
96

How to Make a Correct

Multiprocess Program Execute

Correctly on a Multiprocessor

Leslie Lamport

February 14, 1993

Systems Research Center

DEC's business and technology objectives require a strong research program.

The Systems Research Center (SRC) and three other research laboratories

are committed to �lling that need.

SRC began recruiting its �rst research scientists in l984|their charter, to

advance the state of knowledge in all aspects of computer systems research.

Our current work includes exploring high-performance personal computing,

distributed computing, programming environments, system modelling tech-

niques, speci�cation technology, and tightly-coupled multiprocessors.

Our approach to both hardware and software research is to create and use

real systems so that we can investigate their properties fully. Complex

systems cannot be evaluated solely in the abstract. Based on this belief,

our strategy is to demonstrate the technical and practical feasibility of our

ideas by building prototypes and using them as daily tools. The experience

we gain is useful in the short term in enabling us to re�ne our designs, and

invaluable in the long term in helping us to advance the state of knowledge

about those systems. Most of the major advances in information systems

have come through this strategy, including time-sharing, the ArpaNet, and

distributed personal computing.

SRC also performs work of a more mathematical
avor which complements

our systems research. Some of this work is in established �elds of theoretical

computer science, such as the analysis of algorithms, computational geome-

try, and logics of programming. The rest of this work explores new ground

motivated by problems that arise in our systems research.

DEC has a strong commitment to communicating the results and experience

gained through pursuing these activities. The Company values the improved

understanding that comes with exposing and testing our ideas within the

research community. SRC will therefore report results in conferences, in

professional journals, and in our research report series. We will seek users

for our prototype systems among those with whom we have common research

interests, and we will encourage collaboration with university researchers.

Robert W. Taylor, Director

iii

How to Make a Correct Multiprocess Program

Execute Correctly on a Multiprocessor

Leslie Lamport

February 14, 1993

iv

c
Digital Equipment Corporation 1993

This work may not be copied or reproduced in whole or in part for any com-

mercial purpose. Permission to copy in whole or in part without payment

of fee is granted for nonpro�t educational and research purposes provided

that all such whole or partial copies include the following: a notice that

such copying is by permission of the Systems Research Center of Digital

Equipment Corporation in Palo Alto, California; an acknowledgment of the

authors and individual contributors to the work; and all applicable portions

of the copyright notice. Copying, reproducing, or republishing for any other

purpose shall require a license with payment of fee to the Systems Research

Center. All rights reserved.

v

Author's Abstract

A multiprocess program executing on a modern multiprocessor must issue

explicit commands to synchronize memory accesses. A method is proposed

for deriving the necessary commands from a correctness proof of the algo-

rithm.

Capsule Review

Recently, a number of mechanisms for interprocess synchronization have

been proposed. As engineers attempt to implement multiprocessors of in-

creasing scale and performance, these mechanisms have become quite com-

plex and di�cult to reason about.

This short paper presents a formalism based only on two ordering relations

between the events of an algorithm, \precedes" and \can a�ect". It allows

the mechanisms that must be provided to ensure the algorithm's correctness

to be determined directly from the correctness proof. The formalism and

its application to an example mutual exclusion algorithm are presented and

discussed.

Although the paper is quite terse, a careful reading will reward those inter-

ested in concurrency or multiprocessor design.

Chuck Thacker

vi

Contents

1 The Problem 1

2 The Formalism 2

3 An Example 3

3.1 An Algorithm and its Proof : : : : : : : : : : : : : : : : : : : 3

3.2 The Implementation : 5

3.3 Observations : 6

4 Further Remarks 7

References 8

vii

1 The Problem

Accessing a single memory location in a multiprocessor is traditionally as-

sumed to be atomic. Such atomicity is a �ction; a memory access consists of

a number of hardware actions, and di�erent accesses may be executed con-

currently. Early multiprocessors maintained this �ction, but more modern

ones usually do not. Instead, they provide special commands with which

processes themselves can synchronize memory accesses. The programmer

must determine, for each particular computer, what synchronization com-

mands are needed to make his program correct.

