
95

Baby Modula-3 and

a theory of objects

Mart��n Abadi

February 2, 1993; revised December 2, 1992

d i g i t a l
Systems Research Center

130 Lytton Avenue

Palo Alto, California 94301

Systems Research Center

The charter of SRC is to advance both the state of knowledge and the state of the

art in computer systems. From our establishment in 1984, we have performed ba-

sic and applied research to support Digital's business objectives. Our current work

includes exploring distributed personal computing on multiple platforms, network-

ing, programming technology, system modelling and management techniques, and

selected applications.

Our strategy is to test the technical and practical value of our ideas by building

hardware and software prototypes and using them as daily tools. Interesting systems

are too complex to be evaluated solely in the abstract; extended use allows us to

investigate their properties in depth. This experience is useful in the short term in

re�ning our designs, and invaluable in the long term in advancing our knowledge.

Most of the major advances in information systems have come through this strategy,

including personal computing, distributed systems, and the Internet.

We also perform complementary work of a more mathematical
avor. Some of it is

in established �elds of theoretical computer science, such as the analysis of algo-

rithms, computational geometry, and logics of programming. Other work explores

new ground motivated by problems that arise in our systems research.

We have a strong commitment to communicating our results; exposing and testing

our ideas in the research and development communities leads to improved under-

standing. Our research report series supplements publication in professional jour-

nals and conferences. We seek users for our prototype systems among those with

whom we have common interests, and we encourage collaboration with university

researchers.

Robert W. Taylor, Director

iii

To appear in Journal of Functional Programming, 2(4) 1994, Cambridge University

Press.

c
Digital Equipment Corporation 1993

This work may not be copied or reproduced in whole or in part for any commercial

purpose. Permission to copy in whole or in part without payment of fee is granted

for nonpro�t educational and research purposes provided that all such whole or

partial copies include the following: a notice that such copying is by permission

of the Systems Research Center of Digital Equipment Corporation in Palo Alto,

California; an acknowledgment of the authors and individual contributors to the

work; and all applicable portions of the copyright notice. Copying, reproducing, or

republishing for any other purpose shall require a license with payment of fee to

the Systems Research Center. All rights reserved.

iv

Contents

1 Introduction 1

2 Overview 2

2.1 Expressions and their reduction 2

2.2 Types 3

2.3 Denotational semantics 4

3 Syntax 5

3.1 Expressions 6

3.2 Type rules 7

3.3 Reduction rules 12

3.4 Subject reduction 14

4 Semantics 16

4.1 Semantics of terms 16

4.2 Semantics of types 20

4.3 Reasoning about programs 31

4.4 A stronger semantics of types 31

5 Related work 33

Acknowledgments 34

References 35

References 35

1

Baby Modula-3 and a theory of objects

Mart��n Abadi

Abstract

Baby Modula-3 is a small, functional, object-oriented programming language. It is in-

tended as a vehicle for explaining the core of Modula-3, from a biased perspective: Baby
Modula-3 includes the main features of Modula-3 related to objects, but not much else.

To the theoretician, Baby Modula-3 provides a tractable, concrete example of an object-

oriented language, and we use it to study the formal semantics of objects.

Baby Modula-3 is de�ned with a structured operational semantics and with a set of
static type rules. A denotational semantics guarantees the soundness of this de�nition.

1 Introduction

Baby Modula-3 is a small, functional, object-oriented programming language with

a static type system. It is intended as a distillation and an explanation of the core

of Modula-3 (Nelson, 1991), from a biased perspective: Baby Modula-3 includes the

main features of Modula-3 related to objects, but not much else. To the theoreti-

cian, Baby Modula-3 provides a tractable, concrete example of an object-oriented

language, and we use it to study the formal semantics of objects. Our study deals

with both operational and denotational semantics.

The language is de�ned with a structured operational semantics in the style of

Plotkin (1981) and with a set of type rules in the usual natural-deduction format.

We prove a subject-reduction theorem, which implies that a well-typed program

never produces run-time errors, such as the infamous \message not understood"

error of Smalltalk.

