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Systems Research Center

The charter of SRC is to advance both the state of knowledge and the state of the art
in computer systems. From our establishment in 1984, we have performed basic
and applied research to support Digital’s business objectives. Our current work
includes exploring distributed personal computing on multiple platforms, network-
ing, programming technology, system modelling and management techniques, and
selected applications.

Our strategy is to test the technical and practical value of our ideas by building
hardware and software prototypes and using them as daily tools. Interesting systems
are too complex to be evaluated solely in the abstract; extended use allows us to
investigate their properties in depth. This experience is useful in the short term in
refining our designs, and invaluable in the long term in advancing our knowledge.
Most of the major advances in information systems have come through this strategy,
including personal computing, distributed systems, and the Internet.

We also perform complementary work of a more mathematical flavor. Some of
it is in established fields of theoretical computer science, such as the analysis
of algorithms, computational geometry, and logics of programming. Other work
explores new ground motivated by problems that arise in our systems research.

We have a strong commitment to communicating our results; exposing and testing
our ideas in the research and development communities leads to improved un-
derstanding. Our research report series supplements publication in professional
journals and conferences. We seek users for our prototype systems among those
with whom we have common interests, and we encourage collaboration with uni-
versity researchers.

Robert W. Taylor, Director
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Abstract

Computational geometry concepts are often easiest to understand visually, in terms
of the geometric objects they manipulate. Indeed, most papers in the field rely on
diagrams to communicate the intuition behind their results. However, static figures
are not always adequate.

The accompanying videotape showcases advances in the use of algorithm an-
imation, visualization, and interactive computing in the study of computational
geometry. This report contains brief descriptions of all the segments of the video-
tape. The eight segments in the video cover a wide range of geometric concepts
and software systems. The segments have been prepared by researchers at eight
different institutions.



Preface

Computational geometry concepts are often easiest to understand visually, in terms
of the geometric objects they manipulate. Indeed, most papers in the field rely on
diagrams to communicate the intuition behind their results. However, static figures
are not always adequate: geometric algorithms are inherently dynamic, and the per-
ception of a 3D object is greatly enhanced by the dynamics of “spinning” the object.

The accompanying videotape shows advances in the use of algorithm animation,
visualization, and interactive computing in the study of computational geometry.
The following pages contain brief descriptions of all the segments of the videotape.
The eight segments in the video cover a wide range of geometric concepts and
software systems.

Although the segments are independent of each other (and, indeed, have been
prepared by different authors), a number of themes are evident: The first two seg-
ments are animations of fundamental algorithms (Fortune’s sweep-line algorithm
for computing a Voronoi diagram, decomposition of 3-D polyhedra). The follow-
ing three segments are animations of motion planning algorithms, both in 2-D and
in 3-D. Next are two segments showing geometric “workbenches,” both a general
purpose workbench and one tailored to the particular domain of range searching.
The last segment of the videotape shows a sequence of 3-D objects with some
interesting properties.

We thank the members of the Video Program Committee for their help in
evaluating the entries. Besides us, the members of the committee were Marshall
Bern (Xerox PARC), Michael Kass (Apple), Leo Guibas (DEC SRC/Stanford
University), and Jim Ruppert (NASA). We also thank Bob Taylor of the DEC
Systems Research Center for his support in publishing the 1st Annual Review last
year; it’s available as SRC Research Report #87a (a written guide) and #87b (the
videotape) by sending electronic mail to src-report@src.dec.com.

We believe that visualization and algorithm animation has a powerful role
to play in communicating the ideas of geometric algorithms; the accompanying
videotape illustrates some of this power. We hope this video review will inspire
others to implement and display their own algorithms and geometric objects, so that
“lively” diagrams will become increasingly common in computational geometry.

Marc H. Brown
John Hershberger
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Visualizing Fortune’s Sweepline
Algorithm for Planar Voronoi Diagrams

Seth J. Teller

Institute of Computer Science
Hebrew University of Jerusalem

Givat Ram
Jerusalem 91904 Israel
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The accompanying videotape shows a visualization of Fortune’s sweepline algo-
rithm for planar Voronoi diagrams. The algorithm sweeps upward through the
set of input sites, maintaining a parabolic wavefront consisting of points equidis-
tant from the sweepline and the sites. Voronoi edges are traced wherever adja-
cent parabolic arcs intersect; Voronoi vertices are left behind wherever an arc is
overtaken by its neighbors. In fact, the algorithm computes a transformation of
the diagram, in which the wavefront maps to the sweepline itself, and all events
(i.e., arc disappearances) occur above the sweepline. Some applications of the
Voronoi diagram are demonstrated, including nearest neighbor-finding, Delaunay
triangulation, and planar convex hull. Finally, an intriguing connection between
d-dimensional Voronoi diagrams and (d+ 1)-dimensional convex hulls is depicted
(for d = 2).

