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Authors’ Abstract
A network object is an object whose methods can be invoked over a network. The Modula-3
network objects system is novel for its overall simplicity. It provides distributed type safety
through the narrowest surrogate rule, which allows programmers to export new versions of dis-
tributed services as subtypes of previous versions. This report describes the design and imple-
mentation of the system, including a thorough description of realistic marshaling algorithms
for network objects, precise informal specifications of the major system interfaces, lessons
learned from using the system, and performance results.
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1 Overview

In pure object-oriented programming, clients cannot access the concrete state of an object di-
rectly, but only via the object’s methods. This methodology applies beautifully to distributed
computing, since the method calls are a convenient place to insert the communication required
by the distributed system. Systems based on this observation began to appear about a decade
ago, including Argus[16], Eden[1], and early work of Shapiro[24], and more keep arriving
every day. It seems to be the destiny of distributed programming to become object-oriented,
but the details of the transformation are hazy. Should objects be mobile or stationary? Should
they be communicated by copying or by reference? Should they be active? Persistent? Repli-
cated? Is the typical object a menu button or an X server? Is there any difference between
inter-program typechecking and intra-program typechecking?

We believe that the way to make progress in these issues is to discuss them in the context
of real implementations. To this end, this report describes a distributed programming system
for Modula-3, that we call network objects.

Network objects provide functionality similar to remote procedure call (RPC), but they are
more general and easier to use. Our network objects are not mobile, but we make it easy to
communicate objects either by copying or by reference. Our objects are passive: they have
no implicitly associated thread of control, nor is there any implicit synchronization associated
with calling their methods. Our objects are not persistent or replicated. They are sufficiently
lightweight that it would be perfectly practical to use one per menu button. We provide strong
inter-program typechecking.

The primary distinguishing aspect of our system is its simplicity. We restricted our feature
set to those features that we believe are valuable to all distributed applications (distributed
type-checking, transparent invocation, powerful marshaling, efficient and convenient access
to streams, and distributed garbage collection), and we omitted more complex or speculative
features (object mobility, transactions).

We organized the implementation around a small number of quite simple interfaces, each of
which is described in this report. The report also describes a number of implementation details
that have been omitted from previously published work, including simple algorithms for mar-
shaling and unmarshaling network objects in a heterogeneous network. All of this material
makes the report longer than we would like, but to make progress in the complicated design
space of distributed object systems it seems necessary to describe real systems in more detail
than is customary in the research literature.

We now briefly introduce some of the central aspects of our design.

Distributed typechecking. Our system provides strong typechecking via the narrowest sur-
rogate rule, which will be described in detail below. In a distributed environment it can be
very difficult to release a new version of a service, since old clients must be supported as well
as new ones. The narrowest surrogate rule allows a programmer to release a new version of
the service as a subtype of the old version, which supports both old and new clients and en-
sures type safety. The narrowest surrogate rule could also be useful in other situations where
separately compiled programs need to communicate in a type-safe way; for example, it could
be used to solve the problem of version skew in shared libraries.

Transparent remote invocation. In our system, remote invocations are syntactically identi-
cal to local ones; their method signatures are identical. A client invoking a method of an object
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need not know whether the object is local or remote.
Powerful marshaling. As in any distributed programming system, argument values and re-

sults are communicated by marshaling them into a sequence of bytes, transmitting the bytes
from one program to the other, and then unmarshaling them into values in the receiving pro-
gram. The marshaling code is contained in stub modules that are generated from the object
type declaration by a stub generator. Our marshaling code relies heavily on a general-purpose
mechanism called pickles. Pickles use the same runtime-type data structures used by the local
garbage collector to perform efficient and compact marshaling of arbitrarily complicated data
types. Our stub generator produces in-line code for simple types, but calls the pickle package
for complicated types. This combination strategy makes simple calls fast, handles arbitrary
data structures, and guarantees small stub modules.

We believe it is better to provide powerful marshaling than object mobility. The two facili-
ties are similar, since both of them allow the programmer the option of communicating objects
by reference or by copying. Either facility can be used to distribute data and computation as
needed by applications. Object mobility offers slightly more flexibility, since the same object
can be either sent by reference or moved; while with our system, network objects are always
sent by reference and other objects are always sent by copying. However, this extra flexibility
doesn’t seem to us to be worth the substantial increase in complexity of mobile objects. For
example, a system like Hermes[5], though designed for mobile objects, could be implemented
straightforwardly with our mechanisms.

Leveraging general-purpose streams. Our whole design makes heavy use of object-oriented
buffered streams. These are abstract types representing buffered streams in which the method
for filling the buffer (in the case of input streams) or flushing the buffer (in the case of output
streams) can be overridden differently in different subtypes. The representation of the buffer
and the protocol for invoking the flushing and filling methods are common to all subtypes,
so that generic facilities can deal with buffered streams efficiently, independently of where
the bytes are coming from or going to. To our knowledge these streams were first invented
by the designers of the OS6 operating system[26]. In Modula-3 they are called readers and
writers[18].

Because we use readers and writers, our interface between stubs and protocol-specific com-
munication code (which we call transports) is quite simple. This choice was initially contro-
versial, and viewed as a likely source of performance problems. However, since readers and
writers are buffered streams, it is still possible for the stubs to operate directly on the buffer
when marshaling and unmarshaling simple types, so there is not much loss of efficiency for
simple calls. And for arguments that need to be pickled, it is a further simplification that the
streams used by the transport interface are of the same type as those assumed by the pickle
package.

Marshaling support for streams. Inter-process byte streams are more convenient and effi-
cient than RPC for transferring large amounts of unstructured data, as critics have often pointed
out. We have therefore provided special marshaling support for Modula-3’s standard stream
types (readers and writers). We marshal readers and writers by defining surrogate readers and
writers as subtypes of the abstract stream types. To communicate a stream from one program
to another, a surrogate stream is created in the receiving program. Data is copied over the
network between the buffers of the real stream and the surrogate stream.

Here again the prevalence of readers and writers is important: the stream types that the mar-
shaling code supports are not some new kind of stream invented for marshaling purposes, but
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exactly the readers and writers used by the existing public interfaces in the Modula-3 library.
Distributed garbage collection. Garbage collection is a valuable tool for programming dis-

tributed systems, for all the reasons that apply to programs that run in a single address space.
Our distributed collector allows network objects to be marshaled freely between processes
without fear of memory leakage. We employ a fault-tolerant and efficient algorithm for dis-
tributed garbage collection that is a generalization of reference counting; it maintains a set of
identifiers for processes with references to an object. Distributed collection is driven by the
local collectors in each process; there is no need for global synchronization. Our algorithm,
however, does not collect circular structures that span more than one address space.

1.1 Related work

We have built closely on the ideas of Emerald[14] and SOS[25]; our main contribution has
been to select and simplify the essential features of these systems. One important simplifica-
tion is that our network objects are not mobile. Systems like Orca[2] and Amber[7] aim at
using objects to obtain performance improvements on a multiprocessor. We hope that our de-
sign can be used in this way, but our main goal was to provide reliable distributed services,
and consequently our system is quite different. For example, the implementations of Orca
and Amber described in the literature require more homogeneity than we can assume. (Rus-
tan Leino has implemented a version of Modula-3 network objects on the Caltech Mosaic, a
fine-grained mesh multiprocessor[15]. But we will not describe his work here.)

Systems like Argus[16, 17] and Arjuna[8] are like network objects in that they aim to support
the programming of reliable distributed services. However, they differ from network objects
by providing larger building blocks, such as stable state and multi-machine atomic transac-
tions, and are oriented to objects that are implemented by whole address spaces. Our network
objects are more primitive and fine-grained.

The Spring subcontract is an intermediary between a distributed application and the under-
lying object runtime[11]. For example, switching the subcontract can control whether objects
are replicated. A derivative of this idea has been incorporated into the object adaptor of the
Common Object Request Broker Architecture[19]. We haven’t aimed at such a flexible struc-
ture, although our highly modular structure allows playing some similar tricks, for example
by building custom transports.

1.2 Definitions

A Modula-3 object is a reference to a data record paired with a method suite. The method suite
is a record of procedures that accept the object itself as a first parameter. A new object type
can be defined as a subtype of an existing type, in which case objects of the new type have all
the methods of the old type, and possibly new ones as well (inheritance). The subtype can also
provide new implementations for selected methods of the supertype (overriding). Modula-3
objects are always references, and multiple inheritance is not supported. A Modula-3 object
includes a typecode that can be tested to determine its type dynamically[18].

A network object is an object whose methods can be invoked by other programs, in addition
to the program that allocated the object. The program invoking the method is called the client
and the program containing the network object is called the owner. The client and owner can
be running on different machines or in different address spaces on the same machine.
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A remote reference in a client program actually points to a local object whose methods per-
form remote procedure calls to the owner, where the corresponding method of the owner’s
object is invoked. The client program need not know whether the method invocation is local
or remote. The local object is called a surrogate (also known as a proxy).

The surrogate object’s type will be declared by a stub generator rather than written by hand.
This type declaration includes the method overrides that are analogous to a conventional client
stub module. There are three object types to keep in mind: the network object type T at which
the stub generator is pointed; the surrogate type TSrg produced by the stub generator, which
is a subtype of Twith method overrides that perform RPC calls; and the type TImpl of the real
object allocated in the owner, also a subtype of T. The type T is required to be a pure object
type; that is, it declares methods only, no data fields. The type TImpl generally extends Twith
appropriate data fields.

If program A has a reference to a network object owned by program B, then A can pass the
reference to a third program C, after which C can call the methods of the object, just as if it had
obtained the reference directly from the owner B. This is called a third party transfer . In most
conventional RPC systems, third party transfers are problematical; with network objects they
work transparently, as we shall see.

For example, if a network node offers many services, instead of running all the servers it may
run a daemon that accepts a request and starts the appropriate server. Some RPC systems have
special semantics to support this arrangement, but third-party transfers are all that is needed:
the daemon can return to the client an object owned by the server it has started; subsequent
calls by the client will be executed in the server.

When a client first receives a reference to a given network object, either from the owner
or from a third party, an appropriate surrogate is created by the unmarshaling code. Care is
required on several counts.

First, different nodes in the network may use different underlying communications meth-
ods (transports). To create the surrogate, the code in the client must select a transport that is
shared by the client and owner—and this selection must be made in the client before it has
communicated with the owner.

Second, the type of the surrogate must be selected. That is, we must determine the type
TSrg corresponding to the type TImpl of the real object in the owner. But there can be more
than one possible surrogate type available in the client, since TSrg is not uniquely determined
by TImpl. As we shall see, this situation arises quite commonly when new versions of net-
work interfaces are released. The ambiguity is resolved by the narrowest surrogate rule: the
surrogate will have the most specific type of all surrogate types that are consistent with the
type of the object in the owner and for which stubs are available in the client and in the owner.
This rule is unambiguous because Modula-3 has single inheritance only.

Since the type of the surrogate depends on what stubs have been registered in the owner as
well as in the client, it can’t be determined statically. A runtime type test will almost always
be necessary after the surrogate is created.

1.3 Examples

The narrowest surrogate rule is useful when network interfaces change over time, as they al-
ways do. This section presents some examples to illustrate this utility. The examples also show
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how network objects generalize and simplify features of conventional RPC. The examples are
based on the following trivial interface to a file service:

INTERFACE FS;

IMPORT NetObj;

TYPE
File = NetObj.T OBJECT METHODS

getChar(): CHAR;
eof(): BOOLEAN

END;
Server = NetObj.T OBJECT METHODS
open(name: TEXT): File

END;

END FS.

The interface above is written in Modula-3. It declares object types FS.File, a subtype of
NetObj.T extended with two methods, and FS.Server, a subtype of NetObj.T with one
extra method. Any data fields would go between OBJECT and METHODS, but these types are
pure. It is conventional to name the principal type in an interface T; thus NetObj.T is the
principal type in the NetObj interface.

In our design, all network objects are subtypes of the type NetObj.T. Thus the interface
above defines two network object types, one for opening files, the other for reading them. If
the stub generator is pointed at the interface FS, it produces a module containing client and
server stubs for both types.