Further, we give a denotational semantics for Baby Modula-3. The denotational

semantics leads to a di�erent proof that well-typed programs do not produce errors.

It also provides a basis for axiomatic reasoning about Modula-3 programs, in that

various rules for program veri�cation can be proved sound with respect to the

semantics.

The semantics of object types is based on a simple analogy with recursive record

types. Intuitively, the type of objects with one �eld f of type B and one method m

of return type C can be viewed as the type T of records with two �elds, f of type

B and m of type T!C. The de�nition of T is recursive, since T appears in the type

of m. This analogy has been suggested in the literature, in di�erent frameworks;

Cardelli (1986) and Mitchell (1990) have had some success with it. The analogy

breaks, however, in the treatment of subtyping. The recursive record types used

are not in the necessary subtype relations, because the recursion involved is not

2

covariant. The di�culty in the combination of subtyping and recursion appears

to be a well-known stumbling block in the folklore on object types. We surmount

this di�culty with rather elementary techniques. The resulting semantics does not

require much beyond recursive record types, but provides an adequate treatment

of subtyping.

The next section is an informal overview. Section 3 describes the syntax of Baby

Modula-3; Section 4 gives its semantics. The �nal section is a comparison with

related works on the theory of typed object-oriented languages.

2 Overview

In this overview we introduce our treatment of objects, by comparing objects to

records. We describe the expressions that denote objects in Baby Modula-3; we also

describe the operations on objects, and present some typical reduction rules. Then

we discuss issues in the design of type rules for Baby Modula-3. Finally, we present

the main theme of our denotational semantics.

2.1 Expressions and their reduction

In Baby Modula-3, objects are made up of �elds and methods; Baby Modula-3

is delegation-based in the sense that methods are directly attached to individual

objects, and not to classes (see Section 5). We write nil for the object with no �elds

and no methods. If a is an object then we write a[f = b; m = c] for a's extension

with a �eld f and a method m, with values b and c.

Throughout, we assume that the labels of �elds and methods are taken from dis-

joint sets, so that it is always clear whether a �eld or a method is under considera-

tion. Furthermore, we contemplate extension with exactly one �eld and one method

at a time, for convenience and with no loss of generality. Although a �eld can be en-

coded as a method that ignores its argument, we treat �elds explicitly, because the

de�nitions and proofs for �elds are good introductions to the corresponding ones for

methods. In informal discussions, we sometimes lighten our notation, for example

abbreviating nil[f = b; m = c][f0 = b0; m0 = c0] by [f = b; m = c; f0 = b0; m0 = c0].

An object is like an extensible record in many respects (e.g., (Wand, 1987;

Cardelli, 1992)). For example, the object [f = b; m = c] is like the record with the

�elds f and m with the respective values b and c. The operations on objects corre-

spond to operations on records, too:

� Objects can be extended with new �elds and methods, much like records can

be extended with new �elds.

� New values can be assigned to the �elds and methods of existing objects.

For methods, this is called overriding, but in our treatment overriding is

just assignment. (Modula-3 permits overriding only at the level of types; see

Section 3.)

� Finally, �elds can be read and methods can be invoked. Reading a �eld from

an object is much like reading it from a record. On the other hand, invoking

3

a method has the e�ect of extracting its value, then applying this value to

the object, and returning the result of the application.

We use the reduction rules that re
ect the di�erence between �elds and methods

as an introduction to our structured operational semantics. In these rules, a) a0

may be read \the expression a reduces to the result a0." Results are expressions

of special forms; in particular, it is straightforward to determine whether a result

represents an object and to examine its �elds and methods. A result reduces only

to itself.

a) a0 f = b in a0

a:f) b

a) a0 m = c in a0 c(a0)) d

a:m) d

The �rst rule says: if a reduces to a0, and a0 is an object with the �eld f with

the value b, then a:f reduces to b. On the other hand, the second rule says: if a

reduces to a0, and a0 is an object with the method m with the value c, and further

the application c(a0) reduces to d, then a:m reduces to d.