Visualization

Given a set of sites in d dimensions, the Voronoi diagram of the sites is a partition
of space into convex regions, one per site, such that each region is the locus
of points closer to the region’s associated site than to any other site. An elegant
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SRC-101a-fig01.ps

Figure 1: Fortune’s sweepline algorithm in action.

sweepline algorithm for the construction of planar Voronoi diagrams was presented
by Fortune [1]. The sites are first sorted in the direction of sweepline motion. The
algorithm then maintains a parabolic wavefront consisting of points equidistant
from the set of input sites and the sweepline. Each site encountered by the sweepline
contributes one or more sections of an arc to the wavefront. The intersections of
adjacent arcs trace the edges of the sites’ Voronoi diagram. When an arc is
overtaken by its neighbors, the existence of a triple-point, or point equidistant from
three sites, is established and a Voronoi vertex is generated.

The algorithm itself operates discretely, by inferring the presence of each arc
disappearance or site, and handling each in turn. Our visualization smoothly
animates the evolution of the sweepline between these discrete events. See Fig. 1.

Fortune’s algorithm uses a coordinate transformation (the “*-map”) that maps
the parabolic wavefront to the sweepline itself. Consequently, all triple-points
scheduled by the algorithm occur above the sweepline, where they can be correctly
processed. The action of this coordinate transformation on the wavefront, and on
the Voronoi diagram, is also depicted in the video.

The videotape demonstrates several applications of the Voronoi diagram. A
site’s nearest neighbors are those with which it shares a Voronoi edge. The Delau-
nay triangulation is the straight-line dual of the Voronoi diagram. The convex hull
of the sites consists of those triangulation edges that occur as part of exactly one
triangle.

Finally, the videotape depicts a connection between d-dimensional Voronoi
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Figure 2: The first step in illustrating the correspondence between a 2-d Voronoi
diagram and a 3-d convex hull.

diagrams and (d + 1)-dimensional convex hulls, described by Preparata and
Shamos [2]. Suppose a right paraboloid is erected on the z = 0 plane. Lift
each site to the paraboloid, and consider the tangent plane there, oriented so that
its positive halfspace contains the paraboloid (see Fig. 2). The intersection of these
positive halfspaces is a polyhedral set whose face structure corresponds to the face
structure of the Voronoi diagram.

Acknowledgments
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Building and Using Polyhedral Hierarchies

David Dobkin Ayellet Tal

Department of Computer Science
Princeton University
Princeton, NJ 08544
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The accommpanying videotape shows the techniques used to build a hierarchy
of polyhedra as a preprocessing step for intersection detection algorithms. It is
an animation of ideas developed in the papers by Dobkin and Kirkpatrick [1, 2].
We show here how the hierarchy is created from a polyhedron and animate an
algorithm for detecting the intersection between a polyhedron and a plane.

The Algorithm

The hierarchical data structure gives a concise representation for polyhedra that is
useful in various searching tasks. Given a polyhedron, P , we build a hierarchy
P0 = P; P1; :::; Pk such that Pk is a tetrahedron. Each Pi+1 is the convex hull
of a subset of the vertices of its parent Pi. Pi+1 is formed by removing in turn
each vertex in V (Pi+1) � V (Pi). The cone of faces attached to the vertex is also
removed. This leaves a hole in the polyhedron. This hole is retriangulated in
convex fashion. By removing an independent set of vertices, we assure that the
apexes of removed cones are not connected. As a result we can reattach one or
many cones and retain a convex object. In Fig. 3 we demonstrate the removal of
the cones corresponding to an independent set of vertices. In Fig. 4, new faces are
attached to fill in the holes in convex fashion.

We only remove vertices of degree less than 12. As a result, the hierarchy
has logarithmic depth. Computing the hierarchy requires linear time and it can be
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Figure 3: Removing an independent set of vertices.

stored in linear space. The initial segment of the video shows the creation of a 6
level hierarchy from a convex polyhedron built on 30 vertices. Colors are used to
code the levels .

