
117

Authentication in the Taos

Operating System

Edward Wobber, Mart��n Abadi, Mike Burrows, and

Butler Lampson

December 10, 1993

d i g i t a l
Systems Research Center

130 Lytton Avenue

Palo Alto, California 94301



Systems Research Center

The charter of SRC is to advance both the state of knowledge and the state

of the art in computer systems. From our establishment in 1984, we have

performed basic and applied research to support Digital's business objec-

tives. Our current work includes exploring distributed personal computing

on multiple platforms, networking, programming technology, system mod-

elling and management techniques, and selected applications.

Our strategy is to test the technical and practical value of our ideas by

building hardware and software prototypes and using them as daily tools.

Interesting systems are too complex to be evaluated solely in the abstract;

extended use allows us to investigate their properties in depth. This ex-

perience is useful in the short term in re�ning our designs, and invaluable

in the long term in advancing our knowledge. Most of the major advances

in information systems have come through this strategy, including personal

computing, distributed systems, and the Internet.

We also perform complementary work of a more mathematical 
avor. Some

of it is in established �elds of theoretical computer science, such as the

analysis of algorithms, computational geometry, and logics of programming.

Other work explores new ground motivated by problems that arise in our

systems research.

We have a strong commitment to communicating our results; exposing and

testing our ideas in the research and development communities leads to im-

proved understanding. Our research report series supplements publication

in professional journals and conferences. We seek users for our prototype

systems among those with whom we have common interests, and we encour-

age collaboration with university researchers.

Robert W. Taylor, Director



Authentication in the Taos Operating System

Edward Wobber, Mart��n Abadi, Mike Burrows, and Butler Lampson

December 10, 1993



Publication History

An earlier version of this report appeared in the Proceedings of the Four-

teenth ACM Symposium on Operating System Principles, Asheville, North

Carolina, December 5-8, 1993.

This report is to appear in ACM Transactions on Computer Systems, Vol.

12, No. 1, February 1994. c
1994 Association for Computing Machinery,

Inc. Reprinted by permission.

c
Digital Equipment Corporation 1993

This work may not be copied or reproduced in whole or in part for any com-

mercial purpose. Permission to copy in whole or in part without payment

of fee is granted for nonpro�t educational and research purposes provided

that all such whole or partial copies include the following: a notice that

such copying is by permission of the Systems Research Center of Digital

Equipment Corporation in Palo Alto, California; an acknowledgment of the

authors and individual contributors to the work; and all applicable portions

of the copyright notice. Copying, reproducing, or republishing for any other

purpose shall require a license with payment of fee to the Systems Research

Center. All rights reserved.



Authors' Abstract

We describe a design for security in a distributed system and its implemen-

tation. In our design, applications gain access to security services through a

narrow interface. This interface provides a notion of identity that includes

simple principals, groups, roles, and delegations. A new operating system

component manages principals, credentials, and secure channels. It checks

credentials according to the formal rules of a logic of authentication. Our

implementation is e�cient enough to support a substantial user community.
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1 Introduction

We describe a design for security in a distributed system and a particular

implementation of this design. We present both the external interface and

the major internal interfaces of our implementation. A formal logic [2, 10]

guided our design. We explain the correspondence between implementation

and logic, in particular how an authentication credential represents a formula

and how an authentication is a proof. We discuss our experience and some

performance results; the implementation is e�cient enough to support a

substantial user community.

For our purposes, a distributed system is a collection of nodes connected

by an insecure network; each node is a computer running an operating sys-

tem that is trusted for local security. The setting for our implementation

is a distributed system where each node is a Fire
y shared-memory multi-

processor running the Taos operating system [20]. Taos is completely multi-

threaded, yet also implements a protected address-space model close enough

to that of Unix that it can run most Unix binaries. Remote procedure call is

the primary means of interprocess communication. Although Taos has been

a convenient test vehicle, our only real dependence on it was that we could

adapt it to our needs.

We use the access control model of security [11] extended with compound

principals [6]. In this model there are objects (�les, printers, etc.), requests,

and principals (users, machines, etc.) that utter requests. Each object has a

guard or reference monitor that examines each request and decides whether

or not to grant it. The request must �rst be authenticated to identify the

principal that uttered it, and then authorized only if the principal has the

right to perform the requested operation on the object. The pieces of evi-

dence that identify the uttering principal are called credentials. Compound

principals provide a precise and uniform representation for the sources of

requests in a distributed system, including users, machines, channels, pro-

grams, delegations, roles, and groups.

In each node, a new operating system component called the authentica-

tion agent manages compound principals and their credentials. Applications

access security services through a narrow interface to the local agent. The

agent implements all credential exchanges and validations, communicating

with agents in other nodes when necessary and checking credentials accord-

ing to the formal rules of the logic. The agent uses a distributed certi�cation

database for names, group memberships, and executable images. From the

underlying operating system it needs only a bidirectional secure channel to
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each application, and global names for the channels between the application

and the outside world.

Many systems that o�er distributed security do so entirely at the level

of the application, either to avoid changing the kernel or because most oper-

ating systems do not support a coherent model of user identity throughout

the network. Our basic design can be implemented in the same way, with

the authentication agent linked into each application as a library.

In fact, however, our distributed security is part of the operating system.

This has one major advantage: the notion of identity or principal is built in

at a very low level and is represented consistently everywhere. There is no

distinction between local and remote principals. Minor advantages are that

it is easy to provide the necessary secure channels between the authentication

agent and applications, and easy for a child process to inherit the authority

of its parent. The trusted computing base does not get any bigger, because

the operating system must be trusted anyway.

The next section reviews the logic. Section 3 presents the application

programming interface (API) to Taos security. Section 4, the heart of the

report, describes the implementation in detail. Finally, Section 5 discusses

our experience with the system in practice.

We do not address either denial of service or the kind of non-disclosure

security policies that are based on an information 
ow model. We touch only

brie
y on the problems of compatibility with other security mechanisms,

such as Kerberos [9] and OSF DCE Security [14].

2 Background

In this section we explain our treatment of encryption and time, sketch the

rules of our authentication logic, and give an extended example of its use.

Other papers treat these matters in detail [2, 10].

We use shared key encryption to secure short-term node-to-node chan-

nels. All other encryption is public key [16] and is done only for integrity,

not for secrecy. We write K and K�1 for the public and secret keys of a key

pair. We say that a message encrypted with K�1 is signed by K so that we

need to mention only the public key.

Our authentication system relies on signed statements called certi�cates.

These form the building blocks of credentials, which are proofs of authen-

ticity. We view certi�cates and credentials both as logical formulas and, in

the implementation, as data.
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Time does not appear explicitly in the logic; formally, assumptions and

proofs concern only a given, implicit instant. In our system, on the other

hand, a time interval quali�es each certi�cate. A certi�cate is valid only for

the speci�ed interval. Therefore, the conclusion of a proof is valid only for

the intersection of the intervals of all the certi�cates used in the proof. Since

these certi�cates typically originate at di�erent nodes, it is important that

nodes have loosely synchronized clocks. For synchronization we do not have

a secure time server, but instead rely on the clocks of individual nodes.

However, we can easily tolerate a one-minute skew because certi�cates

are valid for at least a few minutes. The most obvious e�ect of a large skew

is that authentication becomes impossible because the validity interval of

a formula is empty or does not include the current time. If a certi�cate

originates at a node whose clock is much later than real time, or is used at a

node whose clock is much earlier, it is also possible that the certi�cate will

be mistakenly considered valid even though it has expired.

