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Authors' Abstract

We show how to specify components of concurrent systems. The speci-

�cation of a system is the conjunction of its components' speci�cations.

Properties of the system are proved by reasoning about its components.

We consider both the decomposition of a given system into parts, and the

composition of given parts to form a system.
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1 Introduction

Large systems are built from smaller parts. We present a method for deduc-

ing properties of a system by reasoning about its components. We show how

to represent an individual component �i by a formula Si so that the parallel

composition usually denoted cobegin �1 k : : : k�n coend is represented

by the formula S1 ^ : : :^ Sn. Composition is conjunction.

We reduce composition to conjunction not for the sake of elegance, but

because it is the best way we know to prove properties of composite systems.

Rigorous reasoning requires logic, and hence a language of logical formulas.

It does not require a conventional programming language for describing sys-

tems. We �nd it most convenient to regard programs and circuit descriptions

as low-level speci�cations, and to represent them in the same logic used for

higher-level speci�cations. The logic we use is TLA, the Temporal Logic of

Actions [14]. We do not discuss here the important problem of translating

from a low-level TLA speci�cation to an implementation in a conventional

language.

The idea of representing concurrent programs and their speci�cations

as formulas in a temporal logic was �rst proposed by Pnueli [18]. It was

later observed that, if speci�cations allow \stuttering" steps that leave the

state unchanged, then Sl ) Sh asserts that Sl implements Sh [12]. Hence,

proving that a lower-level speci�cation implements a higher-level one was

reduced to proving a formula in the logic. Still later, it was noticed that the

formula 999999x : S speci�es the same system as S except with the variable x

hidden [1, 13], and variable hiding became logical quanti�cation. The idea

of composition as conjunction has also been suggested [4, 5, 21], but our

method for reducing composition to conjunction is new.

To deduce useful properties of a component, we must specify its envi-

ronment. No component will exhibit its intended behavior in the presence

of a su�ciently hostile environment. For example, a combinational circuit

will not produce an output in the intended range if some input line, instead

of having a 0 or a 1, has an improper voltage level of 1/2. The speci�cation

of the circuit's environment must rule out such improper inputs.

How we reason about a composite system depends on how it was formed.

Composite speci�cations arise in two ways: by decomposing a given system

into smaller parts, and by composing given parts to form a larger system.

These two situations call for two methods of writing component speci�ca-

tions that di�er in their treatment of the environment. This di�erence in

turn leads to di�erent proof rules.
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When decomposing a speci�cation, the environment of each component

is assumed to be the other components, and is usually left implicit. To

reason about a component, we must state what we are assuming about its

environment, and then prove that this assumption is satis�ed by the other

components. The Decomposition Theorem of Section 4 provides the needed

proof rule. It reduces the veri�cation of a complex, low-level system to

proving properties of a higher-level speci�cation and properties of one low-

level component at a time. Decomposing proofs in this way allows us to

apply decision procedures to veri�cations that hitherto required completely

hand-guided proofs [11].

When specifying a reusable component, without knowing precisely where

it will be used, we must make explicit what it assumes of its environment.

We therefore assert that the component satis�es a guaranteeM only as long

as its environment satis�es an assumption E. This assumption/guarantee

property [10] is denoted E +�. M . To show that a composition of reusable

components satis�es a speci�cation S, we must prove a formula of the form

(E1
+�. M1) ^ : : : ^ (En

+�. Mn) ) S, where S may again be an assump-

tion/guarantee property. We prove such a formula with the Composition

Theorem of Section 5. This theorem allows us to reason about assump-

tion/guarantee speci�cations using well-established, e�ective methods for

reasoning about speci�cations of complete systems.

In the following section, we examine the issues that arise in decomposi-

tion and composition. Our discussion is informal, because we wish to show

that these issues are fundamental, not artifacts of a particular formalism.

We treat these topics formally in Sections 4 and 5. Section 3 covers the

formal preliminaries. A comparison with related work appears in the con-

clusion. Proofs are relegated to the appendix.

2 An Informal Overview

2.1 Decomposing Complete Systems

A complete system is one that is self-contained; it may be observed, but

it does not interact with the observer. A program is a complete system,

provided we model inputs as being generated nondeterministically by the

program itself.

As a tiny example of a complete system, consider the following program,

written in an informal programming-language notation in which statements

within angle brackets are executed atomically.
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Program GCD

var a initially 233344, b initially 233577899;

cobegin loop h if a > b then a := a� b i endloop

k

loop h if b > a then b := b� a i endloop coend

Program GCD satis�es the correctness property that eventually a and b

become and remain equal to the gcd of 233344 and 233577899. We make

no distinction between programs and properties, writing them all as TLA

formulas. If formula Mgcd represents program GCD and formula Pgcd rep-

resents the correctness property, then the program implements the property

i� (if and only if) Mgcd implies Pgcd . Thus, correctness of program GCD is

veri�ed by proving Mgcd ) Pgcd .

In hierarchical development, one decomposes the speci�cation of a sys-

tem into speci�cations of its parts. As explained in Section 4, the speci�ca-

tion Mgcd of program GCD can be written as Ma ^Mb, where Ma asserts

that a initially equals 233344 and is repeatedly decremented by the value of

b whenever a > b, and whereMb is analogous. The formulasMa andMb are

the speci�cations of two processes �a and �b. We can write �a and �b as

Process �a Process �b

output var a initially 233344; output var b initially 233577899;

input var b ; input var a ;

loop h if a > b then a := a� b i loop h if b > a then b := b� a i

endloop endloop

One decomposes a speci�cation in order to re�ne the components sep-

arately. We can re�ne the GCD program, to remove simultaneous atomic

accesses to both a and b, by re�ning process �a to

Process �l
a

output var a initially 233344;

internal var ai ;

input var b ;

loop h ai := b i ; if h a > ai i then h a := a� ai i endloop

and re�ning �b to the analogous process �
l
b.

The composition of processes �l
a and �l

b correctly implements program

GCD. This is expressed in TLA by the assertion that M l
a ^ M

l
b implies

Ma ^Mb, where M
l
a and M

l
b are the formulas representing �l

a and �l
b.
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We would like to decompose the proof ofM l
a^M

l
b )Ma^Mb into proofs

of M l
a )Ma and M

l
b )Mb. These proofs would show that �l

a implements

�a and �l
b implements �b.

Unfortunately, �l
a does not implement �a because, in the absence of

assumptions about when its input b can change, �l
a can behave in ways

that process �a cannot. Process �a can decrement a only by the current

value of b, but �l
a can decrement a by a previous value of b if b changes

between the assignment to ai and the assignment to a. Similarly, �l
b does

not implement �b.

Process �l
a does correctly implement process �a in a context in which

b does not change when a > b. This is expressed in TLA by the formula

Ea ^ M
l
a ) Ma, where Ea asserts that b does not change when a > b.

Similarly, Eb ^M
l
b ) Mb holds, for the analogous Eb. The Decomposition

Theorem of Section 4.3 allows us to deduce M l
a ^ M

l
b ) Ma ^ Mb from

approximately the following hypotheses:

Ea ^M
l
a )Ma

Eb ^M
l
b )Mb

Ma ^Mb ) Ea ^Eb

(1)

The third hypothesis holds because the composition of processes �a and �b

does not allow a to change when b > a or b to change when a > b.

Observe that Ea asserts only the property of �
l
b needed to guarantee that

�l
a implements �a. In a more complicated example, Ea will be signi�cantly

simpler thanM l
b, the full speci�cation of �l

b. Verifying these hypotheses will

therefore be easier than proving M l
a ^M

l
b ) Ma ^Mb directly, since this

proof requires reasoning about the speci�cation M l
a ^M

l
b of the complete

low-level program.

One cannot really deduce M l
a ^M

l
b ) Ma ^ Mb from the hypotheses

(1). For example, (1) is trivially satis�ed if Ea, Eb, Ma, and Mb all equal

false; but we cannot deduce M l
a^M

l
b ) false for arbitraryM l

a and M
l
b. The

precise hypotheses of the Decomposition Theorem are more complicated,

and we must develop a number of formal concepts in order to state them.

We also develop results that allow us to discharge these more complicated

hypotheses by proving conditions essentially as simple as (1).

2.2 Composing Open Systems

An open system is one that interacts with an environment it does not control.

In our examples, we consider systems that communicate by using a standard
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initial
state

37
sent

37
acked

4
sent

4
acked

19
sent

c.ack : 0 0 1 1 0 0 : : :

c.sig : 0 1 1 0 0 1 : : :

c.val : � 37 37 4 4 19 : : :

Figure 1: The two-phase handshake protocol for a channel c.

-

�

i.snd

i.ack

-

�

o.snd

o.ack
Queue

Figure 2: A queue.

two-phase handshake protocol [15] to send values over channels. The state

of a channel c is described by three components: the value c.val that is

being sent, and two bits c.sig and c.ack used for synchronization. We let

c:snd denote the pair hc:sig; c:vali. Figure 1 shows the sequence of states

assumed in sending the sequence of values 37, 4, 19, : : : . The channel

is ready to send when c:sig = c:ack . A value v is sent by setting c.val

to v and complementing c.sig . Receipt of the value is acknowledged by

complementing c.ack .

We consider an N -element queue with input channel i and output chan-

nel o. It is depicted in Figure 2. To describe the queue, we introduce the

following notation for �nite sequences: j�j denotes the length of sequence �,

which equals 0 if � is empty; Head(�) and Tail(�) as usual denote the head

(�rst element) and the tail of sequence �, if � is nonempty; and ��� denotes

the concatenation of sequences � and � . Angle brackets are used to form

sequences, so h i denotes the empty sequence and hei denotes the sequence

with e as its only element. With this notation, the queue can be written as

in Figure 3.

Let QM be the TLA formula that represents this queue process. It might

seem natural to take QM as the speci�cation of the queue. However, this

speci�cation would be di�cult or impossible to implement because it states

that the queue behaves properly even if the environment does not obey

the communication protocol. For example, in a lower-level implementation,

reading the input o.ack and setting the outputs o.sig and o.val would be

separate actions. If the environment changed o.ack between these actions,

5



Process Queue :

output var i.ack , o.sig initially 0,

o.val ;

internal var q initially h i;

input var i.sig , i.val , o.ack ;

cobegin

loop �
��

B
BB

if (i :ack 6= i :sig) ^ (jqj < N)
B
BB

�
��

endloopthen q := q � hi :vali;

i :ack := 1� i :ack

k

loop �
�
�

B
B
B

if (o:ack = o:sig) ^ (jqj > 0)

B
B
B

�
�
�

endloop
then o:val := head(q);

q := tail(q);

o:sig := 1� o:sig
coend

Figure 3: A queue process.

the implementation could violate the requirement that it change o.val only

when o:ack = o:sig. This problem is not an artifact of our particular rep-

resentation of the queue; actual hardware implementations of a queue can

enter metastable states, consequently producing bizarre, unpredictable be-

havior, if their inputs are changed when they are not supposed to be [15].

A speci�cation of the queue should allow executions in which the queue

performs correctly; it should not rule out bad behavior of the queue caused

by the environment performing incorrectly. Such a speci�cation can be writ-

ten in the assumption/guarantee style, a generalization of the traditional

pre/post-condition style for sequential programs. An assumption/guarantee

speci�cation asserts that the system provides a guarantee M if its environ-

ment satis�es an assumption E. For the queue, M is the formula QM and

E asserts that the environment obeys the communication protocol.

It is not obvious how to reason about the composition of systems de-

scribed by assumption/guarantee speci�cations. The basic problem is illus-

trated by the simple case of two systems, one guaranteeingMc assumingMd,

and the other guaranteeingMd assuming Mc. Since each system guarantees

to satisfy the other's environment assumption, we would like to conclude

that their composition implements the speci�cation Mc ^Md uncondition-

ally, with no environment assumption. Can we? We attempt to answer this

6



c
-

System
C d

System
D

�

Figure 4: A simple example.

question by considering two simple examples, based on Figure 4.

In the �rst example:

� M0
c asserts that c always equals 0.

� M0
d asserts that d always equals 0.

We can implement these speci�cations with the following two processes.

Process �c Process �d

output var c initially 0 ; output var d initially 0 ;

input var d ; input var c ;

loop h c := d i endloop loop h d := c i endloop

Process �c guarantees M0
c assuming M0

d , and process �d guarantees M0
d

assuming M0
c . Clearly, their composition leaves c and d unchanged, so it

implements M0
c ^M

0
d .

In the second example:

� M1
c asserts that c eventually equals 1.

� M1
d asserts that d eventually equals 1.

The same processes �c and �d implement the speci�cations in this case too;

Process �c guarantees M1
c assuming M1

d , and process �d guarantees M1
d

assuming M1
c . However, since their composition leaves c and d unchanged,

it does not implement M1
c ^M

1
d .

Our conclusion in the �rst example does not depend on the particu-

lar choice of processes �c and �d. We can deduce directly from the as-

sumption/guarantee speci�cations that the composition must implement

M0
c ^ M

0
d , because the �rst process to change its output variable would

violate its guarantee before its assumption had been violated. This argu-

ment does not apply to the second example, because violating M1
c and M1

d

7



are sins of omission that do not occur at any particular instant. A property

that can be made false only by being violated at some instant is called a

safety property [6]. As the examples suggest, reasoning about the composi-

tion of assumption/guarantee speci�cations is easiest when assumptions are

safety properties.

The argument that the composition should implement M0
c ^M

0
d in the

�rst example rests on the requirement that a process maintains its guarantee

until after the environment violates its assumption. In other words, we

interpret the assumption/guarantee speci�cation as an assertion that the

guarantee M can become false only after the assumption E becomes false.