One proposed method for achieving the necessary synchronization is with a

constrained style of programming speci�c to a particular type of multipro-

cessor architecture [7, 8]. Another method is to reason about the program in

a mathematical abstraction of the architecture [5]. We take a di�erent ap-

proach and derive the synchronization commands from a proof of correctness

of the algorithm.

The commonly used formalisms for describing multiprocess programs as-

sume atomicity of memory accesses. When an assumption is built into a

formalism, it is di�cult to discover from a proof where the assumption is ac-

tually needed. Proofs based on these formalisms, including invariance proofs

[4, 16] and temporal-logic proofs [17], therefore seem incapable of yielding

the necessary synchronization requirements. We derive these requirements

from proofs based on a little-used formalism that makes no atomicity as-

sumptions [11, 12, 14]. This proof method is quite general and has been

applied to a number of algorithms. The method of extracting synchroniza-

tion commands from a proof is described by an example|a simple mutual

exclusion algorithm. It can be applied to the proof of any algorithm.

Most programs are written in higher-level languages that provide abstrac-

tions, such as locks for shared data, that free the programmer from concerns

about the memory architecture. The compiler generates synchronization

commands to implement the abstractions. However, some algorithms|

especially within the operating system|require more e�cient implemen-

tations than can be achieved with high-level language abstractions. It is to

these algorithms, as well as to algorithms for implementing the higher-level

abstractions, that our method is directed.

1

2 The Formalism

An execution of a program is represented by a collection of operation execu-

tions with the two relations - (read precedes) and - (read can a�ect). An

operation execution can be interpreted as a nonempty set of events, where

the relations - and - have the following meanings.

A - B: every event in A precedes every event in B.

A - B: some event in A precedes some event in B.

However, this interpretation serves only to aid our understanding. Formally,

we just assume that the following axioms hold, for any operation executions

A, B, C, and D.

A1. - is transitive (A - B - C implies A - C) and irre
exive

(A =- A).

A2. A - B implies A - B and B =- A.

A3. A - B - C or A - B - C implies A - C.

A4. A - B - C - D implies A - D.

A5. For any A there are only a �nite number of B such that A =- B.

The last axiom essentially asserts that all operation executions terminate;

nonterminating operations satisfy a di�erent axiom that is not relevant here.

Axiom A5 is useful only for proving liveness properties; safety properties are

proved with Axioms A1{A4. properties. Anger [3] and Abraham and Ben-

David [1] introduced the additional axiom

A6. A - B - C - D implies A - D.

and showed that A1{A6 form a complete axiom system for the interpretation

based on operation executions as sets of events.

Axioms A1{A6 are independent of what the operation executions do. Rea-

soning about a multiprocess program requires additional axioms to capture

the semantics of its operations. The appropriate axioms for read and write

operations will depend on the nature of the memory system.

2

The only assumptions we make about operation executions are axioms A1{

A5 and axioms about read and write operations. We do not assume that
- and - are the relations obtained by interpreting an operation execu-

tions as the set of all its events. For example, sequential consistency [10] is

equivalent to the condition that - is a total ordering on the set of oper-

ation executions|a condition that can be satis�ed even though the events

comprising di�erent operation executions are actually concurrent.

This formalism was developed in an attempt to provide elegant proofs of

concurrent algorithms|proofs that replace conventional behavioral argu-

ments with axiomatic reasoning in terms of the two relations - and -.

Although the simplicity of such proofs has been questioned [6], they do tend

to capture the essence of why an algorithm works.

3 An Example

3.1 An Algorithm and its Proof

Figure 1 shows process i of a simple N -process mutual exclusion algo-

rithm [13]. We prove that the algorithm guarantees mutual exclusion (two

processes are never concurrently in their critical sections). The algorithm is

also deadlock-free (some critical section is eventually executed unless all pro-

cesses halt in their noncritical sections), but we do not consider this liveness

property. Starvation of individual processes is possible.

