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Abstract

The Echo replicated file system uses new-value logging. Echo’s use of new-value
logging provides a clean separation of the internals of the system into one module
that is concerned with logging and recovery, and another module that is concerned
with accessing and updating the file system’s on-disk structures. The logging
module provides a restricted form of transaction. The restrictions simplify its
implementation but impose constraints on the file system module. The file system
module easily satisfies these constraints, resulting in a good match overall.
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1 Introduction

Maintaining the consistency of on-disk structures in the face of system crashes is
an important problem in file system design. This problem is difficult because file
system on-disk structures can span multiple disk blocks and because file system
updates can modify several on-disk structures. Because disk hardware writes
each block individually, a crash can leave on-disk structures in inconsistent states.
Therefore a recovery procedure must be designed as part of the file system.

Logging is a general technique for making a set of updates atomic with respect
to crashes. Compared with more specialized techniques for maintaining the consis-
tency of a file system’s on-disk structures, such as scavenging and carefully ordered
writing, logging has three primary advantages. Logging can keep recovery time
short, improving availability. Logging can change random disk writes to sequential,
improving performance. And logging localizes recovery concerns, simplifying the
implementation.

Logging’s ability to simplify the implementation allows a file system to be more
ambitious and still be feasible:

ž The file system can provide higher performance by maintaining more com-
plex on-disk structures. Logging allows these structures to be designed
without too many constraints.

ž The file system can provide higher reliability by replicating disks. After a
system crash, the log can be used to bring the disk replicas into agreement.

ž The file system can provide higher availability by replicating servers. After
a failover from one server to another, the file system needs to determine
whether or not a particular update request was performed; logging makes it
easier to maintain the extra information needed to determine this.

ž The file system can provide stronger file system semantics to clients. Logging
allows more complex operations, such as file rename, to be atomic.

Several file system implementations have demonstrated the advantages of log-
ging. The Cedar file system implements directories as a B-tree, using logging to
maintain the B-tree invariants [12]. The Harp file system and the HA-NFS file
system provide replicated NFS service, and use logging to assist in replication and
failover [3, 4, 19]. The Alpine file system uses logging to provide transactional
semantics to file system clients [6]. The Sprite log-structured file system is radi-
cally different from these other systems and from Echo, in that all data lives in the
log [26].
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Echo is a distributed file system, one of whose major goals is to achieve high
availability by replication of disks and servers.1 We were therefore attracted to
logging as an implementation technique.

We chose a particularly simple style of logging for Echo: new-value logging
with a bounded log.2 Only new values of data are recorded—no undo information
is logged. On-line abort is not supported; that is, only a system crash can back out
an uncommitted transaction.

Our new-value logging is economical and simple. Economical, because we cut
logging in half by not recording the old values. Simple, because new-value logging
provides a clean separation of the internals of the file system into one module that
is concerned with logging and recovery, and another module that is concerned with
accessing and updating the file system’s on-disk structures (including controlling
concurrent access to these structures).

This paper describes Echo’s internal new-value logging interface, its imple-
mentation, and its use, all in enough detail to reveal the strengths and weaknesses
of our approach. We believe that the restrictions in our logging interface made the
implementation of logging and recovery particularly simple—simpler than for any
less constrained interface. However, the implementation of the file system layer that
uses the logging interface had to cope with its restrictions. Doing so was feasible
because a file system provides only a small fixed set of operations. We believe that
the benefits of restricting our logging interface (as opposed to providing general
atomic transactions) justified the additional effort required to design and build the
file system layer above it.

How do the restrictions at the logging interface create difficulties for the file
system layer? Because of the lack of undo, the file system cannot abort an update
in the middle—to break a deadlock, for instance. Therefore, any locks or resources
that will be required during the update must be acquired in advance, in a deadlock-
free order, before any changes have been made. A second consequence of the lack
of undo is that all uncommitted changes must be held in primary memory, limiting
the size of a transaction. Because the log is bounded, a file system update that is
sufficiently large must be decomposed into a sequence of individual atomic actions
at the logging interface. However, the bounds on the log size are large enough

1Other Echo goals include location-transparent global naming and distributed caching between
clients and servers. These aspects of Echo are discussed more fully in an overview paper [5] and in
several additional papers [13, 14, 15, 21, 28]. The Echo system is no longer under development or in
use, but we speak of it in the present tense throughout this paper to avoid awkwardness. Echo was in
active use from November 1990 to November 1992, when the evolution of our laboratory’s hardware
and software base led us to retire the system. At its peak, Echo had about 50 users.

2For a survey of logging techniques, see Bernstein [2] and Haerder [11].
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that important file system operations, such as renaming a file, can be performed
atomically. In none of these cases do the logging restrictions have a significant
impact on file system performance, but they do make the task of implementation
more difficult. Section 5 gives some detailed examples of the areas where such
difficulties arose in Echo and how we overcame them.

Here is a summary of the rest of the paper.

In Section 2 we present a simplified version of EchoDisk, the interface that
hides logging from the higher levels of Echo. We define the semantics of this
interface using an abstract model. We also describe a realistic implementation of
the interface.

In Section 3 we proceed to remove the simplifications one by one. Our sim-
plified EchoDisk ignores the reality of bounded resources, so here we extend the
interface and implementation to acknowledge the bounds. Some writes done by a
file system do not need the strong semantic guarantees of EchoDisk, and should
not have to pay for them, so we expand the interface to provide a weaker form of
writing and change the implementation to match. Disks can be replicated below
the level of EchoDisk, so we discuss the impact of implementing this. And servers
written using EchoDisk can be replicated, with only minor changes to the interface,
so we make these changes.

In Section 4 we present a representative sample of the procedures in EchoBox,
the Echo file system layer above EchoDisk. EchoBox is the interface that Echo
servers present for use by the operating systems of Echo client machines. It is a
fairly conventional interface; it does not include transactions. This paper does not
focus on the EchoBox interface, but some knowledge of it is required to understand
the implementation issues discussed in the next section.

In Section 5 we present relevant portions of the EchoBox implementation in
detail. We describe the major on-disk structures and the locking rules for accessing
them. To avoid deadlock, the locking design must include strategies for claiming
resources from EchoDisk. We give examples of how some update procedures in
EchoBox are implemented using EchoDisk to provide atomicity, highlighting the
ways in which the implementation copes with EchoDisk restrictions. We give
special attention to the techniques used to ensure that EchoBox update procedures
are restartable after a server failure.

Section 6 summarizes the paper and presents conclusions.
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2 Simplified EchoDisk

In this section we present a simplified version of EchoDisk, the interface that
hides logging from the higher levels of Echo. We define the semantics of this
interface using an abstract model. We also describe a realistic implementation of
the interface.

2.1 The interface

An EchoDisk is a persistent array of pages that provides a transaction capability. An
EchoDisk transaction can modify a set of pages, changing any set of bytes within
those pages and leaving the remaining bytes unaltered. A transaction is atomic:
either all of the pages are updated, or none of them are.

EchoDisk does not supply any concurrency control, either at the page level or
at the byte level. The effect is undefined if two concurrent transactions modify the
same byte. It is perfectly okay for two concurrent transactions to modify different
bytes on the same page.

Thus, the atomicity of EchoDisk transactions is just with respect to crashes of
the EchoDisk implementation, not with respect to concurrent transactions.

A sensible client of EchoDisk is expected to use its own locks to prevent two
concurrent transactions from modifying the same bytes. In addition, a sensible
client will use its own locks to prevent readers from reading bytes that are being
modified by a concurrent transaction, the motivation being that the transaction is in
the middle of some update whose intermediate (and not yet persistent) state should
not be visible to readers.

In presenting the simplified EchoDisk interface, we will give its semantics in
terms of an abstract model implementation, which is not a realistic implementation.
The abstract state of an EchoDisk has the following major components:

PA a persistent array of disk pages
VA a volatile array of buffer pool pages
readPinCount an array of counters
updatePinCount an array of counters
updateQueue a queue of transactions that are not yet stable
updateDemon a demon thread that processes updateQueue

This abstract state cannot be manipulated by the client directly; rather, proce-
dures of the interface must be called.
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The persistent array PA survives reboots of the computer; nothing else does. In
our abstract model, updates made by a transaction are initially made to the array
VA, and transaction commit copies them atomically to the array PA.

The basic procedures of the EchoDisk interface are as follows:

PROCEDURE OpenDisk(diskName: String): EchoDisk;

OpenDisk maps a disk name into an EchoDisk instance, initializes the data
structures associated with that instance, and returns a handle for these structures.

Abstractly, the OpenDisk procedure copies the entire array PA into the array
VA. The readPinCount and updatePinCount arrays are initialized to all
zeros. OpenDisk will typically be called by the EchoBox layer during startup.

