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Abstract

The Echo replicated file system uses new-vaue logging. Echo’s use of new-value
logging provides a clean separation of the internals of the system into one module
that is concerned with logging and recovery, and another module that is concerned
with accessing and updating the file system’s on-disk structures. The logging
module provides a restricted form of transaction. The restrictions simplify its
implementation but impaose constraints on the file system module. The file system
module easily satisfies these constraints, resulting in a good match overall.
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1 Introduction

Maintaining the consistency of on-disk structuresin the face of system crashesis
an important problem in file system design. This problem is difficult because file
system on-disk structures can span multiple disk blocks and because file system
updates can modify several on-disk structures. Because disk hardware writes
each block individually, a crash can leave on-disk structures in inconsistent states.
Therefore arecovery procedure must be designed as part of the file system.

Loggingisagenera technique for making a set of updates atomic with respect
to crashes. Compared with more specialized technigquesfor maintaining the consis-
tency of afile system’son-disk structures, such as scavenging and carefully ordered
writing, logging has three primary advantages. Logging can keep recovery time
short, improving avail ability. Logging can change random disk writesto sequential,
improving performance. And logging localizesrecovery concerns, simplifyingthe
implementation.

Logging'sability to simplify theimplementationalowsafile systemto be more
ambitiousand still be feasible:

e Thefile system can provide higher performance by maintaining more com-
plex on-disk structures. Logging allows these structures to be designed
without too many constraints.

e The file system can provide higher reliability by replicating disks. After a
system crash, the log can be used to bring the disk replicas into agreement.

e Thefile system can provide higher availability by replicating servers. After
a failover from one server to another, the file system needs to determine
whether or not a particular update request was performed; logging makes it
easier to maintain the extrainformation needed to determine this.

e Thefilesystem can providestronger file system semanticsto clients. Logging
allows more complex operations, such as file rename, to be atomic.

Severd file system implementations have demonstrated the advantages of |og-
ging. The Cedar file system implements directories as a B-tree, using logging to
maintain the B-tree invariants [12]. The Harp file system and the HA-NFS file
system provide replicated NFS service, and use logging to assist in replication and
failover [3, 4, 19]. The Alpine file system uses logging to provide transactional
semantics to file system clients [6]. The Sprite log-structured file system is radi-
cally different from these other systems and from Echo, in that all datalivesin the
log [26].



Echo is a distributed file system, one of whose major goals is to achieve high
availability by replication of disks and servers.! We were therefore attracted to
logging as an implementation technique.

We chose a particularly simple style of logging for Echo: new-value logging
with abounded log.? Only new values of data are recorded—no undo information
islogged. On-line abort is not supported; that is, only a system crash can back out
an uncommitted transaction.

Our new-valuelogging is economical and simple. Economical, because we cut
loggingin half by not recording the old values. Simple, because new-valuelogging
provides a clean separation of theinternals of the file system into one module that
is concerned with logging and recovery, and another modulethat is concerned with
accessing and updating the file system’s on-disk structures (including controlling
concurrent access to these structures).

This paper describes Echo’s internal new-value logging interface, its imple-
mentation, and its use, al in enough detail to reveal the strengths and weaknesses
of our approach. We believe that the restrictionsin our logging interface made the
implementation of logging and recovery particularly simple—simpler than for any
less constrainedinterface. However, theimplementation of thefile system layer that
uses the logging interface had to cope with its restrictions. Doing so was feasible
because afile system provides only asmall fixed set of operations. We believe that
the benefits of restricting our logging interface (as opposed to providing general
atomic transactions) justified the additional effort required to design and build the
file system layer aboveit.

How do the restrictions at the logging interface create difficulties for the file
system layer? Because of the lack of undo, the file system cannot abort an update
in the middle—to break adeadlock, for instance. Therefore, any locks or resources
that will be required during the update must be acquired in advance, in a deadlock-
free order, before any changes have been made. A second consequence of the lack
of undo isthat all uncommitted changes must be held in primary memory, limiting
the size of atransaction. Because the log is bounded, a file system update that is
sufficiently large must be decomposed into a sequence of individual atomic actions
at the logging interface. However, the bounds on the log size are large enough

1Other Echo goals include location-transparent global naming and distributed caching between
clients and servers. These aspects of Echo are discussed more fully in an overview paper [5] and in
several additional papers[13, 14, 15, 21, 28]. The Echo systemis no longer under development or in
use, but we speak of it in the present tense throughout this paper to avoid awkwardness. Echo wasin
active usefrom November 1990 to November 1992, when the evolution of our laboratory’s hardware
and software base led usto retire the system. At its peak, Echo had about 50 users.

2For asurvey of logging techniques, see Bernstein [2] and Haerder [11].
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that important file system operations, such as renaming a file, can be performed
atomically. In none of these cases do the logging restrictions have a significant
impact on file system performance, but they do make the task of implementation
more difficult. Section 5 gives some detailed examples of the areas where such
difficulties arose in Echo and how we overcame them.

Hereisasummary of the rest of the paper.

In Section 2 we present a simplified version of EchoDisk, the interface that
hides logging from the higher levels of Echo. We define the semantics of this
interface using an abstract model. We aso describe a realistic implementation of
theinterface.

In Section 3 we proceed to remove the simplifications one by one. Our sim-
plified EchoDisk ignores the reality of bounded resources, so here we extend the
interface and implementation to acknowledge the bounds. Some writes done by a
file system do not need the strong semantic guarantees of EchoDisk, and should
not have to pay for them, so we expand the interface to provide a weaker form of
writing and change the implementation to match. Disks can be replicated below
theleve of EchoDisk, so we discusstheimpact of implementing this. And servers
written using EchoDisk can be replicated, with only minor changesto theinterface,
S0 we make these changes.

In Section 4 we present arepresentative sample of the procedures in EchoBox,
the Echo file system layer above EchoDisk. EchoBox is the interface that Echo
servers present for use by the operating systems of Echo client machines. It isa
fairly conventional interface; it does not include transactions. This paper does not
focus on the EchoBox interface, but some knowledgeof it isrequired to understand
the implementation issues discussed in the next section.

In Section 5 we present relevant portions of the EchoBox implementation in
detail. We describe the major on-disk structures and the locking rulesfor accessing
them. To avoid deadlock, the locking design must include strategies for claiming
resources from EchoDisk. We give examples of how some update procedures in
EchoBox are implemented using EchoDisk to provide atomicity, highlighting the
ways in which the implementation copes with EchoDisk restrictions. We give
special attention to the techniques used to ensure that EchoBox update procedures
arerestartable after a server failure.

Section 6 summarizes the paper and presents conclusions.
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2 Simplified EchoDisk

In this section we present a ssimplified version of EchoDisk, the interface that
hides logging from the higher levels of Echo. We define the semantics of this
interface using an abstract model. We also describe a realistic implementation of
theinterface.

2.1 Theinterface

An EchoDiskisapersistent array of pagesthat providesatransaction capability. An
EchoDisk transaction can modify a set of pages, changing any set of bytes within
those pages and leaving the remaining bytes unaltered. A transaction is atomic:
either all of the pages are updated, or none of them are.

EchoDisk does not supply any concurrency control, either at the page level or
a the bytelevel. The effect is undefined if two concurrent transactions modify the
same byte. It is perfectly okay for two concurrent transactions to modify different
bytes on the same page.

Thus, the atomicity of EchoDisk transactionsis just with respect to crashes of
the EchoDisk implementation, not with respect to concurrent transactions.

A sensible client of EchoDisk is expected to use its own locks to prevent two
concurrent transactions from modifying the same bytes. In addition, a sensible
client will use its own locks to prevent readers from reading bytes that are being
modified by aconcurrent transaction, the motivation being that thetransactionisin
the middle of some update whose intermediate (and not yet persistent) state should
not be visibleto readers.

In presenting the simplified EchoDisk interface, we will give its semanticsin
terms of an abstract model implementation, whichis not aredlisticimplementation.
The abstract state of an EchoDisk has the following major components:

PA apersistent array of disk pages

VA avolatilearray of buffer pool pages

r eadPi nCount an array of counters

updat ePi nCount an array of counters

updat eQueue aqueue of transactionsthat are not yet stable
updat eDenon ademon thread that processes updat eQueue

This abstract state cannot be manipulated by the client directly; rather, proce-
dures of the interface must be called.



The persistent array PA survivesreboots of the computer; nothing elsedoes. In
our abstract model, updates made by a transaction are initially made to the array
VA, and transaction commit copiesthem atomically to the array PA.

The basic procedures of the EchoDisk interface are as follows:

PROCEDURE OpenbDi sk(di skName: String): EchoDi sk;

OpenDi sk maps a disk name into an EchoDisk instance, initializes the data
structures associ ated with that instance, and returns a handle for these structures.

Abstractly, the OpenDi sk procedure copies the entire array PA into the array
VA. The r eadPi nCount and updat ePi nCount arrays are initiaized to al
zeros. OpenDi sk will typicaly be called by the EchoBox layer during startup.

