February 28, 1994
Revised December 4, 1995

SRC remt 115

Network Objects

Andrew Birrell, Greg Nelson, Susan Owicki, and Edward Wobber

dlilglitlall

Systems Resear ch Center
130 Lytton Avenue
Palo Alto, California 94301

Systems Resear ch Center

The charter of SRC isto advance both the state of knowledge and the state of the art in com-
puter systems. From our establishment in 1984, we have performed basic and applied research
to support Digital’s business objectives. Our current work includes exploring distributed per-
sona computing on multiple platforms, networking, programming technology, system mod-
elling and management techniques, and sel ected applications.

Our strategy isto test the technical and practical value of our ideas by building hardware and
software prototypes and using them as daily tools. Interesting systems are too complex to be
evaluated solely inthe abstract; extended use allows usto investigatetheir propertiesin depth.
This experience is useful in the short term in refining our designs, and invaluablein thelong
term in advancing our knowledge. Most of the major advances in information systems have
come through this strategy, including personal computing, distributed systems, and the Inter-
net.

We a so perform complementary work of a more mathematical flavor. Some of it isin estab-
lished fields of theoretical computer science, such asthe anaysisof algorithms, computational
geometry, and logics of programming. Other work explores new ground motivated by prob-
lems that arise in our systems research.

We have a strong commitment to communicating our results; exposing and testing our ideas
in theresearch and devel opment communitiesleads to improved understanding. Our research
report series supplements publicationin professional journals and conferences. We seek users
for our prototype systems among those with whom we have commoninterests, and we encour-
age collaboration with university researchers.

Robert W. Taylor, Director

Network Objects

Andrew Birrell, Greg Nelson, Susan Owicki, and Edward Wobber

February 28, 1994
Revised December 4, 1995

Affiliations

Susan Owicki isanindependent consultant. Her current addressis956 N. CaliforniaAve, Palo
Alto, CA 94303, U.SA. (e-mail: owicki@mojave.stanford.edu).

Publication History

An earlier version of thisreport appeared in the Proceedings of the Fourteenth ACM Sympo-
sium on Operating System Principles, Asheville, North Carolina, December 5-8, 1993.

Thisreport is to appear in Software — Practice & Experience, John Wiley & Sons, Ltd.

(©Digital Equipment Corporation 1993, 1995

Thiswork may not be copied or reproduced in whole or in part for any commercial purpose.
Permission to copy in whole or in part without payment of fee is granted for nonprofit edu-
cational and research purposes provided that all such whole or partial copiesinclude the fol-
lowing: anotice that such copyingis by permission of the Systems Research Center of Digital
Equipment Corporation in Palo Alto, California; an acknowledgment of the authors and indi-
vidua contributors to the work; and all applicable portions of the copyright notice. Copying,
reproducing, or republishing for any other purpose shall require alicense with payment of fee
to the Systems Research Center. All rights reserved.

Authors Abstract

A network object is an object whose methods can be invoked over anetwork. The Modula-3
network objects system is novel for its overall simplicity. It provides distributed type safety
through thenarrowest surrogaterul e, which alowsprogrammersto export new versionsof dis-
tributed services as subtypes of previousversions. Thisreport describesthedesign and imple-
mentation of the system, including a thorough description of realistic marshaling algorithms
for network objects, precise informal specifications of the major system interfaces, lessons
learned from using the system, and performance results.

Contents

1

7

Overview

11 Reaedwork e
1.2 Definitions e e e
13 Examples
14 Faluresemanticsandaerts. e

Implementation

21 ASSUMPLIONS
22 PRickles.
23 Garbagecollection
24 Transports e
25 Basicrepresentations
26 Remoteinvocation
27 Marshadingnetworkobjects
28 Marshalingstreams
29 BOOLSrapping o o o e

Public Interfaces

31 NeObjinterface
32 NeStreaminterface
3.3 NeObjNotifierinterface
34 Thestubgenerator

Internal Interfaces

41 StubLibinterface
42 Anexamplestub
43 StubConninterface
44 Messagereadersandwriters
45 Transportinterface e

Performance

Experience
6.1 Siphon.

Conclusion

I ndex

1 Overview

In pure object-oriented programming, clients cannot access the concrete state of an object di-
rectly, but only viathe object’s methods. This methodology applies beautifully to distributed
computing, sincethemethod calls are a convenient place to insert the communi cation required
by the distributed system. Systems based on this observation began to appear about a decade
ago, including Argus[16], Eden[1], and early work of Shapiro[24], and more keep arriving
every day. It seemsto be the destiny of distributed programming to become object-oriented,
but the details of the transformation are hazy. Should objects be mobile or stationary? Should
they be communicated by copying or by reference? Should they be active? Persistent? Repli-
cated? Isthe typical object a menu button or an X server? Is there any difference between
inter-program typechecking and intra-program typechecking?

We believe that the way to make progress in these issuesis to discuss them in the context
of real implementations. To this end, this report describes a distributed programming system
for Modula-3, that we call network objects.

Network objects provide functionality similar to remote procedure call (RPC), but they are
more general and easier to use. Our network objects are not mobile, but we make it easy to
communicate objects either by copying or by reference. Our objects are passive: they have
no implicitly associated thread of control, nor isthere any implicit synchronization associated
with calling their methods. Our objects are not persistent or replicated. They are sufficiently
lightweight that it would be perfectly practical to use one per menu button. We provide strong
inter-program typechecking.

The primary distinguishing aspect of our system isitssimplicity. We restricted our feature
set to those features that we believe are valuable to all distributed applications (distributed
type-checking, transparent invocation, powerful marshaling, efficient and convenient access
to streams, and distributed garbage collection), and we omitted more complex or speculative
features (object mohility, transactions).

We organi zed the implementation around asmall number of quitesimpleinterfaces, each of
whichisdescribedinthisreport. Thereport aso describesanumber of implementationdetails
that have been omitted from previously published work, including simple algorithmsfor mar-
shaling and unmarshaling network objects in a heterogeneous network. All of this material
makes the report longer than we would like, but to make progress in the complicated design
space of distributed object systemsit seems necessary to describerea systemsin more detail
than is customary in the research literature.

We now briefly introduce some of the central aspects of our design.

Distributed typechecking. Our system provides strong typechecking viathe narrowest sur-
rogate rule, which will be described in detail below. In a distributed environment it can be
very difficult to release anew version of aservice, since old clients must be supported aswell
as new ones. The narrowest surrogate rule allows a programmer to release a new version of
the service as a subtype of the old version, which supports both old and new clients and en-
surestype safety. The narrowest surrogate rule could also be useful in other situations where
separately compiled programs need to communicate in atype-safe way; for example, it could
be used to solvethe problem of version skew in shared libraries.

Transparent remote invocation. In our system, remote invocations are syntactically identi-
cal tolocal ones; their method signaturesareidentical. A client invoking amethod of an object

need not know whether the object islocal or remote.

Powerful marshaling. Asin any distributed programming system, argument values and re-
sults are communicated by marshaling them into a sequence of bytes, transmitting the bytes
from one program to the other, and then unmarshaling them into values in the receiving pro-
gram. The marshaling code is contained in stub modules that are generated from the object
type declaration by a stub generator. Our marshaling code relies heavily on a general-purpose
mechanism called pickles. Picklesuse the same runtime-type data structures used by the local
garbage collector to perform efficient and compact marshaling of arbitrarily complicated data
types. Our stub generator produces in-line code for ssimpletypes, but calls the pickle package
for complicated types. This combination strategy makes simple calls fast, handles arbitrary
data structures, and guarantees small stub modules.

We believeit is better to provide powerful marshaling than object mobility. The two facili-
tiesare similar, since both of them allow the programmer the option of communi cating objects
by reference or by copying. Either facility can be used to distribute data and computation as
needed by applications. Object mobility offers slightly more flexibility, since the same object
can be either sent by reference or moved; while with our system, network objects are aways
sent by reference and other objects are always sent by copying. However, thisextraflexibility
doesn’t seem to us to be worth the substantial increase in complexity of mobile objects. For
example, asystem like Hermeg[5], though designed for mobile objects, could beimplemented
straightforwardly with our mechanisms.

Leveraging general-purposestreams. Our whole design makes heavy use of obj ect-oriented
buffered streams. These are abstract types representing buffered streams in which the method
for filling the buffer (in the case of input streams) or flushing the buffer (in the case of output
streams) can be overridden differently in different subtypes. The representation of the buffer
and the protocol for invoking the flushing and filling methods are common to all subtypes,
so that generic facilities can deal with buffered streams efficiently, independently of where
the bytes are coming from or going to. To our knowledge these streams were first invented
by the designers of the OS6 operating system[26]. In Modula-3 they are called readers and
writerg[18].

Because we use readers and writers, our interface between stubs and protocol -specific com-
munication code (which we call transports) is quite simple. This choice was initially contro-
versial, and viewed as alikely source of performance problems. However, since readers and
writers are buffered streams, it is still possible for the stubs to operate directly on the buffer
when marshaing and unmarshaling simple types, so there is not much loss of efficiency for
simple calls. And for arguments that need to be pickled, it is afurther simplification that the
streams used by the transport interface are of the same type as those assumed by the pickle
package.

Marshaling support for streams. Inter-process byte streams are more convenient and effi-
cient than RPC for transferring large amountsof unstructured data, as criticshave often pointed
out. We have therefore provided special marshaling support for Modula-3's standard stream
types (readers and writers). We marshal readers and writers by defining surrogate readers and
writers as subtypes of the abstract stream types. To communicate a stream from one program
to another, a surrogate stream is created in the receiving program. Data is copied over the
network between the buffers of thereal stream and the surrogate stream.

Here again the prevalence of readers and writersisimportant: the stream typesthat the mar-
shaling code supports are not some new kind of stream invented for marshaling purposes, but

2

exactly the readers and writers used by the existing public interfaces in the Modula-3 library.

Distributed garbage collection. Garbage collectionisavauabletool for programming dis-
tributed systems, for all the reasons that apply to programsthat run in a single address space.
Our distributed collector allows network objects to be marshaed freely between processes
without fear of memory leakage. We employ a fault-tolerant and efficient algorithm for dis-
tributed garbage collection that is a generalization of reference counting; it maintains a set of
identifiers for processes with references to an object. Distributed collection is driven by the
local collectorsin each process; there is no need for globa synchronization. Our algorithm,
however, does not collect circular structures that span more than one address space.

1.1 Redated work

We have built closely on the ideas of Emerald[14] and SOS[25]; our main contribution has
been to select and simplify the essential features of these systems. One important simplifica-
tion is that our network objects are not mobile. Systems like Orca[2] and Amber[7] aim at
using objectsto obtain performance improvements on a multiprocessor. We hope that our de-
sign can be used in this way, but our main goal was to provide reliable distributed services,
and consequently our system is quite different. For example, the implementations of Orca
and Amber described in the literature require more homogeneity than we can assume. (Rus-
tan Leino has implemented a version of Modula-3 network objects on the Caltech Mosaic, a
fine-grained mesh multiprocessor[15]. But we will not describe hiswork here.)

Systemslike Argug[16, 17] and Arjung[8] arelike network objectsin that they aim to support
the programming of reliable distributed services. However, they differ from network objects
by providing larger building blocks, such as stable state and multi-machine atomic transac-
tions, and are oriented to objects that are implemented by whole address spaces. Our network
objects are more primitive and fine-grained.

The Spring subcontract is an intermediary between adistributed application and the under-
lying object runtime[11]. For example, switching the subcontract can control whether objects
arereplicated. A derivative of this idea has been incorporated into the object adaptor of the
Common Object Request Broker Architecture[19]. We haven't aimed at such aflexible struc-
ture, although our highly modular structure allows playing some similar tricks, for example
by building custom transports.

1.2 Definitions

A Modula-3 object isareference to adatarecord paired with amethod suite. The method suite
isarecord of procedures that accept the object itself as afirst parameter. A new object type
can be defined as a subtype of an existing type, in which case objects of the new type have all
the methods of the old type, and possibly new onesaswell (inheritance). The subtype can also
provide new implementations for selected methods of the supertype (overriding). Modula-3
objects are always references, and multiple inheritance is not supported. A Modula-3 object
includes atypecode that can be tested to determine itstype dynamically[18].

A network object is an object whose methods can beinvoked by other programs, in addition
to the program that allocated the object. The program invoking the method is called the client
and the program containing the network object is called the owner. The client and owner can
be running on different machines or in different address spaces on the same machine.

3

A remote reference in aclient program actually pointsto alocal object whose methods per-
form remote procedure calls to the owner, where the corresponding method of the owner’s
object isinvoked. The client program need not know whether the method invocation is local
or remote. Thelocal object is called a surrogate (also known as a proxy).

Thesurrogate object’s typewill be declared by a stub generator rather than written by hand.
Thistypedeclaration includesthe method overrides that are anal ogous to aconventional client
stub module. There are three object typesto keep in mind: the network object type T at which
the stub generator is pointed; the surrogate type TSr g produced by the stub generator, which
isasubtypeof T with method overridesthat perform RPC calls; and thetype Tl npl of therea
object alocated in the owner, aso a subtype of T. Thetype T isrequired to be a pure object
type; that is, it declares methods only, no datafields. ThetypeTI npl generally extends T with
appropriate data fields.

If program A has areference to a network object owned by program B, then A can pass the
reference to athird program C, after which C can call the methods of the object, just asif it had
obtained the reference directly from the owner B. Thisiscalled athird party transfer . In most
conventional RPC systems, third party transfers are problematical; with network objects they
work transparently, as we shall see.

For example, if anetwork nodeoffers many services, instead of running all the serversit may
run adaemon that accepts arequest and startsthe appropriate server. Some RPC systemshave
special semantics to support this arrangement, but third-party transfers are all that is needed:
the daemon can return to the client an object owned by the server it has started; subsequent
calls by the client will be executed in the server.

When a client first receives a reference to a given network object, either from the owner
or from athird party, an appropriate surrogate is created by the unmarshaling code. Careis
required on several counts.

First, different nodes in the network may use different underlying communications meth-
ods (transports). To create the surrogate, the code in the client must select a transport that is
shared by the client and owner—and this selection must be made in the client before it has
communicated with the owner.

Second, the type of the surrogate must be selected. That is, we must determine the type
TSr g corresponding to thetype Tl npl of therea object in the owner. But there can be more
than one possible surrogate type availablein the client, since TSr g isnot uniquely determined
by Tl npl . Aswe shall see, this situation arises quite commonly when new versions of net-
work interfaces are released. The ambiguity is resolved by the narrowest surrogate rule: the
surrogate will have the most specific type of al surrogate types that are consistent with the
type of the object in the owner and for which stubs are availablein the client and in the owner.
This rule is unambiguous because M odula-3 has single inheritance only.