The hierarchy has been constructed as a search tool. We demonstrate its use
in searching during the final segments of the video. We begin with the task of

SRC-101a-fig04.ps

Figure 4: Vertex cones being removed and the resulting holes being triangulated.
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Figure 5: Attaching vertex cones that might produce a new closest vertex.

determining if a polyhedron intersects a plane. This is done by determining if
the polyhedron at each level of the hierarchy intersects the plane and finding the
closest vertex if there is no intersection. At the initial level, this computation can be
done in constant time by enumeration. The hierarchy was constructed to simplify
growth between levels. In particular, we need only consider growth affecting two

SRC-101a-fig06.ps

Figure 6: The attached cone punctures the plane of support.
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edges adjacent to the closest vertex. This amounts to a maximum of 4 cones
reattached at each level. In Fig. 5, we show the cones being attached at a level
of growth of the hierarchy, Since the cones are formed from vertices of bounded
degree, this growth can be done in constant time, also. As a result, a preprocessed
polyhedron’s intersection with a plane can be detected in O(log n) time. We trace
the hierarchical growth by highlighting the closest vertex and extremal edges. We
also display the separating plane. Watching the cones return to the polyhedron we
are able to see the algorithm determine if a near vertex is closest or new edges are
extremal. This case is illustrated in Fig. 6 where an attached vertex punctures the
previous plane of support resulting in a new closest vertex.

Acknowledgments
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Moving a Disc between Polygons

Stefan Schirra

Max-Planck-Institut für Informatik
66123 Saarbrücken, Germany
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The accompanying videotape illustrates a motion planning algorithm developed
by Rohnert [5]. The object to be moved is a disc, the obstacles are simple disjoint
polygons inside a bounding polygon. We are looking for a collision-free path for
the disc between two given positions.

The Algorithm

Rohnert’s algorithm is based on an algorithm by O’Dúnlaing and Yap [4] and
moves the disc along the Voronoi diagram of the polygons. The set of obstacles is
preprocessed such that find path queries in the same polygonal environment can be
answered quickly. A find path query fixes the size of the disc, its initial position
pin and its final position pfi.

In the preprocessing step the Voronoi diagram of the polygonal environment is
computed and a refinement of the planar subdivision given by the Voronoi diagram
and the polygons is preprocessed for point location (see Fig. 7). Then a subtree
of the Voronoi diagram is constructed that maximizes the sum of the minimum
distances on its edges (see Fig. 8). This tree is called MBST. For any two Voronoi
vertices the MBST-path connecting them is a safest path (Lemma 4 in [5]). The
MBST is stored in a data structure called edge tree. With this data structure the
bottleneck on a tree path can be found in constant time.

A query is answered as follows. For a given point p there is a Voronoi vertex
v(p) that can be reached without decreasing the distance to the obstacles. After
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Figure 7: Subdivision defined by polygons and their Voronoi diagram.

computing v(pin) and v(pfi) the bottleneck on the unique tree path connecting
v(pin) and v(pfi) is compared to the size of the query disc. If the bottleneck is
sufficiently large, the algorithm reports a path consisting of a safe path from pin to
v(pin), the MBST-path from v(pin) to v(pfi) and a safe path from v(pfi) to pfi. (See
Fig. 9.) Details of the algorithm can be found elsewhere [5].

Contents of the Video

The video shows collision-free motions computed by the algorithm for several
find path queries in three different environments. The construction of the solution
paths, especially the construction of a safe path connecting p 2 fpin; pfig to v(p),
is illustrated. Furthermore Voronoi diagrams, MBSTs, and refined planar subdi-
visions for locating initial and final positions are shown. Note that the Voronoi
diagram shown in the video is the intrinsic Voronoi diagram as defined by Yap [6].
Rohnert [5] defines the Voronoi diagram in a slightly different way.