PROCEDURE Pi nPage(
ed: EchoD sk;
pagel ndex: | NTEGER): PagePointer;

Pi nPage returns a pointer to the page ed. VA[ pagel ndex] in primary
memory, and increments ed. r eadPi nCount [ pagel ndex] . Aslong as the
r eadPi nCount of thispageisnonzero, thecaller isguaranteed that dereferencing
the result pointer will read the correct data. It is an unchecked error for the client
to dereference the pointer when the r eadPi nCount is zero, or for the client to
modify the page (see instead the procedure Updat ePage below).

PROCEDURE Unpi nPage(ed: EchoDi sk; pagel ndex: | NTECGER);

Unpi nPage decrements ed. r eadPi nCount [ pagel ndex] . The client
calls Unpi nPage to inform EchoDisk that it is no longer using the page pointer
froman earlier call to Pi nPage. Thus, every call to Pi nPage shouldbefollowed
eventually by acall to Unpi nPage.

PROCEDURE Start Transaction(ed: EchoDi sk): Transacti on;

Start Transact i on creates a new transaction and returns a handle repre-
senting it. Thishandleis passed to other procedures.

PROCEDURE Updat ePage(

tr: Transaction;
pagel ndex: | NTEGER): PagePointer;
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Updat ePage returnsapointer tothepageed. VAl pagel ndex] inprimary
memory, and increments ed. updat ePi nCount [ pagel ndex] . It dso adds
pagel ndex to alist of updated pages associated with the transactiont r. The
caler is guaranteed that dereferencing the result pointer will alow reading and
writing the correct page for the duration of the transaction. It isan unchecked error
for the client to dereference the pointer after the end of the transaction. (Thereis
no corresponding Unpi nPageFor Updat e because unpinningis doneimplicitly
a the end of the transaction.)

Itisokay for twotransactionsto make concurrent Updat ePage callsusingthe
same page; theclient isresponsiblefor preventing these transactionsfrom changing
the same byte. Thus, the atomicity of EchoDisk transactionsisjust with respect to
file server crashes, not with respect to concurrent transactions.

PROCEDURE Descri beUpdate(tr: Transacti on;
pagel ndex: | NTEGER;
startingBytel nPage: [O0..PageSi ze-1];
| engt h: [0..PageSi ze]);

Descri beUpdat e appendsatuple( pagel ndex, startingByteln-
Page, | ength) toalist of updates associated with the transactiontr. This
informs EchoDi sk that the client has modified or will modify the specified byte
range in VA[ pagel ndex] as part of the transaction. The client does the modi-
fication via the page pointer returned by Updat ePage. It is an unchecked error
for the client to modify bytes outside of the ranges specified in its calls to De-
scri beUpdat e.

PROCEDURE EndTransaction(tr: Transaction);

EndTr ansact i on endsatransaction. Abstractly, for each tuplein thetrans-
action, the value of the byte sequenceis copied out of the page VA[ pagel ndex]
and remembered with the tuple as part of the transaction’sstate. When thiscopying
and remembering is complete, the transaction is appended to the queue updat e-
Queue. The procedure EndTr ansact i on thenreturns.

A single asynchronous demon thread updat eDenon, internal to EchoDisk,
repeatedly removes transactions from the head of the queue and processes them
one at atime. To process a transaction, the demon processes all the tuples as one
single atomic action: for each tuple, the demon copies the byte sequence value
recorded during EndTr ansact i on into page PA] pagel ndex] at theposition
starti ngByt el nPage. (The atomicity of this step may seem like magic; this
is where the log enters into the real implementation, as explained in detail in the
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next section.) Then the demon decrements al of theupdat ePageCount entries
that were incremented by the transaction.

PROCEDURE Wit Transaction(tr: Transaction);

Wi t Transact i on returns after the update demon has processed the trans-
actiont r . Thus, apostconditionof Vi t Tr ansact i on isthat the changes have
been made to the persistent array PA.

The motivation for providing separate EndTransacti on and Wit -
Transact i on operationsisthat certain client-level locks can be released by the
client once a transaction has been serialized by EndTr ansact i on, even though
thetransactionisnot yet persistent. But the client thread cannot return successfully
toitscaller until thetransaction hasbeen made persistent by Vi t Tr ansact i on.

2.2 Theimplementation

We now describe an implementation of simplified EchoDisk. The abstract array
of pages PA is represented as an array of pages on disk, of the same length as the
abstract array PA, plusalog on disk. Thuseach page of PA has ahome |ocation on
disk. Thelog stores all committed changes that have been made to PA and not yet
recorded inthe homelocation. During normal operation, theimplementationwrites
committed changes asynchronously to the home location; after a crash, recovery
usesthelogto ensurethat all committed changes are eventually written to the home
location.

The update demon performs its atomic update by exploiting the log. For each
tuple ( pagel ndex, starti ngBytelnPage, |ength, newVal ue) in
a transaction, the demon writes a corresponding Update record to the log. Then
the demon makes the transaction atomic with respect to crashes by appending a
Commit record after the last Update record: during recovery, if the Commit record
is not present, the entire transaction is discarded. VWi t Recor d returns when the
transaction’s Commit record has reached disk.

We represent the array VA using a buffer pool of pages in primary memory.
This buffer pool contains recently read and recently modified pages. Since there
are generaly many fewer buffer pool pages than disk pages, the buffer pool imple-
mentation needs to reuse buffer pool pages; that is, to change the mapping from
buffer pool pages to disk pages. A buffer pool pageis called dirty if it contains
a committed update that has not been written to its home location. A buffer pool
page can bereused if it is not pinned and not dirty.

We clean a dirty page by writing its value from the buffer pool to its home
location. Without some activity to clean dirty pages, the buffer pool would quickly
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fill up with dirty pages. Therefore the EchoDisk implementationincludesa cleaner
thread that asynchronously cleans pages. The cleaner is free to clean any dirty
page that is not pinned for update. (A page that is pinned for update may contain
changes from a transaction that is still in progress, and our design could not undo
such changes if they were to reach the home location. To allow undoing changes,
twice as much information would need to be logged for each update.)

The log is kept in a fixed-size area on disk—idedly on a separate logging
disk. Thelog is managed as a circular buffer. The start of the log is recorded in
a checkpoint record in afixed location on disk. The end of the log is detected by
using a version stamp that is kept in a reserved location on every log page. The
version stamp is incremented every time alog page is written. (We never extend a
partialy filled page by overwriting it; we use the next page instead.) Thusthe end
of thelog isthe point where the version stamp decreases.

This explains how the log fills up; how islog space reclaimed? The log must
include al log records that would be needed by recovery. Recovery needs log
records beginning with the oldest log record that updated a page which has not
been cleaned since this update. Consider the log record that is at the current start
of thelog: we can clean the page that this record updated, and then, since this log
record isno longer needed by recovery, we can advancethe start of thelog past this
record.

The cleaner is responsible for advancing its idea of the start of the log as it
cleans. Periodically it writes the current start of the log to the checkpoint record;
thisis called taking a checkpoint. Taking a checkpoint both reclaimslog space and
reduces the amount of log that recovery must process.

When log space runs low, the cleaner focuses on cleaning dirty pages from
updates at the start of the log. When log space is plentiful, the cleaner is free to
use other criteria, such as scheduling a large set of cleans to minimize disk arm
movement.

Thelogiswrite-only during service. It isread during crash recovery.

Crash recovery reads the log start from the checkpoint record and then pro-
cesses the log forward from thislocation. For each Update record that is followed
eventually by a Commit record, recovery performs the update in the buffer pooal.
Because the Update record containsthe new val ue of the byte sequence it changes,
performing the update in the buffer pool istrivial: we just copy the byte sequence
into the page. Because processing an Update record is idempotent, no additional
machinery, such as per-page log sequence numbers, is needed to avoid doing it
twice [2, chapter 6][10].

Since redoing updates is done entirely within the EchoDisk module, the client
of EchoDisk does not have to write specia redo procedures. This is simpler
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than logging algorithms that require redo procedures, because a redo procedure is
different from the original “do” code. Of course, in return, the client is restricted
to new-value logging.

3 Real EchoDisk

Inthissectionwederivethereal EchoDisk interface by removing thesimplifications
of the previous section one by one. Our simplified EchoDisk ignores the reality
of bounded resources, so here we extend the interface and implementation to
acknowledge the bounds. Some writes done by a file system do not need the
strong semantic guarantees of EchoDisk, and should not have to pay for them,
so we expand the interface to provide a weaker form of writing and change the
implementation to match. Disks can be replicated below the level of EchoDisk, so
we discuss the impact of implementing this. And servers written using EchoDisk
can be replicated, with only minor changes to the interface, so we make these
changes.

3.1 Reserving bounded resources

The EchoDisk implementation has limited resources—it has only a fixed number
of buffer pool pages and a fixed amount of log space to work with. To prevent
deadlocks over these resources between concurrent client threads, we will now
augment the EchoDisk interface with procedures for reserving quantities of each
resource. A client thread is expected to call these reservation procedures before it
begins a high-level operation, supplying conservative estimates for the resources
that will be sufficient to perform its entire operation. Requesting more resourcesin
the middle of an operation isillegitimate because deadlock could result.

Of coursg, if the estimates supplied by the client are too high, EchoDisk will
never be able to grant them. The client must be designed to have high-level
operations with bounded size, small enough to fit in the bounds supported by
EchoDisk’slimited resources. To makethisdesignfeasible, the EchoDisk interface
advertises bounds for each resource that it promisesto support. That is, if aclient
thread makes a reservation request that is within the advertised bound, the request
will eventually be granted.