2.1 Some notations and rules

We write A says S to mean that principal A supports the statement S (an

assertion or a request). We write A ) B when A speaks for B, meaning

that if A makes a statement then B makes it too:1

if (A) B) and (A says S)

then (B says S)

We think of A as being stronger than B. The ) relation is a partial order;

that is, it is re
exive, antisymmetric, and transitive. It obeys many of the

same laws as implication, so we use the same symbol for it.

Principals include:

� Simple principals. Users, machines.

� Channels. Network addresses, encryption keys. If S appears on chan-

nel C then C says S. In particular, K says S represents a certi�cate

containing S and signed by K. A channel is the only kind of principal

that can directly make a statement, since a message can arrive only

on a channel.

1Although our logic includes propositional logic, in this report we do not describe any

formal notations or rules for propositional connectives. Instead, we use English keywords,

like \if" and \then", and informal reasoning.
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� Groups. Sets of principals. If A is a member of G then A ) G,

so A says S implies G says S. A group can be thought of as the

disjunction of its members.

� Principals in roles. We write A as R for A in role R (for example,

Bob as Admin for Bob acting as an administrator). A principal can

adopt a role in order to reduce its rights [10, Section 6]. That is,

A) (A as R).

� Conjunctions of principals. We write A ^ B for the conjunction of A

and B. If both A says S and B says S then (A^ B) says S as well.

� Principals quoting principals. We write B j A for B quoting A. If

B says A says S then (B jA) says S.

� Principals acting on behalf of others. We write B for A for B acting

on behalf of A. The principal B for A is stronger than B jA, since

(B for A) says S when B says A says S and in addition B is

authorized to act as A's delegate.

The hando� axiom represents the transfer of authority:

if A says (B ) A)

then (B ) A)

In other words, we believe that B speaks for A when A says so. Therefore,

if A says (B ) A) and B says S then A says S.

Similarly, we have a delegation axiom:

if A says ((B jA)) (B for A))

then ((B jA)) (B for A))

It means that we believe A when it says thatB jA speaks forB for A, that is,

that B can act as A's delegate.2 Therefore, if A says ((B jA)) (B for A))

and B says A says S then (B for A) says S. Comparing the result

(B for A) says S with that of a hando�, A says S, we note that it mentions

B: both delegate and delegator lend some of their authority, and the identity

of the delegate is not forgotten.

2This axiom is not included in [10], but is suggested in [2]; we adopt it for simplicity.
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The operations as, ^, j, and for are monotonic with respect to ): if

B ) B0 and A) A0 then

(B as A) ) (B0 as A0)

(B ^A) ) (B0 ^A0)

(B jA) ) (B0

jA0)

(B for A) ) (B0 for A0)

2.2 Logic and authentication

This section gives a simpli�ed example of how logic can be used to reason

about authenticating compound principals; there is more detail in later sec-

tions. In the example, a machine Vax4 is booted with an operating system

OS. Together, Vax4 and OS form a node WS. A user Bob logs in to WS.

We consider the reasoning necessary to authenticate requests from this login

session to a �le server FS.

In order to establish credentials, Vax4 must possess a secret. For exam-

ple, if (Kvax4, K
�1

vax4) is a public key pair, then K
�1

vax4 is a suitable secret. Let

K�1

vax4 be available only to Vax4's boot �rmware, not to any of the operating

systems it can run. At boot time, K�1

vax4 is used to sign a boot certi�cate

that transfers authority to a newly generated key Kws; in the logic, this

certi�cate reads:

(Kvax4 as OS) says (Kws ) (Kvax4 as OS)) (1)

We call Kws the node key for WS. It speaks not for Kvax4 but for a weaker

principal WS = (Kvax4 as OS), that is, Kvax4 in the role of the boot image.

After booting, WS gets the boot certi�cate and K�1

ws , but does not know

K�1

vax4.

We treat login as a specialized form of delegation. When Bob logs in,

K�1

bob is used to sign a delegation certi�cate that transfers authority to WS:

Kbob says ((Kws jKbob)) (Kws for Kbob)) (2)

Consider now a request from the login session to a �le server FS. There

must �rst exist a channel Cbob over which to issue requests. As observed by

FS, a request appears as a statement RQ on this channel:

Cbob says RQ (3)

To back RQ, WS supplies (1) and (2), and writes a channel certi�cate:

(Kws jKbob) says (Cbob ) (Kws for Kbob)) (4)
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This represents a hando� from the node to the channel.

By applying the delegation axiom to the delegation certi�cate (2), FS

can deduce

(Kws jKbob)) (Kws for Kbob)

so the channel certi�cate (4) implies

(Kws for Kbob) says (Cbob ) (Kws for Kbob)) (5)

Further, FS can deduce

Cbob ) (Kws for Kbob)

by applying the hando� axiom to (5), so the request (3) yields

(Kws for Kbob) says RQ (6)

And FS can deduce

Kws ) (Kvax4 as OS)

by applying the hando� axiom to the boot certi�cate (1), so (6) yields

((Kvax4 as OS) for Kbob) says RQ (7)

by monotonicity.

We still must prove that Kvax4 and Kbob correspond to Vax4 and Bob.

To do this we must trust some certi�cation authority or CA. Trusting a CA

with known key Kca means believing that Kca speaks for any principal; in

particular, Kca ) Vax4 and Kca ) Bob. Thus, FS can use the certi�cates

Kca says (Kvax4 ) Vax4)

Kca says (Kbob ) Bob)

and the hando� axiom to obtain

Kvax4 ) Vax4

Kbob ) Bob

then (7) to conclude

((Vax4 as OS) for Bob) says RQ

by monotonicity. That is, FS knows that Vax4 running OS requests RQ on

behalf of Bob. The access control algorithm given in [10, Section 9] can now

determine whether the request should be granted.

The remainder of the report describes how this authentication logic is

implemented in Taos.
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3 An API for Authentication

The logic is rather complex to be presented directly through a program-

ming interface. Instead, Taos de�nes a simple and consistent set of security

services. They are based on an abstract datatype Prin that represents prin-

cipals, and a subtype Auth that represents principals that processes can

speak for.

Section 3.1 gives the interface for sending and receiving authenticated

messages; that is, it explains how a process that can speak for a principal P

can make another process believe P says S. Section 3.2 gives the interface

for authenticating and authorizing requests. Section 3.3 gives the interface

for managing Auths; that is, it explains how a process can change the set of

principals that it can speak for.

For brevity, we omit exceptions from the signatures of procedures.

3.1 Authenticating messages

We begin with a simpli�ed version of the interface for sending and receiving

authenticated messages, and improve it later in this section:

PROCEDURE Send(dest:Address; p:Auth; m:Msg);

PROCEDURE Receive(): (Prin, Msg);

Send transmits the statement p says m to the process at address dest.

Symmetrically, if Receive returns (p,m), some process that speaks for p

has invoked Send(dest,p,m); in other words, the receiver can believe that

p says m.

The interface has no notion of a principal that a process speaks for

by default. Instead, the Auth argument to Send requires the process to

specify explicitly the principal that is uttering each message. Often a process

has only one Auth, and we could have added a \working authority" to the

process state and a SetWorkingAuth procedure (by analogy with the working

directory), and dropped the Auth argument to Send or made it optional.

This is similar to what Unix does with the e�ective uid. Or, to accommodate

multi-threaded programs, we could have made the working authority part

of the thread state.

This simpli�ed version of the interface is unsatisfactory because it ties

authentication and communication together too closely. To separate them,

we make explicit the relation between a channel c and the principal p that

it speaks for.

7



We assume that secure channels are available. A channel is secure if

every message received on it comes from the same process. We might also

require messages on the channel to be secret, that is, received only by certain

processes; this is a simple extension that we will not discuss further. An

abstract datatype Chan represents secure channels.

To transmit an authenticated message, a process sends it on a secure

channel, the receiver gets the channel c on which the message arrives, and a

new operation GetPrin returns the p that the channel speaks for. In other

words, c names the principal p.