The structured operational semantics includes many rules of the general form of

the ones just given. There is one \normal" rule for each syntactic construction in

the language. In addition, there are rules for reductions that produce a run-time

error, represented by the special result wrong. For example, we have the rule:

a) a0 no f in a0

a:f) wrong

It says: if a reduces to a0, and a0 is not an object with the �eld f (possibly not an

object at all), then a:f reduces to wrong, that is, a:f produces a run-time error.

2.2 Types

In Baby Modula-3, certain types are distinguished as object types. There is a type

of all objects, called Root. The type Root is the largest object type, and even

the empty object nil has type Root. Object types can be extended, much like

objects themselves: if A is an object type without the �eld f or the method m then

A[f : B; m : C] is an object type, the extension of A with a �eld f of type B and a

method m of return type C.

For example, Root[f : Nat; m : Nat][f0 : Nat; m0 : Nat] is an object type, which we

may write [f : Nat; m : Nat; f0 : Nat; m0 : Nat] adopting for object types an abbrevia-

tion analogous to the one for objects. Further, object [f = b; m = c; f0 = b0; m0 = c0]

has type [f : Nat; m : Nat; f0 : Nat; m0 : Nat] if the values of the �elds f and f0 are

always natural numbers and invoking the methods m and m0 always returns natural

numbers.

There are many ways of formalizing this informal description of object types

and the example. Obtaining a sound, tractable, and useful set of type rules is not

entirely straightforward.

According to our formulation, the object [f = b; m = c; f0 = b0; m0 = c0] has type

4

[f : Nat; m : Nat; f0 : Nat; m0 : Nat] if b and b0 have type Nat and c and c0 have type

[f : Nat; m : Nat; f0 : Nat; m0 : Nat]!Nat. Since we preserve membership in the type

[f : Nat; m : Nat; f0 : Nat; m0 : Nat] as an invariant for the object, the methods m and

m0 are invoked only with arguments of this type. This motivates the condition that

c and c0 have type [f : Nat; m : Nat; f0 : Nat; m0 : Nat]!Nat.

Generalizing from this example, we obtain the following type rule for overriding

(a slightly simpli�ed, weakened version of the rule presented in Section 3):

E ` a : A E ` c : A!C m : C in A

E ` a:m := c : A

This rule may be read: given the environment E, if a has type A, c is a function

from A to C, and A is an object type with method m with return type C, then it is

legal to assign c to a:m, and the new value of a has type A. A similar rule deals with

adding a method to an object. As explained below, both overriding and extension

are functional operations in Baby Modula-3, but the corresponding type rules would

be sensible for an imperative language as well.

The type system also includes a subtype relation �. If A � B and a has type A

then a has type B. The central rule for subtyping says that if B is an object type

and A an extension of B then A � B, so for example [f : Nat; m : Nat] � Root and

[f : Nat; m : Nat; f0 : Nat; m0 : Nat] � [f : Nat; m : Nat]. Modula-3 allows single inher-

itance, and not multiple inheritance; the order of �elds and methods matters in

determining whether two object types are in the subtype relation. For example, the

two types [f : Nat; m : Nat; f0 : Nat; m0 : Nat] and [f0 : Nat; m0 : Nat; f : Nat; m : Nat]

are incomparable. Our rules correspond to single inheritance, but there would be

little di�culty in dealing with multiple inheritance instead. Our semantics already

models multiple inheritance.

Finally, the type system includes a recursive-type construction. Recursive types

arise often in dealing with objects, and for example the type of all objects that

contain a �eld f of type Nat and a binary method m of return type Nat is the

solution to the equation:

X = [f : Nat; m : X!Nat]

There has been interesting recent literature on the interaction between subtyping

and recursive types (e.g., (Amadio and Cardelli, 1991)). In our language this inter-

action remains simple, and in particular it does not give rise to any special rules.

The result that connects reduction and typing is the subject-reduction theorem.

It says that types are not lost by reduction: if a) a0 and ` a : A then ` a0 : A. It

is a simple corollary that if ` a : A then a does not reduce to wrong, and thus its

evaluation does not produce a run-time error.