PROCEDURE PinPage(
ed: EchoDisk;
pageIndex: INTEGER): PagePointer;

PinPage returns a pointer to the page ed.VA[pageIndex] in primary
memory, and increments ed.readPinCount[pageIndex]. As long as the
readPinCount of this page is nonzero, the caller is guaranteed that dereferencing
the result pointer will read the correct data. It is an unchecked error for the client
to dereference the pointer when the readPinCount is zero, or for the client to
modify the page (see instead the procedure UpdatePage below).

PROCEDURE UnpinPage(ed: EchoDisk; pageIndex: INTEGER);

UnpinPage decrements ed.readPinCount[pageIndex]. The client
calls UnpinPage to inform EchoDisk that it is no longer using the page pointer
from an earlier call to PinPage. Thus, every call toPinPage should be followed
eventually by a call to UnpinPage.

PROCEDURE StartTransaction(ed: EchoDisk): Transaction;

StartTransaction creates a new transaction and returns a handle repre-
senting it. This handle is passed to other procedures.

PROCEDURE UpdatePage(
tr: Transaction;
pageIndex: INTEGER): PagePointer;
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UpdatePage returns a pointer to the page ed.VA[pageIndex] in primary
memory, and increments ed.updatePinCount[pageIndex]. It also adds
pageIndex to a list of updated pages associated with the transaction tr. The
caller is guaranteed that dereferencing the result pointer will allow reading and
writing the correct page for the duration of the transaction. It is an unchecked error
for the client to dereference the pointer after the end of the transaction. (There is
no corresponding UnpinPageForUpdate because unpinning is done implicitly
at the end of the transaction.)

It is okay for two transactions to make concurrent UpdatePage calls using the
same page; the client is responsible for preventing these transactions from changing
the same byte. Thus, the atomicity of EchoDisk transactions is just with respect to
file server crashes, not with respect to concurrent transactions.

PROCEDURE DescribeUpdate(tr: Transaction;
pageIndex: INTEGER;
startingByteInPage: [0..PageSize-1];
length: [0..PageSize]);

DescribeUpdate appends a tuple (pageIndex, startingByteIn-
Page, length) to a list of updates associated with the transaction tr. This
informs EchoDisk that the client has modified or will modify the specified byte
range in VA[pageIndex] as part of the transaction. The client does the modi-
fication via the page pointer returned by UpdatePage. It is an unchecked error
for the client to modify bytes outside of the ranges specified in its calls to De-
scribeUpdate.

PROCEDURE EndTransaction(tr: Transaction);

EndTransaction ends a transaction. Abstractly, for each tuple in the trans-
action, the value of the byte sequence is copied out of the page VA[pageIndex]
and remembered with the tuple as part of the transaction’s state. When this copying
and remembering is complete, the transaction is appended to the queue update-
Queue. The procedure EndTransaction then returns.

A single asynchronous demon thread updateDemon, internal to EchoDisk,
repeatedly removes transactions from the head of the queue and processes them
one at a time. To process a transaction, the demon processes all the tuples as one
single atomic action: for each tuple, the demon copies the byte sequence value
recorded during EndTransaction into page PA[pageIndex] at the position
startingByteInPage. (The atomicity of this step may seem like magic; this
is where the log enters into the real implementation, as explained in detail in the
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next section.) Then the demon decrements all of the updatePageCount entries
that were incremented by the transaction.

PROCEDURE WaitTransaction(tr: Transaction);

WaitTransaction returns after the update demon has processed the trans-
action tr. Thus, a postcondition of WaitTransaction is that the changes have
been made to the persistent array PA.

The motivation for providing separate EndTransaction and Wait-
Transaction operations is that certain client-level locks can be released by the
client once a transaction has been serialized by EndTransaction, even though
the transaction is not yet persistent. But the client thread cannot return successfully
to its caller until the transaction has been made persistent byWaitTransaction.

2.2 The implementation

We now describe an implementation of simplified EchoDisk. The abstract array
of pages PA is represented as an array of pages on disk, of the same length as the
abstract array PA, plus a log on disk. Thus each page of PA has a home location on
disk. The log stores all committed changes that have been made to PA and not yet
recorded in the home location. During normal operation, the implementation writes
committed changes asynchronously to the home location; after a crash, recovery
uses the log to ensure that all committed changes are eventually written to the home
location.

The update demon performs its atomic update by exploiting the log. For each
tuple (pageIndex, startingByteInPage, length, newValue) in
a transaction, the demon writes a corresponding Update record to the log. Then
the demon makes the transaction atomic with respect to crashes by appending a
Commit record after the last Update record: during recovery, if the Commit record
is not present, the entire transaction is discarded. WaitRecord returns when the
transaction’s Commit record has reached disk.

We represent the array VA using a buffer pool of pages in primary memory.
This buffer pool contains recently read and recently modified pages. Since there
are generally many fewer buffer pool pages than disk pages, the buffer pool imple-
mentation needs to reuse buffer pool pages; that is, to change the mapping from
buffer pool pages to disk pages. A buffer pool page is called dirty if it contains
a committed update that has not been written to its home location. A buffer pool
page can be reused if it is not pinned and not dirty.

We clean a dirty page by writing its value from the buffer pool to its home
location. Without some activity to clean dirty pages, the buffer pool would quickly
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fill up with dirty pages. Therefore the EchoDisk implementation includes a cleaner
thread that asynchronously cleans pages. The cleaner is free to clean any dirty
page that is not pinned for update. (A page that is pinned for update may contain
changes from a transaction that is still in progress, and our design could not undo
such changes if they were to reach the home location. To allow undoing changes,
twice as much information would need to be logged for each update.)

The log is kept in a fixed-size area on disk—ideally on a separate logging
disk. The log is managed as a circular buffer. The start of the log is recorded in
a checkpoint record in a fixed location on disk. The end of the log is detected by
using a version stamp that is kept in a reserved location on every log page. The
version stamp is incremented every time a log page is written. (We never extend a
partially filled page by overwriting it; we use the next page instead.) Thus the end
of the log is the point where the version stamp decreases.

This explains how the log fills up; how is log space reclaimed? The log must
include all log records that would be needed by recovery. Recovery needs log
records beginning with the oldest log record that updated a page which has not
been cleaned since this update. Consider the log record that is at the current start
of the log: we can clean the page that this record updated, and then, since this log
record is no longer needed by recovery, we can advance the start of the log past this
record.

The cleaner is responsible for advancing its idea of the start of the log as it
cleans. Periodically it writes the current start of the log to the checkpoint record;
this is called taking a checkpoint. Taking a checkpoint both reclaims log space and
reduces the amount of log that recovery must process.

When log space runs low, the cleaner focuses on cleaning dirty pages from
updates at the start of the log. When log space is plentiful, the cleaner is free to
use other criteria, such as scheduling a large set of cleans to minimize disk arm
movement.

The log is write-only during service. It is read during crash recovery.
Crash recovery reads the log start from the checkpoint record and then pro-

cesses the log forward from this location. For each Update record that is followed
eventually by a Commit record, recovery performs the update in the buffer pool.
Because the Update record contains the new value of the byte sequence it changes,
performing the update in the buffer pool is trivial: we just copy the byte sequence
into the page. Because processing an Update record is idempotent, no additional
machinery, such as per-page log sequence numbers, is needed to avoid doing it
twice [2, chapter 6][10].

Since redoing updates is done entirely within the EchoDisk module, the client
of EchoDisk does not have to write special redo procedures. This is simpler
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than logging algorithms that require redo procedures, because a redo procedure is
different from the original “do” code. Of course, in return, the client is restricted
to new-value logging.

3 Real EchoDisk

In this section we derive the real EchoDisk interface by removing the simplifications
of the previous section one by one. Our simplified EchoDisk ignores the reality
of bounded resources, so here we extend the interface and implementation to
acknowledge the bounds. Some writes done by a file system do not need the
strong semantic guarantees of EchoDisk, and should not have to pay for them,
so we expand the interface to provide a weaker form of writing and change the
implementation to match. Disks can be replicated below the level of EchoDisk, so
we discuss the impact of implementing this. And servers written using EchoDisk
can be replicated, with only minor changes to the interface, so we make these
changes.

3.1 Reserving bounded resources

The EchoDisk implementation has limited resources—it has only a fixed number
of buffer pool pages and a fixed amount of log space to work with. To prevent
deadlocks over these resources between concurrent client threads, we will now
augment the EchoDisk interface with procedures for reserving quantities of each
resource. A client thread is expected to call these reservation procedures before it
begins a high-level operation, supplying conservative estimates for the resources
that will be sufficient to perform its entire operation. Requesting more resources in
the middle of an operation is illegitimate because deadlock could result.