For this to work, a given channel must speak for at most one principal,

so we need a cheap way to make channels. Our method is to take a sin-

gle channel c on which a process can send securely, and then to multiplex

many subchannels onto c, one for each principal that the process speaks for.

Sending and receiving is done on these subchannels.

Our second try at an interface is thus:

PROCEDURE GetChan(dest:Address): Chan;

PROCEDURE GetSubChan(c:Chan; p:Auth): SubChan;

PROCEDURE Send(dest:SubChan; m:Msg);

PROCEDURE Receive(): (SubChan, Msg);

PROCEDURE GetPrin(c:SubChan): Prin;

The sending process �rst calls GetChan to get a secure channel c to the

process at dest and then calls GetSubChan(c, p) to get a subchannel that

speaks for p. The receiver calls GetPrin to recover a Prin.

The actual Taos interface has a further re�nement: a process can utter

many statements, perhaps made by di�erent principals, in a single message.

For example, one call could pass an array of names of �les to delete and a

parallel array of principals that are authorized to do the deletions. To make

this work, we must reveal the addressing mechanism for subchannels: it is

an integer called an authentication identi�er or AID. The sender calls GetAID

to learn the AID for a principal and sends it as an ordinary data value in the

message. The receiver pairs the channel on which the message arrives with

this AID to recover the speaking principal. So the actual Taos interface is:

PROCEDURE GetChan(dest:Address): Chan;

PROCEDURE GetAID(p:Auth): AID;

PROCEDURE Send(dest:Chan; m:Msg);

PROCEDURE Receive(): (Chan, Msg);

PROCEDURE GetPrin(c:Chan; aid:AID): Prin;
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In Taos, the messages exchanged in this way are normally the call and

return messages of remote procedure calls. RPC marshals an Auth parame-

ter p by sending the result of GetAID(p), and unmarshals aid from channel

c as the result of GetPrin(c, aid). It also gets the channel from the RPC

binding, and of course it encapsulates the Send and Receive calls. The

result is that the RPC client can simply use Prins and Auths as arguments

and results, and does not have to call any of the procedures in this interface.

This works for both calls and returns, so mutual authentication is possible.

3.2 Basic authentication and authorization

The receiver of an authenticated message calls GetPrin to �nd the Prin p

that represents the sender of the message. It can then use Authenticate to

turn p into a string name.

PROCEDURE Authenticate(p:Prin): TEXT;

The result of Authenticate can represent a compound principal such as

Bob as admin, or it can be a simple name. Simple names are convenient for

existing applications; Section 4.5 describes the somewhat ad hoc rules Taos

uses to reduce compound principals to simple names.

The purpose of authentication is to tell the authorization service the

source of a request. We therefore introduce another abstract datatype ACL

to represent access control lists, and the authorization operation Check to

determine whether acl grants access to p.

PROCEDURE Check(acl:ACL; p:Prin): BOOL;

Check both hides the details of naming and allows a convenient and e�cient

cache of recent successful authorizations.

Taos also o�ers operations for constructing and examining ACLs, but they

are beyond the scope of this report.

3.3 Managing principals

A Taos process can obtain an Auth in �ve ways:

� by inheritance from a parent process,

� by presenting a login secret,
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� by adopting a role,

� by delegating rights, or

� by claiming delegated rights.

All but the �rst of these produce a new and unique Auth. In particular,

each user session on a machine is represented by a di�erent Auth.

The interface for managing Auths is:

PROCEDURE Self(): Auth;

PROCEDURE Inheritance(): ARRAY OF Auth;

PROCEDURE New(name, password: TEXT): Auth;

PROCEDURE AdoptRole(a:Auth; role:TEXT): Auth;

PROCEDURE Delegate(a:Auth; b:Prin): Auth;

PROCEDURE Claim(b:Auth; delegation:Prin): Auth;

PROCEDURE Discard(a:Auth; all:BOOL);

Self returns a default Auth for the current process. The default is

speci�ed when the process is created. Inheritance returns all the Auths

that the process inherits from its parent.

New is used to generate entirely new credentials. The parameters describe

a user name and a user-speci�c secret su�cient to generate the credentials

described in Section 4.3. The result is an Auth that represents node for name,

where node is the local node. This result re
ects the fact that the user cannot

make a request without involving the machine and the operating system.

AdoptRole weakens an authority by applying a role. If a represents A,

then the result of AdoptRole(a,role) represents A as role.

Roles are used in two ways in Taos. First, a process can restrict its rights

to those necessary to ful�ll a particular function by calling AdoptRole on

one of its existing Auths. Second, a Taos node can give some of its rights

to a trusted process. Taos uses secure loading to determine whether an exe-

cutable image is certi�ed (see Section 4.4). After loading a certi�ed image,

Taos calls AdoptRole to create an Auth weaker than its own, which it hands

o� to the new process (for example, AdoptRole(Self(),"telnet-server")

for a login daemon). This mechanism bears some resemblance to Unix se-

tuid execution. However, in Taos there is a stronger guarantee about the

loaded program, and the program need not receive all the rights of the node.
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B for A

a pb

Delegate(a,pb)

c

X Y
b

pc

Claim(b,pc) d

BA B

A, A says B|A⇒B for A A, A says B|A⇒B for A

Figure 1: An example of delegation

Further, the resulting rights, like those of the node, can be exercised over

the network.

There is a natural role associated with many groups, for example the

role of administrator with the group of administrators. Hence we use group

names as roles, and adopt the general rule that if A is a principal, G a group,

and A) G then (A as G)) G.

The procedures Delegate and Claim are used in tandem to implement

delegation; Figure 1 shows an example. Suppose process X has an Auth a

that represents A, process Y has an Auth b that represents B, and X wants

to give to Y an authority that represents B for A by delegation. First, X

gets from Y a Prin pb that represents B. Then X calls Delegate(a, pb)

to make a new Auth c that represents A but also carries the property that

A says ((BjA) ) (B for A)). Now X sends c to Y , which receives it as

the Prin pc. Finally Y calls Claim(b, pc) to get an Auth d that represents

B jA, and hence B for A by the delegation axiom. Before doing this, Y may

wish to call Authenticate(pc) to �nd out what principal d will represent.

A process can make an Auth a invalid by calling Discard. The e�ect

is that once the receiver caches time out, the process can no longer use a

to speak for a's principal. If all is TRUE, a also becomes invalid in all the

processes that have inherited it; this allows a process to take an authority

away from its children, for example.

If a was the result of Delegate, invalidating it has another e�ect: any

Auth derived from a by Claim will also become invalid within a fairly short

time (at most 30 minutes). The same thing happens if the process that

called Delegate terminates.

The API provides no direct access to the logical operators j and ^ or to

the hando� rule.
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Figure 2: Structure of the authentication agent

4 The Authentication Agent

The authentication agent handles most of the complexity of authenticating

requests from compound principals. It has four parts. The secure channel

manager creates process-to-process secure channels. The authority man-

ager associates Auths with processes and handles authentication requests.

The credentials manager maintains credentials on behalf of local processes

and validates certi�cates authored on other nodes. Finally, the certi�cation

library establishes a trusted mapping between principal names and crypto-

graphic keys, and between groups and their members. Figure 2 shows the

structure of the authentication agent; arrows indicate call dependencies.

Only a few changes were needed to the rest of Taos to support the

authentication agent: implementing authority inheritance in the process

manager; supporting secure loading; and adding Auth parameters to all

security-sensitive kernel calls.