Here is a sketch of an implementation of the FS interface:

MODULE Server EXPORTS Main;

IMPORT NetObj, FS;

TYPE
File = FS.File OBJECT

<buffers, etc.>
OVERRIDES
getChar := GetChar;
eof := Eof

END;
Svr = FS.Server OBJECT
<directory cache, etc.>

OVERRIDES
open := Open

END;

<code for GetChar, Eof, and Open>;

BEGIN
NetObj.Export(NEW(Svr), "FS1");
<pause indefinitely>

END Server.
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The call NetObj.Export(obj, nm) exports the network object obj; that is, it places a ref-
erence to it in a table under the name nm, whence clients can retrieve it. The table is typically
contained in an agent process running on the same machine as the server.

Here is a client, which assumes that the server is running on a machine named server:

MODULE Client EXPORTS Main;
IMPORT NetObj, FS, IO;

VAR
s: FS.Server := NetObj.Import("FS1", NetObj.Locate("server"));
f := s.open("/usr/dict/words");

BEGIN
WHILE NOT f.eof() DO IO.PutChar(f.getChar()); END

END Client.

The call NetObj.Locate(nm) returns a handle on the agent process running on the machine
named nm. The call to NetObj.Import returns the network object stored in the agent’s ta-
ble under the name FS1; in our example this will be the Svr object exported by the server.
Import, Export, and Locate are described further in the section below on bootstrapping.

The client program invokes the remote methods s.open, f.getChar, and f.eof. The
network object s was exported by name, using the agent running on the machine server.
But the object f is anonymous; that is, it is not present in any agent table. The vast majority
of network objects are anonymous; only those representing major services are named.

For comparison, here is the same functionality as it would be implemented with an RPC that
is not object-oriented, such as DCE RPC[20]. The interface would define a file as an opaque
type:

INTERFACE FS;

TYPE T;

PROC Open(n: TEXT): T;
PROC GetChar(f: T): CHAR;
PROC Eof(f: T): BOOL;

END FS.

A conventional RPC stub generator would transform this interface into a client stub, a server
stub, and a modified client interface containing explicit binding handles:

INTERFACE FSClient;

IMPORT FS;

TYPE Binding;

PROCEDURE Import(hostName: TEXT): Binding;
PROCEDURE Open(b: Binding, n: TEXT): FS.T;
PROCEDURE GetChar(b: Binding, f: FS.T): CHAR;
PROCEDURE Eof(b: Binding, f: FS.T): BOOL;

END FSClient.
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The server would implement theFS interface and the client would use the FSClient interface.
In FSClient, the type Binding represents a handle on a server exporting the FS interface,
and the type T represents a so-called context handle on an open file in one of these servers.
Here is the same client computation coded using the conventional version:

MODULE Client;

IMPORT FSClient, IO;

VAR
b := FSClient.Import("server");
f := FSClient.Open(b, "/usr/dict/words");

BEGIN
WHILE NOT FSClient.Eof(b, f) DO

IO.PutChar(FSClient.GetChar(b, f))
END

END Client.

Comparing the two versions, we see that the network object s plays the role of the binding b,
and the network object f plays the role of the context handle f. Network objects subsume the
two notions of binding and context handle.

In the conventional version, the signatures of the procedures in FSClient differ from those
in FS, because the binding must be passed. Thus the signature is different for local and remote
calls. (In this example, DCE RPC could infer the binding from the context handle, allowing the
signatures to be preserved; but the DCE programmer must be aware of both notions.) More-
over, although conventional systems tend to allow bindings to be communicated freely, they
don’t do the same for context handles: It is an error (which the system must detect) to pass a
context handle to any server but the one that created it.

The conventional version becomes even more awkward when the same address space is both
a client and a server of the same interface. In our FS example, for example, a server address
space must instantiate the opaque typeFS.T to a concrete type containing the buffers and other
data representing an open file. On the other hand, a client address space must instantiate the
opaque type FS.T to a concrete type representing a context handle. (This type is declared in
the client stub module.) These conflicting requirements make it difficult for a single address
space to be both a client and a server of the same interface. This problem is called type clash.
It can be finessed by compromising on type safety; but the network object solution avoids the
problem neatly and safely.

Object subtyping together with the narrowest surrogate rule make it easy to ship a new ver-
sion of the server that supports both old and new clients, at least in the common case in which
the only changes are to add additional methods. For example, suppose that we want to ship a
new file server in which the files have a new method called close. First, we define the new
type as an extension of the old type:

TYPE
NewFS.File = FS.File OBJECT METHODS

close()
END;

Since an object of type NewFS.File includes all the methods of an FS.File, the stub for
a NewFS.File is also a stub for an FS.File. When a new client—that is, a client linked
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with stubs for the new type—opens a file, it will get a surrogate of type NewFS.File, and be
able to invoke its close method. When an old client opens a file, it will get a surrogate of
type FS.File, and will be able to invoke only its getChar and eof methods. A new client
dealing with an old server must do a runtime type test to check the type of its surrogate.

The extreme case of the narrowest surrogate rule occurs when a network object is imported
into a program that has no stubs linked into it at all. In this case the surrogate will have type
NetObj.T, since every program automatically gets (empty) stubs for this type. You might
think that a surrogate of type NetObj.T is useless, since it has no methods. But the surrogate
can be passed on to another program, where its type can become more specific. For example,
the agent process that implements NetObj.Import and NetObj.Export is a trivial one-
page program containing a table of objects of type NetObj.T. The agent needs no information
about the actual subtypes of these objects, since it doesn’t call their methods, it only passes
them to third parties.

1.4 Failure semantics and alerts

An ordinary procedure call has no special provision for notifying the caller that the callee has
crashed, since the caller and the callee are the same program. But a remote procedure call
mechanism must define some failure semantics that cover this situation, in order to make it
possible to program reliable applications.

In theory, distributed computations can be more reliable than centralized ones, since if a
machine crashes, the program can shift the computation to use other machines that are still
working. But it isn’t easy to put this theory into practice. Many distributed systems end up
being less reliable than their centralized equivalents, because they are vulnerable to the failure
of many machines instead of just one. Leslie Lamport, prominent both as a theorist and as a
suffering user, has facetiously defined a distributed system as one in which “the failure of a
computer you didn’t even know existed can render your own computer unusable”.

Many methodologies and tools have been proposed to aid in programming replicated dis-
tributed services that survive the failures of individual replicas. Our network object system
is intended to provide a more fundamental communications primitive: replicated services can
be built out of network objects, but so can non-replicated services.

The failure semantics of network objects are similar to those of many conventional RPC
systems. The runtime raises the exception NetObj.Error in the client if the owner crashes
while the method call is in progress. Therefore, in serious applications, all methods of network
objects should include this exception in their RAISES set. (Failure to include the exception
would cause the client to crash in this situation, which is usually not what you want a serious
application to do.)

Unfortunately, there is no absolutely reliable way that one machine can tell if another has
crashed, since the communication network can fail, and a live machine can’t distinguish it-
self from a dead machine if it cannot communicate. Therefore, the exception NetObj.Error
doesn’t guarantee that the owner has crashed: possibly communication has failed. In the lat-
ter case, the method call in the owner may continue to execute, even while the client runtime
raises NetObj.Error. The abandoned computation in the owner is called an orphan. To
build an application that is robust in the presence of communication failures, the program-
mer must ensure that the computation meets its specification even in the presence of orphaned
computations.
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Modula-3 provides a mechanism for alerting a thread. This is not an interrupt, but a polite
request for the thread to stop at the next convenient point and raise a pre-defined exception.
When programming a lengthy computation that might for any reason be subject to cancella-
tion, it is good style to check periodically to see if the thread has been alerted.

If a thread engaged in a remote call is alerted, the runtime raises NetObj.Error in the
calling thread and simultaneously attempts to notify and alert the server thread executing the
call. The reason that NetObj.Error is raised is that there is no guarantee that the attempt to
alert the server thread will succeed; therefore, an orphan may have been created.

The network object system also uses alerts to handle the situation in which a client crashes
while it has an outstanding remote method call. In this case, the network object runtime alerts
the thread that is executing the method call in the owner. Therefore, most methods of network
objects should include Thread.Alerted in their RAISES sets.

2 Implementation

This subsection describes the structure of our implementation. Much of the lower levels of
our system are similar to that of conventional RPC, as described by Birrell and Nelson[4]. We
will concentrate on the implementation aspects that are new in network objects.

2.1 Assumptions

We implemented our system with Modula-3 and Unix, but our design would work on any sys-
tem that provides threads, garbage collection, and object types with single inheritance. At the
next level of detail, we need the following capabilities of the underlying system:

1. Object types with single inheritance.

2. Threads (lightweight processes).

3. Some form of reliable, inter-address-space communication.

4. Garbage collection, together with a hook for registering a cleanup routine for selected
objects to be called when they are collected (or explicitly freed).

5. Object-oriented buffered streams (readers and writers).

6. Runtime type support as follows. Given an object, to determine its type; given a type:
to determine its supertype, to allocate and object of the type, and to enumerate the sizes
and types of the fields of the type.

7. A method of communicating object types from one address space to another.

We will elaborate on the last item.
The Modula-3 compiler and linker generate numerical typecodes that are unique within a

given address space. But they are not unique across address spaces and therefore cannot be
used to communicate types between address spaces. Therefore, the Modula-3 compiler com-
putes a fingerprint for every object type appearing in the program being compiled. A finger-
print is a sixty-four bit checksum with the property that (with overwhelming probability) two
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types have the same fingerprint only if they are structurally identical. Thus a fingerprint de-
notes a type independently of any address space. Every address space contains two tables map-
ping between its typecodes and the equivalent fingerprint. To communicate a typecode from
one address space to another, the typecode is converted into the corresponding fingerprint in
the sending address space and the fingerprint is converted into the corresponding typecode in
the receiving address space. If the receiving program does not contain a code for the type being
sent, then the second table lookup will fail.

2.2 Pickles

We use a mechanism known as pickles to handle the more complex cases of marshaling, specif-
ically those that involve references types as arguments or results. Our pickles package is sim-
ilar to the value transmission mechanism described by Herlihy and Liskov[12], who seem to
be the first to have described the problem in detail. However, our package is more general
because it handles subtyping and dynamic types.

For simple usage, our pickle package provides a simple interface. Pickle.Write(ref,
wr) writes a flattened representation of the dynamically typed value ref to the writer wr.
Pickle.Read(rd) reads the representation of a value from the reader rd and returns a dy-
namically typed reference to a copy of the original value.

The pickle package relies on the compile-time and runtime type support described earlier,
and in particular on the existence of type fingerprints. Given this support, the basic method for
writing a pickle is quite simple. It writes the fingerprint of the given value’s type on the byte
stream, followed by the referent’s data fields. The method recurses on any constituent val-
ues that are themselves references types. Reading is the inverse operation: read a fingerprint,
allocate a value, examine the type, read data fields and recursively read reference fields.

One minor complication is the problem of keeping the values independent of machine archi-
tecture (for example, byte order or word length). We do this by encoding the salient properties
of the architecture in a small number of bytes at the start of the pickle, then writing the pickle in
the sender’s native form. This approach is efficient in homogeneous cases, and no more costly
than anything else in heterogeneous cases. We assume that all architectures can be described
by our header. If there were an aberrant architecture, its pickle package would be required to
map to and from a standard one on sending and receiving.

A slightly more significant complication is detecting and dealing with multiple occurrences
of the same reference within a single pickled value. This happens in cyclic structures and also
in graph-like structures that are not trees. (We make no attempt to preserve sharing between
separate pickles.)

When writing a pickle, the sender maintains a hash table keyed by references. The values
in this table are small integers, allocated sequentially within each particular pickle. When a
reference is first encountered in writing a pickle, it is entered in the table and allocated a small
integer. This integer is written on the byte stream after the reference’s fingerprint, as the defin-
ing occurrence. Then the pickle package writes the referent by recursing. If a reference is en-
countered for a second or subsequent time in a single pickle, the reference’s small integer is
found in the hash table and written on the byte stream as a subsequent occurrence; in this case
there is no need to examine or write the referent.

When reading a pickle, the receiver maintains an array indexed by these small integers.
When it encounters the first occurrence of a reference’s small integer, it allocates the storage
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and records the new reference in the appropriate entry of the array, and proceeds to read the
referent from the byte stream. When it encounters a subsequent occurrence of the reference’s
small integer, it just uses the reference obtained by indexing the table.