2.3 Denotational semantics

The denotational semantics of Baby Modula-3 needs to address the issues that arise

from the typing of methods and from the use of subtyping and recursive types. As

indicated, the main theme of our interpretation is the analogy between object types

and recursive record types.

5

The type rules for Baby Modula-3 suggest comparing an object type such as

[f : Nat; m : Nat; f0 : Nat; m0 : Nat] to a recursive record type, here the type T of all

records with �elds f and f0 with type Nat and with �elds m and m0 with type T!Nat.

We may de�ne T as the solution to the equation

X = hhf : Nat; m : X!Nat; f0 : Nat; m0 : X!Natii

where hhfm : Am; : : : ; fn : Anii denotes the type of records with �elds fm, : : : , fn with

respective types Am, : : : , An. Perhaps because of the simplicity of Baby Modula-3

(and of Modula-3) this analogy gets us quite far. To support it, we adapt standard

methods for the solution of recursive type equations, with only a few technical

surprises.

But the analogy stops working when we consider the rules for subtyping. In our

example, the problem is that the type function

F (X) = hhf : Nat; m : X!Nat; f0 : Nat; m0 : X!Natii

is contravariant in X and we take its �xpoint in constructing a recursive record

type. The result of taking a �xpoint of a contravariant function is unpredictable in

general. In particular, even if F is pointwise smaller than G (say, in the � relation),

it does not follow that the �xpoint of F is smaller than the �xpoint of G when F

and G are allowed to be arbitrary contravariant functions. In our example, again,

a bit of care in the de�nitions yields that F (X) is a subtype of

G(X) = hhf : Nat; m : X!Natii

for each X, but the �xpoints of the two functions are unrelated. Hence the simple

interpretation of object types based on recursive record types does not validate

[f : Nat; m : Nat; f0 : Nat; m0 : Nat] � [f : Nat; m : Nat]

The solution to this problem remains elementary. The meaning of an object type

A is de�ned to include all the values allowed by the meaning of A as a recursive

record type, and also all the values allowed by the meaning of any extension of

A as a recursive record type. It seems somewhat remarkable that such a simple

solution does not introduce any new problems. Its only apparent disadvantage is

that it may be hard to formulate the modi�ed interpretation of object types within

a usual typed language such as System F (Girard, 1972); and perhaps this is why

it was not previously noticed. The modi�ed de�nition can be given in our semantic

framework. The resulting denotational semantics is sound, in that it validates both

the reduction rules and the type rules.

3 Syntax

In this section we discuss syntactic aspects of Baby Modula-3. First we present all

relevant de�nitions, for reduction and typing, and then we start the syntactic study

of the language.

6

3.1 Expressions

The grammar for terms is:

a ::= x

j fun(x : A)b

j b(a)

j nil

j a[f = b; m = c]

j a:f

j a:m

j a:f := b

j a:m := c

j wrong

First we have variables, abstraction, and application. In the abstraction appears

an expression A. It is intended that A range over type expressions, but the grammar

for terms does not make a commitment to a particular type structure. Many type

systems are possible; in the extreme type system with only one type expression, we

have an untyped calculus. Subsection 3.2 includes a particular de�nition for type

expressions. The operational and denotational semantics of terms do not depend

on this de�nition.

The object constructs are nil (the object with no �elds or methods), object

extension (a[f = b; m = c]), �eld reading (a:f), method invocation (a:m), assignment

to a �eld (a:f := b), and method overriding (a:m := c). Note that the assignment

expressions are terms, not commands; an assignment for an object a is intended

to return the resulting value of a. Finally, we have wrong, the representation of a

run-time error.

Relation to Modula-3

As a further explanation of the grammar just given, we brie
y compare Baby

Modula-3 to Modula-3. Readers not familiar with Modula-3 may want to skip this

comparison.

The syntax for variables and for applications in Modula-3 is the same as here;

abstractions are given with an explicit name N and an explicit return type B, in

the form PROCEDURE N(x : A) : B = RETURN b N; the constant nil is commonly

written NIL.