4.1 The secure channel manager

The secure channel manager implements the Chan datatype described in

Section 3.1. It does not implement secure channels itself. Instead, it controls

the construction of node-to-node channels, and then uses them to provide

process-level channels to its clients. Since the purpose of authentication

is to prove that a channel utters a request on behalf of a principal, the
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secure channel manager must be able to attribute channels to processes and

thereby link channels to the principals for which they speak. Our design

does not mandate any one technique for implementing secure channels; such

techniques are well documented [13].

4.1.1 Node-to-node channels

Given two nodes A and B, it is easy to establish a shared-key channel C

between them. We use the following protocol, which is described in more

detail in [10, Section 4]. In brief, A invents a random number Ja and sends

it to B encrypted under the public part of B's key Kb. Similarly, B sends Jb
encrypted under A's key Ka. Note that this is encryption for secrecy rather

than integrity. Now, both A and B can compute a shared key by combining

Ja and Jb via a hash function. A shared key established in this fashion can

be used to form a secure channel C, which speaks for Kb from A's viewpoint

and for Ka from B's viewpoint.

The secure channel manager maintains a cache of keys shared with other

nodes, indexed by node address and used to implement GetChan and Send.

Another cache contains a mapping from shared keys to node keys, and is

used by Receive to get from the shared key that successfully decrypts a

message to a node key. Both of these caches can be 
ushed as necessary. In

fact, both are 
ushed periodically in order to invalidate old keys. The key-

to-node-key mapping is 
ushed half as often as the address-to-key mapping

so as to prevent misses caused by partners using older keys.

Each node is responsible for caching and timing out the keys it shares

with other nodes, and either end of a secure channel can trigger the gen-

eration of a new shared key. When B reexecutes the key-establishment

protocol, the resulting channel from A still speaks for Ka. Hence, rekeying

does not invalidate authentication state based on node keys.

Taos does not implement hardware secure channels. The key exchange

mechanism it implements is, however, suitable for constructing them. Her-

bison [7] discusses the use of encrypting network controllers to build e�-

cient secure channels. Our system design is intended to operate best with

encryption-capable controllers. DES [12] hardware for such controllers has

been shown to operate at speeds of 1 Gbit/sec [5], so performance should

not be a problem.

In our implementation, software DES is used to sign channel certi�cates

(see Section 4.3.4), but requests are made without signature to avoid the

overhead of software encryption.
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4.1.2 Process-to-process channels

The channels o�ered to clients of the API are always between two pro-

cesses. These channels are formed by multiplexing process-level data across

the node-to-node channels discussed in the previous section. The concrete

form of the Chan datatype di�ers depending on the secure channel imple-

mentation. However, all channel implementations must support naming of

channels by ChanIDs:

TYPE ChanID = { nk:KeyDigest; pr:INTEGER; addr:Address };

The nk �eld of ChanID names the node key of the partner, pr identi�es the

partner process, and addr indicates the address of the partner authentication

agent. A message digest function is applied to node keys in order to produce

small values for the nk �eld. We use the MD4 message digest function [17].

In Taos we exploit the fact that most communication employs a transport

protocol under our control. We identify each process with a 32-bit process

tag (PTag)3 and mark all transmissions with the PTag of the sending process.

The secure channel manager exports the primitives:

PROCEDURE GetChanID(ch:Chan): ChanID;

PROCEDURE PTagFromChan(c:ChanID): PTag;

The receiver of a message can call GetChanID to obtain a ChanID given an

abstract Chan. At the source of channel c|where c.nk is the digest of the

local node key|PTagFromChan(c) can be called to derive the PTag for the

process that controls c. In Taos, we put a PTag in the pr �eld and hence

can implement GetChanID by concatenating the sender's node key, PTag,

and node address. The implementation of PTagFromChan just returns c.pr.

Process-level multiplexing can also be done with standard protocol im-

plementations such as TCP/IP and UDP/IP that use small integer port

numbers to identify the origin and destination of messages within a node.

Port numbers would be perfect process identi�ers (that is, values of the pr

�eld) if they were not reuseable. One possible workaround is to place restric-

tions on the reuse of port numbers. Another is to treat process channels as

secure connections that must be explicitly opened and closed; this requires

considerable care.

3Process tags are never reused; this limits Taos to 232 processes per boot.
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4.2 The authority manager

The authority manager implements the operations on Auths and Prins dis-

cussed in Sections 3.2 and 3.3. The internal interface to the authority man-

ager parallels the API quite closely. However, for each Auth supplied as an

argument, the kernel call dispatcher appends the PTag of the caller. This

PTag argument is used to ascertain that the caller owns each supplied Auth.

We say that a process owns an Auth if the authority manager has given that

process the right to use it. Whenever an Auth is explicitly returned to a

process through the API, the calling process owns it.

Each new Auth is assigned a unique AID by the authority manager. In

our implementation AIDs are 96 bits wide, so there is no need to reuse one.

The authority manager maintains a table with credentials for the Auths it

creates, indexed by AID. Each entry contains:

� credentials for the corresponding Auth,

� a list of PTags of processes that own this Auth,

� credentials for unclaimed delegations (only if this Auth resulted from

a call to Delegate), and

� a source from which to refresh delegation credentials (only if this Auth

resulted from a call to Claim).

The precise structure of credentials is irrelevant to the authority manager.

For now, we think of them as bundles of certi�cates, which for example

prove that a channel speaks for a principal or that a principal is another's

delegate.

Much like Unix �le descriptors, Auths can be passed by inheritance to

child processes. The authority manager provides two primitives that the

process manager can use to implement this inheritance:

PROCEDURE Handoff(a:Auth; ptag:PTag);

PROCEDURE PurgePTag(ptag: PTag);

Handoff adds ptag to the list of PTags of processes that own a. It is called

when an Auth is inherited from a parent process. PurgePTag eliminates

all instances of ptag in the credentials table. It is called when the process

identi�ed by ptag terminates.
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4.2.1 Callbacks

As we have seen, AIDs and channels are used to represent principals in net-

work protocols. For this to work, the authority manager must be prepared

to produce credentials on behalf of any Auth it manages. These credentials

are obtained with callbacks to save the cost of passing complex credentials

repeatedly. In fact, credentials are generated lazily, only when needed, and

AIDs may be passed before the corresponding credentials exist. Although

credentials could easily be bundled with requests, they are large enough (>

1 kbyte) to a�ect communications performance. Since the results of authen-

tication are cached extensively, callbacks improve performance for nearly all

applications, even in high-latency networks.

Suppose a user-level process receives a request on a channel ch. In

this case, the API function GetPrin returns a Prin p constructed from

GetChanID(ch) and the AID accompanying the request. Now the process can

ask its authentication agent to resolve p into a principal name, for example

with a call to Authenticate(p). We use the PrinID datatype to represent

Prins that are passed across address-space boundaries (for instance between

user space and the authentication agent):

TYPE PrinID = { ch:ChanID; aid:AID };

The implementation of Authenticate(p) asks the requester's agent (at

p.ch.addr) to provide credentials for p. This agent looks up p.aid in its

credentials table and determines whether PTagFromChan(p.ch) speci�es a

process that owns the corresponding Auth. If it does, the requester's agent

returns a channel certi�cate as proof that the channel speaks for the princi-

pal that p represents. This proof consists of the credentials found in p.aid's

credentials-table entry and a statement that p.ch quoting p.aid speaks for

the principal (see Section 4.3.1).

It is critical for performance that the results of Authenticate be cached.

Caching can be implemented in user space, in the operating system, or both.

Our implementation caches the results of authentication callbacks in user

space, with a timeout equal to the validity interval of the supplied channel

certi�cate up to a maximum of 30 minutes.

A callback also occurs when a call Claim(me,p) activates a delegation.