The default behavior of the pickle package isn’t satisfactory for all types. Problems can arise
if the concrete representation of an abstract type isn’t an appropriate way to communicate the
value between address spaces. To deal with this, the pickle package permits clients to specify
custom procedures for pickling (and therefore for marshaling) particular data types. Typically
the implementer of an abstract data type specifies such a custom procedure if the type’s values
aren’t transferable by straightforward copying. We use this facility to marshal network objects,
readers, and writers that are embedded in structures that would ordinarily be marshaled by
value.

The narrowest surrogate rule places a serious constraint on the pickles design: since pick-
ling and unpickling an object can make its type less specific, the unpickler must check that an
unpickled object is legal at the position in which it occurs. It is possible for the unpickler to
check this because the runtime provides the ability to enumerate the types of the fields of an
object.

There are many subtleties in the design of the pickles package. The ability to register custom
pickling procedures for selected types has a tricky interaction with subtyping. It is also tricky
to define and efficiently compute type fingerprints for recursive and opaque types. But the
details are beyond the scope of the present work.

2.3 Garbage collection

Our system includes network-wide, reference-counting garbage collection. For each network
object, the runtime records the set of clients containing surrogates for the object (the dirty set).
As long as this set is non-empty, the runtime retains a pointer to the object. The retained pointer
protects the object from the owner’s garbage collector, even if no local references to it remain.
When a surrogate is created, the client runtime adds its address space to the dirty set for the
concrete object by making a “dirty call” to the owner. When a surrogate is reclaimed, the client
runtime deletes its address space from the dirty set by making a “clean call”. When the dirty
set becomes empty, the owner’s runtime discards the retained pointer, allowing the owner’s
local garbage collector to reclaim the object if no local references remain. To trigger the clean
call, the client runtime relies on the assumed ability to register cleanup hooks for surrogates
with the local collector.

This scheme will not garbage-collect cycles that span address spaces. To avoid this storage
leak, programmers are responsible for explicitly breaking such cycles.

If program A sends program B a reference to an object owned by a third program C, and A
then drops its reference to the object, we must ensure that the dirty call from B precedes the
clean call from A, to avoid the danger that the object at C will be prematurely collected. This
is not a problem if the object is sent as an argument to a remote method call, since in this case
the calling thread retains a reference to the object on its stack while it blocks waiting for the
return message, which cannot precede the unmarshaling of the argument. But if the object
is sent as a result rather than an argument, the danger is real. Our solution is to require an
acknowledgement to any result message that contains a network object: the procedure that
executes the call in the owner blocks waiting for the acknowledgement, with the reference to
the object on its stack. The stack reference protects the object from the garbage collector. This
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solution increases the message count for method calls that return network objects, but it doesn’t
greatly increase the latency of such calls, since the thread waiting for the acknowledgement is
not on the critical path.

By maintaining the set of clients containing surrogates rather than a simple count, we are
able to remove clients from the dirty set when they exit or crash. The mechanism for detecting
that clients have crashed is transport-specific, but for all reasonable transports there is some
danger that a network partition that prevents communication between the owner and client will
be misinterpreted as a client crash. In this case, the owner’s object might be garbage collected
prematurely. Because communication is unreliable, the risk of premature collection is inherent
in any strategy that avoids storage leaks in long-running servers. Since we never reuse object
IDs, we can detect premature collection if it occurs.

Dirty calls are synchronous with surrogate creation, but clean calls are performed in the
background and can be batched. If a clean call fails, it will be attempted again. If a dirty call
fails, the client schedules the surrogate to be cleaned (since the dirty call might have added the
client to the dirty set before failing) and raises the exception NetObj.Error. Clean and dirty
calls carry sequence numbers that increase monotonically with respect to any given client: the
owner ignores any clean or dirty call that is out of sequence. This requires the owner to store
a sequence number for each entry in the dirty set, as well as a sequence number for each client
for which a call has failed. The sequence numbers for clients that have successfully removed
themselves from the dirty set can be discarded.

A companion paper[3] presents the details of the collection algorithm and a proof of its cor-
rectness.

2.4 Transports

There are many protocols for communicating between address spaces (for example, shared
memory, TCP, and UDP), and many irksome differences between them. We insulate the main
part of the network object runtime from these differences via the abstract type Transport.T.

A Transport.T object generates and manages connections between address spaces. Dif-
ferent subtypes are implemented using different communication mechanisms. For example, a
TCPTransport.T is a subtype that uses TCP.

Each subtype is required to provide a way of naming address spaces. A transport-specific
name for an address space is called an endpoint. Endpoints are not expected to be human-
sensible. Naming conventions ensure that an endpoint generated by one transport subtype will
be meaningful only to other instances of the same subtype. (Some use the term “endpoint” in a
weaker sense, meaning little more than a port number. For us, different instances of a program
are identified by different endpoints.)

The fromEndpoint method of a Transport.T enables creation of connections to rec-
ognized endpoints. If tr is a Transport.T and ep is an endpoint recognized by tr, then
tr.fromEndpoint(ep) returns a Location (described in the next paragraph) that gener-
ates connections to the address space named by ep. If tr doesn’t recognize ep, then such an
invocation returns NIL.

A Location is an object whose new method generates connections to a particular address
space. When a client has finished using a connection, it should pass the connection to thefree
method of the location that generated it. This allows transports to manage the allocation and
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deallocation of connections so as to amortize the overhead of connection establishment and
maintenance.

The system uses the type StubLib.Conn to represent connections. It is perfectly possible
to implement a class of connection that communicates with datagrams according to a protocol
that makes idle connections essentially free[4]. That is, in spite of its name, implementations
of the type StubLib.Conn need not be connection-oriented in the standard sense of the term.

A connection c contains a reader c.rd and a writer c.wr. Connections come in pairs; if
c and d are paired, whatever is written to c.wr can be read from d.rd, and vice-versa. Or-
dinarily c and d will be in different address spaces. Values are marshaled into a connection’s
writer and unmarshaled from a connection’s reader. Since readers and writers are buffered,
the marshaling code can treat them either as streams of bytes (most convenient) or as streams
of datagrams (most efficient).

One of the two connections in a pair is the client side and the other is the server side. Trans-
ports are required to provide a thread that listens to the server side of a connection and calls
into the network object runtime when a message arrives indicating the beginning of a remote
call. This is called dispatching, and is described further below.

A connection is required to provide a way of generating a “back connection”: the location
c.loc must generate connections to the address space at the other side of c. If c is a server-
side connection, the connections generated by c.loc have the opposite direction as c; if c is
a client-side connection, they have the same direction as c.

A transport is responsible for monitoring the liveness of address spaces for which it has lo-
cations or connections. This is discussed in more detail later when we specify the interface to
the transport system.

2.5 Basic representations

We will now describe the wire representation of network objects, the client and server stubs
involved in remote invocation, and the algorithms we use to marshal and unmarshal network
objects. In these descriptions we will use Modula-like pseudocode.

The wire representation for a network object is a pair (sp, i) where sp is a SpaceID (a
number that identifies the owner of the object) and i is an ObjID (a number that distinguishes
different objects with the same owner):

TYPE WireRep = RECORD sp: SpaceID; i: ObjID END;

Each address space maintains an object table objtbl that contains all its surrogates and all
its network objects for which any other space holds a surrogate:

VAR objtbl: WireRep -> NetObj.T;

We use the notation A -> B to name the type of a table with domain type A and element type
B. We will use array notation for accessing the table, even though it is implemented as a hash
table. We write domain(tbl) to denote the set of elements of the domain of tbl.

We now specify the representation of the opaque type NetObj.T. In Modula-3, the REVEAL
statement permits such a specification to be visible within a bounded scope.

REVEAL
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NetObj.T = OBJECT
srgt, inTbl: BOOLEAN;
wrep: WireRep;
loc: Location;
disp: Dispatcher

END;

TYPE Dispatcher = PROC(c: StubLib.Conn; obj: NetObj.T);

The field obj.srgt indicates whether obj is a surrogate. The field obj.inTbl indicates
whether obj is present in objTbl, and this is guaranteed to be the case if obj is a surrogate
or if another address space holds a surrogate for it. If obj.inTbl is TRUE, then obj.wrep is
the wire representation of the object.

If obj is a surrogate is then obj.loc is a Location that generates connections to the
owner’s address space at obj.wrep.sp, and obj.disp is unused. Otherwise, ifobj.inTbl
is TRUE, then obj.disp is the dispatcher procedure for the object, and obj.loc is unused.
The call obj.disp(c, obj) unmarshals a method number and arguments from c, calls the
appropriate method of obj, and marshals the result to c.

2.6 Remote invocation

To illustrate the steps in a remote method invocation we continue with our example of a simple
file service. In that example, we defined the type FS.Serverwith a single method open. The
corresponding stub-generated surrogate type declaration looks like this:

TYPE
SrgSvr = FS.Server OBJECT
OVERRIDES
open := SrgOpen

END;

PROCEDURE SrgOpen(obj: SrgSvr; n: TEXT): FS.File =
VAR
c := obj.loc.new();
res: FS.File;

BEGIN
OutNetObj(c, obj);
OutInteger(c, 0);
OutText(c, n);
<flush buffers to network>;
res := InNetObj(c);
obj.loc.free(c);
RETURN res

END SrgOpen;

The procedures OutNetObj and InNetObj are described in the next subsection. Procedures
for marshaling basic types (like OutInteger) are in the StubLib interface which we specify
later in the report. (Actually, StubLib.OutRef subsumes both OutNetObj and OutText,
but we ignore that here.)

The method being invoked is identified on the wire by its index; the openmethod has index
zero. The code presented would crash with a narrow fault if the network object returned by
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InNetObj were not of type FS.File. For example, this would happen if appropriate stubs
had not been linked into the client or owner. The actual system would raise an exception in-
stead of crashing.

On the server side, the thread forked by the transport to service a connection c calls into the
network object runtime when it detects an incoming RPC call. The procedure it calls executes
code something like this:

VAR obj := InNetObj(c); BEGIN obj.disp(c, obj) END;

The dispatcher procedures are typically written by the stub generator. The dispatcher for the
type FS.Server would look something like this:

PROCEDURE SvrDisp(c: StubLib.Conn; obj: FS.Server) =
VAR methID := InInteger(c); BEGIN

IF methID = 0 THEN
VAR
n := InText(c);
res := obj.open(n);

BEGIN
OutNetObj(c, res);
<flush buffers to network>

END
ELSE
<error, non-existent method>

END
END SvrDisp;

The stubs have a narrow interface to the rest of the system: they call the new andfreemethods
of Location objects to obtain and release connections, and they register their surrogate types
and dispatcher procedures where the runtime can find them, in the global table stubs:

VAR stubs: Typecode -> StubRec;

TYPE StubRec = RECORD srgType: TypeCode; disp: Dispatcher END;

An address space has stubs for tc if and only if tc is in the domain of stubs. If tc is in the
domain of stubs, then stubs[tc].srgType is the typecode for the surrogate type for tc,
and stubs[tc].disp is the owner dispatcher procedure for handling calls to objects of type
tc.

A stub module that declares a surrogate type srgTC and dispatcher disp for a network ob-
ject type tc also sets stubs[tc] := (srgTC, disp). The network object runtime auto-
matically registers a surrogate type and null dispatcher for the type NetObj.T.

In the actual system the stubs table is indexed by stub protocol version as well as type code,
to make it easy for a program to support multiple protocol versions. The actual system also
includes code for relaying exceptions raised in the owner to the client, and for relaying thread
alerts from the client to the owner.

2.7 Marshaling network objects

The call OutNetObj(c, obj) writes the wire representation of obj to the connection c:
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PROCEDURE OutNetObj(c: StubLib.Conn; obj: NetObj.T) =
BEGIN
IF obj = NIL THEN
OutWireRep(c, (-1,-1));

ELSE
IF NOT obj.inTbl THEN
VAR i := NewObjID(); BEGIN
obj.wrep := (SelfID(), i);
objtbl[obj.wrep] := obj;
obj.inTbl := TRUE;
obj.srgt := FALSE;
obj.disp := GetDisp(TYPECODE(obj))

END
END;
OutWireRep(c, obj.wrep)

END
END OutNetObj;

PROCEDURE GetDisp(tc: INTEGER): Dispatcher =
BEGIN
WHILE NOT tc IN domain(stubs) DO tc := Supertype(tc) END;
RETURN stubs[tc].disp

END GetDisp;

In the above we assume that NewObjID() returns an unused object ID, that SelfID() returns
the SpaceID of the caller, and that Supertype(tc) returns the code for the supertype of the
type whose code is tc.

