z). Requirement (3) prevents the escape of W from the
scope of its binder. In the third example, Z is an argument in F(Z) but does not
occur in the tag subexpression Int!(Int!Int). Requirement (3) guarantees
that later, successful matches instantiate all new pattern variables: if F were
allowed not to use its argument Z, a later pattern

fV : TypegF(V)

might succeed with V undetermined.
The cost of our requirements may be some inconvenience. We adopt them

for the sake of soundness and simplicity.
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4 Implicit Polymorphism

In this section we investigate dynamics in an implicitly typed language, the core
language of ML.

The general treatment of dynamics for explicitly typed languages can be
applied directly to ML, thus providing the language with explicitly tagged dy-
namics. In this extension of ML, types can still be inferred for all constructs
except dynamics; the user needs to provide type information only when creating
or inspecting dynamics. For instance, consider the following program:

twice = dynamic(�(f) �(x) f(f x):8(Z)(Z!Z)!(Z!Z))

To verify its correctness, we �rst infer the type scheme 8(Z)(Z!Z)!(Z!Z)

for �(f) �(x) f(f x) as if it were to be let-bound. Then we check that this
type scheme has no free variables and that it is more general than the required
tag 8(Z)(Z!Z)!(Z!Z). Similarly, when a typecase succeeds, the extracted
value is given the type scheme of its tag as if it had been let-bound. That is,
an instance of the value can be used with di�erent instances of the tag as in:

foo = �(df)

typecase df of

(f:8(Z)(Z!Z)!(Z!Z)) <f succ, f not>

else ...

where succ is the successor function on integers, and not is the negation function
on booleans.

This solution is adequate. However, it seems to go against the spirit of ML
in several respects, as we discuss next.

4.1 Implicit tagging

The solution just sketched requires explicit tags in dynamic expressions. Since
the ML typechecker can infer most general types for expressions, one would
expect it to tag dynamics with their principal types. For instance, the user
should be able to write:

twice = dynamic(�(f) �(x) f(f x))

and expect that the dynamic will be tagged with 8(Z)(Z!Z)!(Z!Z).
If types are not to be passed as arguments to polymorphic functions at run

time, the tags of dynamics must be closed (see section 3.3). This restriction
creates di�culties for the implicit-tagging approach: a program like

�(x) dynamic(x)

will fail to have a principal type. It will therefore simplify matters to assume
that explicit tags are given in dynamic expressions. An alternative is discussed
in [2].
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4.2 Tag instantiation and tuple variables

The tag of apply:

apply = dynamic(�(f) �(x) f x:8(X,Y)(X!Y)!(X!Y))

is equivalent to 8(Y,X)(X!Y)!(X!Y), and an ML programmer would proba-
bly view the order of quanti�ers as unimportant. In addition, the tag is more
general than the pattern in the function foo; hence an ML programmer would
probably expect the tag and the pattern to match when apply is passed to foo.
In general, it seems reasonable to ignore the order of quanti�ers in a tag, and
to let a tag match a pattern if any instance of the tag does. This principle is
called tag instantiation.

Tag instantiation and second-order pattern variables do not �t smoothly
together. The di�culty comes from the combination of two features:

� Second-order pattern variables may depend on universal variables, as in
the pattern fFg (f:8(Z)F(Z)!Z).

� Tag instantiation requires that if a typecase succeeds, then it also suc-
ceeds for a dynamic with an argument that has a more general tag.
The tag 8(Z)(Z�Z)!Z matches the previous pattern; so should the tag
8(X,Y)(X�Y)!X. But F is not supposed to depend on two variables.

Because of tag instantiation, polymorphic pattern variables may always depend
on more variables than the ones explicitly mentioned. We deal with this possi-
bility by introducing tuple variables, which stand for tuples of variables. The
tuple variable in a pattern will be dynamically instantiated to the tuple of all
variables of the tag not matched by other variables of the pattern. For example,
using a tuple variable U, the pattern fFg (f : 8(Z) F(Z)!Z) should be written
fFg (f : 8(U; Z) F(U; Z)!Z).

Tuple variables bound in di�erent patterns may be instantiated to tuples
with di�erent numbers of variables. Because of such size considerations, it is
not always possible to use a tuple variable as argument to an operator, since
this operator may expect an argument of di�erent size. We introduce a simple
system of arities in order to guarantee that type expressions are well formed.
Formally, our example pattern should now be written:

f� : Tuple; F : �! Type! Typeg (f : 8(U : �; Z : Type) F(U; Z)!Z)

The arity variable � is to be bound at run time to the size of the tuple assigned
to the tuple variable U. However, it is not necessary to write all the arities in
programs since a typechecker can easily infer them.