In Modula-3, objects are not built by extension. Rather, they are allocated com-

pletely at once, with calls to NEW. In order to create the object that we write

nil[fd = bd; me = ce] : : : [fi = bi; mj = cj], the call is

NEW(A; fd := bd; me := ce; : : : ; fi := bi; mj := cj)

with A the type of the object created. The methods ce, : : : , cj could be arbitrary

7

expressions in the original Modula-3 (Cardelli et al., 1988). They must be top-level

procedure constants in the current Modula-3.

The Modula-3 syntax for reading a �eld and for assignment to a �eld is the

same as here; the method invocation a:m is written a:m(). Modula-3 does not allow

overriding of methods at the value level, but only at the type level. (Type declara-

tions may include values for �elds and methods, which are used as defaults in calls

to NEW. Overriding at the type level means declaring a type with a new default.)

Overriding at the value level does appear in other languages (e.g., (Steele, 1990))

and it is noticeably absent from the class-based languages discussed in Section 5.

We include it for completeness and because its formal treatment remains simple,

perhaps surprisingly so.

3.2 Type rules

Subsections 3.2.1 to 3.2.5 introduce the type rules of Baby Modula-3. The experi-

enced reader may wish to skim the �rst three of these subsections to focus on the

last two, which contain the rules for subtyping and those for relating values and

types.

3.2.1 Environments

We start with three rules for proving judgements of the form ` E, read \E is a legal

environment." An environment is a list; empty denotes the empty list and a comma

denotes list concatenation.

` empty

` E X not in E

` E; X

E ` A x not in E

` E; x : A

3.2.2 Types

Next come some rules for proving judgements of the form E ` A, read \A is a legal

type in environment E," and of the form E ` A obj, read \A is a legal object type

in environment E." An expression A such that E ` A for some E is called a type

expression. An expression A such that E ` A obj for some E is called an object

type expression.

` E1; X; E2

E1; X; E2 ` X

E ` A obj

E ` A

8

E ` A E ` B

E ` A!B

` E

E ` Root obj

E ` A obj E ` B E ` C no f; m in A

E ` A[f : B; m : C] obj

E; X ` A obj

E ` Mu(X)A obj

Here no f in A means that f : B in A holds for no B, and f : B in A is de�ned by

induction on A to mean that A advertises the �eld f with type B:

� f : B in A[f : B; m : C];

� if f : B in A then f : B in A[f0 : B0; m0 : C0];

� if f : B in A then f : B[Mu(X)A=X] in Mu(X)A.

The de�nition for methods is analogous. The relations f : B in A and m : C in A

are decidable, as they can easily be computed following their inductive de�nitions.

In examples, we use the types Nat and Real, but we do not treat them formally.

Discussion

The expression Mu(X)A represents a recursive type B such that B = A[B=X]. Note

that the only recursive types allowed are object types. This restriction is easy to

formulate using the judgments that distinguish object type expressions, E ` A obj.

There is neither di�culty nor fundamental gain in removing this restriction.

Note also that environments may include the assumption that X is a type, but

not that it is an object type. This means that object type expressions can be built

by extension and recursion from Root but not from type variables. For example,

X[f : Nat; m : Nat] is not an object type expression, and in fact it is not a type

expression at all. In further work (with Cardelli), we hope to be able to treat object

type variables by using kinds to classify types.

Relation to Modula-3

The Modula-3 syntax for A!B is PROCEDURE(x : A) : B; the formal parameter x is

made explicit. The type Root is commonly written ROOT; and A[f : B; m : C] is writ-

ten A OBJECT f : B METHODS m() : C END. In Modula-3, recursive types are not ex-

pressed with the Mu construct and with type variables; rather, they are declared

with equations such as TYPE A = OBJECT f : A END.

In Modula-3, the type NULL, which contains only NIL, is a subtype of every object

type. We do not have an analogue of NULL, and in fact nil is not in every object

type.

9

3.2.3 Type equalities

The rules for type equality deal with judgements of the form E ` A = B, read \A

and B are equal types in environment E." Type equality is de�ned to be a congruence

on type expressions. In addition, equality rules for recursive types have the e�ect

of equating two type expressions whenever the in�nite trees obtained from them by

unfolding are equal.