Since the type of the surrogate depends on what stubs have been registered in the owner as
well asintheclient, it can’'t be determined statically. A runtime type test will amost always
be necessary after the surrogate is created.

1.3 Examples

The narrowest surrogate rule is useful when network interfaces change over time, as they al-
waysdo. Thissection presentssomeexamplestoillustratethisutility. The examplesalso show

4

how network obj ects generalize and simplify features of conventional RPC. The examplesare
based on the following trivial interface to afile service:

| NTERFACE FS;
| MPORT Net Qbj ;

TYPE

File = NetObj. T OBJECT METHODS
get Char (): CHAR;
eof (): BOOLEAN

END;

Server = Net Gbj. T OBJECT METHODS
open(nane: TEXT): File

END;

END FS.

The interface above is written in Modula-3. It declares object types FS. Fi | e, a subtype of
Net Cbj . T extended with two methods, and FS. Ser ver , a subtype of Net Obj . T with one
extra method. Any data fields would go between OBJECT and METHODS, but these types are
pure. It is conventiona to name the principa type in an interface T; thus Net Obj . T is the
principa typeinthe Net Obj interface.

In our design, all network objects are subtypes of the type Net Cbj . T. Thus the interface
above defines two network object types, one for opening files, the other for reading them. If
the stub generator is pointed at the interface FS, it produces a module containing client and
server stubsfor both types.

Hereis a sketch of an implementation of the FS interface:

MODULE Server EXPORTS Mai n;
| MPORT Net Qbj, FS;

TYPE

File = FS.File OBJECT
<buffers, etc.>

OVERRI DES
get Char : = Cet Char;
eof := Eof

END;

Svr = FS. Server OBJECT
<di rectory cache, etc.>

OVERRI DES
open : = Open

END;

<code for CetChar, Eof, and Open>;

BEG N
Net Qbj . Export (NEW Svr), "FS1");
<pause indefinitel y>

END Server.

Thecall Net Obj . Export (obj, nm exportsthe network object obj ; that is, it places aref-
erencetoit in atable under the name nm whence clients can retrieveit. Thetableistypically
contained in an agent process running on the same machine as the server.

Hereisaclient, which assumesthat the server is running on amachine named ser ver :

MODULE i ent EXPORTS Mai n;
| MPORT Net Qbj, FS, 1O

VAR
s: FS. Server := NetCbj.Ilnmport("FS1", NetObj.Locate("server"));
f := s.open("/usr/dict/words");

BEG N
VWH LE NOT f.eof () DO | Q PutChar(f.getChar()); END

END dient.

Thecall Net Obj . Locat e(nm) returns ahandle on the agent process running on the machine
named nm The call to Net Obj . | nport returns the network object stored in the agent’s ta-
ble under the name FS1; in our example this will be the Svr object exported by the server.
| npor t, Export, and Locat e are described further in the section below on bootstrapping.

The client program invokes the remote methods s. open, f. get Char, and f . eof . The
network object s was exported by name, using the agent running on the machine ser ver.
But the object f is anonymous; that is, it is not present in any agent table. The vast majority
of network objects are anonymous; only those representing major services are named.

For comparison, hereisthe samefunctionality asit would be implemented with an RPC that
is not object-oriented, such as DCE RPC[20]. The interface would define afile as an opaque

type:
| NTERFACE FS;
TYPE T,

PROC Open(n: TEXT): T;
PROC Get Char (f: T): CHAR;
PROC Eof (f: T): BOQ;

END FS.

A conventional RPC stub generator would transform thisinterface into aclient stub, a server
stub, and amodified client interface containing explicit binding handles:

| NTERFACE FSd i ent;

| MPORT FS;

TYPE Bi ndi ng;

PROCEDURE | nport (host Name: TEXT): Bi ndi ng;
PROCEDURE Open(b: Binding, n: TEXT): FS.T;
PROCEDURE Cet Char (b: Binding, f: FS. T): CHAR;
PROCEDURE Eof (b: Binding, f: FS.T): BOO;

END FSC i ent.

Theserver wouldimplement theFSinterfaceand theclient would usethe FSO i ent interface.
In FSA i ent, the type Bi ndi ng represents a handle on a server exporting the FS interface,
and the type T represents a so-called context handle on an open file in one of these servers.
Here is the same client computation coded using the conventional version:

MODULE Cd i ent;
| MPORT FSClient, 1 Q

VAR

b := FSOient.lnport("server");

f := FSCient.Open(b, "/usr/dict/words");
BEG N

WHI LE NOT FSC i ent. Eof (b, f) DO
| O Put Char (FSO i ent. Get Char (b, f))
END

END Cli ent.

Comparing the two versions, we see that the network object s plays therole of the binding b,
and the network object f playstherole of the context handlef . Network objects subsumethe
two notions of binding and context handle.

In the conventional version, the signatures of the proceduresin FSC i ent differ from those
in FS, because the binding must be passed. Thusthe signatureisdifferent for local and remote
cals. (Inthisexample, DCE RPC couldinfer the binding from the context handl e, allowing the
signatures to be preserved; but the DCE programmer must be aware of both notions.) More-
over, athough conventional systemstend to allow bindingsto be communicated freely, they
don’'t do the same for context handles: It is an error (which the system must detect) to passa
context handle to any server but the one that created it.

The conventional version becomes even more awkward when the same address spaceisboth
aclient and a server of the same interface. In our FS example, for example, a server address
space must instantiatethe opaquetypeFS. T to aconcrete type containing the buffers and other
data representing an open file. On the other hand, a client address space must instantiate the
opaque type FS. T to a concrete type representing a context handle. (Thistypeisdeclared in
the client stub module.) These conflicting requirements make it difficult for a single address
space to be both aclient and a server of the sameinterface. Thisproblemiscalled type clash.
It can be finessed by compromising on type safety; but the network object solution avoids the
problem neatly and safely.

Object subtyping together with the narrowest surrogate rule make it easy to ship anew ver-
sion of the server that supports both old and new clients, at least in the common casein which
the only changes are to add additional methods. For example, suppose that we want to ship a
new file server in which the files have a new method caled cl ose. First, we define the new
type as an extension of the old type:

TYPE
NewrS. File = FS.File OBJECT METHODS
cl ose()

END;

Since an abject of type NewFS. Fi | e includes al the methods of an FS. Fi | e, the stub for
aNewFsS. Fil e isaso astub for an FS. Fi | e. When a new client—that is, a client linked

with stubs for the new type—opens afile, it will get a surrogate of type NewrS. Fi | e, and be
able to invoke its cl ose method. When an old client opens afile, it will get a surrogate of
type FS. Fi | e, and will be able to invoke only itsget Char and eof methods. A new client
dealing with an old server must do a runtime type test to check the type of its surrogate.

The extreme case of the narrowest surrogate rule occurs when a network object isimported
into a program that has no stubslinked into it at al. In this case the surrogate will have type
Net Qbj . T, since every program automatically gets (empty) stubs for thistype. You might
think that a surrogate of type Net Cbj . T isuseless, sinceit has no methods. But the surrogate
can be passed on to another program, where its type can become more specific. For example,
the agent process that implements Net Qoj . | nport and Net Obj . Export isatrivia one
page program containing atable of objectsof typeNet Obj . T. The agent needs noinformation
about the actua subtypes of these objects, sinceit doesn’t call their methods, it only passes
them to third parties.

14 Failuresemanticsand alerts

An ordinary procedure call has no specia provision for notifying the caller that the callee has
crashed, since the caller and the callee are the same program. But a remote procedure call
mechanism must define some failure semantics that cover this situation, in order to make it
possibleto program reliable applications.

In theory, distributed computations can be more reliable than centralized ones, since if a
machine crashes, the program can shift the computation to use other machines that are il
working. But itisn’'t easy to put this theory into practice. Many distributed systems end up
being lessreliable than their centralized equiva ents, because they are vulnerableto thefailure
of many machines instead of just one. Leslie Lamport, prominent both as a theorist and as a
suffering user, has facetiously defined a distributed system as one in which “the failure of a
computer you didn’t even know existed can render your own computer unusable”.

Many methodol ogies and tools have been proposed to aid in programming replicated dis-
tributed services that survive the failures of individua replicas. Our network object system
isintended to provide a more fundamental communicationsprimitive: replicated services can
be built out of network objects, but so can non-replicated services.

The failure semantics of network objects are similar to those of many conventional RPC
systems. The runtime raises the exception Net Obj . Err or intheclient if the owner crashes
whilethemethod call isin progress. Therefore, in serious applications, all methods of network
objects should include this exception in their RAI SES set. (Failure to include the exception
would cause the client to crash in this situation, which is usually not what you want a serious
application to do.)

Unfortunately, there is no absolutely reliable way that one machine can tell if another has
crashed, since the communication network can fail, and a live machine can’t distinguish it-
self from adead machineif it cannot communicate. Therefore, the exception Net Obj . Er r or
doesn’t guarantee that the owner has crashed: possibly communication has failed. In the |at-
ter case, the method call in the owner may continue to execute, even while the client runtime
raises Net Obj . Error. The abandoned computation in the owner is called an orphan. To
build an application that is robust in the presence of communication failures, the program-
mer must ensure that the computation meetsits specification even in the presence of orphaned
computations.

Modula-3 provides a mechanism for alerting athread. Thisis not an interrupt, but a polite
request for the thread to stop at the next convenient point and raise a pre-defined exception.
When programming a lengthy computation that might for any reason be subject to cancella-
tion, it is good style to check periodically to see if the thread has been alerted.

If athread engaged in aremote cal is aerted, the runtime raises Net Obj . Error in the
calling thread and simultaneously attempts to notify and aert the server thread executing the
call. Thereason that Net Obj . Er r or israised isthat thereisno guarantee that the attempt to
alert the server thread will succeed; therefore, an orphan may have been created.

The network object system also uses aerts to handl e the situation in which a client crashes
whileit has an outstanding remote method call. In this case, the network object runtime aerts
the thread that is executing the method call inthe owner. Therefore, most methods of network
objects should include Thr ead. Al ert ed intheir RAI SES sets.

2 |Implementation

This subsection describes the structure of our implementation. Much of the lower levels of
our system are similar to that of conventional RPC, as described by Birrell and Nelson[4]. We
will concentrate on the implementation aspects that are new in network objects.

2.1 Assumptions

We implemented our system with Modula-3 and Unix, but our design would work on any sys-
tem that providesthreads, garbage collection, and object types with singleinheritance. At the
next level of detail, we need the following capabilities of the underlying system:

1. Object types with single inheritance.

2. Threads (lightweight processes).

3. Someform of reliable, inter-address-space communication.
4

. Garbage collection, together with a hook for registering a cleanup routine for selected
objects to be called when they are collected (or explicitly freed).

()

. Object-oriented buffered streams (readers and writers).

6. Runtime type support as follows. Given an object, to determine its type; given atype:
to determine its supertype, to allocate and object of the type, and to enumerate the sizes
and types of the fields of the type.

7. A method of communicating object typesfrom one address space to another.

We will elaborate on the last item.

The Modula-3 compiler and linker generate numerical typecodes that are unique within a
given address space. But they are not unique across address spaces and therefore cannot be
used to communicate types between address spaces. Therefore, the Modula-3 compiler com-
putes a fingerprint for every abject type appearing in the program being compiled. A finger-
print isasixty-four bit checksum with the property that (with overwhelming probability) two

9

types have the same fingerprint only if they are structuraly identical. Thus a fingerprint de-
notesatypeindependently of any address space. Every address space contai nstwo tables map-
ping between its typecodes and the equivalent fingerprint. To communicate a typecode from
one address space to another, the typecode is converted into the corresponding fingerprint in
the sending address space and the fingerprint is converted into the corresponding typecode in
thereceiving address space. If thereceiving program does not contain acodefor thetypebeing
sent, then the second table lookup will fail.

2.2 Pickles

We useamechanism known as pi ckles to handl e the more compl ex cases of marshaling, specif-
ically thosethat involve references types as arguments or results. Our pickles packageissim-
ilar to the value transmission mechanism described by Herlihy and Liskov[12], who seem to
be the first to have described the problem in detail. However, our package is more genera
because it handles subtyping and dynamic types.

For simple usage, our pickle package provides asimpleinterface. Pi ckl e. Wite(ref,
wr) writes a flattened representation of the dynamically typed value r ef to the writer wr .
Pi ckl e. Read(r d) readsthe representation of avaue from the reader r d and returns a dy-
namically typed reference to acopy of the original value.

The pickle package relies on the compile-time and runtime type support described earlier,
and in particular on the existence of typefingerprints. Given thissupport, the basic method for
writing apickleis quite smple. It writesthe fingerprint of the given value's type on the byte
stream, followed by the referent’s data fields. The method recurses on any constituent val-
ues that are themselves references types. Reading is the inverse operation: read afingerprint,
alocate a value, examine the type, read data fields and recursively read reference fields.

Oneminor complicationisthe problem of keeping the valuesindependent of machinearchi-
tecture (for example, byte order or word length). We do this by encoding the salient properties
of thearchitecturein asmall number of bytesat the start of the pickle, thenwriting thepicklein
the sender’s nativeform. Thisapproach is efficient in homogeneous cases, and no more costly
than anything elsein heterogeneous cases. We assume that all architectures can be described
by our header. If there were an aberrant architecture, its pickle package would be required to
map to and from a standard one on sending and receiving.

A dlightly more significant complication is detecting and dealing with multiple occurrences
of the samereference within asingle pickled value. Thishappensin cyclic structuresand also
in graph-like structures that are not trees. (We make no attempt to preserve sharing between
separate pickles.)

When writing a pickle, the sender maintains a hash table keyed by references. The values
in thistable are small integers, allocated sequentially within each particular pickle. When a
reference isfirst encountered in writing apickle, it isentered in the table and allocated asmall
integer. Thisinteger iswritten on the byte stream after the reference’s fingerprint, asthe defin-
ing occurrence. Then the pickle package writes the referent by recursing. If areferenceisen-
countered for a second or subsequent timein a single pickle, the reference’s small integer is
found in the hash table and written on the byte stream as a subsequent occurrence; in this case
there is no need to examine or write the referent.

When reading a pickle, the receiver maintains an array indexed by these small integers.
When it encounters the first occurrence of areference’s small integer, it alocates the storage

10

and records the new reference in the appropriate entry of the array, and proceeds to read the
referent from the byte stream. When it encounters a subsequent occurrence of the reference’s
small integer, it just uses the reference obtained by indexing the table.