Intheinterface, we split the buffer pool resource into two flavors, pages pinned
for reading and pages pinned for update. The motivation for the split is that the
two flavors behave differently. A page that is pinned for read may be unpinned in
the middle of the client’s high-level operation, and that buffer pool slot reused for
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pinning another page for read. But because of the lack of undo information in the
log, a page that is pinned for update must remain pinned until the transaction is
persistent. Thiswill typically be near the end of the client’s high-level operation,
so thereis no opportunity for the client to reuse the slot.

We add two procedures to control the pages pinned for reading:

PROCEDURE Acqui r eReadReser vati on(
nunber O Pages: | NTEGER) ;

PROCEDURE Rel easeReadReservati on(
nunber O Pages: | NTEGER) ;

Acqui r eReadReser vat i on blocks until nunber Of Pages is available
in the buffer pool. The advertised bound that is guaranteed to be granted eventually
is 500 pages.

Note that no handle is returned by the procedure, so thereis no handle to pass
in to the Pi nPage procedure. The interface assumes that all client threads are
well behaved in that they will call Acqui r eReadReser vat i on before calling
Pi nPage, and that they will call Pi nPage a most nunber O Pages times. If
clientsviolate these conventions, EchoDisk may deadl ock.

Rel easeReadReser vat i on releasesaclient’sread pin reservation. Every
call on Acqui r eReadReser vat i on shouldeventually be followed by acall on
Rel easeReadReser vat i on.

The other two flavors of limited resource are log space and pages pinned for
update. Since these are associated with a transaction, we change the St art -
Transact i on procedure to accept requestsfor them:

PROCEDURE St art Transacti on(
ed: EchoD sk;
| ogSpaceReservation: | NTEGER,
pi nnedFor Updat eReservati on: | NTEGER): Transaction

The | ogSpaceReser vati on parameter to St art Transacti on is an
upper bound on the log space the transaction will use. The advertised bound that is
guaranteed to be granted eventually is one megabyte.

The log space used by a transaction is the sum of the log space used by al
of the Descri beUpdat e cdls in the transaction. Each Descri beUpdat e
call uses log space according to the formulac + | engt h, where | engt h isthe
length of the byte sequence parameter that is passed to Descr i beUpdat e, and
c isthe constant 12. Observe that a megabyte of log space is sufficient to call
Descri beUpdat e on over athousand byte sequences of 1024 bytes each.
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The pi nnedFor Updat eReser vati on parameter to St art Tr ansac-
ti on should be an upper bound on the number of different pages that will be
pinned by calling Updat ePage during the transaction. The advertised bound that
is guaranteed to be granted eventually is 500 pages.

Start Transact i on blocks until the reservations can be granted. Besides
competition from other client threads, reasons for blocking include waiting for the
cleaner thread to clean dirty pages and remove them from the buffer pool, and
waiting for the cleaner thread to take a checkpoint and free up old log space.

Theresourcesreserved by St art Tr ansact i on arereleased implicitly. Any
that were not actually used during the transaction are released by EndTr ansac-
t i on. For pinned pagesthat were dirtied and |og space that was used, thereleasing
is performed by the cleaner.

3.2 Optimizinglargewrites

Many file system clients use the file system to store large filesin simple ways. For
instance, a compiler produces a huge object file. The compiler does not depend
upon atomicity of itsfile writes—it either |eaves garbage files around after a crash,
or usesther enarme system call to “commit” the new file.

Logging every new value written by such a client is an unnecessary expense.
For alarge enough write to a run of contiguous disk pages, the cost of doing the
disk seek is minor compared to the cost of doing the disk write, so it gives better
throughput to bypassthe log. For shorter writesit is better to use the log.

Thisobservation |leads usto augment the EchoDisk interface with thefollowing
procedurethat letswritesbypassthelog, instead going directly to thehomelocation.
Without the procedure, data must first be written to the log, and then aso later
written to the home location.

PROCEDURE Wit ePages(
tr: Transaction;
startingD skPage: | NTECER;
buf: Address;
buf Lengt h: | NTEGER) ;

Wit ePages has no immediate effect other than to record its parameters in
theinternal state of thetransactiont r . Later, after the update demon has completed
the normal processing of transactiont r , it processesall of t r 's WritePages calls.
For each Wi t ePages cal, the demon writes thefirst buf Lengt h bytes of the
buffer buf to consecutive pages of PA beginning with st arti ngDi skPage.
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This write is not atomic. In case of a crash, the bytes of PA might contain any
combination of their old value and new value. If Vi t Transaction ontr
returns, thewrite happened completely. Itisillegal tocal Wi t ePages onapage
that is pinned for read or write in the buffer pool.

Theimplementation of Wi t ePages achievesitsnon-atomic writing by writ-
ing directly to the home pages, without going through thelog. Wi t ePages does
not require the pages it writes to be in the buffer pooal; if any of the pages written
by Wi t ePages happensto bein the buffer poal, it is overwritten with the new
value.

Wit ePages complicates crash recovery. During service, a particular page
may first be modified by a logged atomic transaction and then later modified by
Wit ePages. In this scenario, the correct value of the page isits current home
value, and we must be careful that recovery does not cause the page to revert to the
earlier value in the log from the atomic transaction.

To make crash recovery work properly, the implementation of Wi t ePages
must do additional logging. Before writing to the home pages, the update demon
appendsa StartWriterecord to thelog. Thisrecord statesthat a certain run of home
disk pagesis about to be written. The demon forces the log to be persistent, then
writes the home pages. When the home pages are al written, the demon appends
a FinishWriterecord to the log. Thisrecord states that the run of home disk pages
has been written.

In additiontotheloggingby Wi t ePages, the cleaner aso needsto do some
logging. After cleaning a page, the cleaner writes a Clean record to the log, saying
that the page has been cleaned.

Here is how we use these new log records. At the start of recovery, the buffer
pool isempty. Asrecovery processes the log forward, it must build up state in the
buffer pool for each page.

e When recovery encounters an Update record that is followed eventually by
a Commit record, it reads the page from home into the buffer pool (if itis
not already present) and applies the modifications to the copy in the buffer
pool. Recovery pinsthe page for update, so that it cannot be written back to
itshome, and also marksit as dirty.

e Whenrecovery encountersaClean record, it discardsthe pagefromthe buffer
pool if it is present.

e When recovery encountersa FinishWriterecord, it discards each pagein the
run from the buffer pool if it is present.
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e The StartWriterecord isneeded only for disk replication. It will be explained
in Section 3.3.1.

When recovery reaches the end of the log, some pages are still in the buffer
pool pinned for update and marked as dirty. We unpin these pages and start normal
service, including starting the cleaner thread. Eventually, the cleaner will write
each dirty page back to its home during normal service.

This algorithm keeps some pages pinned in the buffer pool during crash re-
covery. You might worry that the buffer pool could overflow with pinned pages
during recovery, but it can’t, because of the Clean records and the way we use them.
Because we log the event of cleaning a page, the maximum number of buffer pool
pages required is bounded by the maximum number of dirty pages that we had
a any one time during the service period before the crash. Before the crash, the
dirty pagesal fit in the buffer pool; therefore, the number of pages required during
recovery does not exceed the size of the buffer pool. Using our one-pass recovery
a gorithmbut not exploitingthe Clean records, the number of pagesrequired during
recovery would be the number of pages dirtied since the last checkpoint, which
could be larger than the buffer pool.

There are two mativationsfor making the transactiont r be a parameter to the
Wit ePages procedure. First, we save onelog force. We don’t need to force the
log after the atomic part of thetransactionif theW i t ePages processingisgoing
to append a StartWrite record and force the log. Second, making the transaction
beaparameter to Wi t ePages gives EchoDisk the option of deciding to perform
the operation by appending Update records to the log instead of bypassing it. In
some cases this gives lower latency and has no significant impact on throughput.

3.3 Replication

In the Echo file system, data storage is implemented by server computers and
disks. AnEcho hardware configuration may have replicated disks, replicated server
computers, both, or neither. Disk replication and server replication are described
in the next two sections, respectively.

3.3.1 Diskreplication

Disk replicationisimplemented within the EchoDisk module, below the EchoDisk
interface. Disk replication is a configuration option. To clients of the EchoDisk
interface, the disk replication is invisible; they see a single array of pages, with
single-copy semantics.
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Thus, replication of persistent storageis beneath the EchoBox file system layer.
Another Echo paper discusses the advantages and disadvantages of this design
choice[14].

Thelog is essential in keeping the replicas consistent. During crash recovery,
the log reveals which data was in the middle of being updated, and thus may be
different on the different replicas. Recovery uses thelog to bring the replicas back
into agreement.

In a configuration with replicated disks, both the array of home pages and the
log are replicated. We use the log to keep the home pages consistent; how do we
keep thelogs consistent? We only append to thelogs; therefore any inconsistencies
will be in the tail portions of the logs. In appending to the replicated logs, the
update demon lets the logs differ by at most a constant number of pages, Log-
Pagesl| nProgr ess. Therefore the replicated logs are byte-for-byte identical,
except for at most LogPages| nPr ogr ess pages at their tails.