The delegate's authentication agent passes p in a callback to the delegator's

agent, which uses p.aid to �nd credentials suitable for signing a delegation

certi�cate and returns a signed certi�cate to the delegate's agent. That agent

must remember p so that it can repeat the callback to refresh the delegation
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in case it expires. The delegation certi�cate need not be concealed. Any

agent may request a copy, since it is useful only to the delegate's agent.

4.3 The credentials manager

The credentials manager is the heart of the Taos authentication system.

Its primary functions are to build, check, and store credentials. We explain

the form of credentials and their logical meaning in the �rst two subsections.

Then we give the interface to the credentials manager and discuss techniques

for avoiding signatures.

4.3.1 Credentials

We understand credentials as having logical meanings. A credential is evi-

dence that one principal Q speaks for another principal P . If the credential

were written as a formula M , its recipient would want to check that M

implies Q) P .

Taos encodes credentials as S-expressions. The encoding is designed to

make straightforward the proof of the theorem that M implies Q ) P . If

an S-expression is a well-formed credential, then there is a simple procedure

for extracting P and Q from it that ensures that M implies Q ) P . If in

addition all signatures in the S-expression are recent and correct, then the

S-expression is said to be valid; the S-expression is interpreted as M only

if it is valid. Thus, deriving Q ) P is reduced to parsing a credential and

checking signatures.

In this section we de�ne our S-expression grammar for credentials. In

Section 4.3.2 we give a table of correspondences between S-expressions and

logical formulas, e�ectively recovering the logical form of a credential from

the S-expression encoding. This logical form is used only in explaining our

implementation; the implementation does not manipulate formulas. We also

describe how to check whether a credential is valid.

Table 1 gives the grammar for credentials. Names, keys, PrinIDs, and

signatures are terminals. The main production is the one for channel, be-

cause requests always arrive on channels. The name components of primary

credentials are only hints, used to simplify the mapping of keys into names.

We say that a credential y is embedded in a credential x if y is a subexpres-

sion of x.

A certi�cate is an instance of one of the �rst group of rules in the cre-

dentials grammar. The signature in a certi�cate includes the interval of
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channel = ( `channel' prin prinID signature )

boot = ( `boot' k as key signature )

login = ( `login' k as session signature )

session = ( `session' key boot signature )

delegation = ( `for' delegator delegate signature )

p as = ( `as' prin role )

k as = ( `as' k as role ) j primary

primary = ( key name )

prin = boot j login j delegation j p as

delegator = prin

delegate = prin

role = name

Table 1: Grammar for credentials

time for which it is valid plus an unforgeable value identifying the signer.

This value is a MD4 digest of the certi�cate, encrypted by a RSA secret

key [16]. The digest is computed over the entire certi�cate, excluding em-

bedded signatures, by a one-way function that reduces its input to a size

small enough to sign conveniently; the function is one-way in the sense that

it is computationally hard to �nd a di�erent input with the same digest.

We now discuss speci�c credentials in some detail. For each type of

signed credential we discuss an example, borrowing context from Section 2.2.

Boot certi�cates. A boot certi�cate describes a hando� from a machine

key to a node key. In our example, the meaning M of the boot certi�cate

is:

(Kvax4 as OS) says (Kws ) (Kvax4 as OS)) (8)

From M and the hando� axiom, we obtain:

Kws ) (Kvax4 as OS)

which is the formula Q) P in this case. The boot certi�cate is encoded as:

(boot (as (Kvax4 Vax4) OS) Kws sig1)
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Login and session certi�cates. A login certi�cate is a special form of

delegation certi�cate. It denotes a delegation from a user's key to the con-

junction of a node key with a temporary session key. The user's key should

be in memory for the shortest possible time, to reduce the chance that the

key will be discovered by an attacker. In Taos, it is present just long enough

to sign the login certi�cate. This certi�cate is of long duration, on the

order of days. More sophisticated login protocols that take advantage of

smart-cards can produce equivalent login certi�cates [1].

The node key and the session key are combined in a session certi�cate,

which represents a hando� from the session key to the node key. A session

certi�cate has a short timeout and is refreshed as needed until the end of

the session. When the session ends, the session key is discarded so that the

session certi�cate can no longer be refreshed. Because the login certi�cate

delegates to the node key and to the session key, the certi�cate becomes un-

useable at the end of the session; the inclusion of the session key compensates

for the long timeout of the login certi�cate.

In our example, Bob, with key Kbob, logs in to WS. We still have the

boot certi�cate (8). Let Ks be the session key; the session certi�cate adds:

Ks says ((Kvax4 as OS)) Ks) (9)

and the login certi�cate adds:

Kbob says ((P1 jKbob)) (P1 for Kbob)) (10)

where P1 is ((Kvax4 as OS) ^ Ks). From the conjunction of formulas (8),

(9), and (10), we can derive:

(Kws jKbob)) (P1 for Kbob)

In the notation introduced above, the conjunction is M , and the principals

(Kws jKbob) and (P1 for Kbob) are Q and P , respectively.

In our encoding the session certi�cate is embedded inside the login cer-

ti�cate, and the boot certi�cate inside the session certi�cate:

(login

(Kbob Bob)

(session Ks (boot (as (Kvax4 Vax4) OS) Kws sig1) sig2)

sig3)

The embedded certi�cates identify the machine, the node, and the session

key, and give credentials for them.
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General delegation certi�cates. The general form of delegation in-

volves transfer of rights between principals. Continuing the example, sup-

pose that Bob on WS delegates to a node (Vax5 as OS). The formula that

corresponds to this delegation is:

(Kws jKbob) says ((P3 jP2)) (P3 for P2))

where P2 is (P1 for Kbob) and P3 is (Kvax5 as OS). Conjoining this formula

with those for Bob's login (8), (9), and (10), and with the boot certi�cate

for (Vax5 as OS):

(Kvax5 as OS) says (Kws0 ) (Kvax5 as OS))

we can prove:

(Kws0 jKws jKbob)) (P3 for P2)

In our encoding the entire delegation certi�cate is:

(for

(login ::: sig3)

(boot (as (Kvax5 Vax5) OS) Kws0 sig4)

sig5)

The login certi�cate given above is nested here in its entirety (abbreviated

with an ellipsis) and used as the source of a delegation. The delegate is the

boot certi�cate for Vax5 as OS.

Channel certi�cates. Ultimately, channels are the only principals that

make requests directly. A request on a channel is attributed to a principal

that has handed o� some of its rights to the channel. A channel certi�-

cate represents this hando�. In our system, each certi�cate authenticates a

channel multiplexed on a node-to-node key. More precisely, the channel is

a node-to-node channel quoting a process quoting an AID. Its encoding is a

textual representation of the PrinID datatype from Section 4.2.

In our example, a channel certi�cate for a channel Cbob from Bob means:

(Kws jKbob) says (Cbob ) P2)

Conjoining this formula with those for Bob's login (8), (9), and (10), we can

now prove:

Cbob ) P2
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When Cbob is the channel key47 jptag13 jaid42, this certi�cate is encoded as:

(channel

(login ::: sig3)

key47 ptag13 aid42

sig4)

Because channels are typically short-lived, a channel certi�cate normally

has a short validity interval.

4.3.2 The meanings of credentials

As the previous examples suggest, each valid credential x in the grammar has

a logical meaningM(x). Now we de�neM in general. SinceM is a function,

the mapping from S-expressions to formulas is clearly unambiguous. We

de�ne validity later in this section.

It is convenient to use several auxiliary functions. A function I gives us

the immediate meaning of a credential. Then M(x) is de�ned to be I(x)

conjoined with I(y) for every credential y embedded in x. Thus, the in-

terpretation of a credential is its immediate meaning, plus the meaning of

any embedded credentials. In the cases of primary, p as, and k as creden-

tials, which bear no signature, I(x) is simply true . In the other cases, I(x)

is the assertion made by the top-level signature; it does not refer to other

signatures or their timestamps, and has the form

S(x) says (T (x)) P (x))

where P (x) and T (x) are principals and S(x) is the speaker, the principal

that issues the credential. In particular, when S(x) is a key, it is the key

that should be used in the credential's signature.