Thedefault behavior of the picklepackageisn’t satisfactory for all types. Problemscan arise
if the concrete representation of an abstract type isn’t an appropriate way to communicate the
value between address spaces. To deal with this, the pickle package permits clients to specify
custom proceduresfor pickling (and therefore for marshaling) particul ar datatypes. Typically
theimplementer of an abstract datatype specifies such a custom procedureif thetype's values
aren’t transferable by straightforward copying. We usethisfacility to marshal network objects,
readers, and writers that are embedded in structures that would ordinarily be marshaled by
value.

The narrowest surrogate rule places a serious constraint on the pickles design: since pick-
ling and unpickling an object can make itstype less specific, the unpickler must check that an
unpickled object islega at the positionin which it occurs. It is possible for the unpickler to
check this because the runtime provides the ability to enumerate the types of the fields of an
object.

Thereare many subtletiesinthedesign of the pickles package. Theability to register custom
pickling procedures for selected types has atricky interaction with subtyping. It isalso tricky
to define and efficiently compute type fingerprints for recursive and opague types. But the
details are beyond the scope of the present work.

2.3 Garbagecollection

Our system includes network-wide, reference-counting garbage collection. For each network
object, the runtimerecords the set of clients containing surrogatesfor the object (thedirty set).
Aslongasthisset isnon-empty, theruntimeretains apointer to the object. Theretained pointer
protectsthe object from the owner’s garbage collector, even if nolocal referencestoit remain.
When a surrogate is created, the client runtime adds its address space to the dirty set for the
concrete object by makinga“dirty call” totheowner. When asurrogateisreclaimed, theclient
runtime deletes its address space from the dirty set by making a*“clean call”. When the dirty
set becomes empty, the owner’s runtime discards the retained pointer, allowing the owner’s
local garbage collector to reclaim the abject if no local references remain. Totrigger the clean
call, the client runtime relies on the assumed ability to register cleanup hooks for surrogates
with the local collector.

This scheme will not garbage-collect cyclesthat span address spaces. To avoid this storage
leak, programmers are responsiblefor explicitly breaking such cycles.

If program A sends program B areference to an object owned by athird program C, and A
then drops its reference to the object, we must ensure that the dirty call from B precedes the
clean call from A, to avoid the danger that the object at Cwill be prematurely collected. This
isnot aproblem if the object is sent as an argument to aremote method call, sincein thiscase
the calling thread retains a reference to the object on its stack while it blocks waiting for the
return message, which cannot precede the unmarshaling of the argument. But if the object
is sent as aresult rather than an argument, the danger isreal. Our solution is to require an
acknowledgement to any result message that contains a network object: the procedure that
executes the call in the owner blocks waiting for the acknowledgement, with the reference to
theobject onitsstack. The stack reference protectsthe object from the garbage collector. This

11

sol utionincreases the message count for method cal I sthat return network objects, but it doesn’t
grestly increase the latency of such calls, since the thread waiting for the acknowledgement is
not on the critical path.

By maintaining the set of clients containing surrogates rather than a simple count, we are
ableto remove clientsfrom the dirty set when they exit or crash. The mechanism for detecting
that clients have crashed is transport-specific, but for al reasonable transports there is some
danger that anetwork partition that prevents communi cation between the owner and client wil |
be misinterpreted asaclient crash. In thiscase, the owner’s object might be garbage collected
prematurely. Because communicationisunreliable, therisk of prematurecollectionisinherent
in any strategy that avoids storage leaks in long-running servers. Since we never reuse object
IDs, we can detect premature collection if it occurs.

Dirty calls are synchronous with surrogate creation, but clean calls are performed in the
background and can be batched. If aclean cal fails, it will be attempted again. If adirty call
fails, the client schedulesthe surrogateto be cleaned (since thedirty call might have added the
client to the dirty set before failing) and rai ses the exception Net Cbj . Er r or . Clean and dirty
calls carry sequence numbersthat increase monotonically with respect to any given client: the
owner ignores any clean or dirty call that is out of sequence. Thisrequires the owner to store
aseguence number for each entry in thedirty set, aswell asasequence number for each client
for which acall hasfailed. The sequence numbers for clientsthat have successfully removed
themselves from the dirty set can be discarded.

A companion paper[3] presents the details of the collection algorithm and a proof of its cor-
rectness.

24 Transports

There are many protocols for communicating between address spaces (for example, shared
memory, TCP, and UDP), and many irksome differences between them. We insulate themain
part of the network object runtime from these differences viathe abstract type Tr ansport . T.

A Transport . T object generates and manages connections between address spaces. Dif-
ferent subtypes are implemented using different communication mechanisms. For example, a
TCPTr ansport . Tisasubtypethat uses TCP.

Each subtypeis required to provide away of naming address spaces. A transport-specific
name for an address space is called an endpoint. Endpoints are not expected to be human-
sensible. Naming conventionsensure that an endpoint generated by onetransport subtypewill
be meaningful only to other instances of the same subtype. (Some usetheterm “endpoint” ina
weaker sense, meaning littlemorethan aport number. For us, different instancesof aprogram
areidentified by different endpoints.)

The f r onEndpoi nt method of a Tr ansport . T enables creation of connections to rec-
ognized endpoints. If tr isaTransport. T and ep is an endpoint recognized by t r, then
tr. fronEndpoi nt (ep) returnsalocat i on (described in the next paragraph) that gener-
ates connectionsto the address space named by ep. If t r doesn’t recognize ep, then such an
invocation returns NI L.

A Locat i on isan object whose new method generates connectionsto a particular address
space. When aclient hasfinished using aconnection, it should passthe connectiontothef r ee
method of the location that generated it. This alows transports to manage the alocation and

12

deall ocation of connections so as to amortize the overhead of connection establishment and
mai ntenance.

The system uses the type St ubLi b. Conn to represent connections. It is perfectly possible
toimplement a class of connection that communi cateswith datagrams according to a protocol
that makes idle connections essentially freg[4]. That is, in spite of its name, implementations
of thetype St ubLi b. Conn need not be connection-oriented in the standard sense of the term.

A connection ¢ contains areader c. rd and awriter c. wr . Connections come in pairs; if
c and d are paired, whatever iswritten to c. wr can be read from d. r d, and vice-versa. Or-
dinarily ¢ and d will bein different address spaces. Values are marshaled into a connection’s
writer and unmarshaled from a connection’s reader. Since readers and writers are buffered,
the marshaling code can treat them either as streams of bytes (most convenient) or as streams
of datagrams (most efficient).

One of thetwo connectionsin apair istheclient side and the other isthe server side. Trans-
ports are required to provide athread that listens to the server side of a connection and calls
into the network object runtime when a message arrives indicating the beginning of aremote
cal. Thisis called dispatching, and is described further below.

A connection isrequired to provide away of generating a“back connection”: the location
c. | oc must generate connections to the address space at the other side of c. If ¢ isaserver-
side connection, the connections generated by c. | oc have the oppositedirection asc; if ¢ is
a client-side connection, they have the same directionasc.

A transport is responsible for monitoring the liveness of address spaces for which it has | o-
cations or connections. Thisisdiscussed in more detail |ater when we specify the interface to
the transport system.

2.5 Bascrepresentations

We will now describe the wire representation of network objects, the client and server stubs
involved in remote invocation, and the algorithms we use to marshal and unmarsha network
objects. In these descriptions we will use Modula-like pseudocode.

The wire representation for a network object isapair (sp, i) wheresp isaSpacel D(a
number that identifiesthe owner of the object) andi isan Obj | D (anumber that distinguishes
different objects with the same owner):

TYPE WreRep = RECORD sp: SpacelD; i: Objl D END
Each address space maintains an object table obj t bl that contains all its surrogates and all
its network objectsfor which any other space holds a surrogate:

VAR objtbl: WreRep -> NetQbj . T;

We use the notation A - > B to namethe type of atablewith domain type A and element type
B. We will use array notation for accessing the table, even though it is implemented as a hash
table. We writedomai n(t bl) to denote the set of elements of the domain of t bl .

We now specify the representation of the opaquetypeNet Obj . T.In Modul a3, the REVEAL
statement permits such a specification to be visible within a bounded scope.

REVEAL

13

Net Obj . T = OBJECT
srgt, inTbl: BOOLEAN,
wrep: WreRep;
| oc: Location;

di sp: Di spatcher

END;

TYPE Di spatcher = PROC(c: StubLib. Conn; obj: NetObj.T);

The field obj . sr gt indicates whether obj is asurrogate. The field obj . i nTbl indicates
whether obj ispresent in obj Thl , and thisis guaranteed to be the case if obj isasurrogate
or if another address space holdsasurrogate for it. If obj . i nThl iSTRUE, thenobj . wr ep is
the wire representation of the object.

If obj is asurrogate is then obj . | oc isaLocati on that generates connections to the
owner’saddress spaceat obj . wr ep. sp,andobj . di sp isunused. Otherwise, if obj . i nThl
iS TRUE, then obj . di sp isthe dispatcher procedure for the object, and obj . | oc is unused.
Thecal obj . di sp(c, obj) unmarshalsamethod number and arguments from c, callsthe
appropriate method of obj , and marshalstheresulttoc.

2.6 Remoteinvocation

Toillustratethe stepsin aremote method invocation we continuewith our example of asimple
fileservice. Inthat example, wedefined thetypeFS. Ser ver withasinglemethod open. The
corresponding stub-generated surrogate type declaration looks like this:

TYPE
SrgSvr = FS. Server OBJECT
OVERRI DES
open : = SrgQOpen
END;
PROCEDURE SrgOpen(obj: SrgSvr; n: TEXT): FS. File =
VAR
c := obj.loc.new);
res: FS.File;
BEG N

Qut Net Obj (c, obj);

Qut I nteger(c, 0);

Qut Text (¢, n);

<flush buffers to network>;
res := InNet Qbj(c);
obj.loc.free(c);

RETURN res

END Sr gOpen;

The procedures Qut Net Obj and | nNet Cbj are described in the next subsection. Procedures
for marshaling basictypes (likeQut | nt eger) areinthe St ubLi b interface which we specify
later in the report. (Actualy, St ubLi b. Qut Ref subsumes both Qut Net Obj and Qut Text,
but weignore that here.)

The method being invoked isidentified on thewire by itsindex; the open method hasindex
zero. The code presented would crash with a narrow fault if the network object returned by

14

I nNet Cbj were not of typeFS. Fi | e. For example, this would happen if appropriate stubs
had not been linked into the client or owner. The actual system would raise an exception in-
stead of crashing.

Onthe server side, the thread forked by thetransport to service aconnection ¢ callsinto the
network object runtimewhen it detects an incoming RPC call. The procedureit calls executes
code something like this:

VAR obj := InNetQbj(c); BEA N obj.disp(c, obj) END

The dispatcher procedures are typically written by the stub generator. The dispatcher for the
type FS. Ser ver would look something like this:

PROCEDURE Svr Di sp(c: StubLib. Conn; obj: FS. Server) =

VAR nethlD : = Inlnteger(c); BEG N
IF methiD = 0 THEN
VAR
n := InText(c);
res := obj.open(n);
BEG N

Qut Net Obj (c, res);
<flush buffers to network>
END
ELSE
<error, non-exi stent nethod>
END

END Svr Di sp;

Thestubshaveanarrow interfacetotherest of the system: they call thenewandf r ee methods
of Locat i on objectsto obtain and rel ease connections, and they register their surrogate types
and dispatcher procedures where the runtime can find them, in the global table st ubs:

VAR stubs: Typecode -> StubRec;
TYPE St ubRec = RECORD srgType: TypeCode; disp: D spatcher END;

An address space has stubsfor t ¢ if and only if t ¢ isinthedomain of st ubs. If t c isinthe
domain of st ubs, then st ubs[t c] . srgType isthe typecode for the surrogate typefor t c,
and st ubs[t c] . di sp isthe owner dispatcher procedure for handling calls to objects of type
tc.

A stub modulethat declares a surrogate type sr gTC and dispatcher di sp for anetwork ob-
jecttypet c also setsstubs[tc] := (srgTC, disp). Thenetwork object runtime auto-
matically registers a surrogate type and null dispatcher for the type Net Obj . T.

Intheactua systemthest ubs tableisindexed by stub protocol version aswell astype code,
to make it easy for a program to support multiple protocol versions. The actual system also
includes code for relaying exceptionsraised in the owner to the client, and for relaying thread
alertsfrom the client to the owner.

2.7 Marshaling network objects
Thecal Qut Net Obj (c, obj) writesthe wirerepresentation of obj to the connectionc:

15

PROCEDURE Qut Net Obj (c: StubLib. Conn; obj: NetQhj.T) =
BEG N
IF obj = NIL THEN
Qut WreRep(c, (-1,-1));

ELSE
I F NOT obj.inTbl THEN
VAR i := New(bjID(); BEG N
obj.wep := (SelflD), i);
obj tbl [obj.wep] := obj;
obj .inTbl := TRUE
obj.srgt := FALSE;
obj . disp : = GetDi sp(TYPECODE(0bj))
END
END;
Qut WreRep(c, obj.wep)
END
END Qut Net Obj ;
PROCEDURE Cet Di sp(tc: | NTEGER): Dispatcher =
BEG N

VWHI LE NOT tc I N domai n(stubs) DO tc := Supertype(tc) END;
RETURN st ubs[tc].disp

END Cet Di sp;

In theabove we assumethat NewObj | D() returnsan unused abject ID, that Sel f 1 D() returns
the Spacel Dof thecaler, and that Super t ype(t c) returnsthe code for the supertype of the
typewhose codeist c.

The corresponding call 1 nNet Obj (c) reads a wire representation from the connection ¢
and returns the corresponding network object reference:

PROCEDURE | nNet Cbj (c: StubLib.Conn): NetQbj.T =

VAR wrep := InWreRep(c); BEGAN
IF wep.i = -1 THEN
RETURN NI L

ELSIF wep I N domai n(objtbl) THEN
RETURN obj t bl [wr ep]
ELSE
RETURN NewSr gt (wrep, c)
END
END | nNet Obj ;

The call NewSr gt (wrep, c) creates a surrogate for the network object whose wire repre-
sentation iswr ep, assuming that c is a connection to an address space that knowswr ep. sp.
(We say that an address space sp1 knows an address space sp2 if spl=sp2 or if sp1 contains
some surrogate owned by sp2.)

NewSr gt locates the owner, determines the typecode of the surrogate, and entersit in the
object table:

PROCEDURE NewSr gt (wep: WreRep; c: StubLib.Conn): NetQhj.T =
VAR
| oc : = FindSpace(w ep.sp, conn);
tc := ChooseTC(l oc, wep.i);

16

res := Allocate(tc);
BEG N
res.wep := wep;
res. srgt TRUE;
res.inThl := TRUE;
objtbl [wrep] := res;
RETURN res
END NewSr gt ;

Thecal Fi ndSpace(sp, c) returnsalLocat i on that generates connectionstosp, or raises
Net Cbj . Err or if thisisimpossible. It requiresthat ¢ be aconnection to an address space that
knows about sp. Thecall ChooseTC(I oc, i) implementsthe narrowest surrogate rule. It
returnsthelocal codefor theloca surrogatetypefor the object whoselD isi and whose owner
is the address space to which | oc generates connections. Thecall Al | ocat e(t ¢c) alocates
an object with type codet c.