We write this assertion as the formula E +�. M . Section 5 discusses this

form of speci�cation.

Our rules for reasoning about the composition of assumption/guarantee

speci�cations are embodied in the Composition Theorem of Section 5.2.

With the Composition Theorem, we can prove that the conjunction of the

assumption/guarantee speci�cations M0
c

+�. M0
d and M0

d
+�. M0

c implies

M0
c ^M

0
d . We can also prove more substantial results|for example, that

the composition of queues implements a larger queue. Verifying the hy-

potheses of the theorem requires reasoning only about complete systems,

so the theorem allows us to handle assumption/guarantee speci�cations as

easily as complete-system speci�cations.

3 Preliminaries

3.1 TLA

3.1.1 Review of the Syntax and Semantics

A state is an assignment of values to variables. (Technically, our variables

are the \
exible" variables of temporal logic that correspond to the variables

of programming languages; they are distinct from the variables of �rst-order

logic.) A behavior is an in�nite sequence of states. Semantically, a TLA

formula F is true or false of a behavior; we say that F is valid, and write

j= F , i� it is true of every behavior. Syntactically, TLA formulas are built

up from state functions using Boolean operators (:, ^, _, ) [implication],

and = [equivalence]) and the operators 0, 2, and 999999, as described below.

A state function is like an expression in a programming language. Se-

mantically, it assigns a value to each state|for example 3 + x assigns to

state s three plus the value of the variable x in s. A state predicate is a

8



Boolean-valued state function. An action is a Boolean-valued expression

containing primed and unprimed variables. Semantically, an action is true

or false of a pair of states, with primed variables referring to the second

state|for example, x + 1 > y0 is true for hs; ti i� the value of x + 1 in s

is greater than the value of y in t. A pair of states satisfying action A is

called an A step. We say that A is enabled in state s i� there exists a state

t such that hs; ti is an A step. We write f 0 for the expression obtained by

priming all the variables of the state function f , and [A]f for A _ (f 0 = f),

so an [A]f step is either an A step or a step that leaves f unchanged.

As usual in temporal logic, if F is a formula then 2F is a formula that

means that F is always true. Using 2 and \enabled" predicates, we can

de�ne fairness operators WF and SF. The weak fairness formula WFv(A)

asserts of a behavior that either there are in�nitely manyA steps that change

v, or there are in�nitely many states in which such steps are not enabled.

The strong fairness formula SFv(A) asserts that either there are in�nitely

many A steps that change v, or there are only �nitely many states in which

such steps are enabled.

The formula 999999x : F essentially means that there is some way of choosing

a sequence of values for x such that the temporal formula F holds. We think

of 999999x : F as \F with x hidden" and call x an internal variable of 999999x : F . If

x is a tuple of variables hx1; : : : ; xki, we write 999999x : F for 999999x1 : : : :999999xk : F .

The standard way of specifying a system in TLA is with a formula in

the \canonical form" 999999x : Init ^2[N ]v ^L, where Init is a predicate and L

a conjunction of fairness conditions. This formula asserts that there exists

a sequence of values for x such that Init is true for the initial state, every

step of the behavior is an N step or leaves the state function v unchanged,

and L holds. For example, the speci�cation Mgcd of the complete high-level

GCD program is written in canonical form by taking1

Init
�
= (a = 233344)^ (b = 233577899)

N
�
= _ (a > b) ^ (a0 = a� b) ^ (b0 = b)

_ (b > a) ^ (b0 = b� a) ^ (a0 = a)

v
�
= ha; bi

L
�
= WFv(N )

(2)

Intuitively, a variable represents some part of the universe and a behavior

1We let a list of formulas bulleted with ^ or _ denote the conjunction or disjunction

of the formulas, using indentation to eliminate parentheses. We also let ) have lower

precedence than the other Boolean operators.
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represents a possible complete history of the universe. A system � is repre-

sented by a TLA formula M that is true for precisely those behaviors that

represent histories in which � is running. We make no formal distinction

between systems, speci�cations, and properties; they are all represented by

TLA formulas, which we usually call speci�cations.

3.1.2 Interleaving and Noninterleaving Representations

When representing a history of the universe as a behavior, we can describe

concurrent changes to two objects � and  either by a single simultaneous

change to the corresponding variables x and y, or by separate changes to x

and y in some order. If the changes to � and  are directly linked, then it

is usually most convenient to describe their concurrent change by a single

change to both x and y. However, if the changes are independent, then we

are free to choose whether or not to allow simultaneous changes to x and y.

An interleaving representation is one in which such simultaneous changes

are disallowed.

When changes to � and  are directly linked, we often think of x and

y as output variables of a single component. An interleaving representation

is then one in which simultaneous changes to output variables of di�erent

processes are disallowed. The absence of such simultaneous changes can be

expressed as a TLA formula. For a system with n components in which vi
is the tuple of output variables of component i, interleaving is expressed by

the formula

Disjoint(v1; : : : ; vn)
�
=
^
i6=j

2[(v0i = vi) _ (v
0
j = vj)]hvi; vji

We have found that, in TLA, interleaving representations are usually eas-

ier to write and to reason about. Moreover, an interleaving representation

is adequate for reasoning about a system if the system is modeled at a su�-

ciently �ne grain of atomicity. However, TLA also works for noninterleaving

representations.

3.1.3 The Queue Example

We now give a TLA speci�cation of the queue of natural numbers of length

N , which was described informally in Section 2.2 and illustrated in Figure 2.

As in Section 2.2, we write c:snd for the pair hc:sig; c:acki for a channel c;

we also write c for the triple hc:sig; c:ack ; c:vali.

10
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Figure 5: The complete system of queue plus environment.

A channel is initially ready for sending, so the initial condition on wire

c is the predicate CInit(c) de�ned by

CInit(c)
�
= (c:sig = c:ack = 0)

The operations of sending a value v and acknowledging receipt of a value on

channel c are represented by the following Send(v; c) and Ack(c) actions.

Send(v; c)
�
= ^ c:sig = c:ack

^ c:snd 0 = hv; 1� c:sigi

^ c:ack 0 = c:ack

Ack(c)
�
= ^ c:sig 6= c:ack

^ c:ack 0 = 1� c:ack

^ c:snd 0 = c:snd

To represent the queue as a complete system, we add an environment that

sends arbitrary natural numbers over channel i and acknowledges values on

channel o. The resulting complete system is shown in Figure 5.

The TLA formula CQ specifying the queue is de�ned in Figure 6. It has

the canonical form 999999x : Init ^ 2[N ]v ^ L, where:

x is the internal variable q, which represents the sequence of values received

on the input channel i but not yet sent on the output channel o.

Init is written as the conjunction InitE ^ InitM of initial predicates for

the environment and component. (We arbitrarily consider the initial

conditions on a channel to be part of the sender's initial predicate.)

N is the disjunction of two actions: QM , describing the steps taken by

the component, and QE ^ (q0 = q), describing steps taken by the

environment (which leave q unchanged). Action QM is the disjunction

of actions Enq and Deq . An Enq step acknowledges receipt of a value

on i and appends the value to q; it is enabled only when q has fewer

than N elements. A Deq step removes the �rst element of q and sends

it on o. Action QE is the disjunction of Put , which sends an arbitrary

11



number on channel i, and Get , which acknowledges receipt of a number

on channel o.

v is the tuple hi; o; qi of all relevant variables.2

L is the weak-fairness condition WFhi; o; qi(QM), which asserts that a com-

ponent step cannot remain forever possible without occurring. It can

be shown that a logically equivalent speci�cation is obtained if this

condition is replaced with WFhi; o; qi(Enq) ^ WFhi; o; qi(Deq).

Formula CQ gives an interleaving representation of a queue; simultaneous

steps by the queue and its environment are not allowed. Moreover, simul-

taneous changes to the two inputs i.snd and o.ack are disallowed, as are

simultaneous changes to the two outputs i.ack and o.snd . In Section 4, we

describe a noninterleaving representation of the queue.

3.2 Implementation

A speci�cation M l implies a speci�cation M i� every behavior that satis�es

M l also satis�es M , hence proving M l ) M shows that the system �l

represented by M l implements the system or property � represented by M .

The formula M l ) M is proved by applying a handful of simple rules [14].

WhenM has the form 999999x : cM , a key step in the proof is �nding a re�nement

mapping|a tuple of state functions x such that M l implies cM , where cM
is the formula obtained by substituting x for x in cM . Under reasonable

assumptions, such a re�nement mapping exists when M l ) 999999 x : cM is

valid [1].

As an example, we show that the system composed of two queues in

series, shown in Figure 7, implements a single larger queue. We �rst specify

the composite queue. Let F [e1=v1; : : : ; en=vn] denote the result of (simulta-

neously) substituting each expression ei for vi in a formula F . For example,

if Get is de�ned as in Figure 6, then Get [z=i] equals Ack(o)^ (z0 = z). For

any formula F , let

F [1] �
= F [z=o; q1=q] F [2] �

= F [z=i; q2=q]

In Figure 8, the speci�cation CDQ of the complete system, consisting of the

double queue and its environment, is de�ned in terms of the formulas from

Figure 6. We think of the complete system as containing three components:

2Informally, we write hi; o; qi for the concatenation of the tuples i, o, and hqi.

12



InitE
�
= CInit(i) Environment

Actions
Put

�
= (9v 2 Nat : Send(v; i)) ^ (o0 = o)

Get
�
= Ack(o) ^ (i0 = i)

QE
�
= Get _ Put

InitM
�
= CInit(o) ^ (q = h i) Component

Actions
Enq

�
= ^ jqj < N

^ Ack(i) ^ (q0 = q � hi:vali)

^ o0 = o

Deq
�
= ^ jqj > 0

^ Send(Head(q); o) ^ (q0 = Tail(q))

^ i0 = i

QM
�
= Enq _ Deq

ICL
�
= WFhi; o; qi(QM ) Complete

System

Speci�cation
ICQ

�
= ^ InitE ^ InitM

^ 2

"
_ QE ^ (q0 = q)

_ QM

#
hi; o; qi

^ ICL

CQ
�
= 999999 q : ICQ

Figure 6: The speci�cation CQ of the complete queue.
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Figure 7: A complete system containing two queues in series.

ICDQ
�
= ^ InitE ^ Init

[1]

M ^ Init
[2]

M

^ 2

2
6664
_ QE ^ hq1; q2; zi

0 = hq1; q2; zi

_ Q
[1]

M ^ hq2; oi
0 = hq2; oi

_ Q
[2]

M ^ hq1; ii
0 = hq1; ii

3
7775
hi; o; z; q1; q2i

^ ICL[1] ^ ICL[2]

CDQ
�
= 999999 q1; q2 : ICDQ

Figure 8: Speci�cation of the complete double-queue system of Figure 7.

the environment and the two queues. The initial condition is the conjunction

of the initial conditions of each component. The next-state action consists

of three disjuncts, representing actions of each of the three components that

leave other components' variables unchanged. Finally, we take as the liveness

condition the conjunction of the fairness conditions of the two queues.

We now show that the composite queue implements a (2N + 1)-element

queue. (The \+1" arises because the internal channel z acts as a bu�er

element.) The correctness condition is CDQ ) CQ[dbl], where F [dbl] denotes

F [(2N + 1)=N ], for any formula F . This is proved by showing ICDQ )

ICQ[dbl], with the re�nement mapping de�ned by

q
�
= if z :sig = z :ack then q1 � q2

else q1 � hz :vali � q2

The formula ICDQ ) ICQ[dbl] can be proved by standard TLA reason-

ing [14].
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3.3 Conditional Implementation

Instead of proving that a speci�cation M l implements a speci�cation M ,

we sometimes want to prove the weaker condition that M l implements M

assuming a formula G. In other words, we want to prove G) (M l ) M),

which is equivalent to G ^M l ) M . The formula G may express one or

more of the following:

� A law of nature. For example, in a real-time speci�cation, G might

assert that time increases monotonically. Letting the current time be

represented by the variable now , this assumption is expressed by the

formula (now 2 R) ^ 2[now 0 2 (now ;1)]now , where R is the set of

real numbers.

� An interface re�nement, where G expresses the relation between a low-

level tuple l of variables and its high-level representation as a tuple h

of variables. For example, l might be a low-level interface representing

the transmission of sequences of bits over a wire, and h could be the

high-level interface in which the sending of seven successive bits is

interpreted as the transmission of a single ASCII character.

� An assumption about how reality is translated into the formalism of

behaviors. In particular, G may assert an interleaving assumption|

for example, an assumption of the form Disjoint(v1; : : : ; vn).

Conditional implementation, with an explicit formula G, is needed only for

open systems. For a complete system, the properties expressed by G can

easily be made part of the system speci�cation. For example, the system

can include a component that advances time. In contrast, it can be di�cult

to include G in the speci�cation of an open system.

3.4 Safety and Closure

3.4.1 De�nition of Closure

A �nite sequence of states is called a �nite behavior. For any formula F

and �nite behavior �, we say that � satis�es F i� � can be extended to an

in�nite behavior that satis�es F . For convenience, we say that the empty

sequence h i satis�es every formula.

A safety property is a formula that is satis�ed by an in�nite behavior

� i� it is satis�ed by every pre�x of � [6]. For any predicate Init , action
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N , and state function v, the formula Init ^ 2[N ]v is a safety property. It

can be shown that, for any TLA formula F , there is a TLA formula C(F ),

called the closure of F , such that a behavior � satis�es C(F ) i� every pre�x

of � satis�es F . Formula C(F ) is the strongest safety property such that

j= F ) C(F ).