We omit the rules for type equality; the interested reader can consult the work

of Amadio and Cardelli (1991). In what follows, we sometimes identify types that

are provably equal, for simplicity.

3.2.4 Subtypes

The rules for subtyping deal with judgements of the form E ` A�B, read \A is a

subtype of B in environment E." Subtyping is re
exive and transitive. The only

nontrivial subtyping is that between an extension of an object type and the object

type, so that in particular Root is the largest object type. The function-space con-

structor ! is neither covariant nor contravariant. Moreover, inheritance is simple

and not multiple.

E ` A = B

E ` A�B

E ` A�B E ` B�C

E ` A�C

E ` A obj E ` B E ` C no f; m in A

E ` A[f : B; m : C]�A

Discussion

To illustrate the use of the subtyping rules, we can show that B�A, where A and B

are de�ned recursively by

A = Mu(X)Root[f : X; m : X]

B = Mu(Y)Root[f : A; m : A][f0 : A0; m0 : A0]

and A0 is an arbitrary type expression. The subtyping proof starts by unfolding once

each of A and B:

A = Root[f : A; m : A]

B = Root[f : A; m : A][f0 : A0[B=Y]; m0 : A0[B=Y]]

Then the rule for subtyping object types is applicable, and yields the desired result.

This proof does not rely on any special rules for subtyping recursive types. However,

in a more general context, rules for subtyping recursive types would be wanted (as

in (Amadio and Cardelli, 1991)).

In contrast, note that it is not provable that B�A, where A and B are de�ned

10

recursively by

A = Mu(X)Root[f : X; m : X]

B = Mu(Y)Root[f : Y; m : Y][f0 : A0; m0 : A0]

This subtyping would hold under an additional hypothesis: that the extension type

constructor is monotonic with respect to the subtype relation (so that if Z�Z0 and

W�W0 then Root[f : Z; m : W] � Root[f : Z0; m : W0]). It would then be provable that

B � A, using sound rules such as those of Amadio and Cardelli.

However, the additional monotonicity hypothesis is unsound in general. It is not

hard to construct examples that illustrate this unsoundness. Consider the types

C = Root[f : Nat; m : Nat] and D = Root[f : Real; m : Nat], with Nat�Real. We can

build an object a of type C where the method m returns the value of the �eld f: let

a = nil[f = 0; m = fun(z : C)(z:f)]. Suppose that C�D, and thus that a has type D.

Then we can write (a:f := �):m and expect to obtain a result of type Nat, rather

than �; hence, C6�D.

Similar examples demonstrate that extending Baby Modula-3 with subtypings

such as B�A would be unsound as well. In some programs, the absence of these

subtypings can be an obstacle. A simple remedy consists in incorporating dynamic

typing into the language, as in Modula-3. With Cardelli, we are investigating a

more complex but more ambitious remedy based on polymorphism

3.2.5 Typechecking

The typechecking rules are based on judgements of the form E ` a : A, read \a has

type A in environment E." In the rules for typechecking objects, we use auxiliary

judgements of the form E ` a : A Self=S. These are four-place judgements, relat-

ing an environment E, a term a, and two types A and S; Self= is simply a keyword.

Next we list the rules; the �rst one is called the subsumption rule.

E ` b : A E ` A�B

E ` b : B

` E1; x : A; E2

E1; x : A; E2 ` x : A

E; x : A ` b : B

E ` fun(x : A)b : A!B

E ` c : A!B E ` a : A

E ` c(a) : B

E ` a : A Self=A

E ` a : A

E ` S

E ` nil : Root Self=S

11

E ` a : A Self=S E ` b : B E ` c : D!C

E ` S�D no f; m in A

E ` a[f = b; m = c] : A[f : B; m : C] Self=S

E ` a : A E ` A obj f : B in A

E ` a:f : B

E ` a : A E ` A obj m : C in A

E ` a:m : C

E ` a : A E ` b : B f : B in A

E ` a:f := b : A

E ` a : A E ` c : D!C E ` A�D m : C in A

E ` a:m := c : A

Discussion

The use of auxiliary judgements deserves explanation.When S is an object type, the

proof of E ` s : S is reduced to the proof of E ` s : S Self=S, and later to similar

proofs E ` a : A Self=S, where s and S are extensions of a and A, respectively.