Of course, if the estimates supplied by the client are too high, EchoDisk will
never be able to grant them. The client must be designed to have high-level
operations with bounded size, small enough to fit in the bounds supported by
EchoDisk’s limited resources. To make this design feasible, the EchoDisk interface
advertises bounds for each resource that it promises to support. That is, if a client
thread makes a reservation request that is within the advertised bound, the request
will eventually be granted.

In the interface, we split the buffer pool resource into two flavors, pages pinned
for reading and pages pinned for update. The motivation for the split is that the
two flavors behave differently. A page that is pinned for read may be unpinned in
the middle of the client’s high-level operation, and that buffer pool slot reused for
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pinning another page for read. But because of the lack of undo information in the
log, a page that is pinned for update must remain pinned until the transaction is
persistent. This will typically be near the end of the client’s high-level operation,
so there is no opportunity for the client to reuse the slot.

We add two procedures to control the pages pinned for reading:

PROCEDURE AcquireReadReservation(
numberOfPages: INTEGER);

PROCEDURE ReleaseReadReservation(
numberOfPages: INTEGER);

AcquireReadReservation blocks until numberOfPages is available
in the buffer pool. The advertised bound that is guaranteed to be granted eventually
is 500 pages.

Note that no handle is returned by the procedure, so there is no handle to pass
in to the PinPage procedure. The interface assumes that all client threads are
well behaved in that they will call AcquireReadReservation before calling
PinPage, and that they will call PinPage at most numberOfPages times. If
clients violate these conventions, EchoDisk may deadlock.

ReleaseReadReservation releases a client’s read pin reservation. Every
call on AcquireReadReservation should eventually be followed by a call on
ReleaseReadReservation.

The other two flavors of limited resource are log space and pages pinned for
update. Since these are associated with a transaction, we change the Start-
Transaction procedure to accept requests for them:

PROCEDURE StartTransaction(
ed: EchoDisk;
logSpaceReservation: INTEGER;
pinnedForUpdateReservation: INTEGER): Transaction

The logSpaceReservation parameter to StartTransaction is an
upper bound on the log space the transaction will use. The advertised bound that is
guaranteed to be granted eventually is one megabyte.

The log space used by a transaction is the sum of the log space used by all
of the DescribeUpdate calls in the transaction. Each DescribeUpdate
call uses log space according to the formula c C length, where length is the
length of the byte sequence parameter that is passed to DescribeUpdate, and
c is the constant 12. Observe that a megabyte of log space is sufficient to call
DescribeUpdate on over a thousand byte sequences of 1024 bytes each.
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The pinnedForUpdateReservation parameter to StartTransac-
tion should be an upper bound on the number of different pages that will be
pinned by calling UpdatePage during the transaction. The advertised bound that
is guaranteed to be granted eventually is 500 pages.

StartTransaction blocks until the reservations can be granted. Besides
competition from other client threads, reasons for blocking include waiting for the
cleaner thread to clean dirty pages and remove them from the buffer pool, and
waiting for the cleaner thread to take a checkpoint and free up old log space.

The resources reserved by StartTransaction are released implicitly. Any
that were not actually used during the transaction are released by EndTransac-
tion. For pinned pages that were dirtied and log space that was used, the releasing
is performed by the cleaner.

3.2 Optimizing large writes

Many file system clients use the file system to store large files in simple ways. For
instance, a compiler produces a huge object file. The compiler does not depend
upon atomicity of its file writes—it either leaves garbage files around after a crash,
or uses the rename system call to “commit” the new file.

Logging every new value written by such a client is an unnecessary expense.
For a large enough write to a run of contiguous disk pages, the cost of doing the
disk seek is minor compared to the cost of doing the disk write, so it gives better
throughput to bypass the log. For shorter writes it is better to use the log.

This observation leads us to augment the EchoDisk interface with the following
procedure that lets writes bypass the log, instead going directly to the home location.
Without the procedure, data must first be written to the log, and then also later
written to the home location.

PROCEDURE WritePages(
tr: Transaction;
startingDiskPage: INTEGER;
buf: Address;
bufLength: INTEGER);

WritePages has no immediate effect other than to record its parameters in
the internal state of the transactiontr. Later, after the update demon has completed
the normal processing of transaction tr, it processes all of tr’s WritePages calls.
For each WritePages call, the demon writes the first bufLength bytes of the
buffer buf to consecutive pages of PA beginning with startingDiskPage.
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This write is not atomic. In case of a crash, the bytes of PA might contain any
combination of their old value and new value. If WaitTransaction on tr
returns, the write happened completely. It is illegal to call WritePages on a page
that is pinned for read or write in the buffer pool.

The implementation of WritePages achieves its non-atomic writing by writ-
ing directly to the home pages, without going through the log. WritePages does
not require the pages it writes to be in the buffer pool; if any of the pages written
by WritePages happens to be in the buffer pool, it is overwritten with the new
value.

WritePages complicates crash recovery. During service, a particular page
may first be modified by a logged atomic transaction and then later modified by
WritePages. In this scenario, the correct value of the page is its current home
value, and we must be careful that recovery does not cause the page to revert to the
earlier value in the log from the atomic transaction.

To make crash recovery work properly, the implementation of WritePages
must do additional logging. Before writing to the home pages, the update demon
appends a StartWrite record to the log. This record states that a certain run of home
disk pages is about to be written. The demon forces the log to be persistent, then
writes the home pages. When the home pages are all written, the demon appends
a FinishWrite record to the log. This record states that the run of home disk pages
has been written.

In addition to the logging by WritePages, the cleaner also needs to do some
logging. After cleaning a page, the cleaner writes a Clean record to the log, saying
that the page has been cleaned.

Here is how we use these new log records. At the start of recovery, the buffer
pool is empty. As recovery processes the log forward, it must build up state in the
buffer pool for each page.

ž When recovery encounters an Update record that is followed eventually by
a Commit record, it reads the page from home into the buffer pool (if it is
not already present) and applies the modifications to the copy in the buffer
pool. Recovery pins the page for update, so that it cannot be written back to
its home, and also marks it as dirty.

ž When recovery encounters a Clean record, it discards the page from the buffer
pool if it is present.

ž When recovery encounters a FinishWrite record, it discards each page in the
run from the buffer pool if it is present.
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ž The StartWrite record is needed only for disk replication. It will be explained
in Section 3.3.1.

When recovery reaches the end of the log, some pages are still in the buffer
pool pinned for update and marked as dirty. We unpin these pages and start normal
service, including starting the cleaner thread. Eventually, the cleaner will write
each dirty page back to its home during normal service.

This algorithm keeps some pages pinned in the buffer pool during crash re-
covery. You might worry that the buffer pool could overflow with pinned pages
during recovery, but it can’t, because of the Clean records and the way we use them.
Because we log the event of cleaning a page, the maximum number of buffer pool
pages required is bounded by the maximum number of dirty pages that we had
at any one time during the service period before the crash. Before the crash, the
dirty pages all fit in the buffer pool; therefore, the number of pages required during
recovery does not exceed the size of the buffer pool. Using our one-pass recovery
algorithm but not exploiting the Clean records, the number of pages required during
recovery would be the number of pages dirtied since the last checkpoint, which
could be larger than the buffer pool.

There are two motivations for making the transaction tr be a parameter to the
WritePages procedure. First, we save one log force. We don’t need to force the
log after the atomic part of the transaction if the WritePages processing is going
to append a StartWrite record and force the log. Second, making the transaction
be a parameter to WritePages gives EchoDisk the option of deciding to perform
the operation by appending Update records to the log instead of bypassing it. In
some cases this gives lower latency and has no significant impact on throughput.

3.3 Replication

In the Echo file system, data storage is implemented by server computers and
disks. An Echo hardware configuration may have replicated disks, replicated server
computers, both, or neither. Disk replication and server replication are described
in the next two sections, respectively.

3.3.1 Disk replication

Disk replication is implemented within the EchoDisk module, below the EchoDisk
interface. Disk replication is a configuration option. To clients of the EchoDisk
interface, the disk replication is invisible; they see a single array of pages, with
single-copy semantics.
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Thus, replication of persistent storage is beneath the EchoBox file system layer.
Another Echo paper discusses the advantages and disadvantages of this design
choice [14].

The log is essential in keeping the replicas consistent. During crash recovery,
the log reveals which data was in the middle of being updated, and thus may be
different on the different replicas. Recovery uses the log to bring the replicas back
into agreement.

In a configuration with replicated disks, both the array of home pages and the
log are replicated. We use the log to keep the home pages consistent; how do we
keep the logs consistent? We only append to the logs; therefore any inconsistencies
will be in the tail portions of the logs. In appending to the replicated logs, the
update demon lets the logs differ by at most a constant number of pages, Log-
PagesInProgress. Therefore the replicated logs are byte-for-byte identical,
except for at most LogPagesInProgress pages at their tails.