Implementation Notes

For the preprocessing step several subroutines had to be implemented (Unfortu-
nately LEDA [3] was not fully developed at that time). The Voronoi diagram is
computed by an implementation of Yap’s algorithm [6]. Currently this part of
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Figure 8: MBST – maximum bottleneck spanning tree.

the implementation assumes general position. For point location an algorithm of
Edelsbrunner et al. is used [1]. The MBST is computed using Kruskal’s algorithm
and Union-Find with path compression and union by rank. In the edge tree data
structure a constant-time nearest common ancestor algorithm of Harel and Tarjan
is used [2]. Most of the implementation was done in a “Fortgeschrittenenprak-
tikum” at Universität des Saarlandes by Thomas Latz, Thomas Lauer, Margit Paul,
and Karsten Rech, and the implementation was finished at MPI für Informatik.
Graphical output is based on Xlib. The video is generated by a single C program
and was recorded in real time on a SUN SPARCstation with XVideo of Parallax
Graphics. “Real time” includes preprocessing time for the polygonal environments
and computation time for the motions in the examples.
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Figure 9: No path exists.
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Compliant Motion in a Simple Polygon

John Hershberger

DEC Systems Research Center
130 Lytton Avenue
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The accompanying videotape shows an animated version of an algorithm for com-
pliant motion planning in a simple polygon. The video illustrates the use of a
number of algorithm animation techniques.

Algorithmic Ideas

Compliant motion is a simple model of robot motion: Once the robot starts moving,
it always heads in the same direction. When the robot hits an obstacle obliquely,
it slides along the obstacle so as to make positive progress in its programmed
direction. Fig. 10 shows compliant-motion paths from two different starting points
that reach a specified goal point, shown as a red dot. (Although the figures in this
video description are printed only in black and white, the text describes them using
the colors employed in the videotape.)

The algorithm shown in the video, developed by Friedman, Hershberger, and
Snoeyink [3], computes the set (shown in green) of all points from which the robot
can reach the goal in a single programmed movement.

For any point, the set of directions in which the robot can reach the goal from
that point forms a single angular range. To find these ranges, the algorithm first
computes the set of points from which the robot can reach the goal by moving in a
particular fixed direction �. It then maintains the set while rotating the direction �
through 360�. The directions at which a point enters and leaves the set bound its
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Figure 10: An example of compliant motion.

angular range. When a point enters the set, it is added to a start subdivision; when
it leaves, it is added to a stop subdivision, as shown in Fig. 11. Color encodes the
directions at which points are added to the two subdivisions, and hence records the
history of the algorithm. The pink region in the top right view is the current set of
points—points already in the start subdivision, but not yet in the stop subdivision.

After the two subdivisions are completed, the user can specify an initial robot
position with the mouse, as in Fig. 12. In response to the query, the algorithm
locates the point in the two subdivisions (the results are highlighted in green),
combines the results to get the range of feasible directions (the black angle in the
upper-right view), and computes the robot’s path (highlighted in purple).

Animation Techniques

This section itemizes some of the algorithm animation techniques used in the
videotape. For more details on techniques see Brown and Hershberger [2].

Multiple views. It is generally more effective to illustrate an algorithm with
several different views than with a single monolithic view. The animation uses
multiple views, each displaying only a few aspects of the algorithm. Each view
is easy to comprehend in isolation, and the composition of several views is more
informative than the sum of their individual contributions. The views are united
by color. The spectrum in the “Rainbow Alpha” view of Fig. 11 establishes the
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Figure 11: Building the start and stop subdivisions.

relationship between color and direction. This relationship is then used in the
“Rainbow Start” and “Rainbow Stop” views to emphasize the directions associated
with regions in the two subdivisions.

State cues. Changes in the state of an algorithm’s data structures are reflected
on the screen by changes in their graphical representations. As the compliant
motion algorithm rotates � through 360�, the “Alpha” view pivots an arrow, and
the region of points from which a robot can reach the goal by moving in direction
� (the �-backprojection) pivots with the arrow. Trapezoidal regions are added to
the start and stop subdivisions in response to the algorithm’s actions.

The animation uses color to reflect the algorithm’s state. In the “Both (Angle)”
view (so-called because it contains information from both the start and stop sub-
divisions), points in the polygon interior change from gray to pink when they are
added to the start subdivision. When they are added to the stop subdivision, they
change color to green. Thus the current �-backprojection is always shown in pink,
and the final non-directional backprojection (the region from which it is possible
for a robot to reach the goal by moving in some direction) is painted green at the
end of the algorithm. In the “Parallel Start” and “Parallel Stop” views, the two
subdivisions, which are otherwise similar in appearance, are distinguished by pink
and light blue coloring.

Static history. It is often helpful to present a static view of the history of an
algorithm and its data structures. The animation encodes a partial history of the
compliant motion algorithm with a rainbow spectrum in Fig. 11. Each region of
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Figure 12: Using the subdivisions to plan a motion.

the start or stop subdivision is graphically labeled with the direction � at which it
was added to the subdivision. Since the algorithm rotates � monotonically, color
also indicates the time order of addition.