The update demon finishes appending to both logs before alowing Wi t -
Transact i on to return. The unequal tail portions contain only uncommitted
transactions, so we can ignore these portions during recovery.

Recovery reads from al the log replicas, starting from the position recorded in
the checkpoint. If reading a log page from one replica gets a read error, we get
the page from another log replica, and also attempt to rewrite the log page on the
replicathat got the read error. Thelogical end of log occurs when we hit the end of
log on any replica, as determined by the per-log-page version number. However,
after that point, some replicas could contain additional log pages which have good
version numbers—these replicas were further ahead in their logging at the time
of the crash (by a most LogPages| nPr ogr ess pages). These additiona log
pages on some replicas could confuse us on the next recovery, if not all disk replicas
are accessible. To avoid this praoblem, we erase any additional pages that may be
present by overwriting them with page images that contain bad version numbers.
Instead of looking at each replica to see whether it has pages that need to be
overwritten, we simply overwrite the LogPages| nPr ogr ess pages following
thelogical end of log on every replica

Ifitweren'tfor Wi t ePages, therecovery algorithmalready described would
be sufficient to bring the replicasback into agreement. We must extend therecovery
algorithm to deal with Wi t ePages in the presence of replication. Recal that
StartWrite and FinishWrite log records are appended to the log while processing
aWit ePages operation. StartWrite is appended before the write begins, and
FinishWrite after the write completes. During crash recovery, if the StartWrite
appears in the log but is not followed eventually by the FinishWrite, then the
replicas may have different valuesfor the affected home pages; the crash may have

14



occurred after writing apageto onereplicabut beforewritingit to the other replicas.
For each page, the recovery agorithm reads the page from one replica and writes
itto al the others. Since Wai t Tr ansact i on never returned, recovery isfree to
choose any replicato read the page.

During service, adisk replica can become disconnected and miss some updates,
and then later get reconnected. To detect that the replica does not have the most
recent data, a version stamp (or epoch) scheme is used. Each disk replica stores
an epoch number that says how up-to-date its data is. When a replica becomes
disconnected, the epoch numbers of the remaining connected replicas are all set to
anew value larger than any that has been used before. This process uses a multi-
phase algorithm that isresilient to failures; see our other papers [5, 22] for details.
When the replica reconnects, the fact that its epoch number is smaller reveals that
itisout of date.

When areplicais disconnected and later becomes reconnected, we must bring
itsarray of disk pages and its log into agreement with the up-to-date replicas. We
do this concurrently with providing service. In outline, our algorithmisasfollows;
again, we refer the reader to our other papers for complete details. While areplica
is being updated, reads avoid it, but writes (including log writes, cleaner writes,
and WritePages) go to all replicas. A copier thread ensures that al pages of the
out-of-date replica’s disk page array and log are either copied from an up-to-date
replica or overwritten with new data. When the copier thread finishesitswork, we
advance the replica's epoch number, marking it as up-to-date. Thisalowsit to be
used for reading pages during service and for reading the log during recovery.

If al the updates performed while a replica was disconnected still happen to
be contained in the logs of the up-to-date replicas, it would be possible to exploit
the log to bring the replica up to date without having to copy the entire array. This
optimization would be especially important in hardware configurations with only
single-ported disks, because disconnectionsare more likely in these configurations.
With single-ported disks, adisk replicabecomes disconnected whenever itsdirectly
connected server computer is down. We never implemented this optimization.

Our log is limited to a size set during server configuration. An effectively
unbounded log, as might be implemented using a combination of disk and tape,
would always allow the log to be used in bringing replicas up to date. Also, thelog
plus an old backup copy could be used to recover from media failure, atechnique
called fuzzy dump in the database literature [10].

Disk replication has a minor impact on writing pages to their home locations.
Thewriting isperformed sequentially to thedifferent replicas. If it were overlapped,
wewould risk corrupting the page on all replicas (say, from power failure).

On unreplicated hardware configurations, EchoDisk isvulnerableto unreadable
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disk pages (media failure) in the middle of the log. If such a log read error
occurs, recovery fails. The EchoDisk instance has failed to implement its specified
interface. Someupdatesthat were performed in asupposedly committed transaction
may not have been done, while others may have been done, depending on which
pages the cleaner was able to clean; thus the transaction atomicity semantics are
violated. We could have partially protected against thisvulnerability by choosingto
writelog pagestwice on the same physical disk whenever thedisk isnot replicated.
This would protect us against bad disk blocks, but not failures of the entire disk.
The Cedar logging file system uses thistechnique[12]. Unreplicated disksare also
vulnerableto mediaerrorsinthearray of home pages. A file system scavenger [12,
18] at the EchoBox layer could partially recover from such errors (and also from
unreadable log pages). We chose not to implement either of these techniques
becausethey did not advance Echo’sresearch goal's, and becausewehad no practical
need for them—all the hardware configurations we actually built or planned were
replicated.

3.3.2 Server replication

Echo canreplicate serverstoimprove availability. In aconfigurationwith replicated
servers, during normal operation each set of replicated disks is controlled by just
one server, the primary. One or more secondary servers stand by to take control if
the primary fails.

Server replication is based on the notion of disk ownership. Some disks are
multi-ported and connected to several server computers; other disks are single-
ported but shared via software on the connected computer. In either case, a server
that ownsadisk has exclusive control of it for both reading and writing. If aserver
other than the owner attempts to read or write a disk, the attempt will be rejected.

A primary server is elected by having each server try to claim ownership of a
majority of thedisk replicas: if aserver succeedsin claiming amajority, it becomes
the primary for that disk. In configurations with an even number of disk replicas,
witnesses are used to break ties[25].

Ownership is subject to timeout. Therefore the current primary must refresh
its ownership periodicaly. If the primary fails to do so for any reason (crash of
primary, slowness of primary, loss of communication with disk, failure of disk) it
loses ownership.

On any loss of ownership, a new election is held. To win an election, a new
server must acquire ownership of amajority of the disk replicas, and ownership of
a disk replica cannot change without the ownership timeout expiring. This dead
timeisrequired in order to guarantee that there is never more than one primary.
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The heart of server replication is the election of a primary server. This is
implemented below the EchoDisk interface. Thus both disk replication and server
replication are handled by the EchoDisk implementation.

We extend the EchoDisk interface to include the concept of being primary as
follows:

e OpenDi sk blocksif thisserver isnot the primary: it returns only when this
server has become primary.

e Every other procedure of the EchoDisk interface raises the exception Not -
Pri mary if thisserver isnot the primary.

e We add anew procedure CheckSti | | Pri mary which tests whether this
server is the primary. EchoBox can call this procedure if it is about to
perform an action which requiresthat thisserver be the current primary, such
as answering aclient machine query out of a cache.

When aserver ceases being primary, it needsto gracefully reinitializeitself into
the sameeffective stateit had just after it was started. Losing primary statuswithout
crashing is fundamentally the same as restarting from a crash, so much of the same
code is used for both cases. The update demon and the cleaner thread are simply
terminated. As pages become unpinned in the buffer pool, they are discarded. Itis
okay to discard dirty pages because if they were from a committed transaction, the
updateisin thelog and will be redone by the new primary during recovery, and if
they were from an uncommitted transaction, we want to abandon the update, not
writeit back to home.

There is one tricky part about this reinitialization. EchoDisk cannot unpin
buffer pool pages unilaterally, because client threads may hold pointers to these
pages, only as the client calls Unpi nPage and EndTr ansact i on and the pin
counts reach zero are the pages discarded.

4 EchoBox interface

In this section we present a representative sample of the procedures in EchoBox,
the Echo file system layer above EchoDisk. EchoBox is the interface that Echo
servers present for use by the operating systems of Echo client machines. Itisa
fairly conventional interface; it does not include transactions. This paper does not
focus on the EchoBox interface, but some knowledgeof it isrequired to understand
the implementation issues discussed in Section 5 below.
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The EchoBox interface provides afile system with hierarchical directories that
is upward-compatible with Unix. The EchoBox interface is an RPC interface that
provides high-level operations on files, directories, symbolic links, and hard links
(as opposed to low-level operations on disk blocks). The interface includes a
complete set of procedures for reading directories, files, and links, for looking up
names in a directory, for accessing file properties (Unix st at system call), for
creating, deleting, and renaming files, directories, and links, and for writing files.?

Echo employs a consistent distributed caching a gorithm between client and
server machines, in which servers keep track of which clients have cached what
files and directories. The agorithm enables a client machine to cache files and
directories, including caching of write-behind. The Echo distributed caching algo-
rithm is similar to those of the Sprite and Andrew file systems[16, 17, 24], and is
discussed in detail in a separate paper [21].

Thus, EchoBox is used by a client machine that handles caching. The client
machine also handles failover between EchoBox server replicas. Caching and
failover had severa significant impacts on the design of the EchoBox interface.

A design impact relating to caching is the use of low-levd file identifiers to
namefiles and directoriesin the EchoBox interface. Theseidentifiersare anal ogous
to Unixinodenumbers. Theclient doesfile pathnameresolution;thatis, it traverses
afile pathname such as“/alb/c/d” to obtainalow-level fileidentifier. To dothis, the
client consultsitsdirectory cache, fetching directoriesfrom the server as necessary.