The update demon finishes appending to both logs before allowing Wait-
Transaction to return. The unequal tail portions contain only uncommitted
transactions, so we can ignore these portions during recovery.

Recovery reads from all the log replicas, starting from the position recorded in
the checkpoint. If reading a log page from one replica gets a read error, we get
the page from another log replica, and also attempt to rewrite the log page on the
replica that got the read error. The logical end of log occurs when we hit the end of
log on any replica, as determined by the per-log-page version number. However,
after that point, some replicas could contain additional log pages which have good
version numbers—these replicas were further ahead in their logging at the time
of the crash (by at most LogPagesInProgress pages). These additional log
pages on some replicas could confuse us on the next recovery, if not all disk replicas
are accessible. To avoid this problem, we erase any additional pages that may be
present by overwriting them with page images that contain bad version numbers.
Instead of looking at each replica to see whether it has pages that need to be
overwritten, we simply overwrite the LogPagesInProgress pages following
the logical end of log on every replica.

If it weren’t forWritePages, the recovery algorithm already described would
be sufficient to bring the replicas back into agreement. We must extend the recovery
algorithm to deal with WritePages in the presence of replication. Recall that
StartWrite and FinishWrite log records are appended to the log while processing
a WritePages operation. StartWrite is appended before the write begins, and
FinishWrite after the write completes. During crash recovery, if the StartWrite
appears in the log but is not followed eventually by the FinishWrite, then the
replicas may have different values for the affected home pages; the crash may have
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occurred after writing a page to one replica but before writing it to the other replicas.
For each page, the recovery algorithm reads the page from one replica and writes
it to all the others. Since WaitTransaction never returned, recovery is free to
choose any replica to read the page.

During service, a disk replica can become disconnected and miss some updates,
and then later get reconnected. To detect that the replica does not have the most
recent data, a version stamp (or epoch) scheme is used. Each disk replica stores
an epoch number that says how up-to-date its data is. When a replica becomes
disconnected, the epoch numbers of the remaining connected replicas are all set to
a new value larger than any that has been used before. This process uses a multi-
phase algorithm that is resilient to failures; see our other papers [5, 22] for details.
When the replica reconnects, the fact that its epoch number is smaller reveals that
it is out of date.

When a replica is disconnected and later becomes reconnected, we must bring
its array of disk pages and its log into agreement with the up-to-date replicas. We
do this concurrently with providing service. In outline, our algorithm is as follows;
again, we refer the reader to our other papers for complete details. While a replica
is being updated, reads avoid it, but writes (including log writes, cleaner writes,
and WritePages) go to all replicas. A copier thread ensures that all pages of the
out-of-date replica’s disk page array and log are either copied from an up-to-date
replica or overwritten with new data. When the copier thread finishes its work, we
advance the replica’s epoch number, marking it as up-to-date. This allows it to be
used for reading pages during service and for reading the log during recovery.

If all the updates performed while a replica was disconnected still happen to
be contained in the logs of the up-to-date replicas, it would be possible to exploit
the log to bring the replica up to date without having to copy the entire array. This
optimization would be especially important in hardware configurations with only
single-ported disks, because disconnections are more likely in these configurations.
With single-ported disks, a disk replica becomes disconnected whenever its directly
connected server computer is down. We never implemented this optimization.

Our log is limited to a size set during server configuration. An effectively
unbounded log, as might be implemented using a combination of disk and tape,
would always allow the log to be used in bringing replicas up to date. Also, the log
plus an old backup copy could be used to recover from media failure, a technique
called fuzzy dump in the database literature [10].

Disk replication has a minor impact on writing pages to their home locations.
The writing is performed sequentially to the different replicas. If it were overlapped,
we would risk corrupting the page on all replicas (say, from power failure).

On unreplicated hardware configurations, EchoDisk is vulnerable to unreadable
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disk pages (media failure) in the middle of the log. If such a log read error
occurs, recovery fails. The EchoDisk instance has failed to implement its specified
interface. Some updates that were performed in a supposedly committed transaction
may not have been done, while others may have been done, depending on which
pages the cleaner was able to clean; thus the transaction atomicity semantics are
violated. We could have partially protected against this vulnerability by choosing to
write log pages twice on the same physical disk whenever the disk is not replicated.
This would protect us against bad disk blocks, but not failures of the entire disk.
The Cedar logging file system uses this technique [12]. Unreplicated disks are also
vulnerable to media errors in the array of home pages. A file system scavenger [12,
18] at the EchoBox layer could partially recover from such errors (and also from
unreadable log pages). We chose not to implement either of these techniques
because they did not advance Echo’s research goals, and because we had no practical
need for them—all the hardware configurations we actually built or planned were
replicated.

3.3.2 Server replication

Echo can replicate servers to improve availability. In a configuration with replicated
servers, during normal operation each set of replicated disks is controlled by just
one server, the primary. One or more secondary servers stand by to take control if
the primary fails.

Server replication is based on the notion of disk ownership. Some disks are
multi-ported and connected to several server computers; other disks are single-
ported but shared via software on the connected computer. In either case, a server
that owns a disk has exclusive control of it for both reading and writing. If a server
other than the owner attempts to read or write a disk, the attempt will be rejected.

A primary server is elected by having each server try to claim ownership of a
majority of the disk replicas: if a server succeeds in claiming a majority, it becomes
the primary for that disk. In configurations with an even number of disk replicas,
witnesses are used to break ties [25].

Ownership is subject to timeout. Therefore the current primary must refresh
its ownership periodically. If the primary fails to do so for any reason (crash of
primary, slowness of primary, loss of communication with disk, failure of disk) it
loses ownership.

On any loss of ownership, a new election is held. To win an election, a new
server must acquire ownership of a majority of the disk replicas, and ownership of
a disk replica cannot change without the ownership timeout expiring. This dead
time is required in order to guarantee that there is never more than one primary.
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The heart of server replication is the election of a primary server. This is
implemented below the EchoDisk interface. Thus both disk replication and server
replication are handled by the EchoDisk implementation.

We extend the EchoDisk interface to include the concept of being primary as
follows:

ž OpenDisk blocks if this server is not the primary: it returns only when this
server has become primary.

ž Every other procedure of the EchoDisk interface raises the exception Not-
Primary if this server is not the primary.

ž We add a new procedure CheckStillPrimary which tests whether this
server is the primary. EchoBox can call this procedure if it is about to
perform an action which requires that this server be the current primary, such
as answering a client machine query out of a cache.

When a server ceases being primary, it needs to gracefully reinitialize itself into
the same effective state it had just after it was started. Losing primary status without
crashing is fundamentally the same as restarting from a crash, so much of the same
code is used for both cases. The update demon and the cleaner thread are simply
terminated. As pages become unpinned in the buffer pool, they are discarded. It is
okay to discard dirty pages because if they were from a committed transaction, the
update is in the log and will be redone by the new primary during recovery, and if
they were from an uncommitted transaction, we want to abandon the update, not
write it back to home.

There is one tricky part about this reinitialization. EchoDisk cannot unpin
buffer pool pages unilaterally, because client threads may hold pointers to these
pages; only as the client calls UnpinPage and EndTransaction and the pin
counts reach zero are the pages discarded.

4 EchoBox interface

In this section we present a representative sample of the procedures in EchoBox,
the Echo file system layer above EchoDisk. EchoBox is the interface that Echo
servers present for use by the operating systems of Echo client machines. It is a
fairly conventional interface; it does not include transactions. This paper does not
focus on the EchoBox interface, but some knowledge of it is required to understand
the implementation issues discussed in Section 5 below.
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The EchoBox interface provides a file system with hierarchical directories that
is upward-compatible with Unix. The EchoBox interface is an RPC interface that
provides high-level operations on files, directories, symbolic links, and hard links
(as opposed to low-level operations on disk blocks). The interface includes a
complete set of procedures for reading directories, files, and links, for looking up
names in a directory, for accessing file properties (Unix stat system call), for
creating, deleting, and renaming files, directories, and links, and for writing files.3

Echo employs a consistent distributed caching algorithm between client and
server machines, in which servers keep track of which clients have cached what
files and directories. The algorithm enables a client machine to cache files and
directories, including caching of write-behind. The Echo distributed caching algo-
rithm is similar to those of the Sprite and Andrew file systems [16, 17, 24], and is
discussed in detail in a separate paper [21].

Thus, EchoBox is used by a client machine that handles caching. The client
machine also handles failover between EchoBox server replicas. Caching and
failover had several significant impacts on the design of the EchoBox interface.