The corresponding call InNetObj(c) reads a wire representation from the connection c
and returns the corresponding network object reference:

PROCEDURE InNetObj(c: StubLib.Conn): NetObj.T =
VAR wrep := InWireRep(c); BEGIN
IF wrep.i = -1 THEN
RETURN NIL

ELSIF wrep IN domain(objtbl) THEN
RETURN objtbl[wrep]

ELSE
RETURN NewSrgt(wrep, c)

END
END InNetObj;

The call NewSrgt(wrep, c) creates a surrogate for the network object whose wire repre-
sentation is wrep, assuming that c is a connection to an address space that knows wrep.sp.
(We say that an address space sp1 knows an address space sp2 if sp1=sp2 or if sp1 contains
some surrogate owned by sp2.)
NewSrgt locates the owner, determines the typecode of the surrogate, and enters it in the

object table:

PROCEDURE NewSrgt(wrep: WireRep; c: StubLib.Conn): NetObj.T =
VAR
loc := FindSpace(wrep.sp, conn);
tc := ChooseTC(loc, wrep.i);
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res := Allocate(tc);
BEGIN
res.wrep := wrep;
res.srgt := TRUE;
res.inTbl := TRUE;
objtbl[wrep] := res;
RETURN res

END NewSrgt;

The call FindSpace(sp, c) returns a Location that generates connections to sp, or raises
NetObj.Error if this is impossible. It requires that c be a connection to an address space that
knows about sp. The call ChooseTC(loc, i) implements the narrowest surrogate rule. It
returns the local code for the local surrogate type for the object whose ID is i and whose owner
is the address space to which loc generates connections. The call Allocate(tc) allocates
an object with type code tc.

To implement FindSpacewithout resorting to broadcast, each address space maintains in-
formation about its own transports and the endpoints of the address spaces it knows about.
This information is maintained in the variables tr and names:

VAR tr: SEQ[Transport.T];
VAR names: SpaceID -> SEQ[Endpoint];

The sequence tr lists the transports available in this space, in decreasing order of desirability.
Typically, it is initialized by the network object runtime and is constant thereafter. For any
space sp, the sequence names[sp] contains the endpoints for sp recognized by sp’s trans-
ports. We write SEQ[T] to denote the type of sequences of elements of type T.

The fast path through FindSpace finds an entry for sp in names; this entry is the list of
names for sp recognized by sp’s transports. These names are presented to the transports tr
available in this space; if one is recognized, a common transport has been found; if none is
recognized, there is no common transport.

The first time an address space receives a reference to an object owned by sp, there will be
no entry for sp in the space’s name table. In this case, FindSpace obtains the name sequence
for sp by making an RPC call to the address space from which it received the reference into
sp. This is our first example of an RPC call that is nested inside an unmarshaling routine; we
will use the notation RPC(loc, P(args)) to indicate an RPC call to P(args) directed at
the address space identified by the location loc. Here is the implementation of FindSpace:

PROCEDURE FindSpace(sp: SpaceID; c: StubLib.Conn): Location =
BEGIN

IF NOT sp IN domain(names) THEN
names[sp] := RPC(c.loc, GetNames(sp));

END;
VAR nm := names[sp]; BEGIN
FOR i := 0 TO LAST(tr) DO
FOR j := 0 TO LAST(nm) DO
VAR loc := tr[i].fromEndpoint(nm[j]); BEGIN
IF loc # NIL THEN RETURN loc END

END
END

END;
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RAISE NetObj.Error
END

END FindSpace;

PROCEDURE GetNames(sp) = BEGIN RETURN names[sp] END GetNames;

Placing the i loop outside the j loop gives priority to the client’s transport preference over
the owner’s transport preference. The choice is arbitrary: usually the only point of transport
preference is to obtain a shared memory transport if one is available, and this will happen
whichever loop is outside.

The only remaining procedure is ChooseTC, which must implement the narrowest surrogate
rule. According to this rule, the surrogate type depends on which stubs have been registered
in the client and in the owner: it must determine the narrowest supertype for which both client
and owner have a registered stub. This requires a call to the owner at surrogate creation time,
which we combine with the call required by the garbage collector: the call Dirty(i, sp)
adds sp to the dirty set for object number i and returns the supertypes of the object’s type for
which stubs are registered in the owner.

PROCEDURE Dirty(i: ObjID; sp: SpaceID): SEQ[Fingerprint] =
VAR
tc := TYPE(objtbl[(SelfID(), i)]);
res: SEQ[Fingerprint] := <empty sequence>;

BEGIN
<add sp to object i’s dirty set>;
WHILE NOT tc IN domain(stubs) DO tc := Supertype(tc) END
LOOP
res.addhi(TCToFP(tc));
IF tc = TYPECODE(NetObj.T) THEN EXIT END;
tc := Supertype(tc)

END;
RETURN res

END Dirty;

PROCEDURE ChooseTC(loc: Location; i: ObjID): INTEGER =
VAR fp: SEQ[Fingerprint]; BEGIN
fp := RPC(c.loc, Dirty(i, SelfID()));
FOR j := 0 TO LAST(fp) DO
IF FPToTC(fp[j]) IN domain(stubs) THEN
RETURN stubs(FPToTC(fp[j])).srgType

END
END

END ChooseTC;

The loops in Dirty are guaranteed to terminate, because stubs are automatically registered for
NetObj.T. In ChooseTC we assume that TCToFP and FPToTC convert between equivalent
typecodes and fingerprints (if there is no local typecode for fp, we assume that FPToTC(fp)
returns some illegal typecode never present in stubs). We also assume that s.addhi(x)
extends the sequence s with the new element x.

This concludes our description of the algorithms for marshaling network objects. We have
omitted a number of details. For example, to avoid cluttering up the program, we have ignored
synchronization; the real program must protect the various global tables with locks. Some
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care is required to avoid deadlock; for example, it is not attractive to hold a lock all the way
through a call to NewSrgt. Instead, we make an entry in the surrogate table at the beginning of
the procedure, recording that a surrogate is under construction, and do not reacquire the table
lock until the end of the sequence, when the surrogate has been fully constructed. A thread
that encounters a surrogate under construction simply waits for it to be constructed.

2.8 Marshaling streams

An important feature of our treatment of streams is that data is not communicated via RPC,
but by the underlying transport-specific communication. This facility is analogous to the re-
mote pipes of DCE RPC, but with a critical difference: the streams we pass are not limited in
scope to the duration of the RPC call. When we marshal a stream from process A to process
B, process B acquires a surrogate stream attached to the same data as the original stream. In
process B the surrogate stream can be used at will, long after the call that passed it is finished.
In contrast, in a scheme such as the pipes provided in DCE, the data in the pipe must be com-
municated in its entirety at the time of the RPC call (and at a particular point in the call too).
Our facility is also analogous to the remote pipes of Gifford and Glasser[10], but is simpler
and more transparent.

Readers and writers are marshaled very similarly; to be definite, consider a reader rd. The
sending process has a concrete reader rd in hand. The marshaling code must create a surrogate
reader rdsrg in the receiving process, such that rdsrg delivers the contents of rd. The gen-
eral strategy is to allocate a connection between the sender and receiver, allocate rdsrg in the
receiver so that it reads from the connection, and fork a thread in the sender that reads buffers
from rd and sends them over the connection. (The thread could be avoided by doing an RPC
to fill the buffer of rdsrg whenever it is empty, but this would increase the per-buffer over-
head of the cross-address space stream.) For the detailed strategy we explored two designs.

In the first design, the sender uses the connection c, over which rd is to be marshaled, to
create a new connection nc := c.loc.new(). The sender then chooses a unique ID, sends
the ID over nc, sends the ID over c as the wire representation of rd, and forks a thread that
copies data from rd into nc. In the receiving process, two threads are involved. The thread
servicing the connection nc reads the ID (distinguishing it from an incoming call message)
and places the connection in a table with the ID as key. The thread unmarshaling the reader
looks up the connection in the table and allocates the surrogate reader rdsrg using that con-
nection. This seems simple, but the details became rather complicated, for example because
of the difficulty of freeing connections in the table when calls fail at inopportune times.

The second design employs a network object called a Voucher with a method claim that
returns a reader. Vouchers have nonstandard surrogates and dispatchers registered for them,
but are otherwise ordinary network objects.

To marshal rd, the sending process allocates a voucher v with a data field v.rd of type
reader, sets v.rd := rd, and calls OutNetObj(v). When the receiving process unmarshals
a network object and finds it is a surrogate reader voucher vs, it calls vs.claim() and returns
the resulting reader.

The claimmethod of a surrogate voucher vs invokes vs.loc.new() to obtain a new con-
nection nc. It then marshals vs to nc (just like an ordinary surrogate method call). But then,
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instead of sending arguments and waiting for a result, it allocates and returns the surrogate
reader rdsrg, giving it the connection nc as a source of data.

On the server side, the voucher dispatcher is called by a transport-supplied thread, just as for
an ordinary incoming call. The arguments to the dispatcher are the server side of the connec-
tion nc and the voucher vs containing the original reader vs.rd. The dispatcher procedure
plays the role of the forked thread in the first design: it reads buffers from vs.rd and sends
them over nc.

The second design relies on the transport to provide the required connection and thread, and
relies on the ordinary network object marshaling machinery to connect the surrogate voucher
with the original reader. This makes the protocol simple, but it costs three messages (a round
trip for the dirty call for the voucher; then another message to launch the voucher dispatcher).
It would be easy enough to avoid the all-but-useless dirty call by dedicating a bit in the wire
representation to identify vouchers, but perhaps not so easy to stomach the change. On the
other hand, the first design uses only one message (to communicate the ID from the sender to
the receiver), and this message could perhaps be piggybacked with the first buffer of data.

We chose the second design, because: (1) it is trivial to implement; (2) given that cross-
address space streams are intended for bulk data transfer, it is not clear how important the extra
messages are; and (3) if experience leads us to get rid of the extra messages, it is not obvious
whether to choose the first design or to optimize the second.

2.9 Bootstrapping

The mechanisms described so far produce surrogate network objects only as a result of method
calls on other surrogate network objects. We have as yet no way to forge an original surrogate.
To do this we need the ingredients of a surrogate object: a Location, an object ID, and a
surrogate type. To make it possible to forge the object ID and type, we adopt the following
convention: every program into which network objects are linked owns a special object with
an ID of zero, of a known type. The methods of the special object implement the operations
required by the network object runtime (reporting in clean and dirty, GetNames, etc.). The
special object also has get and putmethods implementing a table of named network objects.
At initialization time the network object runtime allocates a special object with ID 0 and places
it in objtbl.

All that remains to forge an original surrogate is to obtain a Location valid for some other
program into which network objects have been linked. Fundamentally, the only way to obtain
a Location is to call some transport’s fromEndpointmethod—that is, the program forging
the surrogate must know an address where something is listening. For this step the application
has two choices. We provide a network object agent that listens at a well-known TCP port; thus
a surrogate for the agent’s special object can be forged given the IP name of the node on which
it is running. If every node runs the agent from its start-up script, then no other well-known
ports are needed: applications can export their objects by putting them in the table managed by
the agent’s special object, and their clients can get them from the same table. If the application
writer prefers not to rely on the agent, he can choose his own transport and well-known port
and configure his program to listen at that port and to forge surrogates for the special objects
at that port.

The procedures NetObj.Import and NetObj.Export, which appeared in our file server
example, implement object bootstrapping. These procedures simply forge a surrogate for the
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special object of some agent process, and then invoke the get or putmethod on that surrogate.

3 Public Interfaces

In this section and the next, we present the major system interfaces exactly as they appear
in the network objects programmers library. This section describes the NetObj, NetStream,
and NetObjNotifier interfaces, as well as the stub generator. These interfaces are sufficient
for most network objects clients. The following section presents important internal interfaces
that are not used by most clients.

The interfaces in this section depend on a few local-level facilities from the SRC Modula-3
runtime library[18, 13]. We summarize these dependencies here:

� An Atom.T is a unique representation for a set of equal texts (like a Lisp atomic symbol).
Atoms are often used to parameterize exceptions.