Another design impact related to caching is the notion of afile's allocation as
distinct fromitslogical length. Because the client cache iswrite-behind, many files
are completely written within the client cache before being written to EchoBox.
This means the client knows the eventual size of the file when creating the file
using EchoBox, so the EchoBox file creation procedure accepts a recommended
alocation parameter.

A design impact relating to failover is the need to support idempotent updates.
To explain the EchoBox approach to idempotent updates, we must first explain the
EchoBox approach to concurrent updates. The EchoBox client wants a simple,
deterministic semantics, so the client’s updates must be executed in a prescribed
sequence. But the client also wants to overlap communication and EchoBox
processing, which implies concurrency. Therefore EchoBox allows the client to
make RPCsin parallel, but requirestheclient to supply apipeline sequence number
on each update RPC. EchoBox guarantees to execute the update RPCs in pipeline

3The additional functionality beyond Unix includes support for richer access control lists and
support for gluing together individual file system volumes (i.e., subtrees) into a single global name
space[5, 15].
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order. Anupdate RPC returnsto theclient machineonly after theupdateis persistent
on disk.*

Because of the pipeline, each client may have several RPCs in progress to a
server. After afailure, the client resubmits the entire pipeline to the new primary
server, starting with the oldest unanswered RPC.

To make the resubmitted sequence of updates idempotent, EchoBox requires
the client to compute aversion stamp for each updatecall. Eachfileor directory has
amonotonically increasing version stamp; we use the Unix ctime for this purpose.
Each update procedureinthe EchoBox interfaceincludesaversion stamp parameter
of type Time. For each update, the client machine is required to supply a Time
that isbigger than the maximum of the ctimes of the update's operands. The client
knows the ctimes of the operands because it has cached the operands. Generally,
when clocks are well synchronized, the client’s current clock time will be large
enough to serve as the version stamp parameter, but the client may haveto choosea
larger time to meet the requirement. On the server, executing the update advances
the ctime of all the operandsto the value of the version stamp parameter.

A minor designimpact relating to failover comes from the need for the client to
know which server is primary. Each EchoBox procedure raisesthe Not Pri mary
exceptionif the server isnot primary. A normal return from an EchoBox procedure
tellsthe client that the server is primary.

In addition to these changes related to caching and failover, we decided to
strengthen the semantics of file system update in two cases. First, EchoBox file
writein the special case of appending to afileisatomic. We thought these strong
semantics would be useful to clients, for instance in implementing logs. Second,
EchoBox filerenameisatomic; in Berkel ey Unix, therenamesystem call guarantees
only that if the target name was bound before the rename was attempted, it will be
bound to something afterwards[1]. Unix programmers often use rename to commit
alarger update. Providing these strengthened semantics was easy, given that we
were building on EchoDisk.

We now present arepresentative set of proceduresfrom the EchoBox interface.

PROCEDURE NewSessi on(): SessionlD;

NewSessi on initializesaclient machine’s session with thisserver. Theresult
isan identifier for some state the server holdsfor the client. The only session state
relevant to the procedures below is the new file identifier list (see Get FI Ds and
CreateFile)

4The reader may wonder why we used RPC for the pipeline, rather than a stream protocol such
as TCP. RPC support in our environment was significantly better than TCP support [13, 27].
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PROCEDURE ReadFi | e(
sid: Sessionl D
fid: Filel D
filePosition: | NTEGER
nbyt es: | NTECER;
VAR (*QUT*) buf: ARRAY OF BYTE);

ReadFi | e copiesnbyt es of thefilefi d startingat fi | ePosi ti on into
the buffer buf .

PROCEDURE CGet Directory(
sid: SessionlD;
dir: FilelD
VAR (*QUT*) buf: ARRAY OF BYTE)

Cet Di r ect ory returns asnapshot of thedirectory di r. The directory must
fit in the buffer buf ; otherwise, an exception israised. Logically, the directory is
aset of pairs (nane, filel D). Thedirectory isactualy returned in a binary
format that isunderstood by both the client and server (using common library code).

PROCEDURE Get FI Ds(
sid: SessionlD;
VAR (*QUT*) newFids: ARRAY OF FilelD);

Cet FI Ds returns apool of FilelDs that this client usesin creating files. This
pool of FilelDspermitstheclient to createfilesinitscache before calling the server
(for write-behind).

PROCEDURE Cr eat eFi | ¢(
sid: SessionlD;
pi pel i neSequenceNunber: | NTECER;
containingDirectory: FilelD
nane: String;
createdFil el D: FilelD
ac: AccessControl;
reconmendedAl | ocati onByt es: | NTECER;
versionStanp: Tine);

Creat eFi | e creates a new file with cr eat edFi | el D asits FilelD. The
directory cont ai ni ngDi rect ory is modified by adding the pair ( nane,
cr eat edFi | el D). The Unix ctime and mtime of the fileand of the cont ai n-
i ngDi rectory aredl settover si onSt anp.
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PROCEDURE Wit eFil e(
sid: Sessionl D
pi pel i neSequenceNunber: | NTEGER;
fid: Filel D
filePosition: | NTEGER
nbyt es: | NTEGER;
| engt h: | NTEGER,;
al l ocation: | NTEGER
versi onSt anp: Ti ne;
VAR (*I N*) buf: ARRAY OF BYTE);

Wi teFil e copiesthe array buf into positionsfi | ePositi on through
filePosition+ nbytes —1ofthefilefi d. Before performing the copy, it
setsthe file's allocated sizeto al | ocat i on. The quantity fi | ePosi ti on +
nbyt es — 1 must be lessthan al | ocati on. After the copy, it sets the file's
lengthto| engt h, and itsctime and mtimeto ver si onSt anp.

Appending writes are atomic, as are hon-appending writes of less than 1024
bytes; there is no guarantee for other writes.

PROCEDURE Del et eFi | e(
sid: SessionlD;
pi pel i neSequenceNurber: | NTECER;
containingD rectory: FilelD
nanme: String;
deletedFilel D FilelD
versionStanp: Tinme);

Del et eFi | e deletes the pair (narme, del et edFi |l el D) from the di-
rectory cont ai ni ngDi r ect ory. The hard-link count on the file del et ed-
Fi | el Disdecremented by one. If it is now zero, and if no client machines still
have thefile open, thefileisdestroyed. (The Echo distributed client-server caching
agorithm keeps track of how many clients still have afile open [21].) The space
that had been consumed by thisfile is not available immediately for use by other
calls; rather, thereisashort non-deterministicdelay. The ctimeand mtimeof con-
tai ni ngDi rectory aresettover si onSt anp. Thectimeof del et edFI D,
if itisn't being destroyed, isalso settover si onSt anp.
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PROCEDURE RenaneFi | e(
sid: SessionlD;
pi pel i neSequenceNunber: | NTEGER;
fronDir: FilelD
fromName: String;
fronFID FilelD
toDir: FilelD
toName: String;
t oExi sts: BOOLEAN
toFID: FilelD
versionStanp: Tinme);

RenaneFi | e iscomplicated. It removes the directory entry (f r onNane,
fronFl D) fromfronDir. Ift oExi st s istrue, itremovesthepair (t oNare,
t oFl D) fromt oDi r and decrements the hard-link count of the file t oFI D. If
the count is now zero, and there are no client machines that still have the file open,
thefileis destroyed. If t oExi st s isfase, the parameter t oFI Disignored. The
pair (t oNanme, fronFl D) isadded to the directory t oDi r. The ctime and
mtime of f ronDi r andt oDi r are set to ver si onSt anp, as are the ctime of
fronFl Dandt oFl D.

RenameFi | e isatomic.

5 EchoBox implementation

In this section we present relevant portions of the EchoBox implementation in
detail. We describe the major on-disk structures and the locking rulesfor accessing
them. Then we give examples of how some update procedures in EchoBox are
implemented using EchoDisk to provide atomicity, highlighting the waysin which
the implementation copes with EchoDisk restrictions. We give specia attentionto
the techniques used to ensure that EchoBox update procedures are restartable after
aserver falure.

EchoBox is layered on EchoDisk. EchoBox uses EchoDisk transactions to
maintain the invariant that the EchoBox file system is always in a well-formed
state, that is, that the contents of the disk pages can be interpreted as a file system
and the EchoBox on-disk data structures are mutually consistent.

Let us briefly recap the properties of the EchoDisk interface and its restric-
tions, which EchoBox must obey. EchoDisk provides new-value logging, at the
granularity of byte sequenceswithinapage. Concurrent transacti ons should access
disjoint byte sequences, with locking being the responsibility of the EchoBox layer.
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Transactions are bounded in the number of pagesthey may modify and the amount
of log space they may consume. On-line abort is not supported, so EchoBox must
avoid deadlock, over both its own resources and those of EchoDisk.