A design impact relating to caching is the use of low-level file identifiers to
name files and directories in the EchoBox interface. These identifiers are analogous
to Unix inode numbers. The client does file path name resolution; that is, it traverses
a file path name such as “/a/b/c/d” to obtain a low-level file identifier. To do this, the
client consults its directory cache, fetching directories from the server as necessary.

Another design impact related to caching is the notion of a file’s allocation as
distinct from its logical length. Because the client cache is write-behind, many files
are completely written within the client cache before being written to EchoBox.
This means the client knows the eventual size of the file when creating the file
using EchoBox, so the EchoBox file creation procedure accepts a recommended
allocation parameter.

A design impact relating to failover is the need to support idempotent updates.
To explain the EchoBox approach to idempotent updates, we must first explain the
EchoBox approach to concurrent updates. The EchoBox client wants a simple,
deterministic semantics, so the client’s updates must be executed in a prescribed
sequence. But the client also wants to overlap communication and EchoBox
processing, which implies concurrency. Therefore EchoBox allows the client to
make RPCs in parallel, but requires the client to supply a pipeline sequence number
on each update RPC. EchoBox guarantees to execute the update RPCs in pipeline

3The additional functionality beyond Unix includes support for richer access control lists and
support for gluing together individual file system volumes (i.e., subtrees) into a single global name
space [5, 15].
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order. An update RPC returns to the client machine only after the update is persistent
on disk.4

Because of the pipeline, each client may have several RPCs in progress to a
server. After a failure, the client resubmits the entire pipeline to the new primary
server, starting with the oldest unanswered RPC.

To make the resubmitted sequence of updates idempotent, EchoBox requires
the client to compute a version stamp for each update call. Each file or directory has
a monotonically increasing version stamp; we use the Unix ctime for this purpose.
Each update procedure in the EchoBox interface includes a version stamp parameter
of type Time. For each update, the client machine is required to supply a Time
that is bigger than the maximum of the ctimes of the update’s operands. The client
knows the ctimes of the operands because it has cached the operands. Generally,
when clocks are well synchronized, the client’s current clock time will be large
enough to serve as the version stamp parameter, but the client may have to choose a
larger time to meet the requirement. On the server, executing the update advances
the ctime of all the operands to the value of the version stamp parameter.

A minor design impact relating to failover comes from the need for the client to
know which server is primary. Each EchoBox procedure raises the NotPrimary
exception if the server is not primary. A normal return from an EchoBox procedure
tells the client that the server is primary.

In addition to these changes related to caching and failover, we decided to
strengthen the semantics of file system update in two cases. First, EchoBox file
write in the special case of appending to a file is atomic. We thought these strong
semantics would be useful to clients, for instance in implementing logs. Second,
EchoBox file rename is atomic; in Berkeley Unix, the rename system call guarantees
only that if the target name was bound before the rename was attempted, it will be
bound to something afterwards [1]. Unix programmers often use rename to commit
a larger update. Providing these strengthened semantics was easy, given that we
were building on EchoDisk.

We now present a representative set of procedures from the EchoBox interface.

PROCEDURE NewSession(): SessionID;

NewSession initializes a client machine’s session with this server. The result
is an identifier for some state the server holds for the client. The only session state
relevant to the procedures below is the new file identifier list (see GetFIDs and
CreateFile.)

4The reader may wonder why we used RPC for the pipeline, rather than a stream protocol such
as TCP. RPC support in our environment was significantly better than TCP support [13, 27].
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PROCEDURE ReadFile(
sid: SessionID;
fid: FileID;
filePosition: INTEGER;
nbytes: INTEGER;
VAR (*OUT*) buf: ARRAY OF BYTE);

ReadFile copies nbytes of the file fid starting at filePosition into
the buffer buf.

PROCEDURE GetDirectory(
sid: SessionID;
dir: FileID;
VAR (*OUT*) buf: ARRAY OF BYTE)

GetDirectory returns a snapshot of the directory dir. The directory must
fit in the buffer buf; otherwise, an exception is raised. Logically, the directory is
a set of pairs (name, fileID). The directory is actually returned in a binary
format that is understood by both the client and server (using common library code).

PROCEDURE GetFIDs(
sid: SessionID;
VAR (*OUT*) newFids: ARRAY OF FileID);

GetFIDs returns a pool of FileIDs that this client uses in creating files. This
pool of FileIDs permits the client to create files in its cache before calling the server
(for write-behind).

PROCEDURE CreateFile(
sid: SessionID;
pipelineSequenceNumber: INTEGER;
containingDirectory: FileID;
name: String;
createdFileID: FileID;
ac: AccessControl;
recommendedAllocationBytes: INTEGER;
versionStamp: Time);

CreateFile creates a new file with createdFileID as its FileID. The
directory containingDirectory is modified by adding the pair (name,
createdFileID). The Unix ctime and mtime of the file and of the contain-
ingDirectory are all set to versionStamp.
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PROCEDURE WriteFile(
sid: SessionID;
pipelineSequenceNumber: INTEGER;
fid: FileID;
filePosition: INTEGER;
nbytes: INTEGER;
length: INTEGER;
allocation: INTEGER;
versionStamp: Time;
VAR (*IN*) buf: ARRAY OF BYTE);

WriteFile copies the array buf into positions filePosition through
filePosition C nbytes � 1 of the file fid. Before performing the copy, it
sets the file’s allocated size to allocation. The quantity filePosition C
nbytes � 1 must be less than allocation. After the copy, it sets the file’s
length to length, and its ctime and mtime to versionStamp.

Appending writes are atomic, as are non-appending writes of less than 1024
bytes; there is no guarantee for other writes.

PROCEDURE DeleteFile(
sid: SessionID;
pipelineSequenceNumber: INTEGER;
containingDirectory: FileID;
name: String;
deletedFileID: FileID;
versionStamp: Time);

DeleteFile deletes the pair (name, deletedFileID) from the di-
rectory containingDirectory. The hard-link count on the file deleted-
FileID is decremented by one. If it is now zero, and if no client machines still
have the file open, the file is destroyed. (The Echo distributed client-server caching
algorithm keeps track of how many clients still have a file open [21].) The space
that had been consumed by this file is not available immediately for use by other
calls; rather, there is a short non-deterministic delay. The ctime and mtime of con-
tainingDirectory are set to versionStamp. The ctime of deletedFID,
if it isn’t being destroyed, is also set to versionStamp.
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PROCEDURE RenameFile(
sid: SessionID;
pipelineSequenceNumber: INTEGER;
fromDir: FileID;
fromName: String;
fromFID: FileID;
toDir: FileID;
toName: String;
toExists: BOOLEAN;
toFID: FileID;
versionStamp: Time);

RenameFile is complicated. It removes the directory entry (fromName,
fromFID) from fromDir. If toExists is true, it removes the pair (toName,
toFID) from toDir and decrements the hard-link count of the file toFID. If
the count is now zero, and there are no client machines that still have the file open,
the file is destroyed. If toExists is false, the parameter toFID is ignored. The
pair (toName, fromFID) is added to the directory toDir. The ctime and
mtime of fromDir and toDir are set to versionStamp, as are the ctime of
fromFID and toFID.

RenameFile is atomic.

5 EchoBox implementation

In this section we present relevant portions of the EchoBox implementation in
detail. We describe the major on-disk structures and the locking rules for accessing
them. Then we give examples of how some update procedures in EchoBox are
implemented using EchoDisk to provide atomicity, highlighting the ways in which
the implementation copes with EchoDisk restrictions. We give special attention to
the techniques used to ensure that EchoBox update procedures are restartable after
a server failure.

EchoBox is layered on EchoDisk. EchoBox uses EchoDisk transactions to
maintain the invariant that the EchoBox file system is always in a well-formed
state, that is, that the contents of the disk pages can be interpreted as a file system
and the EchoBox on-disk data structures are mutually consistent.

Let us briefly recap the properties of the EchoDisk interface and its restric-
tions, which EchoBox must obey. EchoDisk provides new-value logging, at the
granularity of byte sequences within a page. Concurrent transactions should access
disjoint byte sequences, with locking being the responsibility of the EchoBox layer.
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Transactions are bounded in the number of pages they may modify and the amount
of log space they may consume. On-line abort is not supported, so EchoBox must
avoid deadlock, over both its own resources and those of EchoDisk.

5.1 EchoBox on-disk data structures

The five major EchoBox on-disk data structures are:

ž Allocation map. The allocation map contains a bit vector that records, for
each page on disk, whether that page is allocated or free. The allocation map
also contains several summary counters that record the number of free pages
for the entire disk, and for sub-regions of the disk, to facilitate picking a good
sub-region in which to search for free pages.