� An AtomList.T is a linked list of atoms. Atom lists are used for propagating lists of
nested exception parameters up the call stack.

� A Rd.T represents an abstract data source. The Rd interface provides operations for
reading data and re-positioning the stream.

� A Wr.T represents an abstract data sink. The Wr interface provides operations for writing
data and re-positioning the stream.

� Thread.Alerted is the exception to be raised by an alerted thread.

� The WeakRef interface allows clients to register garbage collection finalization proce-
dures for objects in the traced heap. In other words, a client can obtain notification just
prior to collection of heap storage.

3.1 NetObj interface

This is the primary public interface for using network objects. Before listing the interface,
here are a few definitions.

A program instance is an activation of a program. The same program can have many in-
stances running concurrently or consecutively. A program instance can be thought of as an
address space, although the design does not preclude the implementation of a program instance
by a suite of address spaces.

Recall that an agent is a program that provides a table that maps names to network objects.
Any program can be an agent, but every machine has a particular default agent. Owners typ-
ically make network objects available to clients by inserting them into an agent’s table, using
the procedure NetObj.Export. Clients typically use NetObj.Import to retrieve network
objects from the table.

INTERFACE NetObj;

IMPORT Atom, AtomList, Thread;
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TYPE
T <: ROOT;
Address <: REFANY;

NetObj.T is the root type of all network objects. A NetObj.Address designates a program
instance.

PROCEDURE Locate (host: TEXT): Address
RAISES {Invalid, Error, Thread.Alerted};

Return an address for the default agent at the machine whose human-sensible name is
host.

The naming convention used by Locate is system-dependent. For example, in an Internet
environment, Locate("decsrc.pa.dec.com") returns the address of the default agent on
the machine decsrc in the DEC Palo Alto Internet domain.
Locate raises Invalid if it determines that host is not a valid name. It raises Error if it

is unable to interpret the name or determine its validity, typically because it is unable to contact
the naming authority, or if there is no standard agent running on the specified host.

PROCEDURE Export(name: TEXT; obj: T; where: Address := NIL)
RAISES {Error, Thread.Alerted};

Set table[name] := obj where table is the table provided by the agent whose
address is where, or by the default agent for the local machine if where=NIL. This can
be used with obj=NIL to remove an entry from the table.

PROCEDURE Import(name: TEXT; where: Address := NIL): T
RAISES {Error, Thread.Alerted};

Return table[name] where table is the table provided by the agent whose address
is where, or by the default agent for the local machine if where=NIL. Import returns
NIL if table contains no entry for name.

EXCEPTION Error(AtomList.T), Invalid;

VAR (*CONST*)
CommFailure, MissingObject, NoResources,
NoTransport, UnsupportedDataRep, Alerted: Atom.T;

END NetObj.

The exception NetObj.Error indicates that a failure occured during a remote method in-
vocation. Every remote method should therefore include this exception in its raises clause.
If NetObj.Error is not raised, then the invocation completed successfully. If it is raised, it
may or may not have completed successfully. It is possible that an orphaned remote invocation
continued to execute at the owner, while the client raised NetObj.Error.

The first atom in the argument to NetObj.Error explains the reason for the failure; any
subsequents atoms provide implementation-specificdetail. The atomCommFailure indicates
communication failure, which might be network failure or a crash on a remote machine. The
atom MissingObject indicates that some network object, either the one whose method is
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invoked or an argument to that method, has been garbage-collected by its owner. (This indi-
cates that the owner mistakenly determined that one of its clients was dead.) NoResources
indicates that the call failed because of a lack of resources, for example Unix file descrip-
tors. NoTransport indicates that an attempt to unmarshal an object failed because the client
and owner shared no common transport protocol implementation and were therefore unable
to communicate. UnsupportedDataRep indicates a mismatch between the network repre-
sentation of data and the ability of a receiver to handle it, for example a 64-bit INTEGER with
non-zero high-order bits is not meaningful as an INTEGER on a 32-bit machine. Alerted
indicates that a client thread was alerted in the middle of a remote call and that an orphaned
remote computation might still be in progress. (Threads alerted in remote calls might also raise
Thread.Alerted; in which case it is guaranteed that no orphans remain.) If the first atom in
the argument list does not appear in this interface, a network object runtime error is indicated.

3.2 NetStream interface

The NetStream interface describes the marshaling of readers and writers, and provides pro-
cedures that you will need to use if you plan to reuse a stream after marshaling it.

The network object runtime allows subtypes of Rd.T and Wr.T to be marshaled as parame-
ters and as results of remote method invocation. To communicate a reader or writer from one
program to another, a surrogate stream is created in the receiving program. We call the origi-
nal reader or writer the concrete stream. Data is copied over the network between the concrete
stream and the surrogate stream. Surrogate streams are free-standing entities, valid beyond the
scope of the remote call that produced them. Data can be transmitted on a surrogate stream at
close to the bandwidth supported by the underlying transport.

The initial position of the surrogate reader or writer equals the position of the corresponding
concrete stream at the time it was marshaled. All surrogate readers and writers are unseekable.
Data is transferred between surrogates and concrete streams in background. Therefore, unde-
fined behaviour will result if you 1) perform local operations on the concrete stream while a
surrogate for it exists, or 2) create two surrogates for the same stream by marshaling it twice.
There is a mechanism, described below, for shutting down a surrogate stream so that the un-
derlying stream can be remarshaled.

Calling Wr.Flush on a surrogate writer flushes all outstanding data to the concrete writer
and flushes the concrete writer. Calling Wr.Close flushes and then closes both the surrogate
and the concrete writer. Similarly, a call on Rd.Close on a surrogate closes both readers.

Clients who marshal streams retain responsibility for closing them. For example, Rd.Close
on a surrogate can fail due to the network, leaving the owner responsible for closing the con-
crete reader. The WeakRef interface can be used to register a GC cleanup procedure for this
purpose.

The ReleaseWr procedure is used to shut down a surrogate writer so that the underlying
writer can be reused. It flushes any buffered data, closes the surrogate, and frees any network
resources associated with the surrogate. It leaves the concrete writer in a state where it can be
reused locally or remarshaled.

Similarly. the ReleaseRd procedure is used to shut down a surrogate reader so that the
underlying reader can be reused. It closes the surrogate, frees any network resources associ-
ated with the surrogate, and leaves the concrete reader in a state where it can be reused lo-
cally or remarshaled. There is an important difference between releasing readers and writers:
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ReleaseRd discards any data buffered in the surrogate or in transit.

INTERFACE NetStream;

IMPORT Rd, Wr, Thread;

PROCEDURE ReleaseRd(rd: Rd.T)
RAISES {Rd.Failure, Thread.Alerted};

If rd is a surrogate reader, release all network resources associated with rd, discard all
buffered data, close rd, but do not close the concrete reader for rd. This procedure is a
no-op if rd is not a surrogate.

PROCEDURE ReleaseWr(wr: Wr.T)
RAISES {Wr.Failure, Thread.Alerted};

If wr is a surrogate writer, flush wr, release all network resources associated with wr,
close wr, but do not close the concrete writer for wr. This procedure is a no-op if wr is
not a surrogate.

END NetStream.

3.3 NetObjNotifier interface

The NetObjNotifier interface allows the holder of a surrogate object to request notification
of when the object’s owner becomes inaccessible. This can be useful, for example, if it is
necessary to remove surrogates from a table upon termination of the programs holding their
corresponding concrete objects.

INTERFACE NetObjNotifier;

IMPORT NetObj;

TYPE
OwnerState = {Dead, Failed};

NotifierClosure = OBJECT METHODS
notify(obj: NetObj.T; st: OwnerState);

END;

PROCEDURE AddNotifier(obj: NetObj.T; cl: NotifierClosure);

Arrange that a call to cl.notify will be scheduled when obj becomes inaccessible.
If obj is not a surrogate object then AddNotifier has no effect. If obj is already
inaccessible at the time AddNotifier is called, then a call to cl.notify is scheduled
immediately.

END NetObjNotifier.

The notifymethod of a NotifierClosure object is invoked when the concrete object cor-
responding to the surrogate obj becomes inaccessible. The procedure AddNotifier must
have been called to enable this notification. There may be more than one NotifierClosure
for the same surrogate. At notification time, the st argument is Dead if and only if the object
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owner is known to be permanently inaccessible. Otherwise st is Failed. It is possible for
notify to be called multiple times on the same object. Any invocations on obj are guaran-
teed to fail in a timely fashion subsequent to a closure notification with st = Dead.

In general, a surrogate object can still be collected if a notifier closure is registered for it.
However, if the closure object contains a reference to the surrogate, then its registration might
delay or prevent collection. Therefore this should be avoided.

Although this interface is organized to enable notification of owner death on a per object
basis, in practice this is achieved by monitoring the state of the owner’s address space. This
means that death notification will be more or less simultaneous for all surrogates whose con-
crete objects have the same owner.

3.4 The stub generator

The stub generator is a program that generates stubs for Modula-3 network object types. There
are restrictions on the subtypes of NetObj.T for which the stub generator can produce stubs;
a network object type that obeys them is said to be valid. Here is a list of these restrictions:

1. A valid network object type must be pure, that is it cannot contain data fields, either in
its declaration or in a revelation.

2. To generate stubs for a network object I.T, the stub generator must be able to deter-
mine a complete revelation for all opaque supertypes of I.T (including I.T itself, if it
is opaque) up to NetObj.T.

3. A method argument may not be of type PROCEDURE or have a component that is of type
PROCEDURE. (A network object with an appropriate method can always be sent instead
of a procedure.)

4. A Modula-3 method declaration specifies the set of exceptions that the method can raise.
It is possible to specify (via RAISES ANY) that any exception can be raised, but this is
not allowed for a valid network object type.

5. The methods of the type and its supertypes must have distinct names.

Given a valid network object type, the stub generator lays down code that implements pa-
rameter marshaling and remote invocation for that type’s methods. For both arguments and
results, subtypes of NetObj.T are marshaled as network references, subtypes of Rd.T and
Wr.T are marshaled as surrogate streams, and all other parameters are marshaled by copying.
The copying is performed by the pickles package if the parameter is a reference.
VALUE and READONLY parameters are copied only once, from the caller to the owner of the

object. VAR parameters are normally copied from caller to owner on the call, and from owner to
caller when the call returns. The pragma <*OUT*> on a VAR parameter in a method declaration
indicates that the parameter may be given an arbitrary legal value when the method is invoked.
The stub generator may use this information to optimize method invocation by not copying
the parameter’s value from caller to owner. At present, the stub generator does not make this
optimization.

Any change in marshaling protocol that would make stubs incompatible is implemented as a
new version of the stub generator. Typically, the previous version will continue to be supported
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for some time after the release of a new one. Thus, multiple versions of the stub generator may
sometimes exist at the same time.

Stubs for multiple versions may be linked into the same program. Method invocation be-
tween two programs is possible so long as the owner and the caller have at least one common
version of the stubs for the network object in question. The network object runtime will use
the most recent version of the protocol that is available in both programs. This allows gradual
migration of applications from the old to the new protocol.

4 Internal Interfaces

In this section we present the main internal systems interfaces. The typical programmer using
network objects has no need to read them, but we present them here in order to document the
structure of the system. These are the interfaces you would use to write a new stub generator,
hand-code stubs for some particular network object type, or add a new transport to the system.

4.1 StubLib interface

This interface contains procedures to be used by stub code for invoking remote object meth-
ods and servicing remote invocations. Each stub module provides type-dependent network
support for marshaling and unmarshaling method calls for a specific subtype of NetObj.T.
Usually, stubs are built automatically. For each NetObj.T subtype T intended to support re-
mote method invocation there must be both a client and a server stub. The client stub defines a
subtype of T in which every method is overridden by a procedure implementingremote method
invocation. Such a surrogate object is constructed by the network object runtime whenever a
reference to a non-local object is encountered. The server stub consists of a single procedure
of type Dispatcher that is called to unmarshal and dispatch remote invocations. A surro-
gate type and null dispatcher for NetObj.T are defined and registered by the network object
system itself.