In the following examples, we write Ui for the i-th component of tuple
variable U.

Tag: 8(Z) (Z�Z)!Z

Pattern: f�; Fg (f : 8(U : �; Z) F(U; Z)!Z)
Result: f� = 0; F = �(U; Z) Z�Zg
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K ::= � arity variables
j Type sort of types

J ::= K

j K � Typen!K

T ::= Z type variables
j F �rst-order pattern variables
j Dynamic

j T!T

j F (Tn) (n > 0) application of a pattern operator

S ::= 8(Z1 : K1; : : : ; Zn : Kn) T type schemes

P ::= f�; F1 : J1; : : : ; Fn : Jng S patterns

a ::= x

j �(x) a
j a a

j let x = a in a

j dynamic(a : S)
j typecase a of (x : P ) a else a

Figure 2: Syntax for ML with Dynamic

Here the tuple arity is zero, thus F does not depend on U.

Tag: 8(X; Y) (X�Y)!X

Pattern: f�; Fg (f : 8(U : �; Z) F(U; Z)!Z)
Result: f� = 1; F = �(U; Z) Z�U1g

Tag: 8(X; Y) (X�Y)!X

Pattern: f�; F; Gg (f : 8(U : �; Z) F(U)!G(U))
Result: f� = 2; F = �(U) U1�U2; G = �(U) U1g

4.3 A language

We brie
y consider a language with explicit tagging of dynamics and with tuple
variables for tag instantiation. The syntax of the language is given in Figure 2.

Typechecking for this language is similar to typechecking for ML with local
type declarations and type constraints. In addition to typechecking the core
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language, the well-formedness of type expressions and the correct scoping of
type symbols must also be checked.

The matching algorithm is slightly complicated by tag instantiation and the
use of tuple variables. As in the explicit case, we stipulate that fresh pattern
variables can be applied only to distinct universally quanti�ed variables. We
also require that there be at most one universal tuple variable per pattern,
and that its arity be given by the unique fresh arity variable introduced in
the pattern. With these restrictions, matching becomes a simple extension of
�rst-order uni�cation with restricted type operators; we omit the details.

4.4 Related work

The work on dynamic typing most closely related to ours is that of Leroy and
Mauny [14]. Their dynamics without pattern variables have been implemented
in the CAML language [22]. Our work can be seen as an extension of their
system with \mixed quanti�cation."

Rather than introduce a typecase statement, Leroy and Mauny merge dy-
namic elimination with the usual case statement of ML. Ignoring this di�erence,
their dynamic patterns have the form QZ where Z is a type and Q a list of ex-
istentially or universally quanti�ed variables. For instance,

8(X)9(F)8(Y)9(G) (v:T(X,F,Y,G))

is a pattern of their system. The existentially quanti�ed variables play the role
of our pattern variables. The order of quanti�ers determines the dependencies
among quanti�ed variables. Thus, the pattern above can be rephrased:

9(F)9(G)8(X)8(Y) (v:T(X,F(X),Y,G(X,Y)))

The equivalent pattern for us is:

f�; F; Gg (v : 8(U : �; X; Y) T(X; F(U; X); Y; G(U;X; Y)))

With the same approach, in fact, we can translate all their patterns. On the
other hand, some of our patterns do not seem expressible in their language, for
example:

f�; F; Gg (v : 8(U : �; X; Y) T(X; F(U; X); Y; G(U;Y)))

because the quanti�ers in the pre�x of their patterns are in linear order, and
cannot express the \parallel" dependencies of F on X and G on Y.

Another source of di�erences is our use of tuple variables. These enable us
to write examples like the applyTwice function:
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let applyTwice =

�(df) �(dxy)

typecase df of

f�,F,F'g (f:8(U:�)F(U)!F'(U))

typecase dxy of

f�0,G,Hg (x,y:8(U':�0)F(G(U'))�(F(H(U'))))

f x, f y

else ...

else ...

which applies its �rst argument to each of the two components of its second
argument and returns the pair of the results. Such examples cannot be expressed
in systems with only type quanti�ers.

5 Abstract Data Types

The interaction between the use of Dynamic and abstract data types gives rise
to a puzzling design issue: should the type tag of a dynamic containing an
element of an abstract type be matched abstractly or concretely? There are
good arguments for both choices:

� Abstract matching protects the identity of \hidden" representation types
and prevents accidental matches in cases where several abstract types
happen to have the same representation.

� On the other hand, transparent matching allows a more permissive style
of programming, where a dynamically typed value of some abstract type is
considered to be a value of a di�erent version of \the same" abstract type.
This 
exibility is critical in many situations. For example, a program may
create disk �les containing dynamic values, which should remain usable
even after the program is recompiled, or two programs on di�erent ma-
chines may want to exchange abstract data in the form of dynamically
typed values.