Amount of input data. It is important to introduce an animation of an unfamiliar
algorithm on a small problem instance. The video presents the details of the
compliant motion algorithm by walking through a small example (Fig. 12). It
finishes by reinforcing the ideas of the small example on a larger polygon (Fig. 11).

Highlighting. The key events of the algorithm are associated with vertices and
edges of the polygon. The animation focuses attention on those key vertices and
edges by temporarily painting them with a transparent, contrasting purple color.
The highlight color draws the eye to the data elements without hiding them. A
second use of highlighting is to display transient computations without permanently
altering the on-screen state. The robot paths of Figs. 10 and 12 are drawn only in
highlighting, since they don’t change the underlying data structures.

Implementation Notes

This animation was produced using the Zeus system for algorithm animation [1].
Zeus has recently been ported to Modula-3, which runs on a variety of X worksta-
tions. Modula-3 is available via anonymous FTP from gatekeeper.dec.com
in pub/DEC/Modula-3/release. The Zeus system and a collection of Zeus
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animations are part of the standard Modula-3 distribution.
The most up-to-date information about Modula-3 can be found in the Usenet

newsgroup comp.lang.modula3. If you do not have access to Usenet, there
is a relay mailing list; send a message to m3-request@src.dec.com to be
added to it.
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Implementation of a Motion Planning System in
Three Dimensions

Estarose Wolfson and Micha Sharir

Robotics Laboratory
Courant Institute of Mathematical Sciences

New York University

5

The accompanying videotape depicts motion planning for a point robot moving in
a fixed environment of 3 dimensional polyhedral obstacles. It displays graphically
the output of a motion planning system that has been implemented at the Robotics
Laboratory of the Courant Institute of Mathematical Sciences, New York University.
The implemented system is the first version of a planned system that will aim to
implement efficient motion planning algorithms for a rigid object translating in
3-space in a similar polyhedral environment (where we plan to exploit the recent
theoretical progress made on this problem in [1]). The system is implemented using
a combinatorial algorithmic approach, and aims to achieve efficient worst-case
performance, while also being fast in practice. It constructs a cell decomposition of
the given environment, and uses it to obtain a discrete representation (“connectivity
graph”) of free space, which is then used for planning paths between any pair of
specified initial and final system placements. The method bears some similarities
to a recent technique of Chazelle and Palios [2], but differs from it in many aspects.

The System

What the system does is decompose the 3-D free space into vertical cells, by
erecting vertical walls through each reflex obstacle edge (until the next obstacles
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SRC-101a-fig13.ps

Figure 13: Upper left: A view of the polyhedral environment consisting of 21
polyhedral obstacles, 268 corners, 768 edges, and 512 facets. Upper right: Another
view of the environment. The free space is decomposed into simple cells with an
adjacency graph connecting them. Lower left: A path generated by our algorithm
between two given points. After cell decomposition, the algorithm can generate a
path in a fraction of a second, thus essentially in real time. Lower right: Another
path with a skeleton view of the obstacles. A path goes to the center of each cell it
traverses and out through a center point on a connecting wall to the next cell.
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SRC-101a-fig14.ps

Figure 14: Upper left: A perspective view from the robot as it traverses the
space along the generated path. The black and green bars represent the vertical
boundary of the current cell through which the robot is passing. Upper right: A
snapshot of a more complex path and the set of cells it still has to traverse. The
path’s route from the center of a common wall is quite visible here. Lower left:
Another ride on the robot through space along a different path, showing another
cell it currently traverses. In this example there are 392 cells in the environment
decomposition, which were generated in 5 seconds on a SUN Sparc II workstation.
Lower right: A snapshot of the path and the set of cells it still has to traverse at the
same moment and the same situation as in the lower left.
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directly above and below the edge are met; we refer to the intersections of such
a wall with these next obstacles as etchings). Here a reflex edge is defined as
an edge e whose two adjacent faces lie on the same side of the vertical plane
passing through e (this restricted definition of reflex edges excludes in practice
most concave edges of free space and thus makes the system construct far fewer
cells than would otherwise be required). These reflex edges form the so-called
silhouettes of the obstacles. The erected walls may of course intersect each other
(at so-called critical silhouette points), and together they partition the free space
into vertical prism-like cells, whose top and bottom boundaries, however, may
consist of many faces, but at any rate they are xy-monotone (pieces of so-called
“polyhedral terrains”). The xy-projection of a cell need not be convex, though,
and a second decomposition step splits cells further so as to obtain cells with
convex xy-projections. The program then determines adjacency of cells across
vertical walls, and constructs a “connectivity-graph” to represent this adjacency
of cells. Finally, the program selects a center point in each cell, and an exit/entry
center point on each vertical wall boundary between pairs of adjacent cells, and
constructs canonical paths from the cell-center point to each exit point (roughly
speaking, these paths are drawn mid-way between the floor and ceiling of the cell).