In each case, the purpose of a credential x is to establish thatQ(x) speaks

for P (x). More precisely, the formulaM(x) should imply Q(x)) P (x). For

example, a boot certi�cate x of the form

(boot (Kvax4 Vax4) Kws signature)

means Kvax4 says (Kws ) Kvax4); this formula is M(x). Let Q(x) be Kws

and P (x) be Kvax4; by the hando� axiom, M(x) implies Q(x) ) P (x). In

general, we have:

Theorem 1 For every credential x, it is provable that

if M(x) then Q(x)) P (x)
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Proof. We prove the theorem by induction on the structure of creden-

tials. We use di�erent strategies in the cases that correspond to credentials

with top-level signatures and those that do not.

When x is a credential with a top-level signature, in order to derive

Q(x)) P (x) from M(x) it su�ces to obtain both of the following:

1. Q(x)) T (x), and

2. if S(x) says (T (x)) P (x)) then T (x)) P (x).

In all cases (1) will be a consequence of the meanings of embedded creden-

tials. To obtain (2), we may use either

� S(x)) P (x), and then the hando� axiom applies; or

� P (x) is B for A and T (x) is B j A for some A and B such that

S(x)) A, and then the delegation axiom applies.

As we show in the Appendix, the de�nitions of Table 2 satisfy these prop-

erties. The cases of credentials without top-level signatures are mostly

straightforward; we treat them in the Appendix as well. 2

A credential is valid if all the signatures it contains are well-formed,

timely, and performed with the proper key. The proper key K for signing

a certi�cate x is de�ned from S(x), with a clause for each of the possible

forms of S(x):

� The proper key for a principal of the form A as R or A j A0 is the

proper key for A, since it is A that must apply the signature.

� The proper key for a key is the key itself.

In general, K is the key that the principal S(x) uses. If x is valid, then

it has recently been signed with S(x)'s key K, so we can interpret x as a

formula I(x) of the form S(x) says (T (x) ) P (x)). By convention, S(x)

should use K to sign x only when S(x) supports T (x)) P (x). This is the

justi�cation for our logical reading of valid credentials.

An obvious generalization of this de�nition of validity allows any key

that speaks for K to sign the certi�cate. The generalization is used in

Section 4.3.4 to allow channel certi�cates to be signed with DES keys.

Theorem 1 guarantees that validating a credential x su�ces to show that

Q(x)) P (x): if x is valid, then it is interpreted as M(x) and the theorem

applies. Corollary 2 makes this claim precise:
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Corollary 2 For every certi�cate y, assume that S(y) says (T (y)) P (y))

is true for the validity interval of y if the proper key signs y. Let x be a valid

credential. Then Q(x)) P (x) is true.

Proof. If x is valid, then each certi�cate y embedded in x is valid: y

is signed with the proper key and its validity interval includes the present.

By our hypothesis, S(y) says (T (y)) P (y)) is true; that is, I(y) is true. If

x itself bears a signature, then similarly S(x) says (T (x) ) P (x)) is true.

Therefore, M(x) is also true, as M(x) is the conjunction of I(x) with I(y)

for each y embedded in x. By Theorem 1, Q(x)) P (x) is true. 2

4.3.3 The Credentials interface

The credentials manager exports the Credentials interface to the authority

manager. This interface de�nes an abstract type CredT that represents

credentials, as well as procedures for constructing CredTs and for signing

and validating channel certi�cates. A CredT de�nes a principal P that

can make requests, and contains an expression in the credentials grammar

su�cient to prove that some other principal can speak for P .

The credentials manager holds a CredT representing the credentials for

the node. Although the Fire
y lacks the �rmware necessary to generate

a node key securely, Taos imitates secure booting by generating a boot

certi�cate and node key at system-startup time. The node's CredT contains

this certi�cate and key.

The operations on credentials are:

TYPE Cred = TEXT;

PROCEDURE New(name, password: TEXT): CredT;

PROCEDURE AdoptRole(t:CredT; role:TEXT): CredT;

PROCEDURE Sign(t:CredT; p:PrinID): Cred;

PROCEDURE Validate(cr:Cred; p:PrinID): TEXT;

PROCEDURE Extract(cr:Cred): Cred;

PROCEDURE SignDel(t:CredT; cr:Cred): Cred;

PROCEDURE ClaimDel(t:CredT; cr:Cred): CredT;

Each value of the Cred datatype contains a textual representation of cre-

dentials according to the grammar of Table 1.

New produces a CredT containing a login certi�cate and a session key.

The CredT returned by AdoptRole contains credentials for t as role.

The authority manager uses Sign to produce channel certi�cates in re-

sponse to authentication callbacks. Similarly, it uses Validate to check
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the results of authentication callbacks and return principal names. Extract

strips o� an outer-level channel certi�cate, and returns the credentials of

the principal for which the channel speaks.

The delegator's authority manager implements Delegate by �nding and

validating a channel certi�cate for the delegate. It then calls Extract to get

the delegate's credentials, and stores the result. The delegate's authority

manager implements Claim by asking the delegator's agent for a delegation

certi�cate (produced with SignDel) and using it to call ClaimDel. The

result is a CredT representing delegate for delegator.

4.3.4 Signature techniques

We use three techniques to minimize the number of public key encryptions

required to sign certi�cates:

� As described in Section 4.1, we can establish a shared key K between

two nodes A (with key Ka) and B so that B believes that K speaks

for Ka. Therefore, A can sign certi�cates about channels to B by en-

crypting with K instead of Ka. Only B need believe these certi�cates.

DES encryption (underK) is much faster than RSA encryption (under

Ka).

� When one process delegates to another on the same node, it is possible

to avoid one signature. The delegation certi�cate structure remains

the same, but no cryptographic signature is needed. If an o�-node

delegation follows, the signature of the outer certi�cate implies validity

for the inner one, because both use the same key.

� When refreshing nested certi�cates, care must be taken not to invali-

date higher-level signatures. It is su�cient to omit nested signatures

from the certi�cate digests. For example, when a session certi�cate is

refreshed, its validity times are changed. An enclosing login certi�cate

can avoid refresh only if its digest omits the nested signature. This

omission is safe since there is no mention of nested signatures in the

immediate meaning of credentials.

4.4 The certi�cation library

If ACLs contained public keys instead of human-sensible names, network

security would be considerably less complex. Unfortunately, keys are big
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numbers that are too unwieldy for human users to manipulate. Moreover,

at the highest level, computer security applies to names for people and

resources. At some point there needs to be a trusted mapping from keys

to the principal names they represent. Similarly, there need to be trusted

mappings from group members to group names and from image digests to

role names.

The task of the certi�cation library is to implement these mappings. We

also use it to recover keys from stable storage given passwords short enough

for people to remember. Our certi�cation authority (or CA, see Section 2.2)

is a simple program that manages the database underlying these services.

This CA is o�-line in the sense that clients need not communicate with it in

order to trust its statements. A CA that could function without any network

connections might be an interesting addition to our work. For example, we

could use a portable computer to write certi�cates, keep the computer in a

safe, and allow 
oppy disks as the only means of communication with the

rest of the world.

Bootstrapping trust. A practical system of any size must base trust on

shared knowledge of a trusted CA. In Taos, this information takes the form

of a CA public key. Certi�cates signed with this key are trusted. It is crucial

to protect the corresponding secret key.