3.4.2 Machine Closure

When writing a speci�cation in the form Init ^ 2[N ]v ^ L, we expect L to

constrain in�nite behaviors, not �nite ones. Formally, this means that the

closure of Init ^ 2[N ]v ^ L should be Init ^ 2[N ]v. A pair of properties

(P; L) is called machine closed i� C(P ^ L) equals P [1]. (We often say

informally that P ^ L is machine closed.)

Proposition 1 below, which is proved in [2], shows that we can use fairness

properties to write machine-closed speci�cations. The proposition relies on

the following de�nition: an action A is a subaction of a safety property P

i� for every �nite behavior � = hr0; : : : ; rni, if � satis�es P and A is enabled

in state rn, then there exists a state rn+1 such that hr0; : : : ; rn+1i satis�es

P and hrn; rn+1i is an A step. If A implies N , then A is a subaction of

Init ^2[N ]v.

Proposition 1 If P is a safety property and L is the conjunction of a

countable number of formulas of the form WFw(A) and/or SFw(A) such

that A ^ (w0 6= w) is a subaction of P , then (P; L) is machine closed.

3.4.3 Closure and Hiding

Several of our results have hypotheses of the form C(M1) ^ : : :^ C(Mn) )

C(M). The obvious �rst step in proving such a formula is to compute the

closures C(M1), : : : , C(Mn), and C(M). We can use Proposition 1 to com-

pute the closure of a formula with no internal variables. When there are

internal variables, the following proposition allows us to reduce the proof of

C(M1)^ : : :^C(Mn)) C(M) to the proof of a formula in which the closures

can be computed with Proposition 1.

Proposition 2 Let x, x1, : : : , xn be tuples of variables such that for each

i, no variable in xi occurs in M or in any Mj with i 6= j.

If j=
n̂

i=1

C(Mi) ) 999999 x : C(M), then j=
n̂

i=1

C(999999 xi :Mi) ) C(999999x :M).

Proofs are in the appendix.
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3.5 Additional Temporal Operators

We now de�ne some additional temporal operators. Although they can be

expressed in terms of the primitive TLA operations 0, 2, and 999999, we de�ne

them semantically.

3.5.1 +

The formula E+v asserts that, if the temporal formula E ever becomes false,

then the state function v stops changing. More precisely, a behavior �

satis�es E+v i� either � satis�es E, or there is some n such that E holds for

the �rst n states of �, and v never changes from the (n+1)st state on. When

E is a safety property in canonical form, it is easy to write E+v explicitly:

Proposition 3 If x is a tuple of variables none of which occurs in v, and

s is a variable that does not occur in Init, N , w, v, or x, and

dInit �
= (Init ^ (s = 0)) _ (:Init ^ (s = 1))

cN �
= _ (s = 0) ^ _ (s0 = 0)^ (N _ (w0 = w))

_ (s0 = 1)^ :(N _ (w0 = w))

_ (s = 1) ^ (s0 = 1)^ (v0 = v)

then j= (999999 x : Init ^2[N ]w)+v = 999999 x; s : dInit ^ 2[cN ]hw;v; si.

We need to reason about + only to verify hypotheses of the form j= C(E)+v^

C(M l)) C(M) in our Decomposition and Composition Theorems. We can

verify such a hypothesis by �rst applying the observation that C(E)+v equals

C(E+v) and using Proposition 3 to calculate E+v. However, this approach

is necessary only for noninterleaving speci�cations. Proposition 4 below

provides a way of proving these hypotheses for interleaving speci�cations

without having to calculate E+v.

3.5.2 �.

For temporal formulas E and M , the formula E �. M asserts thatM holds

at least as long as E does [4]. More precisely E �. M is true of a behavior �

i� E ) M is true of � and of every �nite pre�x of �. Thus, E �. M equals

(C(E) �. C(M)) ^ (E ) M). The operator �. acts much like ordinary

implication. In fact, j= E �. M is equivalent to j= E )M . Of course, it is

not in general true that j= (E �. M) = (E )M).
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3.5.3 +�.

As we observed in the introduction, we interpret the speci�cation thatM is

guaranteed under assumption E as the formula E +�. M , which means that

M holds at least one step longer than E does. More precisely, E +�. M is

true of a behavior � i� E )M is true of � and, for every n � 0, if E holds

for the �rst n states of �, then M holds for the �rst n+1 states of �. Thus,

E +�. M equals (C(E) +�. C(M))^ (E )M).

The formula E +�. M is stronger than E �. M , which asserts that M

holds as long as E does. If E is a safety property, then E
+
�. M equals

(M �. E) �. M . If E and M are both safety properties and v is a tuple of

variables containing all free variables ofM , then E
+
�. M equals E+v �. M .

3.5.4 ?

The speci�cation M of a component can be made false only by a step that

changes the component's output variables. In an interleaving representation,

we do not allow a single step to change output variables of two di�erent

components. Hence, if E and M are speci�cations of separate components,

we expect that no step will make both E and M false. More precisely, we

expect E and M to be orthogonal (?), where E ? M is true of a behavior

� i� there is no n � 0 such that E and M are both true for the �rst n

states of � and both false for the �rst n+1 states of �. If E and M are

safety properties, then E ? M equals (E ^M) +�. (E _M). For arbitrary

properties, E ?M equals C(E) ? C(M).

If no step falsi�es both E and M , and M remains true as long as E

does, thenM must remain true at least one step longer than E does. Hence,

E ? M implies the equivalence of E �. M and E +�. M . In fact, (E +�.

M) = (E �. M) ^ (E ? M) is valid. From this and the relation between
+�. and +, we can derive:

Proposition 4 If E, M , and R are safety properties, and v is a tuple of

variables containing all variables that occur free in M , then j= E ^ R)M

and j= R) E ?M imply j= E+v ^R)M .

This proposition enables us to use orthogonality to remove + from proof

obligations. To apply the proposition, we must prove the orthogonality of

component speci�cations. We do this for interleaving speci�cations with the

following result.
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Proposition 5
If j= C(E) = InitE ^ 2[NE ]hx; ei

j= C(M) = InitM ^ 2[NM ]hy;mi

then

j= (9x : InitE _ 9y : InitM) ^ Disjoint(e; m) ) C(999999x : E) ? C(999999y :M)

4 Decomposing a Complete Speci�cation

4.1 Specifying a Component

Let us consider how to write the speci�cation M of one component of a

larger system. We assume that the free variables of the speci�cation can be

partitioned into tuples m of output variables and e of input variables; the

component changes the values of the variables of m only. (A more general

situation is discussed below.) The speci�cation of a component has the same

form 999999x : Init ^ 2[N ]v ^ L as that of a complete system. For a component

speci�cation:

v is the tuple hx; m; ei.

Init describes the initial values of the component's output variables m and

internal variables x.

N should allow two kinds of steps|ones that the component performs, and

ones that its environment performs. Steps performed by the compo-

nent, which change its output variables m, are described by an action

Nm. In an interleaving representation, the component's inputs and

outputs cannot change simultaneously, so Nm implies e0 = e. In a

noninterleaving representation, Nm does not constrain the value of e0,

so the variables of e do not appear primed in Nm. In either case, we

are specifying the component but not its environment, so the speci-

�cation should allow the environment to do anything except change

the component's output variables or internal variables. In other words,

the environment is allowed to perform any step in which hm; xi0 equals

hm; xi. Therefore, N should equal Nm _ (hm; xi0 = hm; xi).

L is the conjunction of fairness conditions of the form WFhm;xi(A) and

SFhm;xi(A). For an interleaving representation, which by de�nition

does not allow steps that change both e and m, the subscripts hm; xi

and he; m; xi yield equivalent fairness conditions.
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This leads us to write M in the form

M
�
= 999999x : Init ^ 2[Nm _ (hm; xi0 = hm; xi)]he;m; xi ^ L (3)

By simple logic, (3) is equivalent to

M
�
= 999999x : Init ^ 2[Nm]hm;xi ^ L (4)

For the speci�cation Ma of process �a in the GCD example, x is the

empty tuple (there is no internal variable), the input variable e is b, the

output variable m is a, and

Inita
�
= a = 233344

Na
�
= (a > b) ^ (a0 = a� b) ^ (b0 = b)

Ma
�
= Inita ^ 2[Na]a ^ WFa(Na)

(5)

For the speci�cation M l
a of the low-level process �

l
a, the tuple x is hai ; pcai,

where pca is an internal variable that tells whether control is at the beginning

of the loop or after the assignment to ai . The speci�cation has the form

M l
a

�
= 999999 ai ; pca : Init la ^ 2[N

l
a]ha;ai; pcai ^ WFha;ai; pcai(N

l
a) (6)

for appropriate initial condition Initla and next-state action N l
a. The speci-

�cations Mb and M
l
b are similar.

In our queue example, we can write the speci�cations of both the queue

and its environment as separate components in the form (4). For the queue

component, the tuple m of output variables is hi :ack ; o:sndi, the tuple e of

input variables is hi :snd; o:acki, and the speci�cation is

IQM
�
= InitM ^ 2[QM ]hi:ack ;o:snd; qi ^ ICL

QM
�
= 999999 q : IQM

(7)

The speci�cation of the environment as a separate component is

QE
�
= InitE ^ 2 [QE]hi:snd; o:acki (8)

We have provided speci�cations of the queue and its environment in an

interleaving representation. A noninterleaving representation of the queue

can be obtained by modifying its speci�cation as follows.
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InitM
�
= CInit(o) ^ (q = h i)

Enqni
�
= ^ jqj < N

^ Ack(i) ^ (q0 = q � hi:vali)

^ o:snd0 = o:snd

Deqni
�
= ^ jqj > 0

^ Send(Head(q); o) ^ (q0 = Tail(q))

^ i :ack 0 = i :ack

DeqEnqni
�
= ^ (jqj > 0) ^ Send(Head(q); o)

^ Ack(i)

^ q0 = Tail(q) � hi:vali

Qni
M

�
= Enqni _ Deqni _ DeqEnqni

IQM ni �
= InitM ^ 2[Qni

M ]hi:ack; o:snd; qi ^ WFhi:ack ; o:snd; qi(Q
ni
M )

QM ni �
= 999999 q : IQMni

Figure 9: A noninterleaving representation of the queue component.

� Change the Enq and Deq actions so they do not constrain the values

of i :snd 0 or o:ack 0.

� De�ne an action DeqEnq that simultaneously enqueues an input value

and dequeues an output value, and change the de�nition of QM to

have DeqEnq as an additional disjunct.

The resulting speci�cation QM ni is given in Figure 9. A noninterleaving

representation of the queue's environment can be obtained in a similar fash-

ion.

We have been assuming that the visible variables of the component's

speci�cation can be partitioned into tuples m of output variables and e of

input variables. To see how to handle a more general case, let �M be the

action m0 6= m, let v equal he; mi, and observe that [NM ]hm;xi equals [NM _

(:�M^(x
0 = x))]hv;xi. A �M step is one that is attributed to the component,

since it changes the component's output variables. When the tuple v of

variables is not partitioned into input and output variables, we de�ne an

action �M that speci�es what steps are attributed to the component, and we

write the component's next-state action in the form NM _ (:�M ^ (x
0 = x)).

All our results for separate input and output variables can be generalized

by writing the next-state action in this form. However, for simplicity, we

consider only the special case.
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4.2 Conjoining Components to Form a Complete System

In Section 3.1, we describe how to specify a complete system. In Section 4.1,

we describe how to specify an individual component of a system. A complete

system is the composition of its components. Composing two systems means

constructing a universe in which they are both running. If formulasM1 and

M2 represent the two systems, then M1 ^M2 represents their composition,

since a behavior represents a possible history of a universe containing both

systems i� it satis�es both M1 and M2. Thus, in principle, composition is

conjunction. We now show that composition is conjunction in practice as

well.

For composition to be conjunction, the conjunction of the speci�cations

of all components should be equivalent to the speci�cation of the complete

system. For example, the conjunction of the speci�cations QM of the queue

and QE of its environment should be equivalent to the speci�cation CQ of

the complete system shown in Figure 5. Recall that

QE = InitE ^ 2 [QE]hi:snd; o:acki

QM = 999999 q : InitM ^ 2[QM ]hi:ack ;o:snd; qi ^ ICL

CQ = 999999 q : ^ InitE ^ InitM

^ 2

"
_ QE ^ (q0 = q)

_ QM

#
hi; o; qi

^ ICL

We deduce the equivalence of QE ^QM and CQ from the following result,

by substituting QE for M1 and QM for M2. (In this case, x1 is the empty

tuple h i, so bx2 equals h i and bx02 = bx2 equals true.)

Proposition 6 Let m1; : : : ; mn; x1; : : : ; xn be tuples of variables, and let

m
�
= hm1; : : : ; mni x

�
= hx1; : : : ; xni

bxi �
= hx1; : : : ; xi�1; xi+1; : : : ; xni

Mi
�
= 999999 xi : Init i ^ 2[Ni]hmi; xii ^ Li

If, for all i; j = 1; : : : ; n with i 6= j:

1. no variable of xj occurs free in xi or Mi.

2. m includes all free variables of Mi.

3. j= Ni ) (m0
j = mj)

22



then

j=
n̂

i=1

Mi = 999999 x :
n̂

i=1

Init i ^ 2[
n_
i=1

Ni ^ (bx0i = bxi)]hm;xi ^
n̂

i=1

Li

In this proposition, hypothesis 3 asserts that component i leaves the vari-

ables of other components unchanged, so Mi is an interleaving representa-

tion of component i. Hence, Mi implies Disjoint(mi; mj), for each j 6= i,

and
Vn
i=1Mi implies Disjoint(m1; : : : ; mn), as expected for an interleaving

representation of the complete system.