Toimplement Fi ndSpace without resorting to broadcast, each address space maintainsin-
formation about its own transports and the endpoints of the address spaces it knows aboui.
Thisinformationis maintained in the variablest r and nanes:

VAR tr: SEQ Transport.T];
VAR nanes: Spacel D -> SEQ Endpoint];

Thesequencet r liststhe transportsavailablein thisspace, in decreasing order of desirability.
Typically, it isinitialized by the network object runtime and is constant thereafter. For any
space sp, the sequence nares[sp] contains the endpointsfor sp recognized by sp’s trans-
ports. We write SEQ T] to denote the type of sequences of el ements of type T.

The fast path through Fi ndSpace finds an entry for sp in nanes; thisentry isthelist of
names for sp recognized by sp’s transports. These names are presented to the transportst r
available in this space; if one is recognized, a common transport has been found; if noneis
recognized, there is no common transport.

Thefirst time an address space receives a reference to an object owned by sp, therewill be
no entry for sp inthe space’s nametable. Inthiscase, Fi ndSpace obtains the name sequence
for sp by making an RPC call to the address space from which it received the reference into
sp. Thisisour first example of an RPC call that is nested inside an unmarshaling routine; we
will use the notation RPC(| oc, P(args)) toindicate an RPC call to P(ar gs) directed at
the address space identified by thelocation | oc. Here istheimplementation of Fi ndSpace:

PROCEDURE Fi ndSpace(sp: Spacel D; c: StubLib. Conn): Location =
BEG N
I F NOT sp I N domai n(nanes) THEN
nanes[sp] := RPC(c.loc, GetNanes(sp));
ND;

VAR nm : = nanes[sp]; BEA N
FORi := 0 TO LAST(tr) DO
FORj := 0 TO LAST(nn) DO
VAR loc :=tr[i].fronEndpoint(nnij]); BEA N
IF loc # NIL THEN RETURN | oc END
END
END
END;

17

RAI SE Net Qbj . Error
END
END Fi ndSpace;

PROCEDURE Cet Names(sp) = BEA N RETURN names[sp] END Get Nanes;

Placing thei loop outside the j loop gives priority to the client’s transport preference over
the owner’s transport preference. The choice is arbitrary: usualy the only point of transport
preference is to obtain a shared memory transport if one is available, and this will happen
whichever loop is outside.

Theonly remaining procedureis Choos e TC, which must implement the narrowest surrogate
rule. According to thisrule, the surrogate type depends on which stubs have been registered
inthe client and in the owner: it must determine the narrowest supertype for which both client
and owner have aregistered stub. Thisrequires acall to the owner at surrogate creation time,
which we combine with the call required by the garbage collector: thecal Dirty(i, sp)
addssp tothedirty set for object number i and returns the supertypes of the object’s typefor
which stubs are registered in the owner.

PROCEDURE Dirty(i: ObjID; sp: SpacelD): SEQ Fingerprint] =
VAR
tc := TYPE(objtbl[(SelfID(), i)l);
res: SEQ Fingerprint] := <enpty sequence>;
BEG N
<add sp to object i's dirty set>;
VWHI LE NOT tc I N domai n(stubs) DO tc := Supertype(tc) END
LOCP
res. addhi (TCToFP(tc));
IF tc = TYPECODE(Net Cbj . T) THEN EXI T END;
tc := Supertype(tc)
END;
RETURN res
END Dirty;

PROCEDURE ChooseTC(l oc: Location; i: QojID): |INTEGER =
VAR fp: SEQ Fingerprint]; BEG N
fp := RPC(c.loc, Dirty(i, SelflD)));
FORj := 0 TO LAST(fp) DO
| F FPToTC(fp[j]) I N domai n(stubs) THEN
RETURN st ubs(FPToTC(fp[j])).srgType
END
END

END ChooseTC;

TheloopsinDi rt y are guaranteed to terminate, because stubsare automatically registered for
Net Qbj . T. In ChooseTC we assume that TCToFP and FPToTC convert between equivalent
typecodes and fingerprints (if thereisno local typecodefor f p, we assumethat FPToTC(f p)
returns some illegal typecode never present in st ubs). We aso assume that s. addhi (x)
extends the sequence s with the new element x.

This concludes our description of the algorithmsfor marshaling network objects. We have
omitted anumber of details. For example, to avoid cluttering up the program, we haveignored
synchronization; the real program must protect the various global tables with locks. Some

18

care isrequired to avoid deadlock; for example, it is not attractive to hold alock al the way
through acall to NewSr gt . Instead, wemake an entry in the surrogatetable at the beginning of
the procedure, recording that a surrogate is under construction, and do not reacquire the table
lock until the end of the sequence, when the surrogate has been fully constructed. A thread
that encounters a surrogate under construction simply waits for it to be constructed.

2.8 Marshaling streams

An important feature of our treatment of streamsis that data is not communicated via RPC,
but by the underlying transport-specific communication. Thisfacility is analogous to the re-
mote pipes of DCE RPC, but with acritical difference: the streamswe pass are not limitedin
scope to the duration of the RPC call. When we marshal a stream from process A to process
B, process B acquires a surrogate stream attached to the same data as the original stream. In
process B the surrogate stream can be used at will, long after the call that passed it is finished.
In contrast, in a scheme such as the pipes provided in DCE, the dataiin the pipe must be com-
municated in its entirety at the time of the RPC call (and at a particular point in the call too).
Our facility is aso analogous to the remote pipes of Gifford and Glasser[10], but is simpler
and more transparent.

Readers and writers are marshaed very similarly; to be definite, consider areader r d. The
sending process hasaconcretereader r d in hand. The marshaling code must create asurrogate
reader r dsr g inthe receiving process, such that r dsr g delivers the contentsof r d. The gen-
erd strategy isto alocate a connection between the sender and receiver, alocater dsr g inthe
receiver so that it reads from the connection, and fork athread in the sender that reads buffers
from r d and sends them over the connection. (The thread could be avoided by doing an RPC
to fill the buffer of r dsr g whenever it is empty, but this would increase the per-buffer over-
head of the cross-address space stream.) For the detailed strategy we explored two designs.

In the first design, the sender uses the connection ¢, over which r d is to be marshaled, to
create anew connectionnc : = c. | oc. new() . The sender then chooses aunique ID, sends
the ID over nc, sends the ID over ¢ asthe wire representation of r d, and forks athread that
copiesdatafromr d into nc. In the receiving process, two threads are involved. The thread
servicing the connection nc reads the ID (distinguishing it from an incoming call message)
and places the connection in atable with the ID as key. The thread unmarshaling the reader
looks up the connection in the table and allocates the surrogate reader r dsr g using that con-
nection. This seems simple, but the details became rather complicated, for example because
of the difficulty of freeing connectionsin the table when callsfail at inopportune times.

The second design employs a network object called aVoucher with amethod cl ai mthat
returns a reader. Vouchers have nonstandard surrogates and dispatchers registered for them,
but are otherwise ordinary network objects.

To marshd r d, the sending process allocates a voucher v with a data field v. r d of type
reader, setsv. rd : = rd, and calsQut Net Obj (v) . When the receiving process unmarshals
anetwork object and findsitisasurrogate reader voucher vs, itcallsvs. cl ai n() andreturns
the resulting reader.

Thecl ai mmethod of asurrogate voucher vs invokesvs. | oc. new() toobtainanew con-
nection nc. It then marshalsvs to nc (just like an ordinary surrogate method call). But then,

19

instead of sending arguments and waiting for a result, it alocates and returns the surrogate
reader r dsr g, giving it the connection nc as a source of data.

Onthe server side, the voucher dispatcher is called by atransport-supplied thread, just asfor
an ordinary incoming call. The arguments to the dispatcher are the server side of the connec-
tion nc and the voucher vs containing the original reader vs. r d. The dispatcher procedure
plays the role of the forked thread in the first design: it reads buffers from vs. r d and sends
them over nc.

The second design relies on the transport to provide the required connection and thread, and
relies on the ordinary network object marshaling machinery to connect the surrogate voucher
with the original reader. This makes the protocol simple, but it costs three messages (a round
trip for the dirty call for the voucher; then another message to launch the voucher dispatcher).
It would be easy enough to avoid the all-but-useless dirty call by dedicating a bit in the wire
representation to identify vouchers, but perhaps not so easy to stomach the change. On the
other hand, thefirst design uses only one message (to communicate the | Dfrom the sender to
the receiver), and this message could perhaps be piggybacked with the first buffer of data.

We chose the second design, because: (1) it istrivial to implement; (2) given that cross-
address space streamsare intended for bulk datatransfer, itisnot clear how important the extra
messages are; and (3) if experience leads us to get rid of the extra messages, it is not obvious
whether to choose thefirst design or to optimize the second.

2.9 Bootstrapping

Themechanismsdescribed so far produce surrogate network objectsonly asaresult of method
callson other surrogate network objects. We have asyet noway to forge an original surrogate.
To do this we need the ingredients of a surrogate object: a Locat i on, an object ID, and a
surrogate type. To make it possible to forge the object ID and type, we adopt the following
convention: every program into which network objects are linked owns a special object with
an ID of zero, of a known type. The methods of the specia object implement the operations
required by the network object runtime (reporting in clean and dirty, Get Nanes, etc.). The
special object dso hasget and put methodsimplementing atable of named network objects.
Atinitializationtimethe network object runtimeallocatesa special object with ID 0 and places
itinobj tbl .

All that remains to forge an original surrogateisto obtainalLocat i on valid for some other
program into which network objects have been linked. Fundamentally, the only way to obtain
alocat i onistocal sometransport’sf r omEndpoi nt method—that is, the program forging
the surrogate must know an address where somethingislistening. For thisstep the application
hastwo choices. We provide anetwork object agent that listensat awell-known TCP port; thus
asurrogate for the agent’s special object can beforged given the P name of the node on which
itisrunning. If every node runs the agent from its start-up script, then no other well-known
portsare needed: applicationscan export their objects by putting them in thetable managed by
the agent’s specia object, and their clients can get them from the sametable. If the application
writer prefers not to rely on the agent, he can choose his own transport and well-known port
and configure his program to listen at that port and to forge surrogates for the specia objects
at that port.

The procedures Net Qbj . | nport and Net Obj . Export , which appeared in our file server
example, implement object bootstrapping. These procedures simply forge a surrogate for the

20

special abject of some agent process, andtheninvoketheget or put method onthat surrogate.

3 Public Interfaces

In this section and the next, we present the major system interfaces exactly as they appear
in the network objects programmers library. This section describesthe Net Cbj , Net St r eam
and Net Obj Not i fi er interfaces, aswell asthe stub generator. Theseinterfaces are sufficient
for most network objects clients. The following section presents important internal interfaces
that are not used by most clients.

Theinterfaces in this section depend on afew local-level facilitiesfrom the SRC Modula-3
runtimelibrary[18, 13]. We summarize these dependencies here:

e AnAt om Tisauniquerepresentation for aset of equal texts(likeaLisp atomic symbol).
Atoms are often used to parameterize exceptions.

e An Atonli st. Tisalinked list of atoms. Atom lists are used for propagating lists of
nested exception parameters up the call stack.

A Rd. T represents an abstract data source. The Rd interface provides operations for
reading data and re-positioning the stream.

AW . Trepresents an abstract datasink. TheW interface providesoperationsfor writing
data and re-positioning the stream.

Thread. Al ert ed isthe exception to be raised by an alerted thread.

The WeakRef interface allows clients to register garbage collection finalization proce-
duresfor objectsin the traced heap. In other words, a client can obtain notification just
prior to collection of heap storage.

3.1 NetObj interface

This is the primary public interface for using network objects. Before listing the interface,
here are afew definitions.

A programinstance is an activation of a program. The same program can have many in-
stances running concurrently or consecutively. A program instance can be thought of as an
address space, athough the design does not precl ude theimplementati on of aprogram instance
by a suite of address spaces.

Recall that an agent is aprogram that provides atable that maps names to network objects.
Any program can be an agent, but every machine has a particular default agent. Ownerstyp-
ically make network objects available to clients by inserting them into an agent’s table, using
the procedure Net Obj . Export . Clientstypically use Net Qbj . | nport to retrieve network
objects from the table.

| NTERFACE Net Obj ;
| MPORT Atom Atonlist, Thread;

21

TYPE
T < ROOT:
Addr ess <: REFANY;

Net Qbj . Tistheroot typeof all network objects. A Net Obj . Addr ess designates aprogram
instance.

PROCEDURE Locate (host: TEXT): Address
RAI SES {Invalid, Error, Thread. Al erted};

Return an address for the default agent at the machine whose human-sensible name is
host.

The naming convention used by Locat e is system-dependent. For example, in an Internet
environment, Locat e(" decsr c. pa. dec. cont') returnsthe address of the default agent on
the machine decsr ¢ inthe DEC Palo Alto Internet domain.

Locat e raises| nval i dif it determinesthat host isnotavalid name. ItraisesEr r or if it
isunabletointerpret the name or determineitsvalidity, typically becauseit isunableto contact
the naming authority, or if there is no standard agent running on the specified host.

PROCEDURE Export (nane: TEXT; obj: T, where: Address := NL)
RAI SES {Error, Thread. Al erted};

Set t abl e[nane] : = obj wheret abl e is the table provided by the agent whose
address iswher e, or by the default agent for the local machine if wher e=NI L. This can
be used with obj =NI L to remove an entry from the table.

PROCEDURE | nport (nanme: TEXT; where: Address := NIL): T
RAI SES {Error, Thread. Al erted};

Return t abl e[nane] wheret abl e is the table provided by the agent whose address
iswher e, or by the default agent for the local machine if wher e=NI L. | nport returns
NI L if t abl e contains no entry for nane.

EXCEPTI ON Error (AtonlList.T), Invalid,

VAR (* CONST*)
Commfai l ure, M ssingObject, NoResources,
NoTr ansport, UnsupportedDataRep, Alerted: AtomT;

END Net Obj .

The exception Net Obj . Err or indicates that a failure occured during a remote method in-
vocation. Every remote method should therefore include this exception in its raises clause.
If Net Obj . Err or isnot raised, then the invocation completed successfully. If itisraised, it
may or may not have compl eted successfully. Itispossiblethat an orphaned remoteinvocation
continued to execute at the owner, whilethe client raised Net Qoj . Error.