A user learns his own secret key and the public key of his trusted CA

by decrypting a user-speci�c string stored in the name server.4 This string

contains the user's private data encrypted under a DES secret derived from

the user's password. We keep analogous strings for nodes. Storing user

secrets in this way would not be necessary if users carried public key smart-

cards [1, 15].

Name certi�cates. These describe a mapping from keys to names. They

are signed by a CA trusted for this purpose, much like CCITT X.509 cer-

ti�cates [4]. The logical form of a certi�cate that maps Ku to U is:

Kca says (Ku
) U)

A simple extension of the grammar described in the previous section is used

to express these statements.

4We could easily extend our system to incorporate a hierarchy of CAs. For a system

that implements a CA hierarchy, some indication of the local CA's location in the hierarchy

would be required as well [10, Section 5].
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Since certi�cates are statements signed o�-line, they can be believed

even if retrieved from untrusted storage. In Taos, we use a replicated, highly

available name service [3] to store name certi�cates. Certi�cates are indexed

by name in this store. The replication makes a denial-of-service attack more

di�cult.

We may now continue the example of Section 4.3.1. Given valid name

certi�cates that map Kbob to Bob and Kvax4 to Vax4, we obtain:

Cbob ) ((Vax4 as OS) for Bob)

Therefore, when a request appears on the channel Cbob, it is attributed to

(Vax4 as OS) for Bob.

Membership certi�cates. These state that a principal U speaks for (is

a member of) a group G:

Kca says (U ) G)

They are used in Taos ACL checking, and also in role processing and secure

loading.

Image certi�cates. These are used in secure loading to verify the ex-

ecutable image of a recently loaded program and to name the role under

which that program should run. The purpose of an image certi�cate is to

establish that a given image digest I speaks for a role name R:

I ) R

(Think of R as the name of a program like emacs, or of a class of programs

like games.) It would be su�cient for the CA to produce an image certi�cate:

Kca says (I ) R)

Instead, the CA permits a user U to write an image certi�cate for R. The

CA issues:

Kca says ((U jR-owner)) R)

where R-owner is a special name associated with R (e.g., emacs-owner with

emacs). If Ku is U 's key, we obtain:

(Ku jR-owner)) R
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This means that U can release a new version of R with digest I by signing

an image certi�cate:

Ku says R-owner says (I ) R)

and then I ) R follows.

Image digests can be computed using any secure one-way function. Taos

stores image certi�cates as a �le property on certain executable �les.

4.4.1 The CertLib interface

The certi�cation library exports the procedures:

PROCEDURE CheckKey(name:TEXT; k:Key): BOOL;

PROCEDURE IsMember(name, group: TEXT): BOOL;

PROCEDURE CheckImage(d:Digest; prog, cert: TEXT);

The credentials manager calls CheckKey to �nd and validate a name certi�-

cate that states that k speaks for name. The IsMember procedure ascertains

whether name is a member of group. CheckImage supports secure loading.

It checks that the certi�cate cert states that the image digest d speaks for

the program prog, and that cert is signed by a principal with control of

images for prog.

4.5 Simplifying compound names

An authentication result in Taos is more often than not a compound prin-

cipal. The principals that result from credential validations have the form:

principal = name

j (principal for principal)

j (principal as role)

where name and role are strings. Existing applications often deal only with

simple names. The following function reduces a principal to a simple

name:

� If the principal has a simple name, return it.

� If the principal is B for A, apply this function recursively to A.

(Checks can easily be added to guarantee that B is trustworthy.)
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� If the principal is A as R, then apply this function recursively to

A. Take the resulting simple name, and �nd a membership certi�cate

stating that it speaks for R. If successful, then return R, otherwise

fail.

For example, WS for Bob reduces to Bob, and WS for (Bob as Admin)

reduces to Admin if Bob) Admin (that is, if Bob is a member of Admin).

5 Experience

The authentication system described in this report was in daily use for a

year by a community of nearly 80 researchers and administrative personnel.

In this section we discuss our experience, and in particular the performance

of our system.

5.1 Authentication for the Echo �le system

The most commonly used authenticated application was Echo [3], a dis-

tributed �le system used extensively within Taos. The Echo environment

exercised all the Taos security features described in this report except gen-

eral delegation.

In addition to authenticating normal �le system operations, Echo allowed

the use of roles to control access to protected parts of the �le system name-

space. Users typically logged onto the system with the role \normal user",

which indicated that they had no special privileges. Administrators had

the option of taking on other roles when they wanted to access sensitive

�les. Using these roles for system administration is more precise and less

dangerous than using a special super-user account with unquali�ed privileges

(like root under Unix).

It is often useful for a user to run programs with some of the rights

of a node. For example, a program might need control over all the node's

processes, or over the node's con�guration �les and working space. We used

secure loading to allow normal users to run certain programs with enhanced

rights.

5.2 Gateways

We built a gateway that allows ordinary NFS clients to access the Echo �le

system. It uses standard methods to determine the principal p making an
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NFS request and then forwards the request to Echo. If the gateway runs as

the principal G, then it can utter forwarded requests as G jp. We could have

allowed the principal G j p in Echo ACLs. Instead, for each p we invent a

name q, issue a certi�cate Kca says ((G jp)) q), and then use q on ACLs

for authorizing forwarded requests from p. In some systems q is called a

proxy.

This approach can be applied to accept messages authenticated by any

other protocol. The tricky part is �nding a place to put the gateway where

it can intercept and translate the authentication protocol, which is often

application-speci�c.

To go in the other direction and translate one of our authenticated mes-

sages p says m into another protocol, say Kerberos, the gateway would have

to be able to authenticate itself as p in Kerberos. To achieve this, it would

need either to have the user's password for long enough to obtain a Kerberos

ticket-granting ticket, or to act itself as a Kerberos authentication server.

We have not tried to implement this.

5.3 Performance

The performance of our system depends on the costs of the cryptographic

operations:

RSA sign RSA verify DES MD4

248 ms 16 ms 15 ms 6 ms/kbyte

Our RSA implementation [19] is carefully coded in C and assembler.

We use a 512-bit modulus and a public key exponent of 3. The Fire
y has

4 CVax processors, each running at about 2.5 MIPS. Our multiprocessor

implementation of RSA signatures gains nearly a factor of two in speed.

With only a single processor, it takes 472 ms to compute a RSA signature;

this compares with 68 ms on a DECstation 5000, which runs at 20 MIPS. We

use public-domain implementations of MD4 and DES (in C); much faster

ones are possible [10, Section 4].

E�cient RSA key generation is also important to our implementation.

Using three separate threads running a randomized prime generation algo-

rithm [8, p. 388], we can produce a new RSA key in 10-15 seconds.5 Only

two primes are needed for generating a key, but there is a large variance in

the time required for generating a prime. Using three threads signi�cantly

reduces the average time required for generating two primes.

5Even so, Taos precomputes session keys in background.
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Auth Delegate Auth

login delegation

RSA sign | 1� 248 ms |

RSA verify 3� 16 ms 10� 16 ms 7� 16 ms

DES 2� 15 ms 2� 15 ms 2� 15 ms

MD4 6 ms 18 ms 12 ms

S-expr 46 ms 165 ms 91 ms

RPC 2� 5 ms 3� 5 ms 2� 5 ms

Total 140 ms 636 ms 255 ms

Measured 143 ms 671 ms 276 ms

Table 3: Authentication test timings

In Table 3 we show the results of measuring three basic authentication

operations. The numbers assume an existing node-to-node secure channel

and a loaded name certi�cate cache. We show how time is divided between

cryptographic functions and other parts of the system. We estimate that

RPC with non-trivial arguments takes on the order of 5 ms [18]. The line

labelled \S-expr" indicates the cost of parsing and writing S-expressions.