INTERFACE StubLib;

IMPORT Atom, AtomList, NetObj, Rd, Wr, Thread;

TYPE Conn <: ROOT;

A remote object invocation can be viewed as an exchange of messages between client and
server. The messages are exchanged via an object of type Conn, which is opaque in this in-
terface. The StubConn interface reveals more of this type’s structure to clients who wish to
hand-code stubs for efficiency. A Conn is unmonitored: clients must not access it from two
threads concurrently.

TYPE
Byte8 = BITS 8 FOR [0..255];
DataRep = RECORD
private, intFmt, floatFmt, charSet: Byte8;

END;

VAR (*CONST*) NativeRep: DataRep;
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The type DataRep describes the format used to encode characters, integers, and floating point
numbers in network data. Data is always marshaled in the sender’s native format. NativeRep
is a runtime constant that describes the native format of the current environment.

Stubs may optimize in-line unmarshaling by first checking that the incoming representation
is the same as the native one for all data types relevant to the call. If it is not, then the generic
data unmarshaling routines at the end of this interface should be used.

Automatic conversion between the data representations is performed wherever possible. If
conversion is impossible,NetObj.Error is raised with NetObj.UnsupportedDataRep in
the argument atom list.

Concrete values for the elements of DataRep are not defined here as it is sufficient to com-
pare against NativeRep and invoke the marshaling procedures defined below if the encoding
is non-native.

TYPE
Int32 = BITS 32 FOR [-16_7FFFFFFF-1..16_7FFFFFFF];
StubProtocol = Int32;

CONST
NullStubProtocol = -1;
SystemStubProtocol = 0;

The type StubProtocol indicates the version of the stub compiler used to generate a par-
ticular stub. Multiple stubs for the same network object can coexist within the same program
(for example, the outputs of different stub compilers). During surrogate creation, the network
object runtime negotiates the stub protocol version with the object owner.
NullStubProtocol is a placeholder to indicate the absence of a stub protocol value. The

value SystemStubProtocol indicates the fixed stub encoding used by the runtime to imple-
ment primitives that operate prior to any version negotiation.

VAR (*CONST*) UnmarshalFailure: Atom.T;

UnmarshalFailure should be used as an argument to NetObj.Error whenever stubs en-
counter a network datum that is incompatible with the target type. For example, the stub code
might encounter a CARDINAL value greater than LAST(CARDINAL) or an unrecognized re-
mote method specification.

TYPE Typecode = CARDINAL;

Typecode is the type of those values returned by the Modula-3 TYPECODE operator.

PROCEDURE Register(
pureTC: Typecode; stubProt: StubProtocol;
surrTC: Typecode; disp: Dispatcher);

Let T be the type whose typecode is pureTC, and let srgT be the type whose typecode
is surrTC. Set the client surrogate type and dispatch procedure for T to be srgT and
disp, respectively. The stubProt parameter indicates the stub compiler version that
generated the stub being registered.

The following constraint applies to stub registration. If stubs are registered for types A and B,
where B is a supertype of A, then the protocol versions registered for B must be a superset of
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the versions registered for A. If this rule is violated, attempts to invoke remote methods may
raise NetObj.Error.

Note that a concrete object of type A will receive method invocations only for stub versions
for which A is registered. This is true even if a supertype of A is registered with additional stub
versions.
Register must be called before any object of type T is marshaled or unmarshaled.

Client stub procedures

Here is a simplified sketch of the procedure calls performed by a client to make a remote call
to a method of obj:

VAR
c := StartCall(obj, stubProt);
resDataRep: DataRep;

BEGIN
<marshal to "c" the number of this method>
<marshal to "c" the method arguments>
resDataRep := AwaitResult(conn);
<unmarshal from "c" the method results>
<results will be in wire format "resDataRep">
EndCall(c, TRUE)

END;

For both arguments and results, the sender always marshals values in its native format; the
receiver performs any conversions that may be needed. The procedure result typically begins
with an integer specifying either a normal return or an exceptional return. If a protocol error
occurs, the client should call EndCall(c, FALSE) instead of EndCall(c, TRUE). This re-
quires TRY FINALLY instead of the simple straight-line code above; a more complete example
is presented in the next section.

Here are the specifications of the client protocol procedures:

PROCEDURE StartCall(obj: NetObj.T; stubProt: StubProtocol): Conn
RAISES {NetObj.Error, Wr.Failure, Thread.Alerted};

Return a connection to the owner of obj, write to the connection a protocol request to
perform a remote method call to obj, using the data representation NativeRep. The
value stubProt is the stub protocol version under which the arguments and results will
be encoded.

Upon return from StartCall, the client stub should marshal a specification of the method
being invoked followed by any arguments.

PROCEDURE AwaitResult(c: Conn): DataRep
RAISES {NetObj.Error, Rd.Failure, Wr.Failure,

Thread.Alerted};

AwaitResult indicates the end of the arguments for the current method invocation,
and blocks waiting for a reply message containing the result of the invocation. It returns
the data representation used to encode the result message.
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Upon return from AwaitResult the client stub should unmarshal any results.

PROCEDURE EndCall(c: Conn; reUse: BOOLEAN)
RAISES {NetObj.Error, Rd.Failure, Wr.Failure,

Thread.Alerted};

EndCall must be called at the end of processing a remote invocation, whether or not
the invocation raised an exception. The argument reUse must be FALSE if the client
has been unable, for any reason, to unmarshal either a normal or exceptional result.
It is always safe to call EndCall with reUse set to FALSE, but performance will be
improved if reUse is TRUE whenever possible.

EndCall determines, by examiningc, whether the result message requires acknowledgement,
that is, whether the result contained any network objects. If an acknowledgement is required,
it is sent. EndCall then releases c. After EndCall returns, c should not be used.

Server dispatcher procedures

Next we consider the server-side stub, which consists of a registered dispatcher procedure.

TYPE Dispatcher = PROCEDURE(
c: Conn; obj: NetObj.T; rep: DataRep; stubProt: StubProtocol)
RAISES {NetObj.Error, Rd.Failure, Wr.Failure, Thread.Alerted};

A procedure of type Dispatcher is registered for each network object type T for which stubs
exist. The dispatcher is called by the network object runtime when it receives a remote object
invocation for an object of type T. The rep argument indicates the data representation used
to encode the arguments of the invocation. The stubProt argument indicates the version of
stub protocol used to encode the call arguments. The same protocol should be used to encode
any results.

The dispatcher procedure is responsible for unmarshaling the method number and any ar-
guments, invoking the concrete object’s method, and marshaling any results.

Here is a simplified sketch of a typical dispatcher:

PROCEDURE Dispatch(c, obj, rep) =
BEGIN
<unmarshal from "c" the method number>
<unmarshal from "c" the method arguments>
<arguments will be in the wire format "rep">
<call the appropriate method of "obj">
StartResult(c);
<marshal to "c" the method result or exception>

END Dispatch;

Here is the specification of StartResult:

PROCEDURE StartResult(c: Conn)
RAISES {Wr.Failure, Thread.Alerted};

StartResult must be called by the server stub to initiate return from a remote
invocation before marshaling any results.
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Upon return from StartResult the stub code should marshal any results or error indications.

Marshaling of reference types

The following procedures are made available for marshaling of subtypes of REFANY.

PROCEDURE OutRef(c: Conn; r: REFANY)
RAISES {Wr.Failure, Thread.Alerted};

Marshal the data structure reachable from r. Certain datatypes are handled specially:
subtypes of NetObj.T are marshaled as network references. Subtypes of Rd.T and
Wr.T are marshaled as surrogate streams. The types TEXT and REF ARRAY OF TEXT
are marshaled by copying via custom code for speed. All others are marshaled by
copying as pickles. Subtypes of NetObj.T, Rd.T, and Wr.T which are embedded
within other datatypes are also marshaled by reference.

PROCEDURE InRef(c: Conn; rep: DataRep; tc:=-1): REFANY
RAISES {NetObj.Error, Rd.Failure, Thread.Alerted};

Unmarshal a marshaled subtype of REFANY as pickled by OutRef. If tc is non-
negative, it is the typecode for the intended type of the reference. The exception
NetObj.Error(UnmarshalFailure) is raised if the unpickled result is not a subtype
of this type. If tc is negative, no type checking is performed.

OutRef and InRef use pickles and therefore are affected by any custom pickling procedures
that have been registered. The network objects runtime itself registers procedures for pickling
network objects and streams. Therefore, for any network objects or streams that are reachable
from the reference r are pickled by reference as described elsewhere in this report.

Marshaling of generic data

The StubLib interface also provides a suite of procedures to facilitate the marshaling and
unmarshaling of primitive data types. For the sake of brevity, we use the INTEGER datatype as
an example. The actual interface provides routines to handle all other types that are primitive
in Modula-3 such as CARDINAL, REAL, and LONGREAL.

PROCEDURE OutInteger(c: Conn; i: INTEGER)
RAISES {Wr.Failure, Thread.Alerted};

PROCEDURE InInteger(c: Conn; rep: DataRep;
min := FIRST(INTEGER); max := LAST(INTEGER)): INTEGER
RAISES {NetObj.Error, Rd.Failure, Thread.Alerted};

Since all marshaling procedures output their parameters in the native representation of the
sender, they can be trivially replaced by inline code that manipulates the writer buffer directly.
All unmarshaling procedures decode the incoming wire representation as indicated by rep
and return their results in native format. These procedures can be replaced by inline unmar-
shaling code whenever the relevant elements of rep match the corresponding elements of
NativeRep.
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Finally, the StubLib interface provides two procedures for raising NetObj exceptions con-
veniently:

PROCEDURE RaiseUnmarshalFailure() RAISES {NetObj.Error};

Raise NetObj.Error with UnmarshalFailure in the argument list.

PROCEDURE RaiseCommFailure(e: AtomList.T) RAISES {NetObj.Error};

Raise NetObj.Error with the result of prepending NetObj.CommFailure to e.

END StubLib.

4.2 An example stub

This subsection illustrates the use of the StubLib interface by presenting hand-generated stub
code for a simple network object type, Example.T:

INTERFACE Example;

IMPORT NetObj, Thread;

EXCEPTION Invalid;

TYPE
T = NetObj.T OBJECT METHODS

get(key: TEXT) : TEXT
RAISES {Invalid, NetObj.Error, Thread.Alerted};

END;

END Example.

Notice that the object methods must raise NetObj.Error or else communications failures
will be treated as checked runtime errors. Also notice that Thread.Alerted is present in
the RAISES clause of all methods. This is not required, but is strongly advised. If an ob-
ject method does not propagate the Thread.Alerted exception, then not only is it impos-
sible to alert remote invocations, but the server implementation must guarantee that Alerted
will never be raised. This guarantee must hold even though the network object runtime uses
Thread.Alert to recover server threads when the client address space dies.

The following module defines and registers both client and server stubs for Example.T:

MODULE Example;

IMPORT NetObj, StubLib, Thread, Rd, Wr;

TYPE P = { Get }; R = { OK, Invalid };

The enumerated types P and R define values to be associated with the methods of T and with
the various results (normal return or exception) of these methods.

TYPE StubT = T OBJECT OVERRIDES get := SurrogateGet; END;

The type StubT is the surrogate object type for T. It provides method overrides that perform
remote invocation.
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CONST StubVersion = StubLib.SystemStubProtocol;

This constant will be set by the stub generator to denote the stub generator version that created
a given stub.

PROCEDURE SurrogateGet (t: StubT; key: TEXT) : TEXT
RAISES {Invalid, NetObj.Error, Thread.Alerted} =

VAR reuse := FALSE;
rep: StubLib.DataRep;
c: StubLib.Conn;
res: TEXT;

BEGIN
TRY
c := StubLib.StartCall(t, StubVersion);
TRY
StubLib.OutInt32(c, ORD(P.Get));
StubLib.OutRef(c, key);
rep := StubLib.AwaitResult(c);
CASE StubLib.InInt32(c, rep) OF
| ORD(R.OK) =>

res := StubLib.InRef(c, rep, TYPECODE(TEXT));
reuse := TRUE;

| ORD(R.Invalid) =>
reuse := TRUE;
RAISE Invalid;

ELSE
StubLib.RaiseUnmarshalFailure();

END;
FINALLY
StubLib.EndCall(c, reuse);

END;
EXCEPT
| Rd.Failure(ec) => StubLib.RaiseCommFailure(ec);
| Wr.Failure(ec) => StubLib.RaiseCommFailure(ec);
END;
RETURN res;

END SurrogateGet;

Invoke is the server stub dispatcher for T. It is called when the network object runtime re-
ceives a method invocation for an object of type T.