5.1 EchoBox on-disk data structures

The five major EchoBox on-disk data structures are:

e Allocation map. The allocation map contains a bit vector that records, for
each page on disk, whether that page isallocated or free. Theallocation map
also contains several summary countersthat record the number of free pages
for theentiredisk, and for sub-regionsof thedisk, to facilitate picking agood
sub-region in which to search for free pages.

e Fid map. The fid map is a hash table mapping low-level file identifiers
to the disk addresses of the files. File creation inserts a pair (fil el D,
di skAddr ess) into the hash table; file deletion removes one. When an
EchoBox file system is first created, the disk size is used to choose a fid
map hash table function with a fixed number of different hash values, the
number being proportional to the disk size. Each hash value is preallocated
its own disk page, and this page stores every pair whosef i | el D hashesto
that value. Overflow of a page is handled by alocating an additional page
and chaining it to the original, without changing the hash function.

e Filesand directories. Each file and directory has a header page. The disk
addresses stored in the fid map are addresses of header pages. A header
page contains file properties, including the access control list, and afile run
table. Large fragmented files (or directories) may have multipleruntablesin
multiple header pages, chained together.

e Hashed directories. At the lowest level, adirectory is stored in an ordinary
file, so we aready have machinery for growing and shrinking directories.
An Echo directory consists of a header, followed by an array of hash table
pointers, followed by a unordered sequence of directory entry records.

Each element of the array of hash table pointersis the head of a linked list
of entry records whose names hash to the same hash value, with each entry
record having a next field; thus, hash collisions are handled by external
chaining. The array of hash table pointers has a fixed size, but its size can
change during directory reorganization (described in Section 5.3 below).
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Directory entry records are of variable length to accommodate names of
different sizes. The format of the sequence of directory entry records is
upward-compatible with Berkeley Unix, and the system call for reading a
directory, get di rentri es, returns this portion of the Echo directory.
Directory entry records may cross page boundaries (unlike Berkeley Unix).
All unoccupied entry records are linked together in afreelist, whose head is
stored in the directory header.

This directory representation relies on the EchoDisk atomicity mechanism:
for directoriesthat are larger than a page, insertion and del etion may modify
multiple pages. However, the number of directory pages modified by asingle
insertion or deletion is bounded, even for large directories.

e Orphan list. An orphan file is a file that is no longer in the name space,
in that no entry in any directory points to it, but it is still open on some
client machine and therefore must still be kept in existence. (We use the
term “orphan” because an orphan file has no parent directory.) The orphan
list lists @l orphan files. When the Echo distributed client-server caching
algorithm [21] reveals that nobody has an orphan file open, EchoBox can
remove the file from its orphan list and del ete the file, returning its pagesto
the disk space alocator and removing it from the fid map.

EchoBox represents the orphan list as a doubly-linked list that runs through
theheader pages of the orphanfiles, plusadistinguishedfilethat isthe head of
thelist. We considered other representationsfor the orphans, such as moving
them to a special directory, but we rejected representations that could, inthe
worst case, require alocating storage in order to add an orphan to the data
structure, since we must be able to delete files when the file system is full,
and this may create orphans.

The use of EchoDisk had severa effects on the design of the EchoBox on-disk
structures:

e We were able to keep the disk allocator’'s summary counters on disk, since
logging made updates to these counters cheap. Otherwise, the counterswould
have to be recomputed during EchoBox recovery, slowing recovery down.

e Similarly, we were ableto keep the orphan list on disk. Thisavoided storage
leaks or the dternative of scanning the entire fid map on system startup,
looking for files whose hard-link count is zero.

e \We were able to employ hashed directories without concern that they might
need to be rebuilt after a system crash.
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e We considered the idea of making file headers smaller than adisk page, but
rejected it as unnecessary because our pagesare small. But bytelevel logging
would have made it easy to do thisif we had chosen alarger page size.

We designed the EchoBox on-disk structures on the assumption that EchoDisk
wasproviding highreliability viareplication. Thestructureshave someredundancy,
but not enough to support a complete file system scavenger. If we had needed
to support unreplicated disk configurations, we would have had to design more
systematic redundancy at the EchoBox levdl.

5.2 Locking

We now present the locking at the EchoBox layer. Thislocking is used to ensure
the dataindependence of concurrent transactions, and to ensure that queries do not
access datathat is being modified by a transaction. Executing an EchoBox update
RPC can involve modifying files and directories, the fid map, the alocation map,
and the orphan list, so we need locking for each. Thelocks are not persistent; they
exist only in the primary memory of the server. Locks are claimed in a predefined
order to avoid deadlock. Thus no mechanism isrequired for deadlock detection at
runtime.

Each file and directory has a readers/writer lock. Each procedure in the
EchoBox interface must acquire a lock on each of its FilelD operands; a read
lock if the procedure only reads, awritelock otherwise. Thelock isheld for nearly
the entire duration of the procedure. (Full detailsare provided later in this section.)
The file and directory locks ensure the data independence of concurrent calls on
the EchoBox interface.

Some procedures have several FilelD operands, so the locks must be acquired
carefully to avoid deadlock. The operands are sorted by order of increasing file
identifier, and locks are acquired in that order.

The fid map and the all ocation map are shared data structureswith the potentia
for high concurrency. Therefore EchoBox uses speciaized locking for them.

For the fid map, we have an array of exclusive locks, one for each vaue of the
hash function. To map afileidentifier toits disk address, we first compute the hash
function of the file identifier and lock that entry of the array. We access the fid
map and then immediately rel ease thelock. The immediate rel ease does not lead to
trouble because the readers/writer locking at the file level prevents conflicting fid
map access to afile identifier.

L ocking for updatesto thefid map isdifferent thanfor queries. The organization
of the data structureswithinasinglefid map page requires us to prevent concurrent
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updateswithinafid map page, in order to ensurethe dataindependence of concurrent
transactions. Therefore fid map updates acquire alock just as for queries, but hold
the lock until after EndTr ansact i on has returned. Because this lock is held
for more than the duration of the fid map update, deadlock avoidance requires that
when atransaction does multiplefid map updatesthelocks be acquired in a specific
order (like the readers/writer locks). In our implementation, we deferred the fid
map updates (and the locking) until just before we called EndTr ansact i on.
This both reduces the time that the lock is held and makes it easier to achieve an
ordering that is deadlock-free. Since each value of the fid map hash function has
its own lock and there are many values, the probability of one transaction having
to wait for another because of needing the same lock is small.

The allocation map involves our most complicated locking. The complexity
has three sources. First isour desire for high concurrency. Second, when deleting
afile, we must not deall ocateits storage for re-use by a concurrent transaction until
the deleteis committed. Third, there is a serious mismatch between the byte-level
granularity of the EchoDisk interface and the desire of the alocator to modify its
bitmap with bit-level granularity.

To explain the alocation map we'll first describe the volatile data structures,
including locks. Then we' Il describe how EchoBox’s interna allocate, deallocate,
and commit procedures use these data structures.

We maintain two versions of the alocation bit vector. One version, pv, is
kept on disk (and in the buffer pool as needed). The other version, vv, is kept
only in primary memory. At system startup, vv is initialized to be a copy of
pv. Allocations are done by searching and modifying vv; the modifications are
propagated to pv at end of transaction. Deallocationsare donein thereverse order:
first to pv at end of transaction, thento vv. Keeping two versions of the alocation
bit vector solves the problem caused by the byte-level granularity of EchoDisk, as
we'll explain later.

There is an exclusive lock associated with vv; it protects all accesses to vv.
There isanaother exclusive lock associated with pv; it both protects accesses to pv
and serializes all EchoBox calson EndTr ansact i on.

As an EchoBox update executes, it cals internal procedures to alocate and
deallocate disk pages. The alocate procedure acquires the vv lock and searches
vv for free pages. It dlocates pages by flipping bitsin vv and remembering the
pageson alist associated withtheupdate. When done, theprocedurerel easesthevv
lock and returns. A single EchoBox update may call theallocate procedure multiple
times, acquiring and releasing the vv lock each time. The deallocate procedure
merely records pages on a list associated with the update, without updating vv; no
locking isinvolved.
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To commit atransaction, EchoBox callstheallocator’s commit procedure. This
procedurefirst acquiresthe pv lock and processesthe list of allocated pages, mak-
ing the same updates to pv that the alocate procedure made earlier tovv. It aso
processes the list of deallocated pages, flipping bits of pv corresponding to de-
allocated pages. Thenit callsEndTr ansact i on, and after EndTr ansact i on
returns it releases the pv lock. If the list of deallocated pages was not empty, the
commit procedure acquiresthevv lock, makesthe same updatesto vv that it made
topv, and releasesthe vv lock. Finally the commit procedure returns,

We said it would be complex, and it is, why does it work? pv records exactly
the alocations and deallocations performed by committed transactions. vv sees
alocationsbefore pv, but pv gets the same information before a transaction com-
mits, pv sees deallocations before vv, but this only means that there is a delay
before pages can be reused. When the system is quiescent, vv and pv are equal.

Thus, vv isasuperset of pv. It includesallocationsby committed transactions
plus alocations by in-progress (not yet committed) transactions. Because the
alocate procedure searches vv for free pages, a call on alocate will skip over
pages that have been claimed by another in-progress transaction. We can regard
the vector vv as being the digunction of pv and avector of lock bits that prevent
in-progress transactions from alocating the same pages. The lock bits have the
same granularity as the alocator, namely, one per page.

Concurrent transactions can modify the same byteof vv, but the corresponding
updatesto pv takeplace serially and inthe same order as transaction commit, under
pv’s exclusive lock.