In the GCD example, we apply this proposition to the formula Ma of

(5) and the analogous formula Mb. We immediately get that Ma ^Mb is

equivalent to a formula that is the same asMgcd , de�ned by (2), except with

WFha; bi(Na) ^WFha; bi(Nb) instead of WFha; bi(N ). It can be shown that

these two fairness conditions are equivalent; hence, Ma ^Mb is equivalent

to Mgcd.

As another example of decomposition, we consider the system of Fig-

ure 7, consisting of two queues in series together with an environment. This

system can be decomposed into three components with the following speci-

�cations.

1st queue: 999999 q1 : Init
[1]

M ^ 2[Q
[1]

M ^ (o
0 = o)]hi:ack; z :snd; q1i ^ ICL[1]

2nd queue: 999999 q2 : Init
[2]

M ^ 2[Q
[2]

M ^ (i
0 = i)]hz :ack; o:snd; q2i ^ ICL[2]

environment: InitE ^ 2[QE ^ (z
0 = z)]hi:snd; o:ack i

To obtain an interleaving representation, we have conjoined o0 = o to Q
[1]

M

in the �rst queue's next-state action, because Q
[1]

M does not mention o. Sim-

ilarly, we have conjoined i0 = i to the second queue's next-state action, and

z0 = z to the environment's. It follows from Proposition 6 that the con-

junction of these three speci�cations equals the speci�cation CDQ of the

complete system, de�ned in Figure 8.

Hypothesis 3 of Proposition 6 is satis�ed only by interleaving represen-

tations. For arbitrary representations, a straightforward calculation shows

j=
n̂

i=1

Mi = 999999 x : ^
Vn
i=1 Initi

^ 2[
Vn
i=1(Ni _ hmi; xii

0 = hmi; xii)]hm;xi

^
Vn
i=1 Li

(9)

assuming only the �rst hypothesis of the proposition. The right-hand side

has the expected form for a noninterleaving speci�cation, since it allows
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Ni^Nj steps for i 6= j. Hence, composition is conjunction for noninterleaving

representations too.

4.3 The Decomposition Theorem

4.3.1 The Basic Theorem

Consider a complete system decomposed into components �i. We would like

to prove that this system is implemented by a lower-level one, consisting of

components �l
i, by proving that each �l

i implements �i. Let Mi be the

speci�cation of �i and M
l
i be the speci�cation of �l

i. We must prove thatVn
i=1M

l
i implies

Vn
i=1Mi. This implication is trivially true ifM l

i implies Mi,

for all i. However, as we saw in the GCD example, M l
i need not imply Mi.

Even when M l
i ) Mi does not hold, we need not reason about all the

lower-level components together. Instead, we prove Ei^M
l
i )Mi, where Ei

includes just the properties of the other components assumed by component

i, and is usually much simpler than
V
k 6=iM

l
k. Proving Ei^M

l
i )Mi involves

reasoning only about component i, not about the entire lower-level system.

In propositional logic, to deduce that
Vn
i=1M

l
i implies

Vn
i=1Mi fromVn

i=1(Ei ^M
l
i ) Mi), we may prove that

Vn
k=1M

l
k implies Ei for each i.

However, proving this still requires reasoning about
Vn
k=1M

l
k, the speci�-

cation of the entire lower-level system. The following theorem shows that

we need only prove that Ei is implied by
Vn
k=1Mk, the speci�cation of the

higher-level system|a formula usually much simpler than
Vn
k=1M

l
k .

Proving Ei ^M
l
i ) Mi and (

Vn
k=1Mk) ) Ei for each i and deducing

(
Vn
i=1M

l
i ) ) (

Vn
i=1Mi) is circular reasoning, and is not sound in general.

Such reasoning would allow us to deduce (
Vn
i=1M

l
i ) ) (

Vn
i=1Mi) for any

M l
i and Mi|simply let Ei equal Mi. To break the circularity, we need to

add some C's and one hypothesis: if Ei is ever violated then, for at least one

additional step, M l
i implies Mi. This hypothesis is expressed formally as

j= C(Ei)+v ^ C(M
l
i) ) C(Mi), for some v; the hypothesis is weakest when

v is taken to be the tuple of all relevant variables. Our proof rule is:

Theorem 1 (Decomposition Theorem) If, for i = 1; : : : ; n,

1. j=
n̂

j=1

C(Mj) ) Ei

2. (a) j= C(Ei)+v ^ C(M
l
i) ) C(Mi)

(b) j= Ei ^M
l
i ) Mi
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then j=
n̂

i=1

M l
i )

n̂

i=1

Mi.

This theorem is a corollary of the Composition Theorem of Section 5.2 below.

In the GCD example, we want to use the theorem to prove M l
a ^M

l
b )

Ma ^Mb. (The component speci�cations are described in Section 4.1.) The

abstract environment speci�cation Ea asserts that b can change only when

a < b, and that a is not changed by steps that change b. Thus,

Ea
�
= 2[(a < b) ^ (a0 = a)]b

The de�nition of Eb is analogous. We let v be ha; bi.

In general, the environment and component speci�cations can have inter-

nal variables. The theorem also allows them to contain fairness conditions.

However, hypothesis 1 asserts that the Ei are implied by safety properties.

In practice, this means that the theorem can be applied only when the Ei are

safety properties. Examples indicate that, in general, compositional reason-

ing is possible only when the environment conditions are safety properties.

4.3.2 Verifying the Hypotheses

We now discuss how one veri�es the hypotheses of the Decomposition The-

orem, illustrating the method with the GCD example.

To prove the �rst hypothesis, one �rst uses Propositions 1 and 2 to

eliminate the closure operators and existential quanti�ers, reducing the hy-

pothesis to a condition of the form

j=
n̂

i=1

(Initi ^2[Ni]vi)) Ei (10)

For interleaving representations, we can then use Proposition 6 to writeVn
i=1(Initi^2[Ni]vi) in canonical form. For noninterleaving representations,

we apply (9). In either case, the proof of (10) is an implementation proof of

the kind discussed in Section 3.2.

For the GCD example, the �rst hypothesis asserts that C(Ma) ^ C(Mb)

implies Ea and Eb. This di�ers from the third hypothesis of (1) in Section 2.1

because of the C's. To verify the hypothesis, we can apply Proposition 1 to

show that C(Ma) and C(Mb) are obtained by simply deleting the fairness

conditions from Ma and Mb. Since Nb implies (a < b) ^ (a0 = a), it is

easy to see that C(Mb) implies Ea. It is equally easy to see that C(Ma)
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implies Eb. (In more complicated examples, Ei will not follow from C(Mj)

for any single j.)

To prove part (a) of the second hypothesis, we �rst eliminate the +.

For noninterleaving representations, this must be done with Proposition 3,

as described in Section 3.5.1. For interleaving representations, we can ap-

ply Propositions 4 and 5, as described in Section 3.5.4. In either case, we

can prove the resulting formula by �rst using Proposition 2 to eliminate

quanti�ers, using Proposition 1 to compute closures, and then performing a

standard implementation proof with a re�nement mapping.

Part (b) of the hypothesis also calls for a standard implementation proof,

for which we use the same re�nement mapping as in the proof of (a). Since

Ei implies C(Ei)+v and M l
i implies C(M

l
i ), we can infer from part (a) that

Ei ^M
l
i implies C(Mi). Thus proving part (b) requires verifying only the

liveness part of Mi.

For the GCD example, we verify the two parts of the second hypothesis

by proving C(Ea)+ha; bi ^ C(M
l
a) ) C(Ma) and Ea ^M

l
a ) Ma; the proofs

of the corresponding conditions for Mb are similar. We �rst observe that

the initial condition of Ea is true, and that, since M l
a is an interleaving

representation, its next-state action N l
a implies that no step changes both

a and b, so C(M l
a) implies Disjoint(a; b). Hence, applying Propositions 4

and 5, we reduce our task to proving C(Ea) ^ C(M
l
a) ) C(Ma) and Ea ^

M l
a )Ma. Applying Proposition 2 to remove the quanti�er from C(M

l
a) and

Proposition 1 to remove the C's, we reduce proving C(Ea)^C(M
l
a)) C(Ma)

to proving

Ea ^ Init
l
a ^ 2[N

l
a]ha;ai; pcai ) Inita ^2[Na]a (11)

Using simple logic and (11), we reduce proving Ea ^M
l
a ) Ma to proving

Ea ^ Initla ^ 2[N
l
a]ha;ai; pcai ^WFha;ai; pcai(N

l
a) ) WFa(Na) (12)

We can use Proposition 6 to rewrite the left-hand sides of (11) and (12) in

canonical form. The resulting conditions are in the usual form for a TLA

implementation proof.

In summary, by applying our propositions in a standard sequence, we

can use the Decomposition Theorem to reduce decompositional reasoning

to ordinary TLA reasoning. This reduction may seem complicated for so

trivial an example as the GCD program, but it will be an insigni�cant part

of the proof for any realistic example.
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4.3.3 The General Theorem

We sometimes need to prove the correctness of systems de�ned inductively.

At induction stage N+1, the low- and high-level speci�cations are de�ned as

the conjunctions of k copies of low- and high-level speci�cations of stage N ,

respectively. For example, a 2N+1-bit multiplier is sometimes implemented

by combining four 2N -bit multipliers. We want to prove by induction on

N that the stage N low-level speci�cation implements the stage N high-

level speci�cation. For such a proof, we need a more general decomposition

theorem whose conclusion at stage N can be used in proving the hypotheses

at state N+1. The appropriate theorem is:

Theorem 2 (General Decomposition Theorem) If, for i = 1; : : : ; n,

1. j= C(E)^
n̂

j=1

C(Mj) ) Ei

2. (a) j= C(Ei)+v ^ C(M
l
i) ) C(Mi)

(b) j= Ei ^M
l
i ) Mi

3. v is a tuple of variables including all the free variables of Mi.

then (a) j= C(E)+v ^
n̂

j=1

C(M l
j) )

n̂

j=1

C(Mj), and

(b) j= E ^
n̂

j=1

M l
j )

n̂

j=1

Mj.

Conclusion (b) of this theorem has the same form as hypothesis 2(b), with

M l
i and Mi replaced with conjunctions. To make the corresponding hy-

pothesis 2(a) follow from conclusion (a), it su�ces to prove
Vn
j=1 C(Mj) )

C(
Vn
j=1Mj), since C(

Vn
j=1M

l
j))

Vn
j=1 C(M

l
j) is always true.

The General Decomposition Theorem has been applied to the veri�cation

of an inductively-de�ned multiplier circuit [11].

It can be shown that both versions of our decomposition theorem provide

complete rules for verifying that one composition implies another. However,

this result is of no signi�cance. Decomposition can simplify a proof only

if the proof can be decomposed, in the sense that each M l
i implements the

correspondingMi under a simple environment assumption Ei. Our theorems

are designed to handle those proofs that can be decomposed.
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5 Composing Assumption/Guarantee

Speci�cations

5.1 The Form of an Assumption/Guarantee Speci�cation

An assumption/guarantee speci�cation asserts that a system guaranteesM

under the assumption that its environment satis�es E. As we saw in Sec-

tion 2.2, this speci�cation is expressed by the formula E +�. M , which means

that, for any n, if the environment satis�es E through \time" n, then the

system must satisfy M through \time" n+1.

Perhaps the most obvious form for an assumption/guarantee speci�ca-

tion is E ) M . The formula E ) M is weaker than E +�. M , since it

allows behaviors in which M is violated before E. However, an implementa-

tion could exploit this extra freedom only by predicting in advance that the

environment will violate E. A system does not control its environment, so

it cannot predict what the environment will do. The speci�cations E )M

and E
+�. M therefore allow the same implementations. We take E

+�. M to

be the form of assumption/guarantee speci�cations because this form leads

to the simpler rules for composition.

As suggested by the discussion in Section 2.2, composition works well

only when environment assumptions are safety properties. Because E +�. M

is equivalent to C(E) +�. (C(M) ^ (E ) M)), we can in principle convert

any assumption/guarantee speci�cation to one whose assumption is a safety

property. (A similar observation appears as Theorem 1 of [3].) However, this

equivalence is of intellectual interest only. In practice, we write the environ-

ment assumption as a safety property and the system's fairness guarantee

as the conjunction of properties EL ) WFv(A) and EL ) SFv(A), where

EL is an environment fairness assumption. We can apply Proposition 1 to

show that the resulting speci�cation is machine closed because, if (P; L)

is machine closed and L implies R, then (P; R) is also machine closed [2,

Proposition 3].

5.2 The Composition Theorem

Suppose we are given n devices, each with an assumption/guarantee speci�-

cation Ej
+�. Mj . To verify that the composition of these devices implements

a higher-level assumption/guarantee speci�cation E +�. M , we must proveVn
j=1(Ej

+�. Mj)) (E +�. M). We use the following theorem:
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Theorem 3 (Composition Theorem) If, for i = 1; : : : ; n,

1. j= C(E)^
n̂

j=1

C(Mj) ) Ei

2. (a) j= C(E)+v ^
n̂

j=1

C(Mj) ) C(M)

(b) j= E ^
n̂

j=1

Mj ) M

then j=
n̂

j=1

(Ej
+�. Mj) ) (E +�. M).

This theorem also allows us to prove conditional implementation results of

the form G ^
Vn
j=1(Ej

+�. Mj) ) (E
+�. M); we just let M1 equal G and

E1 equal true, since true
+�. G equals G. For interleaving speci�cations,

we can in general prove only conditional implementation, where G includes

disjointness conditions asserting that the outputs of di�erent components

do not change simultaneously.

The hypotheses of the Composition Theorem are similar to those of the

Decomposition Theorem, and they are proved in much the same way. The

major di�erence is that, for interleaving speci�cations, the orthogonality

condition C(E) ? C(M) does not follow from the form of the component

speci�cations, but requires explicit disjointness assumptions.