Given initial and final placements of the robot, the program then locates the
cells containing these placements, determines that these cells are reachable from
each other via a path in the connectivity graph (or else reports that no free path
connecting the initial and final placements exists), finds paths connecting each of
these placements to the center of the corresponding cell, and combines these paths
with a sequence of pre-stored paths which connect between these cells, to obtain
the desired path between the given placements. The reader is referred to [3] for
more details concerning the system.

The Videotape

The videotape begins by explaining the basics of the algorithm in a simple envi-
ronment. Then it shows an environment of 21 obstacles, 268 vertices, 768 edges,
and 512 faces, which is decomposed into 392 cells. The cell decomposition on the
complex environment takes approximately 5 seconds (exclusive of I/O) on a Sun
SPARC II workstation. The generation of paths between pairs of points, repeated
over 100 random pairs, takes a total of 5 seconds, and thus is essentially real time.
Our videotape was generated on a Silicon Graphics Iris workstation in real time and
converted directly through a Lyon-Lamb encoder to 3/4-inch videotape. All this
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equipment is available at the NYU Robotics Laboratory and the Courant Institute.
Audio was added separately on local equipment.

The basics of the algorithm are explained with a simple environment containing
2 boxes, one inside the other. For this situation, we see the silhouettes, the critical
points, the etchings of walls on other surfaces, the construction of cell walls between
the reflex edges and the etchings, the first level of cells, the further decomposition of
the cells into subcells with convex xy-projections, and the final resulting cells. We
display each of the 10 final cells of the decomposition. Then we pick 2 points, gen-
erate a path between them, and show the sequence of cells that this path traverses.
We then ride the robot through the environment along the path, showing each cell
as we traverse it. Next the animation turns to the complex environment of 21 obsta-
cles, showing the motion planning for 4 consecutive pairs of ‘query’ placements.
We show the environment, the silhouettes, and, for each pair of source and destina-
tion placements, the generated path and its corresponding sequence of cells. The
final segment shows the ride on the robot through the environment, simultaneously
displaying the cell we are presently within, moving along a trajectory constructed
by linking the 4 paths together. Since the paths computed by the algorithm are
polygonal, the ride on the robot tends to be ‘jerky’ as it turns sharply at path cor-
ners. An attempt is made to smooth the displayed ride by continuously changing
the viewing direction along each path edge, so as to make it continuous at each turn.
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The accompanying videotape presents two animation modes provided by the geo-
metric laboratory GeoLab which we have developed as a programming environ-
ment for implementation, testing and animation of geometric algorithms. GeoLab
runs on SparcStations under Sun/OS using the XView graphics library, following
the OpenLook graphical user interface guidelines.

Introduction

The need for programming environments for the development of geometric algo-
rithms has been evident for more than a decade. The intricacy of many solutions
to problems that dwell in the realm of computational geometry calls for the com-
pilation of several resources into a single programming environment.

Earlier attempts to achieve this goal include XYZ GeoBench [8] and the Work-
bench for Computational Geometry [6]. The former was implemented in Object
Pascal and runs on Macintosh computers while the latter was written in SmallTalk
also for Macintoshes. Other related works are Ericson and Yap’s LineTool [4]
and Mehlhorn and Näher’s LEDA [7]. Furthermore, the usefulness of algorithm
animation for better understanding of the behaviour of algorithms and as a teaching
tool has been recognized for a number of years. Brown’s Balsa [2], and more
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SRC-101a-fig15.ps

Figure 15: Facilities offered by the GeoLab system.

recently Zeus [3], Stasko’s Xtango [9] and de Rezende and Amorim’s AnımA [1]
are witnesses to this fact.