PROCEDURE Invoke(
c: StubLib.Conn; obj: NetObj.T; rep: StubLib.DataRep;
<*UNUSED*> stubProt: StubLib.StubProtocol)
RAISES {NetObj.Error, Rd.Failure, Wr.Failure,

Thread.Alerted} =
VAR t := NARROW(obj, T);
BEGIN
TRY
CASE StubLib.InInt32(c, rep) OF
| ORD(P.Get) => GetStub(c, t, rep);
ELSE StubLib.RaiseUnmarshalFailure();
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END;
EXCEPT
| Invalid =>

StubLib.StartResult(c);
StubLib.OutInt32(c, ORD(R.Invalid));

END;
END Invoke;

There is one server side stub procedure for each method of T.

PROCEDURE GetStub (c: StubLib.Conn; t: T; rep: StubLib.DataRep)
RAISES {Invalid, NetObj.Error, Rd.Failure,

Wr.Failure, Thread.Alerted} =
VAR key, res: TEXT;
BEGIN
key := StubLib.InRef(c, rep, TYPECODE(TEXT));
res := t.get(key);
StubLib.StartResult(c);
StubLib.OutInt32(c, ORD(R.OK));
StubLib.OutRef(c, res);

END GetStub;

All stub code is registered with the network object runtime by the main body of the stub mod-
ule. The protocol number is set to the stub protocol constant defined above.

BEGIN
StubLib.Register(

TYPECODE(T), StubVersion, TYPECODE(StubT), Invoke);
END Example.

4.3 StubConn interface

A StubLib.Conn represents a bidirectional connection used to invoke remote methods by
the network objects runtime. Here we reveal that a connection c consists of a message reader
c.rd and a message writer c.wr.

Connections come in matching pairs; the two elements of the pair are typically in different
address spaces. If c1 and c2 are paired, the target of c1.wr is equal to the source of c2.rd,
and vice versa. Thus the messages written to c1.wr can be read from c2.rd, and vice versa.

INTERFACE StubConn;

IMPORT MsgRd, MsgWr, StubLib;

REVEAL StubLib.Conn <: Public;

TYPE Public = OBJECT rd: MsgRd.T; wr: MsgWr.T END;

END StubConn.

The types MsgWr.T and MsgRd.T are subtypes of the standard Modula-3 stream types Wr.T
and Rd.T; they are described in detail in the next subsection. Since they are subtypes, any of
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the standard stream operations can be used on them. For example, in a hand-coded stub you
could replace the pair

StubLib.OutByte(c, byte)
b := StubLib.InByte(c)

with the pair

Wr.PutChar(c.wr, VAL(byte, CHAR))
b := ORD(Rd.GetChar(c.rd)).

The gain in speed from this change will be very modest. To make optimization worthwhile,
you will want to make direct access to the buffers in the reader and writer. To do this, import
the RdClass and WrClass interfaces[18]. Importing these interfaces will allow you to write
stubs that operate directly on the reader and writer buffers.

If you use this optimization, you will have to be careful about locks. All readers and writ-
ers contain an internal lock used to serialize operations. It is a requirement of the StubLib
interface that all parameters of type Conn be passed with both streams unlocked. It is a fur-
ther requirement that no client thread operate on the streams while an activation of a StubLib
procedure is in progress.

4.4 Message readers and writers

The byte streams of the readers and writers in a StubLib.Conn are divided into segments
called messages. Messages are convenient for delineating call and return packets, and seem
essential for sending both data and control information for surrogate streams.

We define the types MsgRd.T and MsgWr.T to present the abstraction of a stream of mes-
sages. A message is a sequence of bytes terminated by an end-of-message marker. The initial
position is at the start of the first message. Messages can be of zero length.

If the end-of-message marker is encountered while reading from a MsgRd.T, it is repre-
sented by EndOfFile on the reader. The nextMsg method can be used to advance to the
next message in the stream. This method waits for the next message and returns TRUE when
it becomes available. A return value of FALSE indicates that there are (and will be) no further
messages. The reader’s current position is set to zero on return from nextMsg, and the reader
no longer reports EndOfFile (unless of course the next message is zero length).

If nextMsg is invoked when the reader is not at EndOfFile, the remaining bytes in the
current message are skipped.

As for all readers, calling Rd.Close on a MsgRd.T releases all associated resources.
Here is a listing of the interface:

INTERFACE MsgRd;

IMPORT Thread, Rd;

TYPE
T = Rd.T OBJECT METHODS
nextMsg(): BOOLEAN RAISES {Rd.Failure, Thread.Alerted};

END;

END MsgRd.
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As with a MsgRd.T, the nextMsg method of a MsgWr.T can be used to end the current
message and position the writer at the start of the next message. The writer’s current position
is reset to zero on return from nextMsg.

Invoking Wr.Flush on a MsgWr.T flushes the current buffer to the abstract writer target,
but does not end the current message.

As for all writers, calling Wr.Close on a MsgWr.T releases all associated resources. Close
also flushes and terminates the current message. This means that a zero-length message is sent
at close time if no data has been written into the current message (for example, directly after
nextMsg or writer initialization).

Here is a listing of the interface:

INTERFACE MsgWr;

IMPORT Thread, Wr;

TYPE
T = Wr.T OBJECT METHODS

nextMsg() RAISES {Wr.Failure, Thread.Alerted};
END;

END MsgWr.

There are two final clauses in the specification of message readers and message writers.
First, their buffers must be word-aligned in memory. More precisely, if byte i in the data
stream is stored in the buffer at memory address j, then i and j must be equal modulo the
machine word size. This requirement allows optimized stubs to read and write scalar word
values from the buffer efficiently. Second, their buffers must not be too small. More precisely,
when the nextMsg method of a writer returns, there must be at least 24 bytes of free space in
the writer buffer, and when the nextMsgmethod of a reader returns, there must be at least 24
bytes of message data in the reader buffer. This requirement allows the runtime to efficiently
read and write the headers required by the network object protocol.

4.5 Transport interface

The Transport interface separates the main part of the network object runtime system from
the parts that deal with low-level communication. It is the interface that must be implemented
to extend the system to use new communication protocols. The interface is reasonably narrow:

INTERFACE Transport;

IMPORT NetObj, NetObjNotifier, StubLib, StubConn, Thread;

TYPE
T <: Public;
Endpoint = TEXT;
Public = OBJECT METHODS

fromEndpoint(e: Endpoint): Location;
toEndpoint(): Endpoint;
serviceCall(t: StubLib.Conn): (*reUse*) BOOLEAN
RAISES {Thread.Alerted};

END;
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Location <: LocationP;
LocationP = OBJECT METHODS
new(): StubLib.Conn RAISES {NetObj.Error, Thread.Alerted};
free(c: StubLib.Conn; reUse: BOOLEAN);
dead(st: NetObjNotifier.OwnerState);

END;

Conn = StubConn.Public BRANDED OBJECT
loc: Location

END;

REVEAL
NetObj.Address = BRANDED REF ARRAY OF Endpoint;
StubLib.Conn <: Conn;

END Transport.

The main ideas in the interface were described earlier. To summarize these briefly:

� A Transport.T is an object that manages connections of some particular class (e.g.,
TCP).

� A Transport.Location is an object that creates connections of some particular class
to some particular address space.

� A Transport.Endpoint is a transport-specific name for an address space (e.g., an IP
address plus a port number plus a non-reusable process ID).

� The fromEndpoint method of a transport converts an endpoint into a location, or into
NIL if the endpoint and transport are of different classes.

Here are specifications for the methods of a Transport.T:

� The toEndpointmethod returns an endpoint for the address space itself. The resulting
endpoint should be recognized by the fromEndpointmethod of transports of the same
class anywhere in the network. That is, if program instance P calls tr.toEndpoint(),
producing an endpoint ep, then the call tr1.fromEndpoint(ep) executed in any pro-
gram instance either returns NIL (if tr and tr1 are of different classes) or returns a lo-
cation that generates connections to P.

� Transports are required to provide the threads that listen to the server sides of connec-
tions. When a message arrives on the connection indicating the beginning of a remote
call, the threads are required to call theserviceCallmethod of their transport. The de-
fault value of this method locates and calls the dispatcher procedure. Ordinarily a trans-
port implementation will not need to override the serviceCallmethod. If conn is the
argument to serviceCall, then at entry conn.rd is positioned at the start of the in-
coming message. The serviceCallmethod processes the incoming remote invocation
and sends the result on conn.wr. If it returns TRUE, then the remote invocation was pro-
cessed without error and the transport can cache the connection. If it returns FALSE, a
protocol error occurred during the call, and the transport implementation should destroy
the connection.
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And here are the specifications for the methods of a Transport.Location:

� The new method of a location returns a connection to the address space for which it is
a location. The call loc.new() returns a connection whose server side is that address
space and whose client side is the program instance making the call. The caller must
pass the resulting connection to loc.free when it is finished with it.

� The call loc.free(c, reUse) frees the connection c, which must have been gener-
ated by loc.new(). If reUse is TRUE, the client asserts that the connection is in a suit-
able state for executing another remote method call. In particular, c.wr must be posi-
tioned at the beginning of a message.

� A transport is responsible for monitoring the liveness of program instances for which it
has locations or connections. The method of monitoring depends on the transport. For
example, the transport might periodically ping the other program instances. A program
is considered dead if it exits, crashes, or if the underlying communication network cannot
reach it for an appreciable amount of time. Suppose that loc is a location that generates
connections to some program instance P. If P dies, the transport that provided loc is
responsible for calling the method loc.dead(st). (The network object runtime im-
plements this method; the transport should not override it.) The argument st indicates
whether the transport has detected a permanent failure, or one that is potentially transient.
In addition to calling loc.dead, the transport is responsible for alerting all threads it has
spawned to handle method invocations on behalf of P.

A transport is expected to manage the connections it creates. If creating connections is ex-
pensive, then the transport’s locations should cache them. If maintaining idle connections
is expensive, then the transport’s locations should free them. Often connections are time-
consuming to create, but then tie up scarce kernel resources when idle. Therefore transports
typically cache idle connections for a limited amount of time.

The Transport interface reveals the representation of NetObj.Address: an address is
simply an array of endpoints for the program instance designated by the address. The end-
points are generally of different transport classes; they provide alternative ways of communi-
cating with the program instance. The modules of the network object runtime that require this
revelation are exactly the modules that import the transport interface, so this is a convenient
place to put it.

The Transport interface also reveals more information about the type StubLib.Conn. If
t is a StubLib.Conn, then t.loc is a Location that generates connections to the program
instance at the other end of t. The connections generated by t.loc connect the same pair of
program instances that t connects, but if t is a handle on the server side of the connection, then
the connections generated by t.loc will reverse the direction of t: their client side will be
t’s server side, and vice versa (so-called back connections). On the other hand, if t is a handle
on the client side of the connection, then the connections generated by t.loc will be in the
same direction as t. A transport must ensure that the loc field is defined in all connections
returned by any of its locations.
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5 Performance

Our system was designed and implemented in a year by the four authors. The network object
runtime is 4000 lines, the stub generator 3000 lines, the TCP transport 1500 lines, the pickle
package 750 lines, and the network object agent 100 lines. All the code is in Modula-3.

We haven’t attempted extensive performance optimization, but we have measured the times
for some basic operations. The numbers given in Table 1 were taken using Digital worksta-
tions equipped with DECchip 21064 processors (at 175 MHz) running OSF/1 and communi-
cating over a 100 megabit/sec AN1 network[22]. The numbers include the cost of Modula-3
runtime checks.

Table 1: Sample remote invocation timings
Call parameters Elapsed time/call
Null call 960 usec
Ten integer arguments 1010 usec
REF CHAR argument 1280 usec
Linked list argument 5200 usec
Network object argument (s) 1030 usec
Network object argument (c) 1050 usec
Network object argument (c; d) 2560 usec
Network object result (s) 1180 usec
Network object result (c) 1190 usec
Network object result (c; d) 2680 usec
(c) concrete object marshaled

(s) surrogate object marshaled

(d) dirty call required

On our test configuration, it takes 660 microseconds for a C program to echo a TCP packet
from user space to user space. A null network object method invocation takes an additional
300 microseconds. The difference is primarily due to the cost of two Modula-3 user space
context switches (64 microseconds), the cost of marshaling and unmarshaling the object whose
null method is being invoked, and the cost of the wire protocol used to frame invocation and
result packets.