The algorithm uses a standard protocol to achieve mutual exclusion. Before

entering its critical section, each process imust �rst set xi true and then �nd

xj false, for all other processes j. Mutual exclusion is guaranteed because,

when process i �nds xj false, process j cannot enter its critical section until it

sets xj true and �nd xi false, which is impossible until i has exited the critical

section and reset xi. The proof of correctness formalizes this argument.

To prove mutual exclusion, we �rst name the following operation executions

that occur during the nth iteration of process i's repeat loop.

L
n

i
The last execution of statement l prior to entering the critical section.

This operation execution sets xi to true.

R
n

i;j
The last read of xj before entering the critical section. This read

obtains the value false.

3

repeat forever

noncritical section;

l : xi := true;

for j := 1 until i� 1

do if xj then xi := false;

while xj do od;

goto l � od;

for j := i+ 1 until N do while xj do od od;

critical section;

xi := false

end repeat

Figure 1: Process i of an N -process mutual-exclusion algorithm.

CSn

i
The execution of the critical section.

X
n

i
The write to xi after exiting the critical section. It writes the value

false.

Mutual exclusion asserts that CSn

i
and CSm

j
are not concurrent, for all m

and n, if i 6= j.1 Two operations are nonconcurrent if one precedes (-)

the other. Thus, mutual exclusion is implied by the assertion that, for all

m and n, either CSn

i
- CSm

j
or CSm

j
- CSn

i
, if i 6= j.

The proof of mutual exclusion, using axioms A1{A4 and assumptions B1{

B4 below, appears in Figure 2. It is essentially the same proof as in [13],

except that the properties required of the memory system have been iso-

lated and named B1{B4. (In [13], these properties are deduced from other

assumptions.)

B1{B4 are as follows, where universal quanti�cation over n, m, i, and j is

assumed. B4 is discussed below.

B1. Ln

i
- R

n

i;j

B2. Rn

i;j
- CSn

i

B3. CSn

i
- X

n

i

1Except where indicated otherwise, all assertions have as an unstated hypothesis the

assumption that the operation executions they mention actually occur. For example, the

theorem in Figure 2 has the hypothesis that CSni and CSmj occur.

4

Theorem For all m, n, i, and j such that i 6= j, either CSn

i
- CSm

j
or

CSm

j
- CSn

i
.

Case A: Rn

i;j
- L

m

j
.

1. Ln

i
- R

m

j;i

Proof : B1 , case assumption, B1 (applied to Lm

j
and Rm

j;i
), and A4.

2. Rm

j;i
=- L

n

i

Proof : 1 and A2.

3. Xn

i
- R

m

j;i

Proof : 2 and B4 (applied to Rm

j;i
, Ln

i
, and Xn

i
).

4. CSn

i
- CSm

j

Proof : B3, 3, B2 (applied to Rm

j;i
and CSm

j
), and A4.

Case B: Rn

i;j
=- L

m

j
.

1. Xm

j
- R

n

i;j

Proof : Case assumption and B4.

2. CSm

j
- CSn

i
.

Proof : B3 (applied to CSm

j
and Xm

j
), 1, B2, and A4.

Figure 2: Proof of mutual exclusion for the algorithm of Figure 1.

B4. If Rn

i;j
=- L

m

j
then Xm

j
exists and Xm

j
- R

n

i;j
.

Although B4 cannot be proved without additional assumptions, it merits an

informal justi�cation. The hypothesis, Rn

i;j
=- L

m

j
, asserts that process i's

read Rn

i;j
of xj occurred too late for any of its events to have preceded any

of the events in process j's write Lm

j
of xj . It is reasonable to infer that the

value obtained by the read was written by Lm

j
or a later write to xj . Since

L
m

j
writes true and Rn

i;j
is a read of false, Rn

i;j
must read the value written

by a later write. The �rst write of xj issued after Lm

j
is Xm

j
, so we expect

X
m

j
- R

n

i;j
to hold.