The Geometric Laboratory GeoLab

GeoLab [5] as an environment for development of geometric algorithms relates
to the ones mentioned above in the sense that its goal is to aid in the process
of software production (specifically in computational geometry), by providing
fundamental data structures and algorithms as well as mechanisms that ease the
implementation of many desirable features. In a nutshell, GeoLab consists of:

� A graphical and interactive programming environment for the manipulation
of geometric models;

� Mechanisms for the inclusion of (dynamically linked) new algorithms and
external geometric objects;

� Support for algorithm animation;

� Support for analysis and debugging;
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Figure 16: The Delaunay Triangulation of the points in the previous figure.

� Tools for handling secondary storage;

� Input generators for program testing.

GeoLab is written in C++ and makes extensive use of object oriented program-
ming for a hierarchical modeling of geometric objects and of geometric algorithms.
It currently has about 40 algorithms in its dynamically linkable libraries which are
made up of roughly 45,000 lines of C++ code (plus an additional 30,000 lines for
the environment itself).

Animation Modes

Two animation modes supported by GeoLab are illustrated in the accompanying
video. The first mode is called dynamic move. It basically animates the geometric
objects produced by any given algorithm as the input undergoes changes in real
time conducted interactively by the user manipulating the mouse. No changes in
the code of the algorithms are required for this mode to operate. This mode serves
well the purpose of illustrating the relationships between input data and output
geometric constructs, which is of great value for teaching computational geometry.

The videotape illustrates the following algorithms using dynamic move mode:

Convex Hulls;

24



6

Euclidean Minimum Spanning Trees;

Nearest Neighbor Voronoi Diagrams; and

Kernel of a Simple Polygon.

The second mode, which is truly characterized as algorithm animation, requires
the inclusion of code for graphical display of the geometric actions performed by an
algorithm. In order to ease this task, a library of graphical routines, the “GeoLab
Animation Toolkit,” is provided so that programmers need not use the lower level
Xlib functions.

The videotape illustrates the following algorithms using algorithm animation
mode:

Convex Hulls (Graham’s Scan and Jarvis’ March on a set of points,
and Lee’s algorithms on a simple polygon);

Kernel of a Simple Polygon; and

Delaunay Triangulation.
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Nearest neighbor search is one of the fundamental problems in computational
geometry. Traditional Voronoi diagram-based methods lose appeal in higher di-
mensions, in favor of multidimensional search trees. The accompanying video-
tape shows Ranger, a tool that uses multidimensional search trees for visualizing
and experimenting with nearest neighbor and orthogonal range queries in high-
dimensional data sets.

About the Software

Four different search data structures are supported by Ranger:

� Naive k-d – The original kd-tree defined by Bentley [1]. See Fig. 17 (left).

� Median k-d – A refined kd-tree, using median cuts and bucketing, discussed
in [3]. See Fig. 17 (right).

� Sproull k-d – Sproull’s [4] variant of the kd-tree. The choice of partition
plane is not orthogonal, rather, it is selected by the principal eigenvector of
the covariance matrix of the points. See Fig. 18 (left).
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Figure 17: A naive kd-tree (left) and a median kd-tree (right).

� VP-tree – The vantage point tree is a data structure that choses vantage points
to perform a spherical decomposition of the search space. Yianilos [5] claims
this method is suited for non-Minkowski metrics (unlike kd-trees) and for
lower dimensional objects embedded in a higher dimensional space. See
Fig. 18 (right).

Ranger supports queries in up to 25 dimensions for all data structures, under any
Minkowski metric.

Each of these data structures can be applied to each of several different applica-
tions, including k-nearest neighbor graphs and orthogonal range queries. Timing
data and algorithm animations can be used to study the performance of these data
structures.

Because kd trees are heuristic data structures, their performance can be dra-
matically effected by the distribution of the data. Ranger includes generators
for a variety of distributions in arbitrary dimensions, including several degenerate
distributions Bentley [2] has noted tend to frustrate heuristic data structures:

� Uniform(d) – random points inside the unit d-cube [0; 1]d.

� Ball(d) – random points inside the unit d-sphere.

� Normal(d) – random points where x1; : : : ; xd are generated from a normal
distribution with mean 0 and variance 1.
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Figure 18: A Sproull kd-tree (left) and a VP-tree (right).

� Annulus(d) – x1, x2 uniformly random on the unit circle, with x3; : : : ; xd
from uniform(1).

� Cubediam(d) – x1 from uniform(1), x2; : : : ; xd = x1, giving uniformly
sampled points from a line segment in d space with slope 1, starting at the
origin and going to (1; 1; : : : ; 1).