Observe that the hypotheses have the form j= P ^
Vn
j=1Qj ) R. Each

formula P ^
Vn
j=1Qj has the form of the speci�cation of a complete system,

with component speci�cations P , Q1, : : : , Qn. Thus, each hypothesis asserts

that a complete system satis�es a property R. In other words, the theorem

reduces reasoning about assumption/guarantee speci�cations to the kind of

reasoning used for complete-system speci�cations.

Among the corollaries of the Composition Theorem are ones that allow

us to prove that a lower-level speci�cation implies a higher-level one. The

simplest such result has, as its conclusion, j= (E +�. M l)) (E +�. M). This

condition expresses the correctness of the re�nement of a component with a

�xed environment assumption.

Corollary 1 If E is a safety property and

(a) j= E+v ^ C(M
l)) C(M)
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(b) j= E ^M l )M

then j= (E +�. M l)) (E +�. M).

5.3 The Queue Example

The assumption/guarantee speci�cation of the queue of Figure 2 is QE +�.

QM , where QM and QE are de�ned in (7) and (8) of Section 4.1. We now

compose two queues, as shown in Figure 7. The speci�cations of these queues

are obtained from QE +�. QM by substitution; they are QE [1] +�. QM [1] and

QE [2] +�. QM [2]. We want to show that their composition implements the

(2N+1)-element queue speci�ed by QE [dbl] +�. QM [dbl]. The obvious thing

to try to prove is

(QE [1] +�. QM [1]) ^ (QE [2] +�. QM [2]) ) (QE [dbl] +�. QM [dbl]) (13)

We could prove this had we used a noninterleaving representation of the

queue. However, (13) is not valid for an interleaving representation, for

the following reason. The speci�cation of the �rst queue does not men-

tion o, and that of the second queue does not mention i. The conjunction

of the two speci�cations allows an enqueue action of the �rst queue and a

dequeue action of the second queue to happen simultaneously, a step that

changes i.ack and o.snd simultaneously. But, in an interleaving representa-

tion, the (2N+1)-element queue's guarantee does not allow such a step, so

(13) must be invalid. Another problem with (13) is that the conjunction of

the component queues' speci�cations allows a step that changes z.snd and

o.ack simultaneously. Such a step satis�es the (2N+1)-element queue's en-

vironment assumption QE [dbl], which does not mention z , so (13) asserts

that the next step must satisfy its guarantee QM [dbl]. However, a step

that changes both z.snd and o.ack violates the second component queue's

environment assumption QE [2], permitting the component queue to make

arbitrary changes to o.snd in the next step. A similar problem is caused by

simultaneous changes to i.snd and z.ack .

We already faced the problem of disallowing simultaneous changes to

di�erent components' outputs in Section 4.2, where we decomposed an in-

terleaving speci�cation of a (2N+1)-element queue. There, the solution

was to strengthen the next-state actions of the component queues and of

the environment. This solution cannot be used if we want to compose pre-

existing speci�cations without modifying them. In this case, we prove that

the composition implements the larger queue under the assumption that the
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outputs of two di�erent components do not change simultaneously. Thus,

we prove

G ^ (QE [1] +�. QM [1]) ^ (QE [2] +�. QM [2]) ) (QE [dbl] +�. QM [dbl]) (14)

where G is the formula

G
�
= Disjoint(hi :snd; o:acki; hz :snd; i :acki; ho:snd; z :acki)

The proof is outlined in Figure 10.

6 Conclusion

We have developed a method for describing components of concurrent sys-

tems as TLA formulas. We have shown how to describe a complete system

as the conjunction of component speci�cations, and how to describe an open

system as a formula E
+�. M , where E and M are speci�cations of an en-

vironment component and a system component, respectively. Although the

idea of reducing programming concepts to logic is old, our approach is new.

Our style of writing speci�cations is direct and, we believe, practical.

We have also provided rules for proving properties of large systems by

reasoning about their components. The Composition and Decomposition

Theorems are rather simple, yet they allow fairness properties and hiding.

They were preceded by results in a long list of publications, described next.

Like ours, most previous composition theorems were strong, in the sense

that they could handle circularities for safety properties. Our approach dif-

fers from earlier ones in its general treatment of fairness and hiding. The

�rst strong composition theorem we know is that of Misra and Chandy [16],

who considered safety properties of processes communicating by means of

CSP primitives. They wrote assumption/guarantee speci�cations as Hoare

triples containing assertions about history variables. Pandya and Joseph [17]

extended this approach to handle some liveness properties. Pnueli [19] was

the �rst to use temporal logic to write assumption/guarantee speci�cations.

He had a strong composition theorem for safety properties with no hiding.

To handle liveness, he wrote assumption/guarantee speci�cations with im-

plication instead of +�., so he did not obtain a strong composition theorem.

Stark [20] also wrote assumption/guarantee speci�cations as implications

of temporal formulas and required that circularity be avoided. Our earlier

work [3] was semantic, in a more complicated model with agents. It lacked
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1. C(QE [dbl]) ^ C(G)^ C(QM [1]) ^ C(QM [2]) ) QE [1] ^ QE [2]

Proof: We use Propositions 2 and 1 to remove the quanti�ers and clo-

sure operators from the left-hand side of the implication. The resulting

formula then asserts that a complete system, consisting of the safety parts

of the two queues (with their internal state visible) together with the en-

vironment, implements QE [1] and QE [2]. The proof of this formula is

straightforward.

2. C(QE [dbl])+hi; o; zi ^ C(QM
[1]) ^ C(G)^ C(QM [2]) ) C(QM [dbl])

2.1. C(G)^ C(QM [1])^ C(QM [2]) ) C(QE [dbl]) ? C(QM [dbl])

2.1.1. C(IQM [1]) ^ C(IQM [2]) ) 9 q1; q2 : Init
[1]

M ^ Init
[2]

M

Proof: Follows easily from Proposition 1 and the de�nitions.

2.1.2. C(QM [1]) ^ C(QM [2]) ) 9 q1; q2 : Init
[1]

M ^ Init
[2]

M

Proof: 2.1.1 and Proposition 2 (since any predicate is a safety prop-

erty).

2.1.3. Q.E.D.

Proof: 2.1.2, the de�nition of G, and Proposition 5 (since disjoint-

ness is a safety property).

2.2. C(QE [dbl]) ^ C(G)^ C(QM [1]) ^ C(QM [2]) ) C(QM [dbl])

Proof: We use Propositions 2 and 1 to remove the quanti�ers and

closures from the formula. The resulting formula is proved when proving

the safety part of step 3.

2.3. Q.E.D.

Proof: 2.1, 2.2, and Proposition 4.

3. QE [dbl] ^G ^ QM [1] ^ QM [2] ) QM [dbl]

Proof: A direct calculation shows that the left-hand side of the implica-

tion implies CDQ , the complete-system speci�cation of the double queue.

We already observed in Section 3.2 that CDQ implements CQ [dbl], which

equals QE [dbl] ^ QM [dbl].

4. Q.E.D.

Proof: 1{3 and the Composition Theorem, substituting

M1  G M2  QM [1] M3  QM [2] M  QM [dbl]

E1  true E2  QE [1] E3  QE [2] E  QE [dbl]

Figure 10: Proof sketch of (14).
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practical proof rules for handling fairness and hiding. Collette [8] adapted

this work to Unity. Abadi and Plotkin [4] used a propositional logic with

agents, and considered only safety properties.

Most previous papers were concerned only with composition of assump-

tion/guarantee speci�cations, and lacked an analog of our Decomposition

Theorem. An exception is the work of Berthet and Cerny [7], who used

decomposition in proving safety properties for �nite-state automata.

So far, we have applied our Composition Theorem only to toy examples.

Formal reasoning about systems is still rare, and it generally occurs on a

case-by-case basis. When the speci�cation of a component is used only to

verify a speci�c system, there is no need for a general assumption/guarantee

speci�cation. For most practical applications, decomposition su�ces. When

decomposition does not su�ce, the Composition Theorem makes reasoning

about open systems almost as easy as reasoning about complete ones.

We have used our Decomposition Theorem with no di�culty on a few

toy examples. However, we believe that its biggest payo� will be for sys-

tems that are too complex to verify easily by hand. The theorem makes

it possible for decision procedures to do most of the work in verifying a

system, even when these procedures cannot be applied to the whole system

because its state space is very large or unbounded. This approach is cur-

rently being pursued in one substantial example: the mechanical veri�cation

of a multiplier circuit using a combination of TLA reasoning and mechanical

veri�cation with COSPAN [11]. Because it eliminates reasoning about the

complete low-level system, the Decomposition Theorem is the key to this

division of labor.
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A Appendix

We now prove our propositions and theorems. Section A.1 introduces some

de�nitions and notation required for the proofs, and explains our structured

proof notation. The proofs are in Section A.2.

A.1 De�nitions

A.1.1 Additional Semantic Notions

As before, � denotes concatenation of sequences, and angle brackets h i are

used to form sequences. We write �jn for the �nite behavior consisting of

the �rst n states of a behavior �. In particular, �j0 is the empty sequence

h i, which satis�es every formula. We write �n for the nth state of behavior

�, so � equals h�1; �2; : : : i. When � is �nite, we write last(�) for its last

state, and j�j for its length.

We let [[e]] denote the meaning of an expression e. When e is a state

function, [[e]] is a mapping from states to values; in the special case when e

is a state predicate, [[e]] is a mapping from states to truth values. When e

is an action, [[e]] is a mapping from pairs of states to truth values. When

e is a temporal formula, [[e]] is a mapping from behaviors to truth values.

We extended this mapping to �nite behaviors by letting [[e]](�) = true i�

[[e]](�) = true for some � that extends �. In all cases, we let u j= e mean

[[e]](u) = true. If F is a temporal formula and � a behavior, then

� j= C(F ) i� �jn j= F for all n. Hence, [[C(F )]](�) = [[F ]](�) for any �nite

behavior �.

If s and t are states and x is a tuple of variables, we write s =x t when

s and t are identical except possibly for the value they assign to the tuple

x. In other words, s =x t i� [[y]](s) = [[y]](t) for every variable y not in the

tuple x. We extend this notion to behaviors, and write � =x � i� �n =x �n
for all n > 0.

The stutter-free version of a behavior is the behavior obtained by re-

moving from it all �nite repetitions of states; thus, the stutter-free ver-

sion of � � hs; si � � equals the stutter-free version of � � hsi � � . Two

behaviors are stuttering equivalent i� they have the same stutter-free ver-

sion. Every TLA formula F is invariant under stuttering, in the sense that

[[F ]](�) = [[F ]](�) for any two stuttering-equivalent behaviors � and � . More

generally, [[F ]](�) = [[F ]](�) if there is a behavior b� stuttering equivalent to

� such that [[y]](b�n) = [[y]](�n) for all n > 0 and all variables y occurring free

in F .
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We write � 'x � when b� =x b� for some b� and b� stuttering equivalent

to � and � , respectively. If F is a TLA formula and � a behavior, we

let [[999999x : F ]](�) = true i� there exists a behavior � such that � 'x �

and [[F ]](�) = true. Equivalently, since F is invariant under stuttering,

[[999999x : F ]](�) = true i� there exist behaviors b� and b� such that b� is stuttering

equivalent to �, b� =x b� , and [[F ]](b�) = true.

An operator H on formulas is superdiagonal i� j= A ) H(A) for all

A in its domain. For example, C is superdiagonal. As usual, an operator

H is monotonic i� j= A ) B implies j= H(A) ) H(B) for all A and B.

Antimonotonicity is de�ned similarly, with the second implication reversed.

A.1.2 Proof Notation

Reliable reasoning about speci�cations depends on the correctness of the

underlying logical proofs. Even a minor error, such as the omission of a

hypothesis in a proposition, could allow one to \prove" the correctness of

an incorrect implementation. To avoid such errors, we provide detailed,

hierarchically structured proofs.

In our proof notation, the theorem to be proved is statement h0i1. The

proof of statement hiij is either an ordinary paragraph-style proof or the

sequence of statements hi+1i1, hi+1i2, : : : and their proofs. (The absence

of a proof means that the statement follows easily from de�nitions, previous

statements, and assumptions.) Within a proof, hkil denotes the most recent

statement with that number. A statement has the form

Assume: Assump Prove: Goal

which is abbreviated to Goal if there is no assumption. The assertion Q.E.D.

in statement number hi+1ik of the proof of statement hiij denotes the goal

of statement hiij. The statement

Case: Assump

is an abbreviation for

Assume: Assump Prove: Q.E.D.

Within the proof of statement hiij, assumption hii denotes that statement's

assumption, and hii:k denotes the assumption's kth item.

We recommend that proofs be read hierarchically, from the top level

down. To read the proof of a long level-k step: (i) read the level-(k+1) state-

ments that comprise its proof, together with the proof of the �nal Q.E.D.

step (which is usually a short paragraph), and (ii) read the proof of each

level-(k+1) step, in any desired order.
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A.2 Proofs

Results are organized in groups that roughly correspond to their subject

and to the position of the corresponding discussion in the text.

Our proofs employ many lemmas. We omit the proofs of some of the

simpler ones. We also omit the proof of Proposition 1, which is given in [2].

A.2.1 Properties of �. and +�.

The proofs of most of these properties are straightforward and are omitted.

Some of the basic arguments about �. can be found in [4].

Lemma 1 If P , Q, and R are safety properties, then

1. P �. Q and P +�. Q are safety properties.

2. j= P ) (Q �. R) if and only if j= P ^Q) R.