3.2 The Implementation

Implementing the algorithm for a particular memory architecture may re-

quire synchronization commands to assure B1{B4. Most proposed memory

systems satisfy the following property.

C1. All write operations to a single memory cell by any one process are

observed by other processes in the order in which they were issued.

5

They also provide some form of synch command (for example, a \cache

ush" operation) satisfying

C2. A synch command causes the issuing process to wait until all previ-

ously issued memory accesses have completed.

Properties C1 and C2 are rather informal. We restate them more precisely

as follows.

C10. If the value obtained by a read A issued by process i is the one written

by process j, then that value is the one written by the last-issued write

B in process j such that B - A.

C20. If operation executions A, B, and C are issued in that order by a single

process, and B is a synch, then A - C.

Property C20 implies that B1{B3 are guaranteed if synch operations are

inserted in process i's code immediately after statement l (for B1), immedi-

ately before the critical section (for B2), and immediately after the critical

section (for B3). Assumption B4 follows from C10.

Now let us consider a more specialized memory architecture in which each

process has its own cache, and a write operation (asynchronously) updates

every copy of the memory cell that resides in the caches. In such an archi-

tecture, the following additional condition is likely to hold:

C3. A read of a memory cell that resides in the process's cache precedes

(-) every operation execution issued subsequently by the same pro-

cess.

If the memory system provides some way of ensuring that a memory cell

is permanently resident in a process's cache, then B2 can be satis�ed by

keeping all the variables xj in process i's cache. In this case, the synch

immediately preceding the critical section is not needed.

3.3 Observations

One might think that the purpose of memory synchronization commands is

to enforce orderings between commands issued by di�erent processes. How-

ever, B1{B3 are precedence relations between operations issued by the same

6

process. In general, one process cannot directly observe all the events in the

execution of an operation by another process. Hence, the results of execut-

ing two operation executions A and D in di�erent processes can permit the

deduction only of a causality (-) relation between A and D. Only if A and

D occur in the same process can A - D be deduced by direct observation.

Otherwise, deducing A - D requires the existence of an operation B in

the same process as A and an operation C in the same process as D such

that A - B - C - D. Synchronization commands can guarantee the

relations A - B and C - D.

The mutual exclusion example illustrates how a set of properties su�cient

to guarantee correctness can be extracted directly from a correctness proof

of the algorithm. Implementations of the algorithm on di�erent memory

architectures can be derived from the assumptions, with no further reasoning

about the algorithm.

4 Further Remarks

The atomicity condition traditionally assumed for multiprocess programs is

sequential consistency, meaning that the program behaves as if the memory

accesses of all processes were interleaved and then executed sequentially [10].

It has been proposed that, when sequential consistency is not provided by

the memory system, it be achieved by a constrained style of programming.

Synchronization commands are added either explicitly by the programmer,

or automatically from hints he provides. The method of [7, 8] can be applied

to our simple example, if the xi are identi�ed by the programmer as syn-

chronization variables. However, in general, deducing what synchronization

commands are necessary requires analyzing all possible executions of the

program, which is seldom feasible. Such an analysis is needed to �nd the

precedence relations that, in the approach described here, are derived from

the proof.

Although it replaces traditional informal reasoning with a more rigorous, ax-

iomatic style, the proof method we have used is essentially behavioral|one

reasons directly about the set of operation executions. Behavioral meth-

ods do not seem to scale well, and our approach is unlikely to be practical

for large, complicated algorithms. Most multiprocess programs for modern

multiprocessors are best written in terms of higher-level abstractions. The

method presented here can be applied to the algorithms that implement

7

these abstractions and to those algorithms, usually in the depths of the

operating system, where e�ciency and correctness are crucial.