The first atom in the argument to Net Qbj . Er r or explains the reason for the failure; any
subsequentsatomsprovideimplementation-specificdetail. Theatom Conmf=ai | ur e indicates
communication failure, which might be network failure or acrash on aremote machine. The
atom M ssi ngQbj ect indicates that some network object, either the one whose method is

22

invoked or an argument to that method, has been garbage-collected by its owner. (Thisindi-
cates that the owner mistakenly determined that one of its clients was dead.) NoResour ces
indicates that the call failed because of alack of resources, for example Unix file descrip-
tors. NoTr anspor t indicatesthat an attempt to unmarshal an object failed because the client
and owner shared no common transport protocol implementation and were therefore unable
to communicate. Unsuppor t edDat aRep indicates a mismatch between the network repre-
sentation of dataand the ability of areceiver to handleit, for example a64-bit | NTEGER with
non-zero high-order bits is not meaningful as an | NTEGER on a 32-bit machine. Al ert ed
indicates that a client thread was aerted in the middle of aremote call and that an orphaned
remote computationmight still bein progress. (Threadsalerted inremotecallsmight alsoraise
Thr ead. Al ert ed; inwhich caseit isguaranteed that no orphansremain.) If thefirst atomin
the argument list does not appear in thisinterface, a network object runtime error isindicated.

3.2 NetStream interface

The Net St r eaminterface describes the marshaling of readers and writers, and provides pro-
cedures that you will need to useif you plan to reuse a stream after marshaling it.

The network object runtime alows subtypesof Rd. T and W . T to be marshaled as parame-
ters and as results of remote method invocation. To communicate areader or writer from one
program to another, a surrogate stream is created in the receiving program. We call the origi-
nal reader or writer the concrete stream. Datais copied over the network between the concrete
stream and the surrogate stream. Surrogate streamsare free-standing entities, valid beyond the
scope of the remote call that produced them. Data can be transmitted on a surrogate stream at
close to the bandwidth supported by the underlying transport.

Theinitial position of the surrogate reader or writer equal sthe position of the corresponding
concrete stream at thetimeit wasmarshaled. All surrogate readers and writers are unseekable.
Dataistransferred between surrogates and concrete streamsin background. Therefore, unde-
fined behaviour will result if you 1) perform local operations on the concrete stream while a
surrogate for it exists, or 2) create two surrogates for the same stream by marshaling it twice.
There is a mechanism, described below, for shutting down a surrogate stream so that the un-
derlying stream can be remarshaled.

Cdling W . Fl ush on asurrogate writer flushes all outstanding data to the concrete writer
and flushes the concrete writer. Calling W . O ose flushes and then closes both the surrogate
and the concrete writer. Similarly, acall on Rd. C ose on asurrogate closes both readers.

Clientswho marshal streamsretain responsibility for closingthem. For example, Rd. Cl ose
on a surrogate can fail due to the network, leaving the owner responsible for closing the con-
crete reader. The WeakRef interface can be used to register a GC cleanup procedure for this
purpose.

The Rel easeW procedure is used to shut down a surrogate writer so that the underlying
writer can be reused. It flushes any buffered data, closesthe surrogate, and frees any network
resources associated with the surrogate. It leaves the concrete writer in a state where it can be
reused locally or remarshaled.

Similarly. the Rel easeRd procedure is used to shut down a surrogate reader so that the
underlying reader can be reused. It closes the surrogate, frees any network resources associ-
ated with the surrogate, and leaves the concrete reader in a state where it can be reused lo-
caly or remarshaed. Thereisan important difference between releasing readers and writers:

23

Rel easeRd discards any data buffered in the surrogate or in transit.

| NTERFACE Net St ream
| MPORT Rd, W, Thread,;
PROCEDURE Rel easeRd(rd: Rd.T)
RAI SES {Rd. Fai | ure, Thread. Al erted};

If r d is asurrogate reader, release all network resources associated with r d, discard all
buffered data, closer d, but do not close the concrete reader for r d. This procedureis a
no-op if r d is not a surrogate.

PROCEDURE Rel easeW (w: W.T)
RAI SES {W . Fai l ure, Thread. Al erted};

If wr is asurrogate writer, flush wr, release all network resources associated with wr,
close wr, but do not close the concrete writer for wr . This procedureis ano-op if wr is
not a surrogate.

END Net St ream

3.3 NetObjNotifier interface

TheNet bj Not i fi er interfacealowsthe holder of asurrogate object to request notification
of when the object’s owner becomes inaccessible. This can be useful, for example, if it is
necessary to remove surrogates from a table upon termination of the programs holding their
corresponding concrete objects.

| NTERFACE Net Obj Not i fi er;
| MPORT Net Qnj ;

TYPE
Owner St ate = {Dead, Fail ed};

Noti fi erC osure = OBJECT METHODS
notify(obj: NetCbj. T, st: OmnerState);
END;

PROCEDURE AddNotifier(obj: NetObj.T; cl: Notifierd osure);

Arrangethat acall tocl . noti fy will be scheduled when obj becomes inaccessible.
If obj is not a surrogate object then AddNot i fi er has no effect. If obj is aready
inaccessible at thetime AddNot i fi er iscalled, thenacall tocl . not i fy isscheduled
immediately.

END Net Cbj Noti fier.

Thenot i fy methodof aNot i fi er Cl osur e object isinvoked when the concrete object cor-
responding to the surrogate obj becomes inaccessible. The procedure AddNot i fi er must
have been called to enable this notification. There may be morethanoneNot i fi er Cl osur e
for the same surrogate. At notification time, the st argument isDead if and only if the object

24

owner is known to be permanently inaccessible. Otherwisest isFai |l ed. It is possiblefor
not i f y to be caled multiple times on the same object. Any invocations on obj are guaran-
teed to fail in atimely fashion subsequent to aclosure notification with st = Dead.

In general, a surrogate object can still be collected if a notifier closure is registered for it.
However, if the closure object contains areference to the surrogate, then its registration might
delay or prevent collection. Therefore this should be avoided.

Although this interface is organized to enable notification of owner desth on a per object
basis, in practice thisis achieved by monitoring the state of the owner’s address space. This
means that death notification will be more or less simultaneousfor al surrogates whose con-
crete objects have the same owner.

3.4 Thestub generator

The stub generator isaprogram that generates stubsfor Modul a3 network object types. There
arerestrictions on the subtypes of Net Obj . T for which the stub generator can produce stubs;
anetwork object type that obeysthem issaid to be valid. Hereisalist of these restrictions:

1. A valid network object type must be pure, that is it cannot contain data fields, either in
itsdeclaration or in arevelation.

2. To generate stubs for a network object | . T, the stub generator must be able to deter-
mine a complete revelation for all opaque supertypesof | . T (including | . T itself, if it
is opaque) up to Net Obj . T.

3. A method argument may not be of type PROCEDURE or have a component that is of type
PROCEDURE. (A network object with an appropriate method can always be sent instead
of aprocedure.)

4. A Modula-3 method declaration specifiesthe set of exceptionsthat the method can raise.
It is possible to specify (via RAI SES ANY) that any exception can be raised, but thisis
not allowed for avalid network object type.

5. The methods of the type and its supertypes must have distinct names.

Given avalid network object type, the stub generator lays down code that implements pa-
rameter marshaling and remote invocation for that type’'s methods. For both arguments and
results, subtypes of Net Obj . T are marshaled as network references, subtypes of Rd. T and
W . T are marshaled as surrogate streams, and al other parameters are marshaled by copying.
The copying is performed by the pickles package if the parameter is a reference.

VAL UE and READONLY parameters are copied only once, from the caller to the owner of the
object. VAR parametersare normally copied from caller to owner onthecall, and from owner to
caller whenthecal returns. The pragma<* OUT* > on aVAR parameter inamethod declaration
indicatesthat the parameter may be given an arbitrary legal value when the method isinvoked.
The stub generator may use this information to optimize method invocation by not copying
the parameter’s value from caller to owner. At present, the stub generator does not make this
optimization.

Any changein marshaling protocol that would make stubsincompatibleisimplemented asa
new version of thestub generator. Typically, the previousversionwill continueto be supported

25

for sometimeafter therelease of anew one. Thus, multipleversionsof the stub generator may
sometimes exist at the same time.

Stubs for multiple versions may be linked into the same program. Method invocation be-
tween two programsis possible so long as the owner and the caller have at |east one common
version of the stubsfor the network object in question. The network object runtime will use
the most recent version of the protocol that is available in both programs. Thisallows gradual
migration of applications from the old to the new protocol.

4 Internal Interfaces

In this section we present the main internal systemsinterfaces. Thetypical programmer using
network objects has no need to read them, but we present them here in order to document the
structure of the system. These are the interfaces you would use to write anew stub generator,
hand-code stubsfor some particular network object type, or add anew transport to the system.

41 StubLibinterface

Thisinterface contains procedures to be used by stub code for invoking remote object meth-
ods and servicing remote invocations. Each stub module provides type-dependent network
support for marshaling and unmarshaling method calls for a specific subtype of Net bj . T.
Usually, stubs are built automatically. For each Net Obj . T subtype T intended to support re-
mote method invocation there must be both a client and aserver stub. The client stub definesa
subtypeof T inwhich every method isoverridden by aprocedureimplementingremote method
invocation. Such a surrogate object is constructed by the network object runtime whenever a
reference to a non-local object is encountered. The server stub consists of asingle procedure
of type Di spat cher that is caled to unmarshal and dispatch remote invocations. A surro-
gate type and null dispatcher for Net Obj . T are defined and registered by the network object
system itself.

| NTERFACE St ublLi b;
| MPORT Atom AtonList, NetObj, Rd, W, Thread,

TYPE Conn <: ROOCT;

A remote object invocation can be viewed as an exchange of messages between client and
server. The messages are exchanged via an object of type Conn, which is opaque in thisin-
terface. The St ubConn interface reveals more of thistype's structure to clients who wish to
hand-code stubs for efficiency. A Conn is unmonitored: clients must not access it from two
threads concurrently.

TYPE
Byte8 = BITS 8 FOR [0. . 255];
Dat aRep = RECORD
private, intFnt, floatFnt, charSet: Byte8;
END;

VAR (*CONST*) NativeRep: DataRep;

26

ThetypeDat aRep describesthe format used to encode characters, integers, and floating point
numbersin network data. Dataisawaysmarshaedinthesender’snativeformat. Nat i veRep
isaruntime constant that describes the native format of the current environment.

Stubs may optimizein-lineunmarshaling by first checking that the incoming representation
isthe same as the native one for all datatypesrelevant to the call. If it is not, then the generic
data unmarshaling routines at the end of thisinterface should be used.

Automatic conversion between the data representations is performed wherever possible. If
conversionisimpossible, Net Qbj . Er r or israised with Net Obj . Unsuppor t edDat aRep in
the argument atom list.

Concrete values for the elements of Dat aRep are not defined here asit is sufficient to com-
pare against Nat i veRep and invoke the marshaling procedures defined below if the encoding
isnon-native.

TYPE
Int32 = BITS 32 FOR [-16_7FFFFFFF- 1. . 16_7FFFFFFF] ;
St ubPr ot ocol = | nt32;

CONST
Nul | St ubPr ot ocol = -1;

Syst entt ubPr ot ocol = 0O;

The type St ubPr ot ocol indicates the version of the stub compiler used to generate a par-
ticular stub. Multiple stubsfor the same network object can coexist within the same program
(for example, the outputs of different stub compilers). During surrogate creation, the network
object runtime negotiates the stub protocol version with the object owner.

Nul | St ubPr ot ocol isaplaceholder to indicate the absence of a stub protocol value. The
value Syst enfst ubPr ot ocol indicatesthe fixed stub encoding used by the runtimetoimple-
ment primitivesthat operate prior to any version negotiation.

VAR (*CONST*) Unmarshal Failure: Atom T;

Unmar shal Fai | ur e should be used as an argument to Net Obj . Er r or whenever stubs en-
counter anetwork datum that isincompatiblewith the target type. For example, the stub code
might encounter a CARDI NAL value greater than LAST(CARDI NAL) or an unrecognized re-
mote method specification.

TYPE Typecode = CARDI NAL;
Typecode isthetype of those values returned by the Modula-3 TYPECODE operator.

PROCEDURE Regi st er (
pureTC. Typecode; stubProt: StubProtocol;

surrTC: Typecode; disp: Dispatcher);
Let T be the type whose typecode is pur e TC, and let sr gT be the type whose typecode
issurr TC Set the client surrogate type and dispatch procedure for T to besr gT and
di sp, respectively. The st ubPr ot parameter indicates the stub compiler version that
generated the stub being registered.

The following constraint applies to stub registration. If stubs are registered for types Aand B,
where B is a supertype of A, then the protocol versions registered for B must be a superset of

27

the versions registered for A. If thisruleis violated, attemptsto invoke remote methods may
raiseNet Qoj . Error.

Note that a concrete object of type A will receive method invocations only for stub versions
for which Aisregistered. Thisistrue evenif asupertypeof Aisregistered with additional stub
versions.

Regi st er must be called before any object of type T ismarsha ed or unmarshal ed.

Client stub procedures

Hereisasimplified sketch of the procedure calls performed by aclient to make a remote call
to amethod of obj :

VAR
c := StartCall (obj, stubProt);
resDat aRep: Dat aRep;
BEG N
<marshal to "c" the nunber of this method>
<marshal to "c" the method arguments>

resDat aRep : = Awai t Result (conn);
<unmarshal from"c" the method results>
<results will be in wire format "resDat aRep">
EndCal | (c, TRUE)

END;

For both arguments and results, the sender lways marshals values in its native format; the
receiver performs any conversions that may be needed. The procedure result typically begins
with an integer specifying either anormal return or an exceptional return. If a protocol error
occurs, theclient shouldcall EndCal | (¢, FALSE) insteadof EndCal | (¢, TRUE).Thisre-
quiresTRY FI NALLY instead of the simplestraight-line code above; amorecompleteexample
is presented in the next section.

Here are the specifications of the client protocol procedures:

PROCEDURE StartCall (obj: NetObj.T; stubProt: StubProtocol): Conn
RAI SES {Net Ovj . Error, W.Failure, Thread. Al erted};

Return a connection to the owner of obj , write to the connection a protocol request to
perform a remote method call to obj , using the data representation Nat i veRep. The
valuest ubPr ot isthe stub protocol version under which the arguments and results will
be encoded.

Upon return from St ar t Cal | , the client stub should marshal a specification of the method
being invoked followed by any arguments.

PROCEDURE Awai t Result (c: Conn): DataRep
RAI SES {Net Ovj . Error, Rd.Failure, W.Failure,
Thr ead. Al ert ed};

Avai t Resul t indicates the end of the arguments for the current method invocation,
and blocks waiting for a reply message containing the result of the invocation. It returns
the data representation used to encode the result message.