ž Fid map. The fid map is a hash table mapping low-level file identifiers
to the disk addresses of the files. File creation inserts a pair (fileID,
diskAddress) into the hash table; file deletion removes one. When an
EchoBox file system is first created, the disk size is used to choose a fid
map hash table function with a fixed number of different hash values, the
number being proportional to the disk size. Each hash value is preallocated
its own disk page, and this page stores every pair whose fileID hashes to
that value. Overflow of a page is handled by allocating an additional page
and chaining it to the original, without changing the hash function.

ž Files and directories. Each file and directory has a header page. The disk
addresses stored in the fid map are addresses of header pages. A header
page contains file properties, including the access control list, and a file run
table. Large fragmented files (or directories) may have multiple run tables in
multiple header pages, chained together.

ž Hashed directories. At the lowest level, a directory is stored in an ordinary
file, so we already have machinery for growing and shrinking directories.
An Echo directory consists of a header, followed by an array of hash table
pointers, followed by a unordered sequence of directory entry records.

Each element of the array of hash table pointers is the head of a linked list
of entry records whose names hash to the same hash value, with each entry
record having a next field; thus, hash collisions are handled by external
chaining. The array of hash table pointers has a fixed size, but its size can
change during directory reorganization (described in Section 5.3 below).
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Directory entry records are of variable length to accommodate names of
different sizes. The format of the sequence of directory entry records is
upward-compatible with Berkeley Unix, and the system call for reading a
directory, getdirentries, returns this portion of the Echo directory.
Directory entry records may cross page boundaries (unlike Berkeley Unix).
All unoccupied entry records are linked together in a free list, whose head is
stored in the directory header.

This directory representation relies on the EchoDisk atomicity mechanism:
for directories that are larger than a page, insertion and deletion may modify
multiple pages. However, the number of directory pages modified by a single
insertion or deletion is bounded, even for large directories.

ž Orphan list. An orphan file is a file that is no longer in the name space,
in that no entry in any directory points to it, but it is still open on some
client machine and therefore must still be kept in existence. (We use the
term “orphan” because an orphan file has no parent directory.) The orphan
list lists all orphan files. When the Echo distributed client-server caching
algorithm [21] reveals that nobody has an orphan file open, EchoBox can
remove the file from its orphan list and delete the file, returning its pages to
the disk space allocator and removing it from the fid map.

EchoBox represents the orphan list as a doubly-linked list that runs through
the header pages of the orphan files, plus a distinguishedfile that is the head of
the list. We considered other representations for the orphans, such as moving
them to a special directory, but we rejected representations that could, in the
worst case, require allocating storage in order to add an orphan to the data
structure, since we must be able to delete files when the file system is full,
and this may create orphans.

The use of EchoDisk had several effects on the design of the EchoBox on-disk
structures:

ž We were able to keep the disk allocator’s summary counters on disk, since
logging made updates to these counters cheap. Otherwise, the counters would
have to be recomputed during EchoBox recovery, slowing recovery down.

ž Similarly, we were able to keep the orphan list on disk. This avoided storage
leaks or the alternative of scanning the entire fid map on system startup,
looking for files whose hard-link count is zero.

ž We were able to employ hashed directories without concern that they might
need to be rebuilt after a system crash.
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ž We considered the idea of making file headers smaller than a disk page, but
rejected it as unnecessary because our pages are small. But byte level logging
would have made it easy to do this if we had chosen a larger page size.

We designed the EchoBox on-disk structures on the assumption that EchoDisk
was providing high reliability via replication. The structures have some redundancy,
but not enough to support a complete file system scavenger. If we had needed
to support unreplicated disk configurations, we would have had to design more
systematic redundancy at the EchoBox level.

5.2 Locking

We now present the locking at the EchoBox layer. This locking is used to ensure
the data independence of concurrent transactions, and to ensure that queries do not
access data that is being modified by a transaction. Executing an EchoBox update
RPC can involve modifying files and directories, the fid map, the allocation map,
and the orphan list, so we need locking for each. The locks are not persistent; they
exist only in the primary memory of the server. Locks are claimed in a predefined
order to avoid deadlock. Thus no mechanism is required for deadlock detection at
runtime.

Each file and directory has a readers/writer lock. Each procedure in the
EchoBox interface must acquire a lock on each of its FileID operands; a read
lock if the procedure only reads, a write lock otherwise. The lock is held for nearly
the entire duration of the procedure. (Full details are provided later in this section.)
The file and directory locks ensure the data independence of concurrent calls on
the EchoBox interface.

Some procedures have several FileID operands, so the locks must be acquired
carefully to avoid deadlock. The operands are sorted by order of increasing file
identifier, and locks are acquired in that order.

The fid map and the allocation map are shared data structures with the potential
for high concurrency. Therefore EchoBox uses specialized locking for them.

For the fid map, we have an array of exclusive locks, one for each value of the
hash function. To map a file identifier to its disk address, we first compute the hash
function of the file identifier and lock that entry of the array. We access the fid
map and then immediately release the lock. The immediate release does not lead to
trouble because the readers/writer locking at the file level prevents conflicting fid
map access to a file identifier.

Locking for updates to the fid map is different than for queries. The organization
of the data structures within a single fid map page requires us to prevent concurrent
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updates within a fid map page, in order to ensure the data independence of concurrent
transactions. Therefore fid map updates acquire a lock just as for queries, but hold
the lock until after EndTransaction has returned. Because this lock is held
for more than the duration of the fid map update, deadlock avoidance requires that
when a transaction does multiple fid map updates the locks be acquired in a specific
order (like the readers/writer locks). In our implementation, we deferred the fid
map updates (and the locking) until just before we called EndTransaction.
This both reduces the time that the lock is held and makes it easier to achieve an
ordering that is deadlock-free. Since each value of the fid map hash function has
its own lock and there are many values, the probability of one transaction having
to wait for another because of needing the same lock is small.

The allocation map involves our most complicated locking. The complexity
has three sources. First is our desire for high concurrency. Second, when deleting
a file, we must not deallocate its storage for re-use by a concurrent transaction until
the delete is committed. Third, there is a serious mismatch between the byte-level
granularity of the EchoDisk interface and the desire of the allocator to modify its
bitmap with bit-level granularity.

To explain the allocation map we’ll first describe the volatile data structures,
including locks. Then we’ll describe how EchoBox’s internal allocate, deallocate,
and commit procedures use these data structures.

We maintain two versions of the allocation bit vector. One version, pv, is
kept on disk (and in the buffer pool as needed). The other version, vv, is kept
only in primary memory. At system startup, vv is initialized to be a copy of
pv. Allocations are done by searching and modifying vv; the modifications are
propagated to pv at end of transaction. Deallocations are done in the reverse order:
first to pv at end of transaction, then to vv. Keeping two versions of the allocation
bit vector solves the problem caused by the byte-level granularity of EchoDisk, as
we’ll explain later.

There is an exclusive lock associated with vv; it protects all accesses to vv.
There is another exclusive lock associated with pv; it both protects accesses to pv
and serializes all EchoBox calls on EndTransaction.

As an EchoBox update executes, it calls internal procedures to allocate and
deallocate disk pages. The allocate procedure acquires the vv lock and searches
vv for free pages. It allocates pages by flipping bits in vv and remembering the
pages on a list associated with the update. When done, the procedure releases thevv
lock and returns. A single EchoBox update may call the allocate procedure multiple
times, acquiring and releasing the vv lock each time. The deallocate procedure
merely records pages on a list associated with the update, without updating vv; no
locking is involved.
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To commit a transaction, EchoBox calls the allocator’s commit procedure. This
procedure first acquires the pv lock and processes the list of allocated pages, mak-
ing the same updates to pv that the allocate procedure made earlier to vv. It also
processes the list of deallocated pages, flipping bits of pv corresponding to de-
allocated pages. Then it calls EndTransaction, and after EndTransaction
returns it releases the pv lock. If the list of deallocated pages was not empty, the
commit procedure acquires the vv lock, makes the same updates to vv that it made
to pv, and releases the vv lock. Finally the commit procedure returns.

We said it would be complex, and it is; why does it work? pv records exactly
the allocations and deallocations performed by committed transactions. vv sees
allocations before pv, but pv gets the same information before a transaction com-
mits; pv sees deallocations before vv, but this only means that there is a delay
before pages can be reused. When the system is quiescent, vv and pv are equal.

Thus, vv is a superset of pv. It includes allocations by committed transactions
plus allocations by in-progress (not yet committed) transactions. Because the
allocate procedure searches vv for free pages, a call on allocate will skip over
pages that have been claimed by another in-progress transaction. We can regard
the vector vv as being the disjunction of pv and a vector of lock bits that prevent
in-progress transactions from allocating the same pages. The lock bits have the
same granularity as the allocator, namely, one per page.