This cost is about one-third of the total, but it could easily be reduced.

The �rst column of the table (Auth-login) shows the time required for

the �rst authenticated RPC|subsequent calls to the same server using the

same credentials will get cache hits. The caller's credentials are those for

a simple login session. This test includes a callback to the caller's agent

and a subsequent channel-certi�cate validation. We expect this cost to be

incurred infrequently: for example, when the user's machine �rst contacts

a �le server, and whenever the credentials need refreshing thereafter (every

30 minutes).

The second test (Delegate) measures the time taken for a logged-in user

to delegate to a logged-in user on another node. Delegation requires a hidden

authentication, and hence three RPCs rather than two.

The �nal test (Auth-delegation) is similar to the �rst (Auth-login), except

that the caller's credentials involve an additional delegation. Once again,

the costs shown are incurred only on the �rst use of the credentials and each

time the cache is refreshed.

There are two important facts to be gleaned from Table 3. First, the

cost of using credentials to make requests is considerably less than that of
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delegation. This is good, since delegations occur much less frequently than

requests. Second, almost all of the component costs of authentication are

compute-intensive. Moving to a faster processor should improve the actual

performance linearly. The Auth-login test should take less than 25 ms on a

DECstation 5000.

Even with faster processors, it is clear that caching at several levels is

essential to system performance:

� The cache used to implement Authenticate prevents repeated authen-

tication callbacks. It has a timeout of roughly 30 minutes, so there are

at most two authentication callbacks to an Echo client in a 30-minute

interval, regardless of the number of �le system operations performed.

� The shared key cache in the secure channel manager prevents unneces-

sary key exchanges. The keys stored there expire with a much longer

period (6 hours).

� The certi�cation library maintains a cache that saves the results of

name certi�cate validations. There a cached result can remain valid

until the certi�cate expires, although we 
ush results more frequently

to speed up revocation.

Further caching is clearly possible. For example, the meanings of com-

mon embedded credentials (such as boot certi�cates) might be cached.

5.4 Scale

Although our implementation was not used on a large scale, the technique of

o�-line certi�cation with minimal reliance on on-line services is well suited

to large naming hierarchies [10, Section 5.2]. The performance of our basic

security primitives is dependent on system scale only in the cost of fetching

static certi�cates such as those for names and group memberships. In our

implementation, this cost is only a small fraction of the total overhead.

While this cost might grow with the number and geographic distribution

of certi�ed users, it can be o�set by caching, hierarchical certi�cation, and

database replication.

Our design can accommodate fast revocation of name certi�cates along

the lines discussed elsewhere [2, 10], but we have not implemented this

feature. There is an inherent tradeo� between timely revocation and the

e�ectiveness of caching. This tradeo� becomes more signi�cant as the scale

of the system increases.
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6 Conclusion

We have described a framework for security in distributed systems that is

based on logic. The logic takes shape in an operating system that was in

daily use by a substantial community. Our system employs compound cre-

dentials to express the complex relationships between users, machines, and

programs, yet little of this complexity shows through to users and program-

mers. Moreover, the careful optimizations that surround our use of public

key cryptography ensure that it does not hurt performance.

We have explained our system in logical terms, and in particular obtained

a theorem that relates concrete credentials and their logical meanings. It

would be interesting to obtain further theorems to prove the correctness of

our implementation. Even stating the proper results remains a challenge.

The need for well-founded and expressive distributed security systems

will grow with the speed of processors and networks, the number of inter-

connected entities, and the complexity of applications. Our work shows how

to design practical systems that meet this need and demonstrates that such

systems can be built and can perform well.
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Appendix

In this appendix we complete the proof of Theorem 1.

First we treat the cases of credentials with top-level signatures, following

the strategy described in Section 4.3.2.

� boot:

1. Q(x)) T (x), since in this case both Q(x) and T (x) equal x:key.

2. S(x) ) P (x), since S(x) is Q(x:k as) and P (x) is P (x:k as),

and Q(x:k as) and P (x:k as) are always equal.

� session:

1. Since x:boot is embedded in x, the induction hypothesis guar-

antees that M(x:boot) implies Q(x:boot) ) P (x:boot), that

is, Q(x) ) T (x). Further, M(x) implies M(x:boot) and hence

Q(x)) T (x).

2. S(x)) P (x), since both S(x) and P (x) equal x:key.

� login:

1. Since x:s:boot is embedded in x, the induction hypothesis guar-

antees that M(x:s:boot) implies Q(x:s:boot) ) P (x:s:boot).

Similarly, M(x:s) implies Q(x:s)) P (x:s). By de�nition Q(x:s)

equals Q(x:s:boot), so M(x:s) implies Q(x:s:boot) ) P (x:s).

Therefore, the conjunction of M(x:s:boot) and M(x:s) implies

Q(x:s:boot) ) (P (x:s:boot) ^ P (x:s)). Since Q(x:k as) and

P (x:k as) are equal and j is monotonic, this conjunction also

implies (Q(x:s:boot) j Q(x:k as)) ) ((P (x:s:boot) ^ P (x:s)) j

P (x:k as)), that is, Q(x) ) T (x). Finally, M(x) implies both

M(x:s:boot) and M(x:s), and hence Q(x)) T (x).

2. P (x) is of the form B for P (x:k as) and T (x) of the form B j

P (x:k as). Moreover, S(x) is Q(x:k as), which equals P (x:k as).

� delegation:

1. Since x:delegate and x:delegator are both embedded in x,

the induction hypothesis guarantees thatM(x:delegate) implies

Q(x:delegate) ) P (x:delegate). Similarly, M(x:delegator)
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implies Q(x:delegator) ) P (x:delegator). Since j is mono-

tonic, the conjunction of M(x:delegate) and M(x:delegator)

implies (Q(x:delegate) j Q(x:delegator)) ) (P (x:delegate) j

P (x:delegator)) that is, Q(x) ) T (x). Finally, M(x) implies

both M(x:delegate) and M(x:delegator), and hence Q(x) )

T (x).

2. P (x) is of the form B for P (x:delegator) and T (x) of the form

B jP (x:delegator). Moreover, S(x) is Q(x:delegator) and we

have proved Q(x:delegator) ) P (x:delegator) using the in-

duction hypothesis.

� channel:

1. Q(x) ) T (x), since in this case both Q(x) and T (x) equal

x:prinID.

2. Since x:prin is embedded in x, the induction hypothesis guar-

antees that M(x:prin) implies Q(x:prin) ) P (x:prin), that

is, S(x) ) P (x). Further, M(x) implies M(x:prin) and hence

S(x)) P (x).

The remaining cases correspond to credentials with no top-level signature.

They are simpler:

� p as: Since x:prin is embedded in x, the induction hypothesis guaran-

tees that M(x:prin) implies Q(x:prin) ) P (x:prin). Therefore, by

the monotonicity of as, M(x:prin) implies (Q(x:prin) as x:role) )

(P (x:prin) as x:role), that is, Q(x) ) P (x). Finally, M(x) implies

M(x:prin) and hence Q(x)) P (x).

� k as: There are two cases depending on whether x is simply a primary

or contains a role. In the former case, Q(x) ) P (x), since both

Q(x) and P (x) equal x:key. In the latter case, x:k as is embedded

in x, and hence the induction hypothesis guarantees that M(x:k as)

implies Q(x:k as)) P (x:k as). Therefore, by the monotonicity of as,

M(x:k as) implies (Q(x:prin) as x:role) ) (P (x:prin) as x:role),

that is, Q(x) ) P (x). Finally, M(x) implies M(x:k as) and hence

Q(x)) P (x).

� primary: Q(x) ) P (x), since in this case both Q(x) and P (x) equal

x:key.
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