28

Upon return from Awai t Resul t the client stub should unmarshal any results.

PROCEDURE EndCal | (c: Conn; reUse: BOOLEAN)
RAI SES {Net Qvj . Error, Rd.Failure, W.Failure,

Thr ead. Al ert ed};

EndCal I must be called at the end of processing a remote invocation, whether or not
the invocation raised an exception. The argument r eUse must be FALSE if the client
has been unable, for any reason, to unmarshal either a normal or exceptional result.
It is always safe to call EndCal | with r eUse set to FALSE, but performance will be
improved if r eUse is TRUE whenever possible.

EndCal | determines, by examiningc, whether the result message requires acknowledgement,
that is, whether the result contained any network objects. If an acknowledgement is required,
itissent. EndCal | thenreleasesc. After EndCal | returns, c should not be used.

Server dispatcher procedures
Next we consider the server-side stub, which consists of a registered dispatcher procedure.

TYPE Di spat cher = PROCEDURE(
c: Conn; obj: NetCbj.T; rep: DataRep; stubProt: StubProtocol)

RAI SES {Net Ovj . Error, Rd.Failure, W.Failure, Thread. Al erted};

A procedure of typeDi spat cher isregistered for each network object type T for which stubs
exist. Thedispatcher is called by the network object runtimewhen it receives a remote object
invocation for an object of type T. The r ep argument indicates the data representation used
to encode the arguments of the invocation. The st ubPr ot argument indicates the version of
stub protocol used to encode the call arguments. The same protocol should be used to encode
any results.

The dispatcher procedure is responsible for unmarshaling the method number and any ar-
guments, invoking the concrete object’s method, and marshaling any results.

Hereisasimplified sketch of atypical dispatcher:

PROCEDURE Di spatch(c, obj, rep) =

BEG N
<unmarshal from"c" the nethod nunber>
<unmar shal from"c" the nethod argunent s>
<argunments will be in the wire format "rep">
<call the appropriate method of "obj">
StartResult(c);
<marshal to "c" the method result or exception>

END Di spat ch;

Here isthe specification of St art Resul t :

PROCEDURE St art Result(c: Conn)
RAI SES {W . Fai lure, Thread. Al erted};

St art Resul t must be called by the server stub to initiate return from a remote
invocation before marshaling any results.

29

Uponreturnfrom St ar t Resul t thestub code should marshal any resultsor error indications.

Marshaling of reference types
The following procedures are made available for marshaling of subtypes of REFANY.

PROCEDURE Qut Ref (c: Conn; r: REFANY)
RAI SES {W . Fai l ure, Thread. Al erted};

Marshal the data structure reachable from r . Certain datatypes are handled specially:
subtypes of Net Gbj . T are marshaled as network references. Subtypes of Rd. T and
W. T are marshaled as surrogate streams. The types TEXT and REF ARRAY OF TEXT
are marshaled by copying via custom code for speed. All others are marshaled by
copying as pickles. Subtypes of Net Gbj . T, Rd. T, and W. T which are embedded
within other datatypes are also marshaled by reference.

PROCEDURE | nRef (c: Conn; rep: DataRep; tc:=-1): REFANY

RAI SES {Net Ovj . Error, Rd.Failure, Thread. Al erted};
Unmarshal a marshaled subtype of REFANY as pickled by Qut Ref. If t ¢ is non-
negative, it is the typecode for the intended type of the reference. The exception
Net Qbj . Error (Unmar shal Fai | ure) israised if theunpickled result is not a subtype
of thistype. If t c is negative, no type checking is performed.

CQut Ref and | nRef use pickles and therefore are affected by any custom pickling procedures
that have been registered. The network objects runtimeitself registers procedures for pickling
network objectsand streams. Therefore, for any network objectsor streamsthat are reachable
from thereference r are pickled by reference as described el sewhere in this report.

Marshaling of generic data

The St ubLi b interface also provides a suite of procedures to facilitate the marshaling and
unmarshaling of primitivedatatypes. For the sake of brevity, we usethe| NTEGER datatype as
an example. The actual interface provides routinesto handle all other typesthat are primitive
in Modula-3 such as CARDI NAL, REAL, and L ONGREAL.

PROCEDURE CQut I nteger(c: Conn; i: |NTEGER)
RAI SES {W . Fai l ure, Thread. Al erted};

PROCEDURE | nl nt eger (c: Conn; rep: DataRep;
mn := FIRST(I NTEGER); max := LAST(INTEGER)): | NTECER

RAI SES {Net Ovj . Error, Rd.Failure, Thread. Al erted};

Since al marshaling procedures output their parameters in the native representation of the
sender, they can betrivially replaced by inline code that manipulatesthe writer buffer directly.
All unmarshaling procedures decode the incoming wire representation as indicated by r ep
and return their results in native format. These procedures can be replaced by inline unmar-
shaling code whenever the relevant elements of r ep match the corresponding elements of
Nat i veRep.

30

Finally, theSt ubLi b interface providestwo proceduresfor raising Net Cbj exceptionscon-
veniently:
PROCEDURE Rai seUnmar shal Fai |l ure() RAI SES {Net Qvj . Error};
Raise Net Qbj . Er r or with UnmarshalFailure in the argument list.

PROCEDURE Rai seCommtai |l ure(e: Atonlist.T) RAISES {Netbj.Error};
Raise Net Qbj . Er r or with the result of prepending Net Gbj . Conmtai | ur e toe.

END St ubLi b.

4.2 Anexample stub
Thissubsectionillustratesthe use of the St ubLi b interface by presenting hand-generated stub
code for a simple network object type, Exanpl e. T:

| NTERFACE Exanpl e;

| MPORT Net Qbj, Thread;

EXCEPTI ON I nval i d;

TYPE
T = NetObj . T OBJECT METHODS
get (key: TEXT) : TEXT
RAI SES {Invalid, NetQoj.Error, Thread. Al erted};
END;

END Exanpl e.

Notice that the object methods must raise Net Qbj . Er r or or else communications failures
will be treated as checked runtime errors. Also notice that Thr ead. Al ert ed is present in
the RAI SES clause of al methods. Thisis not required, but is strongly advised. If an ob-
ject method does not propagate the Thr ead. Al er t ed exception, then not only is it impos-
sibleto aert remote invocations, but the server implementation must guarantee that Al er t ed
will never be raised. This guarantee must hold even though the network object runtime uses
Thread. Al ert torecover server threads when the client address space dies.
The following module defines and registers both client and server stubs for Exanpl e. T:

MODULE Exanpl e;
| MPORT Net Qbj, StubLib, Thread, Rd, W;

TYPE P ={ Gt }; R={ O Invalid };
The enumerated types P and R define val ues to be associated with the methods of T and with
the various results (normal return or exception) of these methods.

TYPE StubT = T OBJECT OVERRI DES get := SurrogateGet; END;

Thetype St ubT is the surrogate object type for T. It provides method overrides that perform
remote invocation.

31

CONST StubVersion = StubLib. Syst entst ubPr ot ocol ;

This constant will be set by the stub generator to denote the stub generator version that created
agiven stub.

PROCEDURE SurrogateGet (t: StubT; key: TEXT) : TEXT
RAI SES {Invalid, NetCbj.Error, Thread. Al erted} =
VAR reuse := FALSE;
rep: StubLib. Dat aRep;
c: StubLib. Conn;

res: TEXT,
BEG N
TRY
c := StubLib.StartCall(t, StubVersion);
TRY

StubLi b.QutlInt32(c, ORD(P. Get));
St ubLi b. Qut Ref (¢, key);
rep := StubLib. AwaitResult(c);
CASE StubLib.Inlnt32(c, rep) OF
| ORD(R OK) =>
res := StubLib.lInRef(c, rep, TYPECODE(TEXT));
reuse : = TRUE;
| ORD(R Invalid) =>
reuse : = TRUE;
RAI SE | nval i d;
ELSE
St ubLi b. Rai seUnmar shal Fai l ure();
END;
FI NALLY
St ubLi b. EndCal | (¢, reuse);
END;
EXCEPT
| Rd.Failure(ec) => StubLib. Rai seCommfail ure(ec);
| W.Failure(ec) => StubLib. Rai seConmfai |l ure(ec);
END;
RETURN res;
END Surrogat eCet;

I nvoke isthe server stub dispatcher for T. It is called when the network object runtime re-
ceives amethod invocation for an object of typeT.

PROCEDURE | nvoke(
c: StubLib. Conn; obj: NetQoj.T; rep: StubLib. DataRep;
<* UNUSED* > st ubProt: StubLib. StubProtocol)
RAI SES {Net Ovj . Error, Rd.Failure, W.Failure,
Thread. Alerted} =
VAR t := NARRON obj, T);
BEG N
TRY
CASE St ubLi b. I nlnt32(c, rep) OF
| ORD(P.Get) => GetStub(c, t, rep);
ELSE St ubLi b. Rai seUnmar shal Fai |l ure();

32

END;
EXCEPT
| Invalid =>
StubLi b. Start Result(c);
StubLi b. Qutlnt32(c, ORD(R Invalid));
END;
END I nvoke;

There is one server side stub procedure for each method of T.

PROCEDURE Get Stub (c: StubLib.Conn; t: T; rep: StubLib. Dat aRep)
RAI SES {Invalid, NetQbj.Error, Rd.Failure,
W . Failure, Thread. Al erted} =

VAR key, res: TEXT,

BEG N
key := StubLib.InRef(c, rep, TYPECODE(TEXT));
res :=t.get(key);
StubLi b. Start Result(c);
StubLib.QutlInt32(c, ORD(R OK));
St ubLi b. Qut Ref (c, res);

END Get St ub;

All stub codeis registered with the network object runtime by the main body of the stub mod-
ule. The protocol number is set to the stub protocol constant defined above.

BEG N
St ubLi b. Regi st er (
TYPECODE(T), StubVersion, TYPECODE(StubT), Invoke);

END Exanpl e.

4.3 StubConninterface

A St ubLi b. Conn represents a bidirectional connection used to invoke remote methods by
the network objects runtime. Here we reveal that a connection c consists of a message reader
c. rd and amessage writer c. wr .

Connections comein matching pairs; the two elements of the pair are typicaly in different
address spaces. If c1 and c2 are paired, thetarget of c1. wr isequal to the source of c2. rd,
and viceversa. Thusthe messageswrittentocl1. wr can beread fromc2. r d, and vice versa

| NTERFACE St ubConn;
| MPORT MsgRd, MsgW, Stublib;
REVEAL St ubLi b. Conn <: Publi c;

TYPE Public = OBJECT rd: MsgRd. T; w: MsgW.T END;
END St ubConn.

ThetypesMsgW . Tand MsgRd. T are subtypesof thestandard Modula-3 stream typesw . T
and Rd. T; they are described in detail in the next subsection. Since they are subtypes, any of

33

the standard stream operations can be used on them. For example, in a hand-coded stub you
could replace the pair

St ubLi b. Qut Byt e(c, byte)
b := StubLib.InByte(c)

with the pair

W . Put Char(c.w, VAL(byte, CHAR))
b := ORD(Rd. Get Char(c.rd)).

Thegain in speed from this change will be very modest. To make optimization worthwhile,
you will want to make direct access to the buffers in the reader and writer. To do this, import
theRdd ass and W O ass interfaces[18]. Importing these interfaces will allow you to write
stubsthat operate directly on the reader and writer buffers.

If you use this optimization, you will have to be careful about locks. All readers and writ-
ers contain an internal lock used to serialize operations. It is arequirement of the St ubLi b
interface that all parameters of type Conn be passed with both streams unlocked. It isafur-
ther requirement that no client thread operate on the streamswhile an activation of aSt ubLi b
procedureisin progress.

44 Messagereadersand writers

The byte streams of the readers and writersin a St ubLi b. Conn are divided into segments
called messages. Messages are convenient for delineating call and return packets, and seem
essentia for sending both data and control information for surrogate streams.

We define the types MsgRd. T and MsgW . T to present the abstraction of a stream of mes-
sages. A message isa sequence of bytesterminated by an end-of-message marker. Theinitial
positionisat the start of the first message. M essages can be of zero length.

If the end-of-message marker is encountered while reading from a MsgRd. T, it is repre-
sented by EndOf Fi | e on the reader. The next Msg method can be used to advance to the
next message in the stream. This method waits for the next message and returns TRUE when
it becomes available. A return value of FALSE indicates that there are (and will be) no further
messages. Thereader’s current position isset to zero on return from next Msg, and the reader
no longer reports EndOf Fi | e (unless of course the next message is zero length).

If next Msg is invoked when the reader is not at EndOf Fi | e, the remaining bytes in the
current message are skipped.

Asfor al readers, calling Rd. O ose onaMsgRd. T releases al associated resources.

Hereisalisting of the interface:

| NTERFACE MsgRd;

| MPORT Thread, Rd;

TYPE
T = Rd. T OBJECT METHODS
next Msg(): BOOLEAN RAI SES {Rd. Fai l ure, Thread. Al erted};
ND;

END MsgRd.

As with a MsgRd. T, the next Msg method of a MsgW . T can be used to end the current
message and position the writer at the start of the next message. Thewriter’s current position
isreset to zero on return from next Msg.

Invoking W . Fl ush onaMsgW . T flushes the current buffer to the abstract writer target,
but does not end the current message.

Asfor al writers, callingW . d ose onaMsgW . Treleasesall associated resources. Cl ose
also flushes and terminatesthe current message. Thismeansthat azero-length messageissent
a closetimeif no data has been written into the current message (for example, directly after
next Msg or writer initialization).

Hereisalisting of the interface:

| NTERFACE MsgW ;
| MPORT Thread, W;

TYPE
T =W.T OBJECT METHODS
next Msg() RAISES {W. Failure, Thread. Al erted};
D,

END MsgW .

There are two final clauses in the specification of message readers and message writers.
First, their buffers must be word-aligned in memory. More precisely, if bytei in the data
stream is stored in the buffer at memory addressj , theni andj must be equal modulo the
machine word size. This requirement allows optimized stubs to read and write scalar word
valuesfrom the buffer efficiently. Second, their buffers must not betoo small. More precisely,
when the next Msg method of awriter returns, there must be at least 24 bytes of free spacein
the writer buffer, and when the next Msg method of areader returns, there must be at least 24
bytes of message dataiin the reader buffer. This requirement allowsthe runtimeto efficiently
read and write the headers required by the network object protocol.