� Corners(d) – x1; x2 drawn uniformly around (0; 2), (2; 0), (0; 0), and (2; 2)
with x3; : : : ; xd from uniform(1).

� Henon-A canonical chaotic attractor - defined by a pair of interacting non-
linear equations, viewed as a time series.

Arbitrary data sets can also be analyzed. Ranger has been used at Cold Spring
Harbor Laboratory in experiments to find the most similar string in a library of
DNA fragments. Each library string is converted into a d-dimensional point, by
measuring its Hamming distance to each of d calibration strings.

Ranger provides a number of features to aid in visualizing multi-dimensional
data. Arbitrary two- or three-dimensional projections of a higher dimensional data
set can be viewed. To identify the most appropriate projection at a glance, Ranger
provides a d� d matrix of all two-dimensional projections of the data set. In any
three-dimensional projection, rotation along arbitrary axes can be used to facilitate
understanding.
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For each of the four search data structures, a graphic representation of the space
division is provided. This provides considerable insight into the appropriateness of
a data structure for a particular distribution. Ideally, the search space is decomposed
into fat, regularly-sized regions, but this is often not possible with degenerate dis-
tributions. Further, Ranger can animate a nearest-neighbor search, by highlighting
each region as it is visited, for any two- or three-dimensional projection.

In the video, we use Ranger to illustrate several aspects of higher dimensional
data:

� The structure of a 4-dimensional Henon-A chaotic attractor is revealed by
looking at each of the two-dimensional projections.

� In selecting the 1,000 closest neighbors to the origin of 10,000 points uniform
in a disc, it is interesting to watch the shape of the selected region evolve
with the Lk metric as k increases, from a diamond to a circle to a square.

� When viewing a two dimensional projection of points uniform in a 25-
dimensional ball, the distribution appears non-uniform, collapsed toward the
center of the ball. Watching as the k nearest neighbors to the origin diffuse as
the dimensionality increases explains why proximity queries become more
difficult in higher-dimensional spaces.

� Space decompositions for all four varieties of search trees are provided
on representative distributions. Animations in two- and three-dimensions
show how the shape of the space decomposition affects the performance of
nearest-neighbor search.

Ranger is written in C, using Motif. It runs on Silicon Graphics and HP
workstations.

This work was partially supported by NSF Research Initiation Award CCR-
9109289.
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Given a configuration of convex objects with disjoint interiors, how many distinct
forces (and perhaps torques) must be applied to take the configuration apart? How
many hands make light work? This video illustrates basic geometric results from
Snoeyink and Stolfi [4] related to problems of planning assembly and disassembly
in 3-space.

Overview

We say that a configuration of objects in space can be taken apart with k hands if
it can be partitioned into k subsets such that some pair of objects can be moved
arbitrarily far apart with no relative motion taking place within any subset. Natara-
jan [3] conjectured that every configuration of disjoint convex objects could be
taken apart with two hands using only translational motions.

The videotape shows the smallest counterexample to this conjecture: six tetra-
hedra for which no subset can be translated as a group without disturbing its
complement. This “twisted tetrahedron,” shown in Fig. 19, is built around the
alternating group A4, which is the group of symmetries of a regular tetrahedron.
To disassemble it we either need more hands (de Bruijn [1] knew in 1954 that any
set of n convex objects can be taken apart by applying a different translation to
each object, so n hands are sufficient) or we need to allow a richer class of motions.
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Figure 19: Six tetrahedra for which no subset can be translated as a group without
distrubing its complement.

In considering arbitrary rigid motions (isometries) we first look at an example
published by Fejes-Toth and Heppes in 1963 [2] for which no single object can move
infinitesimally without disturbing the others. The construction as they described it
had 13 convex objects—12 tetrahedra surrounding a rhombic dodecahedron. The
video omits the central dodecahedron, which is not needed [4]. This example can
be taken apart with two hands by translating a group of three objects away from
the rest.

The video next illustrates that five copies of our “twisted tetrahedron” can be
nested together, just as five subgroups of A4 appear in A5. By enlarging the sticks
to have many face-on-face contacts with neighbors, we obtain a configuration in
which no subset can move as a group according to any rigid motion. The proof is
by an exhaustive check of all non-symmetric cases.

Production Information

The objects are constructed in Mathematica and saved in ThreeScript format. They
are then displayed and recorded in real time on a Silicon Graphics Crimson using
a modified version of Mathematica Live.
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Figure 20: Five copies of our “twisted tetrahedron” nested together.
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