We said that the complexity of allocation map locking has three sources: con-
currency, deallocation, and bit-level data structures; we'll now discuss each source
inturn.

e To increase concurrency, we wanted to permit multiple concurrent transac-
tionsto allocate storage. We force them to serialize only for EndTr ans-
acti on. Our desire for high concurrency is motivated by the fact that our
server hardware is a shared-memory multiprocessor, the Firefly [29]. On a
uniprocessor, it would be adequate for an update to acquire a long-term ex-
clusivelock thefirst timeit needsto allocate or deallocate storage, releasing
it only after EndTr ansacti on. By this point in the update, most disk
input (e.g., fetching file header pages and directory pages) has aready been
done, so the transaction is being processed at CPU speed.

e Dedllocationisdeferred until EndTr ansact i on becausewe cannot permit
another concurrent transaction to allocate those pages until the deallocating
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transaction has committed. If we did not defer, but instead changed vv
immediately, another transaction could reall ocate the pages and commiit first,
before the deallocating transaction committed. If the system crashed at
that instant, the file system would be malformed in that some pages would
be dlocated to two files. Deferring work until EndTr ansacti on is a
common technique for handling actions that cannot be undone.®

e Having two versions of the allocation bit vector is the result of the byte-level
granularity of EchoDisk updates and logging. If the granularity of EchoDisk
updates and logging were bit-level, that is, if concurrent transactions could
modify bitsin the same byte without interference, then we would not need
the vector vv. The allocate procedure would modify bits of the vector pv
directly in the buffer pool, with the changed bits being logged at End-
Transact i on. Of course, recovery would also have hit-level granularity.
Deferring deallocation until EndTr ansact i on would still be necessary.

In addition to maintaining the persistent vector pv, the allocator also maintains
several persistent summary counters that record the number of free pages in the
entire disk and in sub-regions of the disk. To increase concurrency, we defer the
update of these persistent counters until EndTr ansact i on; they are changed by
the allocator’s commit procedure while it holds the pv lock.

There is yet another locked resource in the alocation module. We cannot
permit an update to run out of disk storage in the middle, because we lack on-line
abort. So near the beginning of an update, before calling St art Tr ansact i on,
we reserve with the alocation module the right to allocate some number of pages.
The number we reserve is an upper bound based on the parameters to the update;
at the end of the update, we release any we did not use. The reservation does not
commit the allocator to specific disk pages, only to this update’s right to alocate
up to the reserved number.

The orphan list is protected by an exclusive lock. Del et eFi | e and Re-
naneFi | e obtainthislock if therelevant file is becoming an orphan. Thelock is
aso obtained by the background orphan list demon, which deletes an orphan file
once it has been closed on all client machines.

This concludes our description of the locks at the EchoBox layer. Figure 1
summarizes the order in which the EchoBox locks and the EchoDisk resources are
claimed during an EchoBox update procedure.

5In principle, deallocating afile could be made undoable by logging the entire value of thefile, at
great expense.
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AcquireReadPi nReser vati on
Acquirewritelockson filelDs, in filelD order
Lookup filelDsin fid map, acquiring and releasing
the fid map hash code lock
Acquireorphanlist lock (Del et eFi | e, RenaneFi | e,
and orphan list demon only)
Acquire alocation reservation
St art Transact i on with parameters
reservelLogSpace and
r eser vePi nnedFor Updat e
Cdlson Pi nPageFor Updat e, Descri beUpdat e. Also
callsto insert/delete pairsin fid map and
to alocate/deal locate pages.
Acquire fid map hash code lock
Perform fid map deferred work—actual insertions
and deletions
Acquire alocator pv lock
Perform allocator deferred work—update pv to
reflect page allocations and deallocations
EndTr ansacti on
Release allocator pv lock
Perform allocator deferred work—update vv
to reflect page dedllocations
Release fid map hash code lock
Release alocation reservation
Release orphan list lock
Wi t Transacti on
Release write locks on filel Ds
Release ReadPi nReser vat i on

Figure 1: Locking for an EchoBox update
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Several locks are released in the interval between EndTr ansacti on and
Wi t Transact i on. Thiswasthe motivation for separating the procedures. We
don’t have any hard evidence for the benefit of this optimization.

EchoDisk’s design anticipated that each EchoBox update procedure would
compute accurate upper bounds on its usage of the three EchoBox resource classes,
and pass these estimates to EchoDisk. In this way EchoBox could make the best
use of EchoDisk resources and improve EchoBox’s concurrency. In fact, most
EchoBox update procedures simply pass EchoDisk thelargest resource boundsthat
EchoDisk guaranteesto grant; we performed a coarse upper bound computation to
show that the procedures will not exceed these limits. Performing a more precise
upper bound computation would have made EchoBox fragile, since the bounds
depend upon EchoBox implementation details.

AnEchoBox query procedure(i.e., aread-only procedure) acquiresand rel eases
locksin the same pattern as above, but with some operationsomitted. A query isa
read-only transaction, but thereis no reason for it to call St art Tr ansact i on,
because EchoDisk transactions do not provide concurrency control. To provide
mutual exclusionfrom updates, aquery acquiresaread lock onitsFilel D argument.
(No query procedure has more than one FilelD argument.) A query will need
to pin pages for reading, so it needs to call ReadPi nReser vati on to avoid
deadlocking over that resource. The number it passesto ReadPi nReser vati on
is a smal number based on the parameters to the RPC and the code path of the
query. For example, the ReadFile RPC passes the number 2, which lets it pin
one file header page and one file data page concurrently. During the execution of
ReadFile, it may access more than one header page and more than one data page,
but it never needs to keep more than one of each pinned, sinceit processesthe data
sequentialy.

Thelocking order for an EchoBox query procedure is summarized in Figure 2.

5.3 Useof EchoDisk transactionsby EchoBox

We now describe how the implementations of several EchoBox update procedures
make use of EchoDisk transactionsto keep the on-disk structures consi stent.

The Cr eat eFi | e procedure is executed using one or more EchoDisk trans-
actions. Usualy, the work is accomplished in a single transaction, but when
recomrendedAl | ocat i onByt es islarger than a fixed threshold, additional
transactions are used to grow the file to that size. The fixed threshold keeps the
work donein a single transaction bounded within the limits dictated by EchoDisk.

Cr eat eFi | e’s first transaction does al of the following actions. It creates
a new file with file identifier cr eat edFi | el D. Creating the new file cals the
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AcquireReadPi nReser vati on
Acquireread lock on thefilelD
Lookup filelD in fid map, acquiring and releasing
the fid map hash code lock
Call Pi nPage and Unpi nPage to read pages
Release read lock on thefilelD
Release ReadPi nReser vati on

Figure 2: Locking for an EchoBox query

disk space alocator to abtain space for the file header page plus a portion of the
reconmendedAl | ocat i onByt es, up to the fixed threshold. The file header
page is filled in with the access control and other properties, and its run table is
set to describe the space alocated so far. (We describe this update to EchoDisk as
an update to the entire header page, rather than trying to tell EchoDisk precisely
what bytes changed.) The FidMap module is caled to add the pair ( cr eat ed-

Filel D, disk address of file header page) tothefid map. Note
that if thefid map page overflows, thefid map modulewill call theallocator to obtain
another page. The pair (nane, cr eat edFi | el D) is entered into the directory
cont ai ni ngDi rect ory. If the directory was aready full, adding this entry
requires growing the directory, which entailsa call to the allocator. The ctime and
mtime of the new file and the containing directory are all set to ver si onSt anp.

Next, if recomendedAl | ocat i onByt es islarger than the fixed thresh-
old, we execute one or more additiona transactions. each grows the file, by
a maximum of the fixed threshold, until r econmrendAl | ocat i onByt es is
reached.

TheW it eFi | e procedureis executed with one or more transactions. If the
number of bytes being written is large, or if the new alocation size is growing
or shrinking the file by alarge amount, the work is split into severa transactions.
First, the file is grown or shrunk to the new alocation size specified in the call.
Doing this requires one or more transactions, using the same fixed threshold as
for Cr eat eFi | e. Next, the bytes from the buffer are written into the file, using
the non-atomic EchoDisk W i t ePages procedure. We wait for those writes to
becomepersistent, by callingWai t Tr ansact i on. Thenweexecuteatransaction
to set the new length of thefileto the parameter | engt h and the ctime and mtime
of thefiletover si onSt anp. If the number of bytesbeing writtenissmall, and if
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the new alocation sizeis growing or shrinking the file by a small amount, asingle
transaction does all of the work. The bytes of the buffer are copied into the file
simply by pinning pages for update, assigning to the pages viathe pin pointer, and
caling Descri beUpdat e.

The Del et eFi | e procedure is executed with a single transaction. This
transaction removes the file from the cont ai ni ngbDi rect ory. The ctime and
mtimeof thecont ai ni ngDi r ect ory aresettover si onSt anp andthectime
of thefileto ver si onSt anp. The hard-link count of the file is decremented. If
it has not reached zero, we are done with Del et eFi | e. Otherwise, what we do
depends on whether some client machines still have the file open and on whether
the file is larger than the fixed threshold. If no client has it open and the file is
smaller than the threshold, then we go ahead and destroy it in this transaction, by
removing it from the fid map and by returning its pages to the disk space allocator.
Otherwise, thistransaction moves the file onto the orphan list, and Del et eFi | e
returns.