45 Transport interface

The Tr anspor t interface separates the main part of the network object runtime system from
the partsthat deal with low-level communication. It istheinterface that must be implemented
to extend the system to use new communication protocols. Theinterfaceisreasonably narrow:

| NTERFACE Tr ansport;
| MPORT Net Cbj, NetQbj Notifier, StubLib, StubConn, Thread,

TYPE
T < Public;
Endpoi nt = TEXT,;
Public = OBJECT METHODS
f romEndpoi nt (e: Endpoint): Locati on;
t oEndpoi nt (): Endpoi nt;
serviceCall (t: StubLib.Conn): (*reUse*) BOOLEAN
RAI SES {Thread. Al ert ed};
END;

35

Location <: LocationP;

Locati onP = OBJECT METHCODS
new(): StubLib. Conn RAI SES {Net Qbj.Error, Thread. Al erted};
free(c: StubLib. Conn; reUse: BOOLEAN);
dead(st: Net Cbj Notifier.OanerState);

END;

Conn = St ubConn. Publ i ¢ BRANDED OBJECT
| oc: Location
END;

REVEAL

Net Qbj . Addr ess = BRANDED REF ARRAY OF Endpoi nt;
St ubLi b. Conn <: Conn;

END Transport.
The main ideas in the interface were described earlier. To summarize these briefly:

e A Transport. Tisan object that manages connections of some particular class (e.g.,
TCP).

e A Transport. Locat i onisan object that creates connections of some particular class
to some particular address space.

e A Transport . Endpoi nt isatransport-specific name for an address space (e.g., an IP
address plus aport number plus a non-reusabl e process ID).

e Thef r onEndpoi nt method of atransport converts an endpoint into alocation, or into
NI L if the endpoint and transport are of different classes.

Here are specifications for the methods of aTr ansport. T:

e Thet oEndpoi nt method returns an endpoint for the address space itself. Theresulting
endpoint should be recognized by thef r onEndpoi nt method of transports of the same
classanywhereinthenetwork. Thatis, if programinstanceP callst r. t oEndpoi nt (),
producing an endpoint ep, thenthecal t r 1. f r onEndpoi nt (ep) executed inany pro-
gram instance either returns NI L (if t r and t r 1 are of different classes) or returnsalo-
cation that generates connectionsto P.

e Transports are required to provide the threads that listen to the server sides of connec-
tions. When a message arrives on the connection indicating the beginning of a remote
cal, thethreads arerequired to cal theser vi ceCal | method of their transport. Thede-
fault value of thismethod locates and calls the dispatcher procedure. Ordinarily atrans-
port implementation will not need to overridetheser vi ceCal | method. If conn isthe
argument to ser vi ceCal | , then at entry conn. r d is positioned at the start of the in-
comingmessage. Theser vi ceCal | method processes theincoming remoteinvocation
and sendstheresultonconn. wr . If it returns TRUE, then theremote invocati on was pro-
cessed without error and the transport can cache the connection. If it returns FALSE, a
protocol error occurred during the call, and the transport implementation shoul d destroy
the connection.

36

And here are the specifications for the methods of a Tr ansport . Locat i on:

e The newmethod of alocation returns a connection to the address space for which it is
alocation. Thecall | oc. new() returns a connection whose server sideis that address
space and whose client side is the program instance making the call. The caller must
pass the resulting connectionto | oc. f r ee when it isfinished withit.

e Thecadlloc.free(c, reUse) freestheconnection c, which must have been gener-
ated by | oc. new() . If r eUse iSTRUE, the client assertsthat the connectionisin a suit-
able state for executing another remote method cal. In particular, c. w must be posi-
tioned at the beginning of a message.

e A transport isresponsible for monitoring the liveness of program instances for which it
has locations or connections. The method of monitoring depends on the transport. For
example, the transport might periodically ping the other program instances. A program
isconsidered dead if it exits, crashes, or if the underlying communication network cannot
reach it for an appreciable amount of time. Supposethat | oc isalocation that generates
connections to some program instance P. If P dies, the transport that provided | oc is
responsible for calling the method | oc. dead(st) . (The network object runtime im-
plements this method; the transport should not override it.) The argument st indicates
whether thetransport has detected apermanent failure, or onethat ispotentially transient.
Inadditiontocallingl oc. dead, thetransportisresponsiblefor aertingall threadsit has
spawned to handle method invocations on behaf of P.

A transport is expected to manage the connections it creates. If creating connections is ex-
pensive, then the transport’s locations should cache them. If maintaining idle connections
is expensive, then the transport’s locations should free them. Often connections are time-
consuming to create, but then tie up scarce kernel resources when idle. Therefore transports
typically cache idle connections for alimited amount of time.

The Tr anspor t interface reveals the representation of Net Obj . Addr ess: an addressis
simply an array of endpoints for the program instance designated by the address. The end-
pointsare generally of different transport classes; they provide aternative ways of communi-
cating with the program instance. The modules of the network object runtimethat requirethis
revelation are exactly the modules that import the transport interface, so thisis a convenient
placeto put it.

TheTr anspor t interface also reveals moreinformation about thetype St ubLi b. Conn. If
t isaSt ubLi b. Conn,thent.| oc isalLocati on that generates connectionsto the program
instance at the other end of t . The connections generated by t . | oc connect the same pair of
programinstancesthatt connects, butift isahandleonthe server side of the connection, then
the connections generated by t . | oc will reverse the direction of t : their client side will be
t 'sserver side, and vice versa (so-called back connections). On the other hand, if t isahandle
on the client side of the connection, then the connections generated by t . | oc will bein the
samedirection ast . A transport must ensure that thel oc field is defined in all connections
returned by any of itslocations.

37

5 Performance

Our system was designed and implemented in ayear by the four authors. The network object
runtime is 4000 lines, the stub generator 3000 lines, the TCP transport 1500 lines, the pickle
package 750 lines, and the network object agent 100 lines. All the codeisin Modula-3.

We haven't attempted extensive performance optimization, but we have measured thetimes
for some basic operations. The numbers given in Table 1 were taken using Digital worksta-
tions equipped with DECchip 21064 processors (at 175 MHz) running OSF/1 and communi-
cating over a 100 megabit/sec AN1 network[22]. The numbers include the cost of Modula-3
runtime checks.

Table 1: Sample remote invocation timings

Call parameters Elapsed time/call
Null call 960 usec
Ten integer arguments 1010 usec
REF CHAR argument 1280 usec
Linked list argument 5200 usec
Network object argument (s) 1030 usec
Network object argument (c) 1050 usec
Network object argument (¢, d) 2560 usec
Network object result (s) 1180 usec
Network object result (¢) 1190 usec
Network object result (¢, d) 2680 usec

(c) concrete object marshaled
() surrogate object marshaled
(d) dirty call required

On our test configuration, it takes 660 microseconds for a C program to echo a TCP packet
from user space to user space. A null network object method invocation takes an additional
300 microseconds. The difference is primarily due to the cost of two Modula-3 user space
context switches (64 microseconds), the cost of marshaling and unmarshaling the object whose
null method is being invoked, and the cost of the wire protocol used to frame invocation and
result packets.

Theten integer argument test showsthat theincremental cost of an integer argument isabout
5 microseconds. The REF CHAR test measures the cost of marshaling asmall data structure by
pickling. This minimal use of the pickle machinery adds an additional 220 microseconds to
the null call. Thelinked list test measures the cost of marshaling a complex data structure, in
this case a doubly-linked list with 25 elements. The additional cost per e ement isroughly 80
microseconds.

The next six tests show the total cost of various calls involving a single network object ar-
gument or result (in addition to the object whose method isbeing invoked). An“(s)” indicates
that the argument or result is marshaled as a surrogate and unmarshaled as a concrete object.
A “(c)” indicatesthat the argument or result ismarshal ed asa concrete object and unmarshaled

38

asasurrogate. A “(d)” indicatesthat adirty call isrequired.

The incremental cost of a surrogate network object argument that does not lead to a dirty
call isroughly 70 microseconds. A concrete network object argument is somewhat more ex-
pensive. If adirty call isrequired, thereisan additional cost of about 1500 microseconds.

Network object results are more expensive than arguments, because of the acknowledge-
ment that must be sent when the result message contains a network object. In theteststhat do
not involve dirty calls, this cost shows up as a difference of approximately 150 microseconds,
but in the tests that do involvedirty calls the cost seemsto belost in the noise.

We a so measured the performance of marshaled readers and writers. Since thereisonly a
minimal layer of protocol between marshaled data streams and the underlying network trans-
port, thereislittle difference in bandwidth. In the test configuration described above, our im-
plementation delivers over 95 percent of the full network bandwidth (100 MBits/sec). We at-
tributeour failureto achieve full network bandwidthto the cost of user-space thread emulation,
Unix non-blocking I/O, and TCP protocol overhead.

The purpose of our project wasto find an attractive design, not to optimize performance, and
our numbers reflect this. Nevertheless, the performance of our system is adequate for many
purposes. It iscompetitivewith the performance of commercially available RPC systems[2(0],
and we believe that our design does not preclude the sort of performance optimizations re-
ported in the literature[23, 27]. Furthermore, our use of buffered streams for marshaling per-
mits careful hand-tuning of stubswhilestill offering the flexibility of ageneral purpose stream
abstraction.

6 Experience

Our network objects system hasbeen working for almost twoyears. Several projectshavebuilt
on the system, including the Siphon distributed software repository[21], the Argo teleconfer-
encing system([9], and the Obliq distributed scripting language{6]. We report on experience
gained from these projects here.

6.1 Siphon

The Siphon system consi stsof two major components. The packagetool all ows software pack-
ages to be checked in and out from a repository implemented as a directory in a distributed
file system. Therepository is replicated for availability. When anew version of apackageis
checked in, it isimmediately visibleto all programmers using the local area network. All the
filesin the new version become visible simultaneously.

The siphon component is used to link repositories that are too far apart to be served by the
samedistributed file system. (Inour case, thetwo repositoriesof interest are 6000 milesapart.)
When anew version of a package is checked in at one repository, the siphon copiesit to the
other repository within afew hours. Again, all new files in a single package become visible
simultaneously.

An earlier version of this system was coded with conventional RPC. The current version
coded with network objectsis distinctly ssmpler, for severa reasons.

First, picklesand network streamssimplified theinterfaces. For example, tofetch apackage,
the old siphon enumerated the elements of thedirectory by repeated RPC calls; the new siphon

39

obtainsalinked structure of directory elementsinonecall. Also, the old siphon used multiple
threads copying large buffers of datato send largefiles; the new siphon uses a network stream.

Second, third-party transfers eliminated an interface. The previous version of the siphon
would pull anew version of a package from one of the source replicas, push it over the wide
areanetwork toapartner siphon at theother site, whichwould cacheit onitsdisk and then push
it to each of the destination replicas. Thus both a pull and apush interface were required. The
new siphon transfers the object implementing the pull interface to its remote partner, which
then pullsthefiles from the source replica directly. Thus the push interface was eliminated.

Third, we can take advantage of the ability to plug new transportsinto thesystem. Datacom-
pression is known to significantly increase bandwidth over wide area networks. Althoughwe
have not had need to do so, we could easily provide asubtypeof Tr ansport . T that automat-
ically compresses and decompresses data. This would move the compression code out of the
application and into alibrary where it could easily be reused.

Inwriting the Siphon system we deliberately stressed distributed garbage collection by per-
forming no explicit deallocations. Theresults of thisstrategy were mixed. Therewere no sefi-
ousmemory leaks and garbage coll ection overhead was not a problem, but automatic reclama-
tion was not as timely as wewould have liked. The fundamental problem isthat performance
tradeoffs made in the local collector may not be appropriate for the distributed case. For ex-
ample, it may be perfectly acceptable for the collector to delay reclaiming some small object,
but if the object is a surrogate this can prevent the reclamation of an object that holds some
important resource. We also found that the Modula-3 local collector occasionally failsto free
unreachable objects because of its conservative strategy, and that thisis more of a problem
for distributed computationsthan for local ones. We conclude that for an application like the
Siphon system that holds important resources like Unix file handles, it is necessary either to
rewrite the local collector or to code the application to free resources explicitly.

6.2 Argo

Argo isadesktop tel ecollaboration system using audio, video, ashared whiteboard, and shared
application windows to facilitate cooperation among multiple users who may be separated
across long distances. A central function of Argo is conference control, which coordinates
the sharing of the various mediaand toolsto provide a coherent model of group collaboration.
This shared stateis held in a small special-purpose database that is implemented in terms of
network objects.

The conference control server’s database defines three types of objects: users, conferences,
and members. A user object represents a human user of the system; aconference object repre-
sentsan collaboration, such asavirtual conference room. Thebasic eventisthat usersjoinand
leave conferences. A member representsa {user, conf} pair and is created automatically when
auser joins a conference. Each object in the database has alist of properties whose meaning
is defined by client programs. General property lists were chosen instead of a predefined hi-
erarchy of subtypesto increase independence among client programs.

The primary function of the server isto notify clients of events that occur in its database.
Thisis done via callbacks. A client program registers a handler object and an event filter.
When an event passes the filter, an appropriate callback method of the client’s handler object
isinvoked, and is passed the relevant database object(s) that were involved in the event. For

40

example, when a user joins a conference, the client programs involved in the conference are
notified and can obtain the properties of the new user’s object.

Callbacks like those employed in Argo are commonplace in non-distributed applications,
and network objects extend this style to distributed programming. Nonetheless, transparent
distributedinvocationisnot apanaces; distributed programsareinherently more complex than
centralized ones. For example, callbacks from the Argo server to clients cannot be treated
like local callbacks: the server must protect itself against clients that crash or are too slow,
especialy when locksareinvolved. Although good toolscan hide many of thetiresomedetails
of distributed programming, they do not yet eliminate the fundamental issues that must be
faced in designing arobust distributed system.

The ease of defining, debugging and modifying the Argo conference control system and
its protocol via network objects has been quite striking. Because of the leverage provided by
Modula-3 and network objects, the entire conference control server implementation contains
only 1400 lines of source code.

6.3 Oblig

Obliq is a lexically-scoped, untyped, interpreted language that supports distributed object-
oriented computation. Obliq objects have state and are loca to a site, but computations can
roam over the network.

The characteristics of Modula-3 network objects had a mgjor influence on Oblig, not just
in the implementation, but aso in the language design. All Obliqg objects are implemented as
network objects, so thereisno artificial separation between local Obliq objects and those that
may be remotely accessed. Also, al Oblig program variables are network objects, including
global variables. Therefore, a remote computation can still access globa state at the site at
which it originated. Two elements of the network objects system were particularly useful in
simplifyingthe Obliqimplementation. Distributed garbage collectionrelieved concerns about
space reclamation, and marshaling via picklesmade it easy to transmit complex datastructures
such as the runtime representation of Obliq values.

6.4 Other work

Network objects are also in usein asystem for continuous performance monitoring. The sys-
tem provides atelemonitoring server which can be directed by the user to retrieve and process
event logs from remote programs. The logs are communicated to the telemonitor via remote
readers. Because a monitored program may disconnect from one telemonitor and reconnect
to another, this application requires the ability to disconnect a network reader and reconnect
the underlying data stream to a different process. This works, but requires extra logic in the
application. In order to guarantee that no dataiis lost, the telemonitor must call the monitored
program to indicate that it is disconnecting.