Concurrent transactions can modify the same byte of vv, but the corresponding
updates topv take place serially and in the same order as transaction commit, under
pv’s exclusive lock.

We said that the complexity of allocation map locking has three sources: con-
currency, deallocation, and bit-level data structures; we’ll now discuss each source
in turn.

ž To increase concurrency, we wanted to permit multiple concurrent transac-
tions to allocate storage. We force them to serialize only for EndTrans-
action. Our desire for high concurrency is motivated by the fact that our
server hardware is a shared-memory multiprocessor, the Firefly [29]. On a
uniprocessor, it would be adequate for an update to acquire a long-term ex-
clusive lock the first time it needs to allocate or deallocate storage, releasing
it only after EndTransaction. By this point in the update, most disk
input (e.g., fetching file header pages and directory pages) has already been
done, so the transaction is being processed at CPU speed.

ž Deallocation is deferred untilEndTransaction because we cannot permit
another concurrent transaction to allocate those pages until the deallocating
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transaction has committed. If we did not defer, but instead changed vv
immediately, another transaction could reallocate the pages and commit first,
before the deallocating transaction committed. If the system crashed at
that instant, the file system would be malformed in that some pages would
be allocated to two files. Deferring work until EndTransaction is a
common technique for handling actions that cannot be undone.5

ž Having two versions of the allocation bit vector is the result of the byte-level
granularity of EchoDisk updates and logging. If the granularity of EchoDisk
updates and logging were bit-level, that is, if concurrent transactions could
modify bits in the same byte without interference, then we would not need
the vector vv. The allocate procedure would modify bits of the vector pv
directly in the buffer pool, with the changed bits being logged at End-
Transaction. Of course, recovery would also have bit-level granularity.
Deferring deallocation until EndTransaction would still be necessary.

In addition to maintaining the persistent vector pv, the allocator also maintains
several persistent summary counters that record the number of free pages in the
entire disk and in sub-regions of the disk. To increase concurrency, we defer the
update of these persistent counters until EndTransaction; they are changed by
the allocator’s commit procedure while it holds the pv lock.

There is yet another locked resource in the allocation module. We cannot
permit an update to run out of disk storage in the middle, because we lack on-line
abort. So near the beginning of an update, before calling StartTransaction,
we reserve with the allocation module the right to allocate some number of pages.
The number we reserve is an upper bound based on the parameters to the update;
at the end of the update, we release any we did not use. The reservation does not
commit the allocator to specific disk pages, only to this update’s right to allocate
up to the reserved number.

The orphan list is protected by an exclusive lock. DeleteFile and Re-
nameFile obtain this lock if the relevant file is becoming an orphan. The lock is
also obtained by the background orphan list demon, which deletes an orphan file
once it has been closed on all client machines.

This concludes our description of the locks at the EchoBox layer. Figure 1
summarizes the order in which the EchoBox locks and the EchoDisk resources are
claimed during an EchoBox update procedure.

5In principle, deallocating a file could be made undoable by logging the entire value of the file, at
great expense.
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Acquire ReadPinReservation
Acquire write locks on fileIDs, in fileID order

Lookup fileIDs in fid map, acquiring and releasing
the fid map hash code lock

Acquire orphan list lock (DeleteFile, RenameFile,
and orphan list demon only)

Acquire allocation reservation
StartTransaction with parameters

reserveLogSpace and
reservePinnedForUpdate

Calls on PinPageForUpdate, DescribeUpdate. Also
calls to insert/delete pairs in fid map and
to allocate/deallocate pages.

Acquire fid map hash code lock
Perform fid map deferred work—actual insertions

and deletions
Acquire allocator pv lock

Perform allocator deferred work—update pv to
reflect page allocations and deallocations

EndTransaction
Release allocator pv lock
Perform allocator deferred work—update vv

to reflect page deallocations
Release fid map hash code lock

Release allocation reservation
Release orphan list lock
WaitTransaction

Release write locks on fileIDs
Release ReadPinReservation

Figure 1: Locking for an EchoBox update
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Several locks are released in the interval between EndTransaction and
WaitTransaction. This was the motivation for separating the procedures. We
don’t have any hard evidence for the benefit of this optimization.

EchoDisk’s design anticipated that each EchoBox update procedure would
compute accurate upper bounds on its usage of the three EchoBox resource classes,
and pass these estimates to EchoDisk. In this way EchoBox could make the best
use of EchoDisk resources and improve EchoBox’s concurrency. In fact, most
EchoBox update procedures simply pass EchoDisk the largest resource bounds that
EchoDisk guarantees to grant; we performed a coarse upper bound computation to
show that the procedures will not exceed these limits. Performing a more precise
upper bound computation would have made EchoBox fragile, since the bounds
depend upon EchoBox implementation details.

An EchoBox query procedure (i.e., a read-only procedure) acquires and releases
locks in the same pattern as above, but with some operations omitted. A query is a
read-only transaction, but there is no reason for it to call StartTransaction,
because EchoDisk transactions do not provide concurrency control. To provide
mutual exclusion from updates, a query acquires a read lock on its FileID argument.
(No query procedure has more than one FileID argument.) A query will need
to pin pages for reading, so it needs to call ReadPinReservation to avoid
deadlocking over that resource. The number it passes toReadPinReservation
is a small number based on the parameters to the RPC and the code path of the
query. For example, the ReadFile RPC passes the number 2, which lets it pin
one file header page and one file data page concurrently. During the execution of
ReadFile, it may access more than one header page and more than one data page,
but it never needs to keep more than one of each pinned, since it processes the data
sequentially.

The locking order for an EchoBox query procedure is summarized in Figure 2.

5.3 Use of EchoDisk transactions by EchoBox

We now describe how the implementations of several EchoBox update procedures
make use of EchoDisk transactions to keep the on-disk structures consistent.

The CreateFile procedure is executed using one or more EchoDisk trans-
actions. Usually, the work is accomplished in a single transaction, but when
recommendedAllocationBytes is larger than a fixed threshold, additional
transactions are used to grow the file to that size. The fixed threshold keeps the
work done in a single transaction bounded within the limits dictated by EchoDisk.

CreateFile’s first transaction does all of the following actions. It creates
a new file with file identifier createdFileID. Creating the new file calls the

30



Acquire ReadPinReservation
Acquire read lock on the fileID

Lookup fileID in fid map, acquiring and releasing
the fid map hash code lock

Call PinPage and UnpinPage to read pages
Release read lock on the fileID

Release ReadPinReservation

Figure 2: Locking for an EchoBox query

disk space allocator to obtain space for the file header page plus a portion of the
recommendedAllocationBytes, up to the fixed threshold. The file header
page is filled in with the access control and other properties, and its run table is
set to describe the space allocated so far. (We describe this update to EchoDisk as
an update to the entire header page, rather than trying to tell EchoDisk precisely
what bytes changed.) The FidMap module is called to add the pair (created-
FileID, disk address of file header page) to the fid map. Note
that if the fid map page overflows, the fid map module will call the allocator to obtain
another page. The pair (name, createdFileID) is entered into the directory
containingDirectory. If the directory was already full, adding this entry
requires growing the directory, which entails a call to the allocator. The ctime and
mtime of the new file and the containing directory are all set to versionStamp.

Next, if recommendedAllocationBytes is larger than the fixed thresh-
old, we execute one or more additional transactions: each grows the file, by
a maximum of the fixed threshold, until recommendAllocationBytes is
reached.

The WriteFile procedure is executed with one or more transactions. If the
number of bytes being written is large, or if the new allocation size is growing
or shrinking the file by a large amount, the work is split into several transactions.
First, the file is grown or shrunk to the new allocation size specified in the call.
Doing this requires one or more transactions, using the same fixed threshold as
for CreateFile. Next, the bytes from the buffer are written into the file, using
the non-atomic EchoDisk WritePages procedure. We wait for those writes to
become persistent, by callingWaitTransaction. Then we execute a transaction
to set the new length of the file to the parameter length and the ctime and mtime
of the file to versionStamp. If the number of bytes being written is small, and if
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the new allocation size is growing or shrinking the file by a small amount, a single
transaction does all of the work. The bytes of the buffer are copied into the file
simply by pinning pages for update, assigning to the pages via the pin pointer, and
calling DescribeUpdate.

The DeleteFile procedure is executed with a single transaction. This
transaction removes the file from the containingDirectory. The ctime and
mtime of thecontainingDirectory are set toversionStamp and the ctime
of the file to versionStamp. The hard-link count of the file is decremented. If
it has not reached zero, we are done with DeleteFile. Otherwise, what we do
depends on whether some client machines still have the file open and on whether
the file is larger than the fixed threshold. If no client has it open and the file is
smaller than the threshold, then we go ahead and destroy it in this transaction, by
removing it from the fid map and by returning its pages to the disk space allocator.
Otherwise, this transaction moves the file onto the orphan list, and DeleteFile
returns.