Assertional proofs are practical for more complicated algorithms. The obvi-

ous way to reason assertionally about algorithms with nonatomic memory

operations is to represent a memory access by a sequence of atomic oper-

ations [2, 9]. With this approach, the memory architecture and synchro-

nization operations are encoded in the algorithm. Therefore, a new proof

is needed for each architecture, and the proofs are unlikely to help discover

what synchronization operations are needed. A less obvious approach uses

the predicate transformers win (weakest invariant) and sin (strongest invari-

ant) to write assertional proofs for algorithms in which no atomic operations

are assumed, requirements on the memory architecture being described by

axioms [15]. Such a proof would establish the correctness of an algorithm

for a large class of memory architectures. However, in this approach, all

intraprocess - relations are encoded in the algorithm, so the proofs are

unlikely to help discover the very precedence relations that lead to the in-

troduction of synchronization operations.

Acknowledgments

I wish to thank Allan Heydon, Michael Merritt, David Probst, Garrett

Swart, Fred Schneider, and Chuck Thacker for their comments on earlier

versions.

References

[1] Uri Abraham, Shai Ben-David, and Menachem Magidor. On global-

time and inter-process communication. In M. Z. Kwiatkowska, M. W.

Shields, and R.M. Thomas, editors, Semantics for Concurrency, pages

311{323. Springer-Verlag, Leicester, 1990.

[2] James H. Anderson and Mohamed G. Gouda. Atomic semantics of

nonatomic programs. Information Processing Letters, 28:99{103, June

1988.

[3] Frank D. Anger. On Lamport's interprocessor communication

model. ACM Transactions on Programming Languages and Systems,

11(3):404{417, July 1989.

8

[4] E. A. Ashcroft. Proving assertions about parallel programs. Journal of

Computer and System Sciences, 10:110{135, February 1975.

[5] Hagit Attiya and Roy Friedman. A correctness condition for high-

performance multiprocessors. In Proceedings of the Twenty-Fourth An-

nual ACM Symposium on the Theory of Computing, pages 679{690,

1992.

[6] Shai Ben-David. The global time assumption and semantics for con-

current systems. In Proceedings of the 7th annual ACM Symposium on

Principles of Distributed Computing, pages 223{232. ACM Press, 1988.

[7] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gib-

bons, Anoop Gupta, and John Hennessy. Memory consistency and

event ordering in scalable shared-memory multiprocessors. In Proceed-

ings of the International Conference on Computer Architecture, 1990.

[8] Phillip B. Gibbons, Michael Merritt, and Kourosh Gharachorloo. Prov-

ing sequential consistency of high-performance shared memories. In

Symposium on Parallel Algorithms and Architectures, July 1991. A full

version available as an AT&T Bell Laboratories technical report, May,

1991.

[9] Leslie Lamport. Proving the correctness of multiprocess programs.

IEEE Transactions on Software Engineering, SE-3(2):125{143, March

1977.

[10] Leslie Lamport. How to make a multiprocessor computer that correctly

executes multiprocess programs. IEEE Transactions on Computers, C-

28(9):690{691, September 1979.

[11] Leslie Lamport. A new approach to proving the correctness of multi-

process programs. ACM Transactions on Programming Languages and

Systems, 1(1):84{97, July 1979.

[12] Leslie Lamport. The mutual exclusion problem|part i: A theory of

interprocess communication. Journal of the ACM, 33(2):313{326, Jan-

uary 1985.

[13] Leslie Lamport. The mutual exclusion problem|part ii: Statement

and solutions. Journal of the ACM, 32(1):327{348, January 1985.

9

[14] Leslie Lamport. On interprocess communication|part i: Basic formal-

ism. Distributed Computing, 1:77{85, 1986.

[15] Leslie Lamport. win and sin: Predicate transformers for concur-

rency. ACM Transactions on Programming Languages and Systems,

12(3):396{428, July 1990.

[16] Susan Owicki and David Gries. Verifying properties of parallel

programs: An axiomatic approach. Communications of the ACM,

19(5):279{284, May 1976.

[17] Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th

Annual Symposium on the Foundations of Computer Science, pages 46{

57. IEEE, November 1977.

10