Our experience with the continuous monitoring project showed us that the design of reader
and writer marshaling is trickier than it would at first appear. The semantics of marshaled
streams are surprisingly difficult to specify and there are many design tradeoffsinvolved. We
chose to give rather weak semantics, barring third-party marshaling of streams and specify-
ing little about the state of a concrete stream after marshaling. Providing stronger guarantees
would have had a high cost in either throughput or complexity.

41

We have aso implemented secure network objects. A secure network object method can
authenticate its caller, which allows security based on access control lists. A secure network
object can also be passed to third parties and cannot be forged, which allows security based
on capabilities. A client can use secure and ordinary insecure network objectstogether in the
same application, incurring a performance penalty only for secure invocations or third party
transfers of secure abjects. Leendert van Doorn hasimplemented secure network objects[28],
but the implementation has not yet been released or extensively used.

Welearned three thingsfrom our secure network object implementation. First, the design of
the secure system followed naturally from that of theinsecure system. A large-scale redesign
was not necessary. Second, because we use readers and writers for marshaling, it was easy
to insert reader and writer subtypes that perform the cryptographic functions necessary for
network security. Finally, because of our desire to make remote invocations transparent, we
did not identify the caller viaan implicit argument to the owner’s method. Instead, we require
callers to pass an explicit extraargument if they want to identify themselves. This argument
is of adistinguished type that is marshaled specialy.

Severd users of network objects have noted our lack of support for object persistence. We
notethat Carsten Weich hasrecently added support for stable objectsto the Modula-3 runtime
system. He captures a stable snapshots of an object’s state and then writes the arguments of
update methods into aredo log using techniques quite similar to marshaling.

Providing support for stableconcrete objectsisnot thewholestory, however. Inadistributed
system, it can be valuable for a surrogate object to remain valid after restart of the owner’s
address space. We have not implemented this facility, athough we believe that it would be
straightforward to do so with alibrary built on top of the existing network object system.

7 Conclusion

The narrowest surrogate rule is flexible, but the associated type checking is dynamic rather
than static, which has all the usua disadvantages. Because programs can be relinked and re-
run at any time, it seemsimpossibleto provide purely static type checking in a distributed en-
vironment. Dynamic checking imposes a burden of discipline upon programmers. The most
common failure during the early stages of debugging a network objects applicationisanarrow
fault (failure of aruntime type-check). For example, if a programmer forgets to link in stubs
for asubtypeAof Net Obj . T, animport of an A object will succeed, but theresultant surrogate
will have type Net Cbj . T and any attempt to NARROWit to an A object will fail.

Even an application that has been in service for along time can crash with anarrow fault if
some programmer carelessly changes alow-level interface and rebuilds another program with
which the application communicates. Because of this danger, programmers should minimize
external dependencies when defining a network object subtype. It is aso important that the
implementation of type fingerprinting not introduce spurious dependencies.

Programmers appreci ate the narrowest surrogate rule, and more than one has asked for com-
parableflexibility inthe caseof ordinary objects. (If an attemptismadeto unpicklean ordinary
object into a program that does not contain the type of the object, an exceptionisraised.) But
inthiscaseliberality seemsunsound. Supposetype AB isderived from A, and that we contrive
to send a copy (rather than areference) of an object of type AB into a program that knows the
type A but not the type AB. One can imagine doing this either by ignoring the B datafields and

42

methods, or by somehow holdingthem inreserve. In either case, the new program can operate
on the A part of the state, for example by reading or writing data fields or by calling methods
of A. However, thereisno guarantee that these operationswill be valid, since the original type
AB may have overridden some of the methods of A; for example in order to accommodate a
changeinthe meaning of therepresentation of the Afields. The narrowest surrogate rule seems
sound only when objects are transmitted by reference.

The programmers that have used network objects have found the abstractionsit offers to be
simple yet powerful. By providing transparent remote invocation through Modula-3 objects,
we eliminate many of the fussy detailsthat make RPC programming tedious. Through the use
of pickles, and by implementing third party network object transfers and marshaled abstract
streams, we remove many restrictions about what can be marshaled, and we do so without
increasing the complexity of generated stubs. The strength of our system comes not from pro-
liferating features, but from carefully analyzing the requirements of distributed programming
and designing asmall set of general features to meet them.

Acknowledgements

We are grateful for help and suggestionsfrom Bob Ayers, Andrew Black, John Ellis, David Ev-
ers, RivkaLadin, Butler Lampson, Mark Manasse, and Garret Swart. We thank Luca Cardelli
and Dave Redell for providing words describing the Obliq and Argo projects. Paul Leach,
Sharon Perl, Allan Heydon, and Cynthia Hibbard made hel pful comments on the presentation
of thisreport.

References

[1] Guy T. Almes, Andrew P. Black, Edward D. Lazowska, and Jerre D. Noe. The Eden
system: A technical review. |EEE Trans. Software Engineering, 11(1):43-59, 1985.

[2] Henri E.Bal, M. Frans Kaashoek, and Andy S. Tanenbaum. Orca: A languagefor parallel
programming of distributed systems. | EEE Trans. Software Engineering, 18(3):190-205,
1992.

[3] Andrew Birrell, David Evers, Greg Nelson, Susan Owicki, and Edward Wobber. Dis-
tributed garbage coll ection for Network Objects. Research report 116, Systems Research
Center, Digital Equipment Corp., 1993.

[4] Andrew D. Birrell and Bruce Jay Nelson. Implementing remote procedure cal. ACM
Trans. Computer Systems, 2(1):39-59, 1984.

[5] Andrew P. Black and Yeshayahu Artsy. Implementing location independent invocation.
|EEE Trans. Parallel and Distributed Systems, 1(1):107-119, 1990.

[6] LucaCardelli. Oblig: A language with distributed scope. Research report 122, Systems
Research Center, Digital Equipment Corp., 1994.

43

[7] Jeffrey S. Chase, Franz G. Amador, Edward D. Lazowska, Henry M. Levy, and Richard J.
Littlefield. The Amber system: Parallel programming on a network of multiprocessors.
In Proc. 12th ACM Symposium on Operating System Principles, pages 147-158, 1989.

[8] Graeme N. Dixon, Santosh K. Shrivastava, and Graham D. Parrington. Managing per-
sistent objects in Arjuna: a system for reliable distribed computing. Technica report,
Computing Laboratory, University of Newcastle upon Tyne, undated.

[9] Hania Gagjewska, Jay Kistler, Mark S. Manasse, and David D. Redell. Argo: A system
for distributed collaboration. In Proc. ACM Multimedia ' 94, pages 433440, 1994.

[10] David K. Gifford and Nathan Glasser. Remote pipes and procedures for efficient dis-
tributed communication. ACM Trans. Computer Systems, 6(3):258—283, 1988.

[11] Graham Hamilton, Michael L. Powell, and James G. Mitchell. Subcontract: A flexible
basefor distributed programming. Technical Report SMLI TR-93-13, Sun Microsystems
Laboratories, 1993.

[12] M. Herlihy and B. Liskov. A value transmission method for abstract data types. ACM
Trans. Programming Languages and Systems, 4(4):527-551, 1982.

[13] Jim Horning, Bill Kalsow, Paul McJones, and Greg Nelson. Some useful Modula-3 in-
terfaces. Research report 113, Systems Research Center, Digital Equipment Corp., 1993.

[14] EricJdul, Henry Levy, Norman Hutchinson, and Andrew Black. Fine-grained mobility in
the Emerald system. ACM Trans. Computer Systems, 6(1):109-133, 1988.

[15] K. Rustan M. Leino. Extensionsto an object-oriented programming language for pro-
gramming fine-grain multicomputers. Technical report CS-TR-92-26, California Insti-
tute of Technology, 1992.

[16] Barbara Liskov. Distributed programming in Argus. CACM, 31(3):300-312, 1988.

[17] BarbaraLiskov, Dorothy Curtis, Paul Johnson, and Robert Scheifler. Implementation of
Argus. InProc. 11th ACM Symposium on Operating System Principles, pages 111-122,
1987.

[18] Greg Nelson, editor. Systems Programming with Modula-3. Prentice Hall, Englewood
Cliffs, New Jersey, 1991. ISBN 0-13-590464-1.

[19] Object Management Group. Common Object Request Broker: Architecture and Specifi-
cation, 1991. OMG Document 91.12.1.

[20] Open Software Foundation. DCE Application Development Reference, volume 1, revi-
sion 1.0, 1991.

[21] Francis Prusker and Edward Wobber. The Siphon: Managing distant replicated reposi-
tories. Research report 7, Paris Research Laboratory, Digital Equipment Corp., 1991.

44

[22] Michael D. Schroeder, Andrew D. Birrell, Michael Burrows, Hal Murray, Roger M.
Needham, Thomas L. Rodeheffer, Edwin H. Satterthwaite, and Charles P. Thacker. Au-
tonet: a high-speed, self-configuring local area network using point-to-point links. Re-
search report 59, Systems Research Center, Digital Equipment Corp., 1990.

[23] Michael D. Schroeder and Michagl Burrows. Performance of Firefly RPC. ACM Trans.
Computer Systems, 8(1):1-17, 1990.

[24] Marc Shapiro. Structure and encapsulationin distributed systems: the proxy principle. In
| EEE Inter national Conference on Distributed Computer Systems, pages 198—204, 1986.

[25] Marc Shapiro, Yvon Gourhant, Sabine Habert, Laurence Mosseri, Michel Ruffin, and
Celine Valot. SOS: An object-oriented operating system — assessment and perspectives.
Computing Systems, 2(4):287-337, 1989.

[26] J.E. Stoy and C. Strachey. OS6—an experimental operating system for asmall computer.
Part 2: input/output and filing system. The Computer Journal, 15(3):195-203, 1972.

[27] Andrew S. Tannenbaum, Robbert van Renesse, Hans van Staveren, Gregory J. Sharp,
Sape J. Mullender, Jack Jansen, and Guido van Rossum. Experiences with the Amoeba
distributed operating system. CACM, 33(12):46-63, 1990.

[28] Leendert van Doorn, Martin Abadi, Mike Burrows, and Edward Wobber. Secure Net-
work Objects. Research report IR-385, Vrije Universiteit, Amsterdam, 1995.

45

46

I ndex

agent, 6, 21 I nNet Obj , 16
aerts, 9, 21
Amber, 3 Lamport, Leslie, 8
AN1 network, 38 Leino, Rustan, 3
Argo, 40 liveness, 13, 37
Argus, 1, 3 _
Arjuna, 3 marshaling, 2
Atom T, 21 of generic data, 30
Atonlist.T,21 of network objects, 15
of pickles, 11
back connections, 13, 37 of reference types, 30
bootstrapping, 20 of streams, 19
buffered streams, 23 message streams, 34
buffered streams, 9, 34 Modula-3, 1, 9
marshaling of, 19 runtime library, 21
readers, 2 type inheritancein, 4
writers, 2 Mosaic, 3
MsgRd interface, 34
ClhootngC, 18 MsgW interface, 35
client,
context handle, 7 narrowest surrogate rule, 4, 18, 42
CORBA, 3 Net Obj interface, 21
DCE RPC. 19 Net OJJ . Addr ess, 22, 37
deadlock ’19 Net Obj . Error, 8,6132
; ! Net Qbj . Export, 6,
(I?i‘r;;ge’tlil Net Qbj . | nport, 6, 22
. ! Net Qbj . Locat e, 6, 22
5’! Spath.cherl’;%gl“ Net Obj . T, 5, 22, 26
d'SpatC. Ing, 13, 5 Net Obj Not i fi er. AddNot i fi er, 24
lynamic typing, Net St r eam Rel easeRd, 24
Net St r eam Rel easeW , 24
Eden, 1 . '
Emerad, 3 netw(t:nlglén?bj3 ect, 3
endpoint, 12 forging, 20
failure semantics, 8 marshaling, 15
Fi ndSpace, 17 owner, 3
fingerprints, 9 ﬁ:_”ggat? ‘: o 4
ird party transfer,
garbage collection, 9, 21 wire representation, 13
Gifford, Dave, 19 NewsSr gt , 16

Glasser, Nathan, 19 _
object (Modula-3), 3

Hermes, 2 object adaptor (CORBA), 3

47

object table, 13 StubLib. StartCal | ,28

Obj I D, 13 St ubLi b. Start Resul t, 29
Obliqg, 41 St ubLi b. St ubPr ot ocol , 27
Orca, 3 St ubLi b. Syst enft ubPr ot ocol , 27
orphan computation, 8, 22 stubs, 2, 26
0S6, 2 client, 4, 14, 26, 28
Qut Net Obj , 15 example interface, 31
owner, 3 example module, 31
server, 15, 26, 29
packagetool, 39 subcontract, 3
performance, 38 subtyping, 5, 7
pickles, 2, 11 surrogate, 4, 16
program instance, 21
pure (object type), 4 TCP, 12, 20, 38
TCPTransport. T, 12
Rd. T, 21,23 third party transfer, 4
readers, 2,21, 34 Thread. Al erted, 21
remoteinvocation, 14 threads, 9
RPC, 1 Transport interface, 35
Transport. Locati on, 12
Secure Network Objects, 42 dead method, 37
Shapiro, Marc, 1 f ree method, 37
shared memory, 12 new method, 12, 37
Siphon, 39 Transport.T,12
SOS, 3 f ronEndpoi nt method, 12, 36
Spacel D, 13 servi ceCal |l method, 36
special object, 20 t oEndpoi nt method, 36
Spring, 3 transports, 4, 12
stub generator, 2, 25 type g:l ash_, 7
restrictions, 25 type inheritance, 3, 4
version numbers, 26 typecodes, 9, 15, 27

St ubConn interface, 33
St ubLi b interface, 14, 26
St ubLi b. Awai t Resul t, 28 . .

) y valid (object type), 25
St ubLi b. Conn, 13, 26, 33, 37
St ubLi b. Dat aRep, 27 vanDoorn, L eendert, 42

Unix, 9

St ubLi b. Di spat cher,29 Voucher,, 19

St ubLi b. EndCal | , 29 WeakRef interface, 21
St ubLi b. I nl nt eger, 30 WireRep, 13

St ubLi b. I nRef, 30 W.T,21,23

St ubLi b. Nati veRep, 27 writers, 2, 21, 34

St ubLi b. Nul | St ubPr ot ocol , 27

St ubLi b. Qut I nt eger, 30

St ubLi b. Qut Ref , 30

St ubLi b. Rai seUnnmar shal Fai | ure,31
St ubLi b. Regi ster, 27

48