When the last client machine closes the file (or immediately if there were no
clients), the background orphan list demon deletes the file. The deletion is done in
stages. First, if the file is larger than the fixed threshold, one or more transactions are
executed: each truncates the file by the fixed threshold (or to zero size), returning
the freed pages to the allocator. A final transaction removes the file from the orphan
list, returns its remaining pages to the allocator, and removes it from the fid map.
The background orphan list demon is created during system startup.

The RenameFile procedure is executed in a single transaction. For the case
where an object with the new name already existed, it is deleted, using logic similar
to DeleteFile.

Directory reorganization is not tied to a procedure in the EchoBox interface—it
is done in background—but it is an interesting update nonetheless. Reorganization
improves the efficiency of directory access. Reorganization is triggered as a side
effect of a large change in the directory size since creation or the last reorganization.

The background thread performing a directory reorganization holds a write lock
on the directory. Reorganization is done by enumerating the directory and building
an image of the desired new directory in virtual memory. Using a single EchoDisk
transaction, the image is copied on top of the old directory using normal EchoDisk
operations. This same transaction also grows or shrinks the underlying directory
file as necessary.

The boundedness of EchoDisk transactions places a limit on the size of directory
that we can reorganize, but the limit is large: we can handle 256K byte directories.
We were prepared to handle larger directories by growing them incrementally
without reorganization, but we never saw such a large directory except in our tests.

32



5.4 Failover and restartability of updates

In this section we explain how failover between servers is supported by EchoBox,
especially how updates are made restartable.

EchoBox relies on the concept of “primary” provided by the EchoDisk interface.
EchoBox executes a request from a client machine by calling on the EchoDisk pro-
cedures. If one of these EchoDisk procedures raises the exception NotPrimary,
then the exception is propagated all the way back to the client machine.

The client machine then probes all the servers to find out which is the new
primary, and resubmits the call to the new primary. Query calls (i.e., read-only
procedures) are trivially restartable. What about updates?

We have already described how the EchoBox interface is designed to support
the restartable updates required for server replication. To review briefly, update
procedures are ordered using a pipeline sequence number specified as a parameter
to the update; after a failure the client resubmits the entire pipeline starting with
the oldest unanswered call. Each file and directory stores a ctime, which EchoBox
uses as a version stamp. Each update procedure has a versionStamp parameter,
and executing the update advances the ctime of the operands to this value.

Now, let us explain how the EchoBox implementation makes it possible to
restart updates.

For updates that EchoBox performs in a single transaction the story is quite
simple. Each update procedure compares theversionStamp parameter supplied
by the client against the ctime of any of the update’s file or directory operands. If the
versionStampparameter is greater than the stored ctime, the procedure performs
the update; otherwise the procedure returns without performing the update, since
the ctime shows it was already done.

For the two updates that EchoBox performs in several transactions, the story is
slightly more complex:

For CreateFile, if the versionStamp parameter is equal to the server’s
stored ctime, then we know that the first transaction of CreateFile occurred,
creating the new file and adding it to the directory, but we do not know whether
the transactions required to grow the file to recommendedAllocationBytes
were done. The server looks at the size of the stored file and grows it if necessary,
using one or more transactions. If the versionStamp parameter is either strictly
less or greater than the stored ctime, the standard rule above applies.

For WriteFile, if the versionStamp parameter is less than the server’s stored
ctime, it is possible that some of the work of WriteFile already has been done,
even though the final transaction, which sets the file’s length, mtime, and ctime,
did not complete. The work that may already have been done consists of growing
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or shrinking the file to the size specified by the allocation parameter and then
copying bytes of the buffer into the file. Observe that this work is idempotent:
doing it again achieves the same result. So when the versionStamp parameter
is less than the stored ctime, we simply execute the WriteFile call from the
beginning, without trying to figure out whether some of it already was done. If the
versionStamp parameter is greater than or equal to the server’s stored ctime,
then the earlier WriteFile call completed in its entirety (the standard rule above).

For all the other updates, the fact that the ctime of the operands is advanced as
part of the same transaction that does the work of the update makes the advancing
of the ctime a clear demarcation point. Even though DeleteFile and Rename-
File can move a file to the orphan list for subsequent processing, the movement
onto the orphan list is done in the same transaction that advances the ctimes. And
because the orphan list is persistent, the orphan demon that is started on the new
primary server will find the list and process it.

6 Summary and conclusions

We believe our overall design based on the EchoDisk interface was a success. The
restrictions we made in the EchoDisk interface are sensible and appropriate for
building a file system.

To recap, EchoDisk provides a simple but constrained interface for performing
atomic updates. EchoDisk supports new-value logging, at the granularity of byte
sequences within a page. Because pages that are updated during a transaction must
be kept pinned in primary memory until the transaction commits, and because the
log has a fixed size, transactions have a bounded size. EchoDisk itself provides
no concurrency control to prevent concurrent transactions from accessing the same
byte. On-line abort is not supported. These restrictions permit an extremely simple
implementation of EchoDisk; simpler, we believe, than for any less restricted
interface.

The EchoBox implementation was designed to satisfy the constraints of
EchoDisk. The lack of on-line abort means that EchoBox had to be carefully
designed to avoid deadlock. File systems without logging are usually designed to
avoid deadlock too, so our use of logging has made this aspect of the design neither
easier nor harder. We claim that the nature of file system updates, in particular the
fact that all transactions are initiated by the EchoBox layer, which supports only a
fixed set of possible update operations, makes our deadlock-avoidance design fea-
sible and sensible. We contrast the file system case with that of general databases,
in which users control the code that runs in transactions, and thus nothing prevents
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the user code from deadlocking.
The EchoBox implementation exploits EchoDisk transactions to maintain the

invariant that the file system is always in a well-formed state; that is, that the
contents of the disk pages can be interpreted as a file system and the file system
data structures are mutually consistent. The bounded size of EchoDisk transactions
was not a significant impediment to implementing EchoBox. The bound is large
enough that complicated file system updates, such as renaming a file and creating a
file (except for the final part of growing the file to a recommended allocation), can
be performed in a single atomic transaction. If these complicated updates did not
fit in a single transaction, we would forfeit the important advantages of transactions
for simplifying file system code.

We did have to break up some large file system updates into a sequence of
transactions—namely, those updates that involved growing or shrinking a file by a
significant amount. But each transaction in the sequence leaves the file system data
structures (e.g., file run table and allocation bit map) in a mutually consistent state.

EchoDisk transactions also helped with implementing server replication. After
a primary server crash, client machines resubmit any unacknowledged EchoBox
updates to the new primary server. The new primary must figure out which updates
have already been done or partially done. Our solution uses version stamps plus
some additional information. Because each EchoBox update is either atomic or
composed of a small sequence of atomic actions, only a small number of cases had
to be considered in the implementation.

Within EchoDisk, logging is the basis for data replication. For crash recovery,
the log reveals which data was in the middle of being updated at the time of the
crash, and therefore might be different on the different replicas. Recovery exploits
the log to bring the replicas into agreement.

One EchoBox data structure does not quite fit the EchoDisk framework, namely,
the file allocation bit map. For this structure a bit-level granularity of logging, rather
than byte-level, would have been preferable.

EchoDisk provides new-value logging. The IBM AIX file system also seems
to be based on new-value logging, provided as part of their virtual storage manage-
ment, which is more elaborate than EchoDisk. The published descriptions of their
design are vague on how the necessary locking at the file system layer, beyond that
provided by their virtual storage manager, is achieved [7, 8].

Transarc’s Episode file system uses old-value/new-value logging with a
bounded log and support for abort. Episode has a radically different approach
to locking: instead of defining a hierarchical locking order with two-phase lock-
ing to guarantee the data independence of different transactions, Episode merges
concurrent transactions that access the same data items into a single umbrella
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transaction. This umbrella transaction either commits or aborts in its entirety [9].
Echo’s use of new-value logging allowed a clean separation of our overall de-

sign, into a layer that implements logging and recovery (EchoDisk), and a layer
that implements file system accesses and updates (EchoBox). The EchoBox layer
is not involved in recovery. We can contrast our approach with operational logging,
in which redo procedures must be written. We believe that operational logging with
redo procedures is harder to implement correctly than our new-value logging. The
redo procedures are, in general, different from the original “do” procedures, requir-
ing more code. And they are more complicated than the simple byte copying that
recovery performs in new-value logging. In return, operational logging allows more
cleverness, including more compact logs and fancier type-specific locking [23].

We would like to see a file server design of similar aspirations to ours based on
operational or multi-level logging [20], worked out to a similar level of detail.
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