When the last client machine closes the file (or immediately if there were no
clients), the background orphan list demon deletesthefile. The deletionis donein
stages. Firgt, if thefileislarger thanthefixed threshold, one or moretransactionsare
executed: each truncates the file by the fixed threshold (or to zero size), returning
thefreed pagestothealocator. A final transaction removes thefile from the orphan
list, returns its remaining pages to the alocator, and removes it from the fid map.
The background orphan list demon is created during system startup.

The RenameFi | e procedure is executed in asingle transaction. For the case
where an object with the new name already existed, it isdeleted, using logic similar
toDel et eFi | e.

Directory reorganization isnot tied to aprocedure in the EchoBox interface—it
isdone in background—»but it is an interesting update nonethel ess. Reorganization
improves the efficiency of directory access. Reorganization is triggered as a side
effect of alarge changein the directory size since creation or thelast reorgani zation.

Thebackground thread performing adirectory reorganization holdsawritelock
on the directory. Reorganization isdone by enumerating the directory and building
an image of the desired new directory in virtual memory. Using asingle EchoDisk
transaction, theimage is copied on top of the old directory using normal EchoDisk
operations. This same transaction also grows or shrinks the underlying directory
file as necessary.

Theboundedness of EchoDisk transactionsplacesalimit onthesize of directory
that we can reorganize, but thelimit islarge: we can handle 256K byte directories.
We were prepared to handle larger directories by growing them incrementally
without reorgani zation, but we never saw such alarge directory except in our tests.
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5.4 Failover and restartability of updates

In this section we explain how failover between serversis supported by EchoBox,
especialy how updates are made restartable.

EchoBox relieson theconcept of “primary” provided by the EchoDisk interface.
EchoBox executes arequest from a client machine by calling on the EchoDisk pro-
cedures. If one of these EchoDisk procedures raises the exception Not Pri mary,
then the exception is propagated all the way back to the client machine.

The client machine then probes all the servers to find out which is the new
primary, and resubmits the call to the new primary. Query cals (i.e., read-only
procedures) are trivialy restartable. What about updates?

We have aready described how the EchoBox interface is designed to support
the restartable updates required for server replication. To review briefly, update
procedures are ordered using a pipeline sequence number specified as a parameter
to the update; after a failure the client resubmits the entire pipeline starting with
the oldest unanswered call. Each file and directory stores a ctime, which EchoBox
usesas aversion stamp. Each update procedure hasaver si onSt anp parameter,
and executing the update advances the ctime of the operandsto thisvalue.

Now, let us explain how the EchoBox implementation makes it possible to
restart updates.

For updates that EchoBox performs in a single transaction the story is quite
simple. Each update procedure comparesthever si onSt anp parameter supplied
by theclient against the ctime of any of the update’sfile or directory operands. If the
ver si onSt anp parameter isgreater than the stored ctime, the procedure performs
the update; otherwise the procedure returns without performing the update, since
the ctime shows it was already done.

For the two updates that EchoBox performs in several transactions, the story is
dlightly more complex:

For Creat eFi | e, if thever si onSt anp parameter is equa to the server’'s
stored ctime, then we know that the first transaction of Cr eat eFi | e occurred,
creating the new file and adding it to the directory, but we do not know whether
the transactionsrequired to grow thefiletor econmrendedAl | ocat i onByt es
were done. The server |ooks at the size of the stored file and grows it if necessary,
using one or more transactions. If thever si onSt anp parameter iseither strictly
less or greater than the stored ctime, the standard rule above applies.

For WriteFile, if thever si onSt anp parameter islessthan the server’s stored
ctime, it is possiblethat some of the work of Wi t eFi | e aready has been done,
even though the final transaction, which sets the file's length, mtime, and ctime,
did not complete. The work that may already have been done consists of growing
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or shrinking the file to the size specified by theal | ocat i on parameter and then
copying bytes of the buffer into the file. Observe that this work is idempotent:
doing it again achieves the same result. So when the ver si onSt anp parameter
is less than the stored ctime, we simply execute the Wit eFi | e call from the
beginning, without trying to figure out whether some of it already was done. If the
ver si onSt anp parameter is greater than or equal to the server’'s stored ctime,
thentheearlier Wi t eFi | e call completedinitsentirety (the standard ruleabove).

For all the other updates, the fact that the ctime of the operands is advanced as
part of the same transaction that does the work of the update makes the advancing
of the ctime aclear demarcation point. Eventhough Del et eFi | e and Renarme-
Fi | e can move afile to the orphan list for subsequent processing, the movement
onto the orphan list is done in the same transaction that advances the ctimes. And
because the orphan list is persistent, the orphan demon that is started on the new
primary server will find thelist and processit.

6 Summary and conclusions

We believe our overall design based on the EchoDisk interface was a success. The
restrictions we made in the EchoDisk interface are sensible and appropriate for
building afile system.

To recap, EchoDisk provides a simple but constrained interface for performing
atomic updates. EchoDisk supports new-value logging, at the granularity of byte
seguences within apage. Because pages that are updated during a transaction must
be kept pinned in primary memory until the transaction commits, and because the
log has a fixed size, transactions have a bounded size. EchoDisk itself provides
no concurrency control to prevent concurrent transactionsfrom accessing the same
byte. On-lineabort is not supported. Theserestrictions permit an extremely simple
implementation of EchoDisk; simpler, we believe, than for any less restricted
interface.

The EchoBox implementation was designed to satisfy the constraints of
EchoDisk. The lack of on-line abort means that EchoBox had to be carefully
designed to avoid deadlock. File systems without logging are usualy designed to
avoid deadlock too, so our use of logging has made this aspect of the design neither
easier nor harder. We claim that the nature of file system updates, in particular the
fact that al transactions are initiated by the EchoBox layer, which supportsonly a
fixed set of possible update operations, makes our deadlock-avoidance design fea-
sible and sensible. We contrast the file system case with that of general databases,
in which users control the code that runsin transactions, and thus nothing prevents
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the user code from deadlocking.

The EchoBox implementation exploits EchoDisk transactions to maintain the
invariant that the file system is aways in a well-formed state; that is, that the
contents of the disk pages can be interpreted as a file system and the file system
datastructuresare mutually consistent. The bounded size of EchoDisk transactions
was not a significant impediment to implementing EchoBox. The bound is large
enough that complicated file system updates, such as renaming afile and creating a
file (except for the final part of growing thefile to a recommended alocation), can
be performed in a single atomic transaction. If these complicated updates did not
fitinasingletransaction, wewouldforfeit theimportant advantages of transactions
for simplifying file system code.

We did have to break up some large file system updates into a sequence of
transactions—namely, those updates that involved growing or shrinking afile by a
significant amount. But each transactionin the sequence | eaves thefile system data
structures (e.g., file run table and alocation bit map) in amutually consistent state.

EchoDisk transactionsalso hel ped with implementing server replication. After
a primary server crash, client machines resubmit any unacknowledged EchoBox
updatesto the new primary server. Thenew primary must figure out which updates
have already been done or partialy done. Our solution uses version stamps plus
some additional information. Because each EchoBox update is either atomic or
composed of asmall sequence of atomic actions, only a small number of cases had
to be considered in the implementation.

Within EchoDisk, logging isthe basis for datareplication. For crash recovery,
the log reveals which data was in the middle of being updated at the time of the
crash, and therefore might be different on the different replicas. Recovery exploits
thelog to bring the replicas into agreement.

One EchoBox datastructuredoes not quitefit the EchoDisk framework, namely,
thefileallocationbit map. For thisstructureabit-level granularity of logging, rather
than byte-level, would have been preferable.

EchoDisk provides new-value logging. The IBM AlX file system also seems
to be based on new-value logging, provided as part of their virtual storage manage-
ment, which is more el aborate than EchoDisk. The published descriptions of their
design are vague on how the necessary locking at thefile system layer, beyond that
provided by their virtua storage manager, isachieved [7, 8].

Transarc's Episode file system uses old-value/new-value logging with a
bounded log and support for abort. Episode has a radically different approach
to locking: instead of defining a hierarchical locking order with two-phase lock-
ing to guarantee the data independence of different transactions, Episode merges
concurrent transactions that access the same data items into a single umbrella
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transaction. Thisumbrellatransaction either commits or abortsin itsentirety [9].
Echo’s use of new-value logging alowed a clean separation of our overal de-
sign, into a layer that implements logging and recovery (EchoDisk), and a layer
that implements file system accesses and updates (EchoBox). The EchoBox layer
isnot involved in recovery. We can contrast our approach with operational logging,
in which redo proceduresmust bewritten. We believethat operational logging with
redo proceduresis harder to implement correctly than our new-valuelogging. The
redo proceduresare, in general, different fromtheorigina “do” procedures, requir-
ing more code. And they are more complicated than the simple byte copying that
recovery performsin new-valuelogging. Inreturn, operational logging allowsmore
cleverness, including more compact logs and fancier type-specific locking [23].
We would liketo see afile server design of similar aspirationsto ours based on
operationa or multi-level logging [20], worked out to asimilar level of detail.
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