Lemma 2 For any properties P and Q,

1. j= (P �. Q) = (C(P ) �. C(Q))^ (P ) Q)

2. j= (P +�. Q) = (C(P ) +�. C(Q))^ (P ) Q)

Lemma 3 For any properties P and Q,

1. j= P ^ (P �. Q)) Q

2. j= P ^ (P +�. Q)) Q

Lemma 4 If P and Q are safety properties, then

j= (P �. Q) ^ (Q �. P ) ) ((P _Q) �. (P ^Q))

Lemma 5 If Pi and Qi are safety properties, for i = 1; : : : ; n, then

j=
n̂

i=1

(Pi
+�. Qi) ) ((

n̂

i=1

Pi)
+�. (

n̂

i=1

Qi))

Lemma 6 If P is a safety property and Q is any property, then

j= (P +�. Q) = ((Q �. P ) �. Q)

Lemma 7

Assume: 1. P , Q, and R are safety properties.

2. j= Q ^ R) P

Prove: j= (P +�. Q)) (R +�. Q)

h1i1. j= (Q �. R)) (Q �. P )

37



h2i1. j= Q ^ (Q �. R)) R

Proof: Lemma 3(1).

h2i2. j= Q ^ (Q �. R)) (Q ^R)

Proof: h2i1 and propositional logic.

h2i3. j= Q ^ (Q �. R)) P

Proof: h2i2 and assumption h0i:2.

h2i4. Q.E.D.

Proof: h2i3, assumption h0i:1, and Lemma 1(2).

h1i2. j= (P +�. Q)^ (Q �. P )) Q

Proof: Assumption h0i:1, Lemma 6, and Lemma 3(1).

h1i3. j= (P +�. Q)^ (Q �. R)) Q

Proof: h1i2 and h1i1.

h1i4. j= (P +�. Q)) ((Q �. R) �. Q)

Proof: h1i3, assumption h0i:1, and Lemma 1.

h1i5. Q.E.D.

Proof: h1i4, assumption h0i:1, and Lemma 6.

A.2.2 Closure and Existential Quanti�cation

These results are useful for reasoning about the closure of a quanti�ed for-

mula. This reasoning can be di�cult because C and 999999 do not commute.

Lemma 8 For any property M and tuple of variables x,

j= C(999999 x : C(M)) = C(999999 x :M)

h1i1. j= C(999999x :M)) C(999999x : C(M))

Proof: C is superdiagonal and both C and 999999x are monotonic.

h1i2. j= C(999999x : C(M))) C(999999x :M)

h2i1. j=M ) 999999 x :M

Proof: 999999 is superdiagonal.

h2i2. j= C(M)) C(999999x :M)

Proof: h2i1 and the monotonicity of C.

h2i3. j= (999999x : C(M))) C(999999x :M)

Proof: h2i2, since x does not occur free in C(999999x :M).

h2i4. Q.E.D.

Proof:h2i3 and the monotonicity and idempotence of C.

h1i3. Q.E.D.
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Lemma 9

Assume: xi is a tuple of variables, and no variable in xi occurs free in Mj,

for all i; j 2 f1; : : : ; ng with i 6= j.

Prove: j=
V
i C(999999xi :Mi)) C(999999x1; : : : ; xn :

V
i C(Mi))

The proof is by induction on n, setting apart the cases for n = 1 and n = 2.

h1i1. Case: n = 1

Proof: Immediate from Lemma 8.

h1i2. Case: n=2

Let: A
�
= C(999999x1; x2 : C(M1)^ C(M2))

h2i1. j= C(M1) ^ C(M2)) A

Proof: Predicate logic, since C is superdiagonal.

h2i2. j= C(M1)) (C(M2) �. A)

Proof: h2i1 and Lemma 1(2).

h2i3. j=M1 ) (C(M2) �. A)

Proof: h2i2, since C is superdiagonal.

h2i4. j= (999999x1 :M1)) (C(M2) �. A)

Proof: h2i3 and the hypothesis that no variable of x1 occurs free in

M2.

h2i5. j= C(999999x1 :M1)) (C(M2) �. A)

Proof: h2i4 and the monotonicity and idempotence of C, since A is

closed by de�nition and C(M2) �. A is closed by Lemma 1(1).

h2i6. j= C(M2)) (C(999999x1 :M1) �. A)

Proof: h2i5 and two applications of Lemma 1(2)

h2i7. j=M2 ) (C(999999x1 :M1) �. A)

Proof: h2i6, since C is superdiagonal.

h2i8. j= (999999x2 :M2)) (C(999999x1 :M1) �. A)

Proof: h2i7 and predicate logic.

h2i9. j= C(999999x2 :M2)) (C(999999x1 :M1) �. A)

Proof: h2i8, Lemma 1(1), and the monotonicity and idempotence of

C.

h2i10. Q.E.D.

Proof: h2i9 and Lemma 1(2).

h1i3. Case: n > 2

Assume: j=
Vn�1
i=1 C(999999xi :Mi)) C(999999x1 : : : xn�1 :

Vn�1
i=1 C(Mi))

Prove: j=
Vn
i=1 C(999999xi :Mi)) C(999999x1 : : : xn :

Vn
i=1 C(Mi))

Proof:
Vn
i=1 C(999999xi :Mi)

) C(999999x1 : : :xn�1 :
Vn�1
i=1 C(Mi))^ C(999999xn :Mn)

by assumption h1i
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= C(999999x1 : : :xn�1 : C(
Vn�1
i=1 C(Mi)))^ C(999999xn :Mn)

a conjunction of safety properties is a safety property

) C(999999x1 : : :xn : C(
Vn�1
i=1 C(Mi)) ^ C(Mn))

by h1i2

= C(999999x1 : : :xn :
Vn
i=1 C(Mi))

a conjunction of safety properties is a safety property

h1i4. Q.E.D.

Proposition 2

Assume: 1. xi is a tuple of variables, and no variable in xi occurs free in

M or Mj , for all i; j 2 f1; : : : ; ng with i 6= j

2. j=
Vn
i=1 C(Mi)) 999999 x : C(M)

Prove: j=
Vn
i=1 C(999999xi :Mi)) C(999999x :M)

Proof:
Vn
i=1 C(999999xi :Mi)

) C(999999x1 : : :xn :
Vn
i=1 C(Mi))

by Lemma 9 and assumption h0i:1

) C(999999x1 : : :xn : 999999x : C(M))

by assumption h0i:2 and the monotonicity of 999999 and C

= C(999999x : C(M))

by assumption h0i:1

= C(999999x :M)

by Lemma 8.

A.2.3 Properties of +

Lemma 10 For any state function f , if P is a safety property, then P+f is

a safety property.

Proof: By the de�nition of safety properties, it su�ces to:

Assume: 1. P a safety property.

2. 8n : �jn j= P+f
Prove: � j= P+f
h1i1. Case: 8n : �jn j= P

Proof: Assumption h0i:1.

h1i2. Case: 999999n : :(�jn j= P )

h2i1. Choose the largest m such that �jm j= P .

Proof: m exists since �j0 j= P is true for any � and P .

h2i2. 8n > m : [[f ]](�n) = [[f ]](�m+1)

Proof: h2i1, assumption h0i:2, and the de�nition of P+f .

h2i3. Q.E.D.

40



Proof: h2i1, h2i2, and the de�nition of P+f .

h1i3. Q.E.D.

Lemma 11

Assume: 1. P and Q are safety properties.

2. the tuple x includes all the free variables of Q.

Prove: j= (P+x �. Q) = (P +�. Q)

h1i1. j= (P+x �. Q) ) (P +�. Q)

By assumption h0i:1, Lemma 1(1), and the de�nition of +�., it su�ces to:

Assume: 1. For all n, �jn j= (P+x �. Q)

2. �jn�1 j= P

Prove: �jn j= Q

h2i1. �jn j= P+x
Proof: By assumption h1i:2 and the de�nition of P+x.

h2i2. Q.E.D.

Proof: h2i1 and assumption h1i:1.

h1i2. j= (P +�. Q) ) (P+x �. Q)

By assumption h0i:1, Lemmas 10 and 1(1), and the de�nition of �., it

su�ces to:

Assume: 1. For all n, �jn j= (P +�. Q)

2. �jn j= P+x
Prove: �jn j= Q

h2i1. Choose m � n such that

1. �jm j= P

2. 8p :m < p � n) [[x]](�p) = [[x]](�m+1)

Proof: Assumption h1i:2.

h2i2. �jm+1 j= Q

Proof: h2i1.1 and assumption h1i:1.

h2i3. Q.E.D.

Proof: h2i2, h2i1.2, and assumption h0i:2, since Q is invariant under

stuttering.

h1i3. Q.E.D.

Lemma 12

Assume: 1. P , Q, and R are safety properties.

2. j= R+f ^ P ) Q

Prove: j= (R +�. P )) (R +�. Q)

h1i1. j= R +�. R+f
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By assumption h0i:1 and Lemmas 10 and 1, it su�ces to:

Assume: �jn j= R

Prove: �jn+1 j= R+f

h2i1. �jn+1 � h�n+1; �n+1; : : :i j= R+f

Proof: The de�nition of R+f .

h2i2. Q.E.D.

h1i2. Q.E.D.

Proof: (R +�. P ) ) (R +�. P ) ^ (R +�. R+f)

by h1i1

) (R
+
�. (P ^ R+f))

by assumption h0i:1 and Lemmas 5 and 10

) (R
+
�. Q)

by assumption h0i:2 and monotonicity of +�. in

its second argument.

Lemma 13

Assume: No variable of the tuple x occurs free in v.

Prove: j= (999999x : P+v) = (999999x : P )+v

h1i1. j= (999999x : P+v)) (999999x : P )+v
Assume: � j= (999999x : P+v)

Prove: � j= (999999x : P )+v
h2i1. Choose b� such that b� 'x � and b� j= P+v .

Proof: Assumption h1i and the de�nition of 999999.

h2i2. Case: b� j= P

h3i1. � j= (999999x : P )

Proof: h2i1 and case assumption h2i.

h3i2. Q.E.D.

Proof: h3i1 and the de�nition of (: : :)+v .

h2i3. Case: There exists b� and b� such that b� = b� � b� , b� j= P , andb� j= 2 [false]v.

h3i1. Choose � and � such that � = � � � , � 'x b�, and � 'x b� .
Proof: h2i1 and case assumption h2i.

h3i2. � j= 999999x : P

Proof: h3i1 (which asserts � 'x b�) and case assumption h2i (which

asserts b� j= P ).

h3i3. � j= 2 [false]v
Proof: h3i1 (which asserts � 'x b�), case assumption h2i (which

asserts b� j= 2 [false]v), and assumption h0i.
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h3i4. Q.E.D.

Proof: h3i1 (which asserts � = � � �), h3i2, h3i3, and the de�nition

of (: : :)+v.

h2i4. Q.E.D.

Proof: h2i1, h2i2, h2i3, and the de�nition of (: : :)+v.

h1i2. j= (999999x : P )+v ) (999999x : P+v)

Assume: � j= (999999x : P )+v
Prove: � j= (999999x : P+v)

h2i1. Case: � j= (999999x : P )

Proof: Immediate, since j= P ) P+v and 999999 is monotonic.

h2i2. Case: There exist � and � such that � = � � � , � j= 999999x : P , and

� j= 2 [false]v.

h3i1. Choose b� such that b� 'x � and � j= P .

Proof: Case assumption h2i and the de�nition of 999999.

h3i2. b� � � j= P+v
Proof: h3i1, case assumption h2i (which asserts � j= 2 [false]v), and

the de�nition of (: : :)+v .

h3i3. Q.E.D.

Proof: h3i1, h3i2, and case assumption h2i, which imply b��� 'x �.
h2i3. Q.E.D.

Proof: h2i1, h2i2, and the de�nition of (: : :)+v .

h1i3. Q.E.D.

Lemma 14 If s is a variable that does not occur in Init, N , w, or v, and

dInit �
= (Init ^ (s = 0)) _ (:Init ^ (s = 1))

cN �
= _ (s = 0) ^ _ (s0 = 0)^ (N _ (w0 = w))

_ (s0 = 1)^ :(N _ (w0 = w))

_ (s = 1) ^ (s0 = 1)^ (v0 = v)

then j= (Init ^2[N ]w)+v = 999999s : dInit ^ 2[cN ]hw; v; si.

h1i1. j= (Init ^ 2[N ]w)+v ) 999999s : dInit ^2[cN ]hw;v; si
Assume: � j= (Init ^2[N ]w)+v
Prove: � j= 999999s : dInit ^2[cN ]hw;v; si
Let: b� be the behavior such that b� =s � and, for all n > 0:

[[s]](b�n) �
= if �jn j= (Init ^2[N ]w) then 0 else 1

h2i1. b� j= dInit ^ 2[cN ]hw; v; si

h3i1. b� j= dInit
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Proof: The de�nitions of b� and dInit, assumption h1i, and the hy-

pothesis that s does not occur in Init .

h3i2. b� j= 2[cN ]hw;v; si
h4i1. Case: � j= Init ^ 2[N ]w
h5i1. b� j= 2[(s = 0) ^ (s0 = 0)^ (N _ (w0 = w))]hw;v; si
Proof: The de�nition of b�, case assumption h4i, and the hy-

pothesis that s does not occur in N or w.

h5i2. Q.E.D.

Proof: h5i1 and the de�nition of cN .

h4i2. Case: � 6j= Init

h5i1. � j= 2 [false]v
Proof: Case assumption h5i, assumption h1i, and the de�nition

of (: : :)+v.

h5i2. b� j= 2 (s = 1) ^2 [false]v.

Proof: h5i1 and the de�nition of b�.
h5i3. Q.E.D.