By viewing abstract types formally as existential types [17], we can see ex-
actly where the di�erence between these two solutions lies, and suggest a gener-
alization of existential types that supports both. (Existential types can in turn
be coded using universal types; with this coding, our design for dynamic types
in the previous sections yields the second solution.)

To add existential types to the variant of F de�ned in the previous section,
we extend the syntax of types and terms as in Figure 3.
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T ::= : : :

j 9(Z : K) T existential types

a ::= : : :

j pack a as T hiding T packing (existential introduction)
j open a as [Z;x] in a unpacking (existential elimination)

Figure 3: Extended syntax with existential types

The typechecking rules for pack and open are:

S = 9(Z : K) T � ` a 2 [R=Z]T

� ` (pack a as S hiding R) 2 S
(Pack)

� ` a 2 9(Z : K) S Z 62 FV(T ) �;Z : K;x : S ` b 2 T

� ` (open a as [Z;x] in b) 2 T
(Open)

A typical example where an element of an abstract type is packed into a
Dynamic is:

let stackpack =

pack

push = �(s:IntList) �(i:Int) cons(i)(s),

pop = �(s:IntList) cdr(s),

top = �(s:IntList) car(s),

new = nil

as 9(X)

push:X->Int->X,

pop:X->X, top:X->Int, new:X

hiding IntList

in

open stackpack as [Stack,stackops] in

let dstack =

dynamic

(stackops.push(stackops.new)(5):Stack)

in

typecase dstack of

(s:Stack) stackops.top(s)

else 0

Note that this sort of example depends critically on the use of open type
tags. As discussed in section 3.3, open tags must be implemented using run-
time types. The evaluation of pack must construct a value that carries the
representation type.
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We have a choice in the evaluation rule for the open expression:

� We can evaluate the expression open a as [Z; x] in b by replacing the
representation type variable Z by the actual representation type obtained
by evaluating a.

� Alternatively, we can replace Z by a fresh type constant.

Without Dynamic, the di�erence between these rules cannot be detected. But
with Dynamic we get di�erent behaviors. Since both behaviors are desirable, we
may choose to introduce an extended open form that provides separate names
for the abstract version and for the transparent version of the representation
type:

� ` a 2 9(Z : K) S Z 62 FV(T ) �; Z : K;x : S ` [Z=R]b 2 T

� ` (open a as [R;Z; x] in b) 2 T
(Open)

In the body of b, we can build dynamic values with tags R or Z; a typecase on
the former could investigate the representation type, while a typecase on the
latter could not violate the type abstraction.

Further experience would be useful for understanding the interaction of
Dynamic and abstract types.

6 Subtyping

In simple languages with subtyping (e.g., [4, 8]) it is natural to extend typecase

to perform a subtype test instead of an exact match. Consider for example the
expression:

let dx = dynamic(3:Nat)

in

typecase dx of

(x:Int) ...

else ...

The �rst typecase branch is taken: although the tag of dx, Nat, is di�erent
from Int, we have Nat�Int.

Unfortunately, this idea runs into di�culties when applied to more complex
languages. In general, there does not exist a most general instantiation for
pattern variables when a subtype match is performed. For example, consider the
pattern V!V and the problem of subtype-matching (Int!Nat)�(V!V). Both
Int!Int and Nat!Nat are instances of V!V and supertypes of Int!Nat, but
they are incomparable. Even when the pattern is covariant there may be no
most general match. Given a pattern V�V, there may be a type A�B such that
A and B have no least upper bound, and so there may be no best instantiation
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K ::= Type the kind of types
j Power(K)(T ) the kind of subtypes of T

J ::= K

j Kn!K (n > 0)
j Power(Kn!K)(F )

Figure 4: Extended syntax with subtyping

for V. This can happen, for example, in a system with bounded quanti�ers [7, 9],
and in systems where the collection of base types does not form an upper semi-
lattice. Linear patterns (where each pattern variable occurs at most once) avoid
these problems, but we �nd linearity too restrictive.

Therefore, we take an approach di�erent from that found in simple languages
with subtyping. Our approach works in general and �ts well with the language
described in section 3.2. We intend to extend system F with subtyping along
the lines of [6]. In order to incorporate also the higher-order pattern variables,
we resort to power-kinds [5].