The ten integer argument test shows that the incremental cost of an integer argument is about
5 microseconds. The REF CHAR test measures the cost of marshaling a small data structure by
pickling. This minimal use of the pickle machinery adds an additional 220 microseconds to
the null call. The linked list test measures the cost of marshaling a complex data structure, in
this case a doubly-linked list with 25 elements. The additional cost per element is roughly 80
microseconds.

The next six tests show the total cost of various calls involving a single network object ar-
gument or result (in addition to the object whose method is being invoked). An “(s)” indicates
that the argument or result is marshaled as a surrogate and unmarshaled as a concrete object.
A “(c)” indicates that the argument or result is marshaled as a concrete object and unmarshaled
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as a surrogate. A “(d)” indicates that a dirty call is required.
The incremental cost of a surrogate network object argument that does not lead to a dirty

call is roughly 70 microseconds. A concrete network object argument is somewhat more ex-
pensive. If a dirty call is required, there is an additional cost of about 1500 microseconds.

Network object results are more expensive than arguments, because of the acknowledge-
ment that must be sent when the result message contains a network object. In the tests that do
not involve dirty calls, this cost shows up as a difference of approximately 150 microseconds,
but in the tests that do involve dirty calls the cost seems to be lost in the noise.

We also measured the performance of marshaled readers and writers. Since there is only a
minimal layer of protocol between marshaled data streams and the underlying network trans-
port, there is little difference in bandwidth. In the test configuration described above, our im-
plementation delivers over 95 percent of the full network bandwidth (100 MBits/sec). We at-
tribute our failure to achieve full network bandwidth to the cost of user-space thread emulation,
Unix non-blocking I/O, and TCP protocol overhead.

The purpose of our project was to find an attractive design, not to optimize performance, and
our numbers reflect this. Nevertheless, the performance of our system is adequate for many
purposes. It is competitive with the performance of commercially available RPC systems[20],
and we believe that our design does not preclude the sort of performance optimizations re-
ported in the literature[23, 27]. Furthermore, our use of buffered streams for marshaling per-
mits careful hand-tuning of stubs while still offering the flexibility of a general purpose stream
abstraction.

6 Experience

Our network objects system has been working for almost two years. Several projects have built
on the system, including the Siphon distributed software repository[21], the Argo teleconfer-
encing system[9], and the Obliq distributed scripting language[6]. We report on experience
gained from these projects here.

6.1 Siphon

The Siphon system consists of two major components. The packagetool allows software pack-
ages to be checked in and out from a repository implemented as a directory in a distributed
file system. The repository is replicated for availability. When a new version of a package is
checked in, it is immediately visible to all programmers using the local area network. All the
files in the new version become visible simultaneously.

The siphon component is used to link repositories that are too far apart to be served by the
same distributed file system. (In our case, the two repositories of interest are 6000 miles apart.)
When a new version of a package is checked in at one repository, the siphon copies it to the
other repository within a few hours. Again, all new files in a single package become visible
simultaneously.

An earlier version of this system was coded with conventional RPC. The current version
coded with network objects is distinctly simpler, for several reasons.

First, pickles and network streams simplified the interfaces. For example, to fetch a package,
the old siphon enumerated the elements of the directory by repeated RPC calls; the new siphon
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obtains a linked structure of directory elements in one call. Also, the old siphon used multiple
threads copying large buffers of data to send large files; the new siphon uses a network stream.

Second, third-party transfers eliminated an interface. The previous version of the siphon
would pull a new version of a package from one of the source replicas, push it over the wide
area network to a partner siphon at the other site, which would cache it on its disk and then push
it to each of the destination replicas. Thus both a pull and a push interface were required. The
new siphon transfers the object implementing the pull interface to its remote partner, which
then pulls the files from the source replica directly. Thus the push interface was eliminated.

Third, we can take advantage of the ability to plug new transports into the system. Data com-
pression is known to significantly increase bandwidth over wide area networks. Although we
have not had need to do so, we could easily provide a subtype of Transport.T that automat-
ically compresses and decompresses data. This would move the compression code out of the
application and into a library where it could easily be reused.

In writing the Siphon system we deliberately stressed distributed garbage collection by per-
forming no explicit deallocations. The results of this strategy were mixed. There were no seri-
ous memory leaks and garbage collection overhead was not a problem, but automatic reclama-
tion was not as timely as we would have liked. The fundamental problem is that performance
tradeoffs made in the local collector may not be appropriate for the distributed case. For ex-
ample, it may be perfectly acceptable for the collector to delay reclaiming some small object,
but if the object is a surrogate this can prevent the reclamation of an object that holds some
important resource. We also found that the Modula-3 local collector occasionally fails to free
unreachable objects because of its conservative strategy, and that this is more of a problem
for distributed computations than for local ones. We conclude that for an application like the
Siphon system that holds important resources like Unix file handles, it is necessary either to
rewrite the local collector or to code the application to free resources explicitly.

6.2 Argo

Argo is a desktop telecollaboration system using audio, video, a shared whiteboard, and shared
application windows to facilitate cooperation among multiple users who may be separated
across long distances. A central function of Argo is conference control, which coordinates
the sharing of the various media and tools to provide a coherent model of group collaboration.
This shared state is held in a small special-purpose database that is implemented in terms of
network objects.

The conference control server’s database defines three types of objects: users, conferences,
and members. A user object represents a human user of the system; a conference object repre-
sents an collaboration, such as a virtual conference room. The basic event is that users join and
leave conferences. A member represents a fuser, confg pair and is created automatically when
a user joins a conference. Each object in the database has a list of properties whose meaning
is defined by client programs. General property lists were chosen instead of a predefined hi-
erarchy of subtypes to increase independence among client programs.

The primary function of the server is to notify clients of events that occur in its database.
This is done via callbacks. A client program registers a handler object and an event filter.
When an event passes the filter, an appropriate callback method of the client’s handler object
is invoked, and is passed the relevant database object(s) that were involved in the event. For
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example, when a user joins a conference, the client programs involved in the conference are
notified and can obtain the properties of the new user’s object.

Callbacks like those employed in Argo are commonplace in non-distributed applications,
and network objects extend this style to distributed programming. Nonetheless, transparent
distributed invocation is not a panacea; distributed programs are inherently more complex than
centralized ones. For example, callbacks from the Argo server to clients cannot be treated
like local callbacks: the server must protect itself against clients that crash or are too slow,
especially when locks are involved. Although good tools can hide many of the tiresome details
of distributed programming, they do not yet eliminate the fundamental issues that must be
faced in designing a robust distributed system.

The ease of defining, debugging and modifying the Argo conference control system and
its protocol via network objects has been quite striking. Because of the leverage provided by
Modula-3 and network objects, the entire conference control server implementation contains
only 1400 lines of source code.

6.3 Obliq

Obliq is a lexically-scoped, untyped, interpreted language that supports distributed object-
oriented computation. Obliq objects have state and are local to a site, but computations can
roam over the network.

The characteristics of Modula-3 network objects had a major influence on Obliq, not just
in the implementation, but also in the language design. All Obliq objects are implemented as
network objects, so there is no artificial separation between local Obliq objects and those that
may be remotely accessed. Also, all Obliq program variables are network objects, including
global variables. Therefore, a remote computation can still access global state at the site at
which it originated. Two elements of the network objects system were particularly useful in
simplifying the Obliq implementation. Distributed garbage collection relieved concerns about
space reclamation, and marshaling via pickles made it easy to transmit complex data structures
such as the runtime representation of Obliq values.

6.4 Other work

Network objects are also in use in a system for continuous performance monitoring. The sys-
tem provides a telemonitoring server which can be directed by the user to retrieve and process
event logs from remote programs. The logs are communicated to the telemonitor via remote
readers. Because a monitored program may disconnect from one telemonitor and reconnect
to another, this application requires the ability to disconnect a network reader and reconnect
the underlying data stream to a different process. This works, but requires extra logic in the
application. In order to guarantee that no data is lost, the telemonitor must call the monitored
program to indicate that it is disconnecting.

Our experience with the continuous monitoring project showed us that the design of reader
and writer marshaling is trickier than it would at first appear. The semantics of marshaled
streams are surprisingly difficult to specify and there are many design tradeoffs involved. We
chose to give rather weak semantics, barring third-party marshaling of streams and specify-
ing little about the state of a concrete stream after marshaling. Providing stronger guarantees
would have had a high cost in either throughput or complexity.
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We have also implemented secure network objects. A secure network object method can
authenticate its caller, which allows security based on access control lists. A secure network
object can also be passed to third parties and cannot be forged, which allows security based
on capabilities. A client can use secure and ordinary insecure network objects together in the
same application, incurring a performance penalty only for secure invocations or third party
transfers of secure objects. Leendert van Doorn has implemented secure network objects[28],
but the implementation has not yet been released or extensively used.

We learned three things from our secure network object implementation. First, the design of
the secure system followed naturally from that of the insecure system. A large-scale redesign
was not necessary. Second, because we use readers and writers for marshaling, it was easy
to insert reader and writer subtypes that perform the cryptographic functions necessary for
network security. Finally, because of our desire to make remote invocations transparent, we
did not identify the caller via an implicit argument to the owner’s method. Instead, we require
callers to pass an explicit extra argument if they want to identify themselves. This argument
is of a distinguished type that is marshaled specially.

Several users of network objects have noted our lack of support for object persistence. We
note that Carsten Weich has recently added support for stable objects to the Modula-3 runtime
system. He captures a stable snapshots of an object’s state and then writes the arguments of
update methods into a redo log using techniques quite similar to marshaling.

Providing support for stable concrete objects is not the whole story, however. In a distributed
system, it can be valuable for a surrogate object to remain valid after restart of the owner’s
address space. We have not implemented this facility, although we believe that it would be
straightforward to do so with a library built on top of the existing network object system.

7 Conclusion

The narrowest surrogate rule is flexible, but the associated type checking is dynamic rather
than static, which has all the usual disadvantages. Because programs can be relinked and re-
run at any time, it seems impossible to provide purely static type checking in a distributed en-
vironment. Dynamic checking imposes a burden of discipline upon programmers. The most
common failure during the early stages of debugging a network objects application is a narrow
fault (failure of a runtime type-check). For example, if a programmer forgets to link in stubs
for a subtype A of NetObj.T, an import of an A object will succeed, but the resultant surrogate
will have type NetObj.T and any attempt to NARROW it to an A object will fail.

Even an application that has been in service for a long time can crash with a narrow fault if
some programmer carelessly changes a low-level interface and rebuilds another program with
which the application communicates. Because of this danger, programmers should minimize
external dependencies when defining a network object subtype. It is also important that the
implementation of type fingerprinting not introduce spurious dependencies.

Programmers appreciate the narrowest surrogate rule, and more than one has asked for com-
parable flexibility in the case of ordinary objects. (If an attempt is made to unpickle an ordinary
object into a program that does not contain the type of the object, an exception is raised.) But
in this case liberality seems unsound. Suppose type AB is derived from A, and that we contrive
to send a copy (rather than a reference) of an object of type AB into a program that knows the
type A but not the type AB. One can imagine doing this either by ignoring the B data fields and
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methods, or by somehow holding them in reserve. In either case, the new program can operate
on the A part of the state, for example by reading or writing data fields or by calling methods
of A. However, there is no guarantee that these operations will be valid, since the original type
AB may have overridden some of the methods of A; for example in order to accommodate a
change in the meaning of the representation of theA fields. The narrowest surrogate rule seems
sound only when objects are transmitted by reference.

The programmers that have used network objects have found the abstractions it offers to be
simple yet powerful. By providing transparent remote invocation through Modula-3 objects,
we eliminate many of the fussy details that make RPC programming tedious. Through the use
of pickles, and by implementing third party network object transfers and marshaled abstract
streams, we remove many restrictions about what can be marshaled, and we do so without
increasing the complexity of generated stubs. The strength of our system comes not from pro-
liferating features, but from carefully analyzing the requirements of distributed programming
and designing a small set of general features to meet them.
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