Proof: h5i2 and the de�nition of cN .

h4i3. Case: � j= Init and � 6j= Init ^2[N ]w.

h5i1. Choose � and � with j�j > 0 such that

1. � = � � � ,

2. � j= Init ^ 2[N ]w
3. � � h�1i 6j= 2[N ]w
4. � j= 2 [false]v

Proof: Case assumption h4i, assumption h1i, and the de�nition

of (: : :)+v.

h5i2. Choose b� and b� such that b� = b� � b� , b� =s �, and b� =s � .

Proof: The de�nition of b� and h5i1.1.

h5i3. b� j= 2[(s = 0) ^ (s0 = 0) ^ (N _ (w0 = w))]hw;v; si
Proof: The de�nition of b�, h5i1.2, h5i2, and the hypothesis that
s does not occur in N or w.

h5i4. hlast(b�); b�1i j= (s = 0)^ (s0 = 1)^ :N ^ (w0 6= w)

Proof: The de�nition of b�, h5i1.3, h5i2, and the hypothesis that
s does not occur in N or w.

h5i5. b� j= 2 (s = 1)^ 2 [false]v
Proof: The de�nition of b�,, h5i1.4, h5i2, and the hypothesis

that s does not occur in v.

h5i6. Q.E.D.

Proof: h5i2, h5i3, h5i4, and h5i5, and the de�nition of cN .
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h4i4. Q.E.D.

Proof: h4i1, h4i2, h4i3, assumption h1i, and the de�nition of

(: : :)+v.

h3i3. Q.E.D.

h2i2. Q.E.D.

Proof: The de�nition of b�, h2i1, and the de�nition of 999999.

h1i2. j= 999999s : dInit ^2[cN ]hw;v; si ) (Init ^2[N ]w)+v

Assume: � j= 999999s : dInit ^2[cN ]hw;v; si
Prove: � j= (Init ^2[N ]w)+v
h2i1. Choose b� such that b� 's � and b� j= dInit ^2[cN ]hw;v; si.

Proof: Assumption h1i and the de�nition of 999999.

h2i2. b� j= (Init ^2[N ]w)+v
h3i1. Case: b� j= 2 (s = 0)

h4i1. b� j= (Init ^2[N ]w)

Proof: h2i1, case assumption h3i, and the de�nitions of dInit andcN .

h4i2. Q.E.D.

Proof: h4i1, since the operator (: : :)+v is superdiagonal.

h3i2. Case: b� j= 2 (s = 1)

h4i1. b� j= 2 [false]v
Proof: h2i1, the de�nition of cN , and case assumption h3i.

h4i2. Q.E.D.

Proof: h4i1 and the de�nition of (: : :)+v.

h3i3. Case: b� 6j= 2 (s = 0) and b� 6j= 2 (s = 1)

h4i1. Choose b� and b� with jb�j > 0 such that

1. b� = b� � b�
2. b� j= 2 (s = 0)

3. b� j= 2 (s = 1),

Proof: Case assumption h3i, h2i1, and the de�nitions of dInit andcN .

h4i2. b� j= (Init ^2[N ]w)

Proof: h2i1, h4i1.2, and the de�nitions of dInit and cN .

h4i3. b� j= 2 [false]v
Proof: h2i1, h4i1.3, and the de�nition of cN .

h4i4. Q.E.D.

Proof: h4i1.1, h4i2, h4i3, h3i, and the de�nition of (: : :)+v.

h3i4. Q.E.D.

h2i3. Q.E.D.
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Proof: h2i1, h2i2, and the hypothesis that s does not occur in Init ,

N , w, or v.

h1i3. Q.E.D.

Proposition 3 If x is a tuple of variables none of which occurs in v, and

s is a variable that does not occur in Init, N , w, v, or x, and

dInit �
= (Init ^ (s = 0)) _ (:Init ^ (s = 1))

cN �
= _ (s = 0) ^ _ (s0 = 0)^ (N _ (w0 = w))

_ (s0 = 1)^ :(N _ (w0 = w))

_ (s = 1) ^ (s0 = 1)^ (v0 = v)

then j= (999999 x : Init ^2[N ]w)+v = 999999 x; s : dInit ^ 2[cN ]hw;v; si.

Proof: Follows immediately from Lemmas 13 and 14.

A.2.4 Properties of ?

Lemma 15

1. For any properties P and Q, j= P ? Q = C(P ) ? C(Q).

2. If P and Q are safety properties, then j= P ? Q = (P ^Q) +�. (P _Q).

Lemma 16 For any properties P and Q,

j= (P +�. Q) = (P �. Q) ^ (P ? Q)

h1i1. Case: P and Q safety properties

h2i1. j= (P +�. Q)) (P �. Q) ^ (P ? Q)

h3i1. j= (P
+�. Q)) (P �. Q)

Proof: Obvious from the de�nitions of �. and +�..

h3i2. j= (P +�. Q)) (P ? Q)

Proof: Lemma 15(2), since +�. is monotonic in its second argument

and antimonotonic in its �rst.

h3i3. Q.E.D.

h2i2. j= (P �. Q) ^ (P ? Q) ) (P +�. Q)

h3i1. j= (P �. Q)^ (P ? Q) ^ (Q �. P ) ) Q

Proof:

(P ? Q) ^ (P �. Q)^ (Q �. P )

= (((P _Q) �. (P ^ Q)) �. (P _Q))^ (P �. Q) ^ (Q �. P )

case assumption h1i, Lemma 15(2), and Lemma 6

) (((P _Q) �. (P ^ Q)) �. (P _Q))^ ((P _Q) �. (P ^ Q))

by Lemma 4
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) (P _Q) ^ ((P _Q) �. (P ^Q))

by Lemma 3(1)

) Q

by Lemma 3(1).

h3i2. j= (P �. Q)^ (P ? Q) ) ((Q �. P ) �. Q)

Proof: h3i1 and Lemma 1(2).

h3i3. Q.E.D.

Proof: h3i2, case assumption h1i, and Lemma 6.

h1i2. Q.E.D.

Proof: P +�. Q = (P ) Q) ^ (C(P ) +�. C(Q))

by Lemma 2(2)

= (P ) Q) ^ (C(P ) �. C(Q))^ (C(P ) ? C(Q))

by h1i1

= (P ) Q) ^ (C(P ) �. C(Q))^ (P ? Q)

by Lemma 15(1)

= (P �. Q) ^ (P ? Q)

by Lemma 2(1).

Proposition 4

Assume: 1. P , Q, and R are safety properties.

2. j= P ^Q) R

3. j= Q) P?R

4. the tuple x contains all the free variables of R.

Prove: j= P+x ^ Q) R

h1i1. j= Q) (P �. R)

Proof: Assumptions h0i:1 and h0i:2, and Lemma 1(2).

h1i2. j= Q) (P +�. R)

Proof: h1i1, assumption h0i:3, and Lemma 16.

h1i3. j= Q) (P+x �. R)

Proof: h1i2, assumptions h0i:1 and h0i:4, and Lemma 11.

h1i4. Q.E.D.

Proof: h1i3 and Lemma 1(2).

Lemma 17

Let: E
�
= InitE ^ 2 [NE]hx; ei

M
�
= InitM ^2 [NM ]hy;mi

Prove: j= ((999999 x : InitE) _ (999999 y : InitM)) ^Disjoint(e;m))

C(999999 x : E) ? C(999999 y :M)

Proof: By de�nition of ?, it su�ces to prove the following, for all n � 0:

47



Assume: 1. � j= ((9 x : InitE) _ (9 y : InitM ))

2. � j= Disjoint(e;m)

3. �jn j= C(999999x : E)^ C(999999y :M)

Prove: �jn+1 j= C(999999x : E)_ C(999999 y :M)

h1i1. Case: n = 0

h2i1. Case: � j= (9 x : InitE)

h3i1. Choose a state s such that s =x �1 and s j= InitE .

Proof: Case assumption h2i.

h3i2. hs; s; s; : : :i j= E

Proof: h3i1 and the de�nition of E.

h3i3. h�1; s; s; s; : : :i j= 999999x : E

Proof: h3i1, h3i2, and the de�nition of 999999.

h3i4. �j1 j= 999999x : E

Proof: h3i3.

h3i5. Q.E.D.

h2i2. Case: � j= (9 x : InitM)

Proof: The proof is the same as the proof of h2i1, with M substituted

for E and y substituted for x.

h2i3. Q.E.D.

Proof: h2i1, h2i2, and assumption h0i:1.

h1i2. Case: n > 0

h2i1. ([[e]](�n) = [[e]](�n+1)) _ ([[m]](�n) = [[m]](�n+1))

Proof: Assumption h0i:2.

h2i2. Case: [[e]](�n) = [[e]](�n+1)

h3i1. Choose � such that:

1. � 'x �jn
2. � j= E

Proof: Assumption h0i:3, since � j= C(P ) i� � j= P , for any property

P and �nite behavior �.

Let: t be the state such that t =x �n+1 and [[x]](t) = [[x]](last(�)).

h3i2. � � hti j= E

Proof: h3i1.2, case assumption h2i, and the de�nitions of t and E.

h3i3. �jn+1 'x � � hti

Proof: h3i1.1 and the de�nition of t.

h3i4. �jn+1 j= 999999x : E

Proof: h3i2 and h3i3.

h3i5. Q.E.D.

Proof: h3i4.

h2i3. Case: [[m]](�n) = [[m]](�n+1)
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Proof: The proof is the same as the proof of h2i2, with m, M , and y

substituted for e, E, and x, respectively.

h2i4. Q.E.D.

Proof: h2i1, h2i2, and h2i3.

h1i3. Q.E.D.

Proposition 5

Assume: 1. j= C(E) = InitE ^ 2 [NE]hx; ei
2. j= C(M) = InitM ^2 [NM ]hy;mi

Prove: j= ((999999 x : InitE) _ (999999 y : InitM)) ^Disjoint(e;m))

C(999999 x : E) ? C(999999 y :M)

Proof: Follows from Lemma 17, with C(E) substituted for E and C(M)

substituted for M , and Lemma 8.

A.2.5 Composition as Conjunction

Proposition 6 Let m1; : : : ; mn; x1; : : : ; xn be tuples of variables, and let

m
�
= hm1; : : : ; mni x

�
= hx1; : : : ; xni

bxi �
= hx1; : : : ; xi�1; xi+1; : : : ; xni

Mi
�
= 999999 xi : Init i ^ 2[Ni]hmi; xii ^ Li

Assume: For all i; j with i 6= j:

1. no variables of xj occurs free in xi or Mi.

2. m includes all free variables of Mi.

3. j= Ni ) (m0
j = mj)

Prove: j=
Vn
i=1Mi =

999999 x :
Vn
i=1 Init i ^ 2[

Wn
i=1Ni ^ (bx0i = bxi)]hm;xi ^

Vn
i=1Li

Proof: The hypotheses remain true and the conclusion is unchanged if we

remove from mj any variable that appears in xj . (Assumption 2 remains

true because, by assumption 1, the variable removed cannot occur free in

Mi.) Therefore, without loss of generality, we can strengthen assumption 1

to:

Assume: 1(a). The variables in xj do not occur free in Mi, and are distinct

from the variables in xi and mj .

The proof is by induction on n, with the cases for n = 1 and n = 2 proved

separately.

h1i1. Case: n = 1

Proof: This case follows immediately from the de�nition of Mi.

h1i2. Case: n = 2
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Let: NH
�
=

"
_ N1 ^ (x

0
2 = x2)

_ N2 ^ (x
0
1 = x1)

#
hm;xi

NU
�
=

2
64_ N1 ^ (x

0
2 = x2)

_ N2 ^ (x
0
1 = x1)

_ N1 ^N2

3
75
hm;xi

H
�
= 999999x1; x2 : Init1 ^ Init2 ^2NH ^ L1 ^ L2

U
�
= Init1 ^ Init2 ^2NU ^ L1 ^ L2

Prove: j=M1 ^M2 = H

h2i1. j=M1 ^M2 = 999999x1; x2 : U

Let: NV
�
=

"
^ N1 _ (hm1; x1i

0 = hm1; x1i)

^ N2 _ (hm2; x2i
0 = hm2; x2i)

#
hm;xi

V
�
= Init1 ^ Init2 ^2NV ^ L1 ^ L2

h3i1. j= NV = NU

Proof: Assumption h0i:3, which implies

j= N2 ^ (hm1; x1i
0 = hm1; x1i) = N2 ^ (x

0
1 = x1)

j= N1 ^ (hm2; x2i
0 = hm2; x2i) = N1 ^ (x

0
2 = x2)

h3i2. j= V = U

Proof: h3i1 and the de�nitions of V and U .

h3i3. j= [N1]hm1; x1i ^ [N2]hm2; x2i = NV

Proof: The de�nition of m and x.

h3i4. j=M1 ^M2 = 999999x1; x2 : V

Proof: h3i3 and assumption h0i:1(a), since 2 distributes over ^.

h3i5. Q.E.D.

Proof: h3i2 and h3i4.

h2i2. j= H )M1 ^M2

Proof: h2i1, since j= NH ) NU .

h2i3. j=M1 ^M2 ) H

Assume: � j=M1 ^M2

Prove: � j= H

h3i1. Choose � such that � 'hx1; x2i � and � j= U .

Proof: � exists by assumption h2i, h2i1, and the de�nition of 999999.

Let: � be the behavior such that, for all n > 0:

�2n�1
�
= �n

�2n
�
= if [[x1]](�n) = [[x1]](�n+1) or [[x2]](�n) = [[x2]](�n+1)

then �n
else the state such that [[x1]](�2n) = [[x1]](�n+1)

and �2n =x1 �n.
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(� is the same as � except that each step is split in two. A step

that changes both x1 and x2 is split into a step that changes only

x1 followed by one that leaves x1 unchanged. For a step that

leaves x1 or x2 unchanged, a stuttering step is added.)

h3i2. For all n > 0, if [[x1]](�n) 6= [[x1]](�n+1) and [[x2]](�n) 6= [[x2]](�n+1)

then h�n; �n+1i is an N1 ^N2 ^ (m
0 = m) step.