The kind structure of section 3.2 is extended in Figure 4, where it is assumed
that T : K and F : Kn!K. Informally, the kind Power(Type)(T ) is the collec-
tion of all the subtypes of T , and similarly the kind Power(K1� : : :Kn!K)(F )
is the collection of all the operators of kind K1 � : : :Kn!K that are pointwise
in the subtype relation with F . Subtyping (�) is not a primitive notion in the
syntax, but it is de�ned by interpreting:

T�T 0 : K as T : Power(K)(T 0); where T; T 0 : K
F�G : (K1 � : : :�Kn!K) as F (Q1; : : : ; Qn)�G(Q1; : : : ; Qn) : K;

for all Q1 : K1, : : : , Qn : Kn, where F;G : (K1 � : : :�Kn!K)

The axiomatization of Power(K)(T ) [5] is designed to induce the expected sub-
typing rules. For example, T : Power(T ) says that T�T .

Because of power-kinds, we can now write patterns such as:

typecase dx of

fV,W�(V�V)g (x:W�V) ...

(that is: fV:Type, W:Power(Type)(V�V)g (x:W�V))

else ...

Each branch guard is used in typechecking the corresponding branch body.
The shape of branch guards is fF1 : K1; : : : ; Fn : Kng(x : P ) where each Fi
may occur in the Kj with j > i and in P . This shape �ts within the normal
format of typing environments, and hence it introduces no new di�culties for
static typechecking.
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Next we consider the dynamic semantics of typecase in the presence of
subtyping. The idea is to preserve the previous notion that typecase performs
exact type matches at run time. Subtyping is introduced as a sequence of
additional constraints to be checked at run time only after matching. These
constraints are easily checked because, by the time they are evaluated, all the
pattern variables have been fully instantiated. In the example above, suppose
that the tag of dx is (Nat � Int) � Int; then we have the instantiations W =
Nat�Int and V = Int. When the matching is completed, we successfully check
that W�(V� V).

Some examples should illustrate the additional 
exibility obtained with sub-
typing. First we show how to emulate simple monomorphic languages with
subtyping but without pattern variables, where typecase performs a subtype
test. The �rst example of this section can be reformulated as:

typecase dx of

fV�Intg (x:V) ...

else ...

In this example, the tag of dx can be any subtype of Int.
The next example is similar to dynApply in section 2, but the type of the

argument can be any subtype of the domain of the function:

typecase df of

fV,Wg (f:V!W)

typecase da of

fV'�Vg (a:V')

dynamic(f(a):W)

else ...

else ...

With polymorphic tag types, or with polymorphic pattern types with only
�rst-order pattern variables, nothing new happens except that the matching
and subtype tests must be the adequate ones for polymorphism.

The next degree of complexity is introduced by higher-order pattern vari-
ables. Just as we had V0�V, a subtype constraint between two �rst-order pat-
tern variables, we may have F�G:(K!K') for two higher-order pattern variables
F,G:(K!K'). As mentioned above, the inclusion is intended pointwise: F�G i�
F(X)�G(X):K' under the assumption X:K.

Another form of dynamic application provides an example of higher-order
matches with subtyping:

typecase df of

fF,G:Type!Type,Vg (f:8(Z�V)F(Z)!G(Z))

typecase da of

fW�Vg (a:F(W)) dynamic(f[W](a):G(W))

else ...

else...
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Finally, dynamic composition calls for a constraint of the form G0�G:

typecase df of

fG,H:Type!Typeg (f:8(X)G(X)!H(X))

typecase dg of

fF:Type!Type,G'�G:Type!Typeg

(g:8(Y)F(Y)!G'(Y))

dynamic((�(Z) f[Z] � g[Z]):8(Z)F(Z)!H(Z))

else ...

else ...

This example generalizes to functions of bounded polymorphic types, such as
8(X�A)G(X)!H(X).

7 Conclusion

The extension of statically-typed languages with dynamic types is rather com-
plicated. Perhaps we have been overly ambitious. We have tried to allow as
much 
exibility as possible, at the cost of facing di�cult matching problems.
And perhaps we have not been ambitious enough. In particular, we have not
provided mechanisms for dealing with multiple matches at run time, in order
not to complicate the language designs or their implementations. We have also
ignored the possibility of adding dynamic types to F3, or to F! [10]. Only more
experience will reveal the most useful variants of our approach.

We have deliberately avoided semantic considerations in this paper. It seems
relatively straightforward to provide precise operational semantics and then
prove subject-reduction theorems for our languages. These theorems would
be extensions of those established for monomorphic languages in [1], and would
guarantee the soundness of evaluation for the languages. It is an entirely dif-
ferent matter to de�ne denotational semantics. In particular, open tags clearly
allow the expression of a rich class of non-parametric functions (which manipu-
late types at run time), and these do not exist in many of the usual models for
polymorphic languages.
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