Assume: [[x1]](�n) 6= [[x1]](�n+1) and [[x2]](�n) 6= [[x2]](�n+1).

Prove: h�n; �n+1i is an N1 ^N2 ^ (m
0 = m) step.

h4i1. h�n; �n+1i is an NU step.

Proof: h3i1 (which asserts � j= U) and the de�nition of U .

h4i2. h�n; �n+1i is an N1 ^N2 step.

Proof: Assumption h3i, h4i1, and the de�nition of NU .

h4i3. Q.E.D.

Proof: h4i2 and assumption h0i:3.

h3i3. For all n > 0, h�n; �n+1i is an NH step.

Let: k
�
= (n+ 1) div 2

h4i1. Case: [[x1]](�k) = [[x1]](�k+1) or [[x2]](�k) = [[x2]](�k+1)

(In this case, h�n; �n+1i is a step of � or a stutter.)

h5i1. h�n; �n+1i = h�k; �k+1i or �n = �n+1.

Proof: The de�nition of � and case assumption h4i.

h5i2. [[x1]](�n) = [[x1]](�n+1) or [[x2]](�n) = [[x2]](�n+1).

Proof: h5i1 and case assumption h4i.

h5i3. h�n; �n+1i is an NU step.

Proof: h5i1, h3i1 (which asserts � j= U), and the de�nition of

U .

h5i4. Q.E.D.

Proof: h5i2 and h5i3, since j= NU ^ ((x
0
1 = x1) _ (x

0
2 = x2)))

NH .

h4i2. Case: n = 2k� 1, [[x1]](�k) 6= [[x1]](�k+1), and

[[x2]](�k) 6= [[x2]](�k+1).

(In this case, h�n; �n+1i is a step that changes only x1.)

h5i1. �n = �k, [[x1]](�n+1) = [[x1]](�k+1), and �n+1 =x1 �k
Proof: The de�nition of � and case assumption h4i.

h5i2. h�k; �k+1i is an N1 ^N2 ^ (m
0 = m) step.

Proof: h3i2 and case assumption h4i.

h5i3. [[m]](�n) = [[m]](�k) and [[m]](�n+1) = [[m]](�k+1)

Proof: h5i1 implies [[m]](�n) = [[m]](�k), h5i1 and assumption

h0i:1(a) (which implies that no variable in x1 occurs in m1 or

51



m2) imply [[m]](�n+1) = [[m]](�k), and h5i2 implies [[m]](�k) =

[[m]](�k+1).

h5i4. [[x1]](�n) = [[x1]](�k) and [[x1]](�n+1) = [[x1]](�k+1)

Proof: h5i1.

h5i5. hm; x1i contains all variables free in N1.

Proof: Assumption h0i:2 and the de�nition of M1.

h5i6. h�n; �n+1i is an N1 step

Proof: h5i2, h5i3, h5i4, and h5i5.

h5i7. h�n; �n+1i is an x
0
2 = x2 step.

Proof: h5i1 and h0i:1(a), which implies that x1 and x2 have no

variable in common.

h5i8. Q.E.D.

Proof: h5i6 and h5i7, since j= N1 ^ (x
0
2 = x2)) NH .

h4i3. Case: n = 2k, [[x1]](�k) 6= [[x1]](�k+1), and

[[x2]](�k) 6= [[x2]](�k+1).

(In this case, h�n; �n+1i is a step that leaves x1 un-

changed.)

h5i1. �n+1 = �k+1, [[x1]](�n) = [[x1]](�k+1), and �n =x1 �k.

Proof: The de�nition of � and case assumption h4i.

h5i2. h�k; �k+1i is an N2 step.

Proof: h3i2 and case assumption h4i.

h5i3. [[hm; x2i]](�n) = [[hm; x2i]](�k) and

[[hm; x2i]](�n+1) = [[hm; x2i]](�k+1).

Proof: h5i1 and assumption h0i:1(a), which implies that x1 has

no variables in common with x2 or m.

h5i4. hm; x2i contains all variables free in N2.

Proof: Assumption h0i:2 and the de�nition of M2.

h5i5. h�n; �n+1i is an N2 step

Proof:h5i2, h5i3, and h5i4.

h5i6. h�n; �n+1i is an x
0
1 = x1 step.

Proof: h5i1.

h5i7. Q.E.D.

Proof:h5i5 and h5i6, since j= N2 ^ (x
0
1 = x1)) NH .

h4i4. Q.E.D.

Proof: h4i1, h4i2, and h4i3.

h3i4. � j= Init1 ^ Init2
h4i1. � j= Init1 ^ Init2
Proof: The de�nition of U and h3i1 (which asserts � j= U).

h4i2. �1 = �1
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Proof: The de�nition of �.

h4i3. Q.E.D.

Proof: h4i1 and h4i2, since [[P ]](�) = [[P ]](�1) for any predicate P

and behavior �.

h3i5. � j= L1 ^ L2

h4i1. � j= L1

h5i1. � j= L1

Proof: h3i1 and the de�nition of U .

h5i2. For all n > 0:

1. �2n�1 = �n
2. [[hm; x1i]](�2n) = [[hm; x1i]](�n) or

[[hm; x1i]](�2n) = [[hm; x1i]](�n+1)

Proof: Part 1 follows from the de�nition of �. Part 2 fol-

lows from the de�nition of � and h3i2, which implies [[m]](�n) =

[[m]](�n+1) when the if condition in the de�nition is false.

h5i3. hm; x1i contains all variables occurring free in L1.

Proof: Assumption h0i:2 and the de�nition of M1.

h5i4. � 'hm;x1i �

Proof: h5i2.

h5i5. Q.E.D.

Proof: h5i1, h5i3, and h5i4.

h4i2. � j= L2

h5i1. � j= L2

Proof: h3i1 and the de�nition of U .

h5i2. � 'x1 �

Proof: The de�nition of �.

h5i3. Q.E.D.

Proof: h5i1, h5i2, and assumption h0i:1(a), which implies that

x1 does not occur free in L2.

h4i3. Q.E.D.

h3i6. � j= H

Proof: h3i3, h3i4, and h3i5, and the de�nition of H .

h3i7. � 'hx1; x2i �

Proof: h3i1, which asserts � 'hx1; x2i �, and the de�nition of �,

which implies � 'x1 � .

h3i8. Q.E.D.

Proof: h3i6, h3i7, and the de�nition of H .

h2i4. Q.E.D.
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h1i3. Case: n > 2, and the theorem holds with p substituted for n, for all

p < n.

Let: mm
�
= hm1; : : : ; mn�1i

xx
�
= hx1; : : : ; xn�1icxxi �
= hx1; : : : xi�1; ; xi+1; : : : ; xn�1i

Proof:V
i�nMi = (

V
i�n�1Mi)^Mn

by propositional logic

= ^ 999999xx : ^
V
i�n�1 Init i

^ 2 [
W
i�n�1Ni ^ (cxx0i = cxxi)]hmm;xxi

^
V
n�1 Li

^Mn

by case assumption h1i, with n � 1 substituted for p

= 999999xx; xn : ^
V
Initi

^ 2

2
64_ ^

W
i�n�1Ni ^ (cxx0i = cxxi)

^ (x0n = xn)

_ Nn ^ (bx0n = bxn)

3
75
hmm;xx;mn; xni

^
V
Li

by case assumption h1i, with 2 substituted for p

= 999999x :
Vn
i=1 Init i ^ 2[

Wn
i=1Ni ^ (bx0i = bxi)]hm;xi ^

Vn
i=1 Li

h1i4. Q.E.D.

Proof: h1i1, h1i2, h1i3, and mathematical induction.

A.2.6 Decomposition and Composition

Theorem 1 is an immediate consequence of Theorem 2. The proof of The-

orem 2 assumes Theorem 3, but Theorem 2 is not used in the proof of any

lemma or theorem, so there is no circularity.

Theorem 2

Assume: For i = 1; : : : ; n:

1. j= C(E)^
n̂

j=1

C(Mj) ) Ei

2. a. j= C(Ei)+v ^ C(M
l
i ) ) C(Mi)

b. j= Ei ^M
l
i ) Mi

3. v is a tuple of variables including all the free variables of Mi.

Prove: a. j= C(E)+v ^
n̂

j=1

C(M l
j) )

n̂

j=1

C(Mj)
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b. j= E ^
n̂

j=1

M l
j )

n̂

j=1

Mj

h1i1. For any E, Ei, M
l
i , and Mi satisfying assumptions h0i:1{3, and all

i = 1; : : : ; n: j= (
n̂

j=1

M l
j)) (E

+
�. Mi)

h2i1. For j = 1; : : : ; n: j=M l
j ) (Ej

+
�. Mj)

h3i1. For i = 1; : : : ; n: j= C(M l
i )) (C(Ei)

+�. C(Mi))

Proof: Assumption h0i:2(a), Lemma 1(2), assumption h0i:3, and

Lemma 11.

h3i2. For i = 1; : : : ; n: j=M l
i ) (Ei )Mi)

Proof: Assumption h0i:2(b).

h3i3. Q.E.D.

Proof: h3i1, h3i2, and Lemma 2(2).

h2i2. For i = 1; : : : ; n: j= (
n̂

j=1

(Ej
+�. Mj))) (E +�. Mi)

Proof: The Composition Theorem (Theorem 3), with Mi substituted

for M , where hypothesis 1 of the Composition Theorem follows from

assumption h0i:1, and hypotheses 2(a) and 2(b) are vacuous when Mi

is substituted for M .

h2i3. Q.E.D.

Proof: h2i1, h2i2, and propositional reasoning.

h1i2. Conclusion (a) holds.

h2i1. For i = 1; : : : ; n: j= (
n̂

j=1

C(M l
j))) (C(E) +�. C(Mi))

Proof: h1i1, substituting C(E) for E, C(M l
j) forM

l
j , and C(Mi) forMi.

Since C is idempotent, this instantiation changes only assumption 2(b),

which becomes j= C(Ei) ^ C(M
l
i) ) C(Mi). This assumption follows

from 2(a), since j= P ) P+v , for any P .

h2i2. For i = 1; : : : ; n: j= (
n̂

j=1

C(M l
j))) (C(E)+v �. C(Mi))

Proof: h2i1, assumption h0i:3, and Lemma 11.

h2i3. Q.E.D.

Proof: h2i2 and Lemma 1(2) (conjoining over all i).

h1i3. Conclusion (b) holds.

h2i1. j= E ^ (
n̂

j=1

M l
j))Mi
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Proof: h1i1 and Lemma 2(2).

h2i2. Q.E.D.

Proof: h2i1 (conjoining over all i).

h1i4. Q.E.D.

Lemma 18

Assume: For i = 1; : : : ; n:

0. Mi is a safety property.

1. E and Ei are safety properties.

2. j= (E ^
n̂

j=1

Mj) ) Ei

Prove: j= (
n̂

j=1

(Ej
+�. Mj)) ) (E +�. (

n̂

j=1

Mj))

Proof:
Vn
j=1(Ej

+�. Mj))

) (
Vn
j=1Ej)

+�. (
Vn
j=1Mj)

Lemma 5 and assumptions h0i:0 and h0i:1

) E +�. (
Vn
j=1Mj)

assumption h0i:2 and Lemma 7, substituting E for R,Vn
j=1Ej for P , and

Vn
j=1Mj for Q.

Theorem 3

Assume: For i = 1; : : : ; n:

1. j= C(E)^
n̂

j=1

C(Mj) ) Ei

2. a. j= C(E)+v ^
n̂

j=1

C(Mj) ) C(M)

b. j= E ^
n̂

j=1

Mj ) M

Prove: j=
n̂

j=1

(Ej
+�. Mj) ) (E +�. M)

h1i1. j= (
Vn
j=1(C(Ej)

+�. C(Mj))) ) (C(E) +�. (
Vn
j=1 C(Mj)))

Proof: Assumption h0i:1 and Lemma 18, since j= Ei ) C(Ei) (because

C is superdiagonal).

h1i2. j= (C(E) +�. (
Vn
j=1 C(Mj))) ) (C(E) +�. C(M))

Proof: Assumption h0i:2(a) and Lemma 12.

h1i3. j= (
Vn
j=1(Ej

+�. Mj)) ) (E )M)
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h2i1. j= C(E)^ (
Vn
j=1(C(Ej)

+
�. C(Mj))) )

Vn
j=1 C(Mj)

Proof: h1i1 and Lemma 3(2).

h2i2. j= E ^ (
Vn
j=1(Ej

+�. Mj)) )
Vn
j=1 C(Mj)

Proof: h2i1, since j= E ) C(E) (because C is superdiagonal) and

j= (Ej
+�. Mj)) (C(Ej)

+�. C(Mj)) by Lemma 2.

h2i3. j= E ^ (
Vn
j=1(Ej

+�. Mj)) )
Vn
j=1Ej

Proof: h2i2 and assumption h0i:1, since C is superdiagonal.

h2i4. j= E ^ (
Vn
j=1(Ej

+
�. Mj)) )

Vn
j=1Mj

Proof: h2i3 and Lemma 3(2).

h2i5. j= E ^ (
Vn
j=1(Ej

+�. Mj)) ) M

Proof: h2i4 and assumption h0i:2(b).

h2i6. Q.E.D.

Proof: h2i5.

h1i4. Q.E.D.

Proof: h1i1 and h1i2, which imply

j=
n̂

j=1

(C(Ej)
+�. C(Mj)) ) (C(E) +�. C(M))

h1i3, and Lemma 2(2).
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