The argument S preserves a record of what the original typechecking problem was.

This is needed for typechecking methods in a; intuitively, S is taken as the type of

\self" (s), the argument of the methods. In the rule for object extensions, methods

are required to map S, or some supertype D of S, to the appropriate return type.

The auxiliary type D is introduced for generality, to compensate for the omission

of a rule of contravariance of ! in its �rst argument. With this rule, it would be

equivalent to use S instead of D. A similar use of D is made in the rule for overriding.

As an example, consider the problem of deriving the judgment ` s : S when S

is Root[f : Nat; m : Nat][f0 : Nat; m0 : Nat] and s is nil[f = b; m = c][f0 = b0; m0 = c0].

Using the rules given, it su�ces to prove the judgment ` s : S Self=S. In turn,

` s : S Self=S can be obtained from the judgments ` b0 : Nat, ` c0 : S!Nat, and

` nil[f = b; m = c] : Root[f : Nat; m : Nat] Self=S; this last judgment can itself be

proved from ` b : Nat and ` c : S!Nat. Note that the method m in s will always

be applied to an element of S, and that the condition ` c : S!Nat allows c to be

fun(x : S)(x:m0).

We deliberately omit any mechanism for unfolding recursive types in judgements

of the form E ` a : A Self=S. If A is a recursive type, then E ` a : A Self=S is

never provable.While the omissionmakes the type system simpler, it does not result

in a loss of power. For example, if we were to include that mechanism, the proof of

` nil : Mu(X)Root could be reduced to that of ` nil : Mu(X)Root Self=Mu(X)Root;

but it can also be reduced by unfolding to the proof of ` nil : Root, and this proof

succeeds without any new mechanism for unfolding.

On the whole, the type rules are a little restrictive. In particular, they mean

that extensions may be applied only to nil, to construct objects of the form

nil[fd = bd; me = ce] : : : [fi = bi; mj = cj]. (Thus, the use of a general extension

12

syntax for objects is mostly a matter of taste.) For example, the rules do not provide

a type for the function fun(x : Root[f : Nat; m : Nat])(x[f0 = 0; m0 = fun(y : Root)0])

where extension is applied to a variable in the body. This limitationwould disappear

were we to include suitable subsumption rules among the type rules with Self=.

These new rules seem sound, and they may be of some interest.

3.3 Reduction rules

In the structured operational semantics, some closed expressions are viewed as

proper results: the function results fun(x : A)b, and the object results nil and

nil[fd = bd; me = ce] : : : [fi = bi; mj = cj]

where all of bd, ce, : : : , bi, cj are proper results and all the labels are distinct. All

proper results are results, and in addition wrong is a result.

We write f = b in a when a is an object result of the form

nil : : : [f = b; : : :] : : : [fi = bi; mj = cj]

then write aff b0g for the result of replacing b with b0, obtaining

nil : : : [f = b0; : : :] : : : [fi = bi; mj = cj]

and write f in a when a is an object result and f = b in a holds for some b. The

notations m = c in a, afm c0g, and m in a have analogous de�nitions.

The reduction relation a) b (\a reduces to b") is axiomatized by the rules

below. It is a binary relation between closed expressions and results. It is easy to

see that each expression reduces to at most one result, and that a result reduces

only to itself.

fun(x : A)b) fun(x : A)b

a) a0 (6= wrong) b) fun(x : A)b0 b0[a0=x]) b00

b(a)) b00

a) wrong

b(a)) wrong

a) a0 b) b0 not a function result

b(a)) wrong

nil) nil

a) a0 an object result no f; m in a0

b) b0 (6= wrong) c) c0 (6= wrong)

a[f = b; m = c]) a0[f = b0; m = c0]

a) a0 not an object result; or f or m in a0

a[f = b; m = c]) wrong

13

a) a0 b) wrong

a[f = b; m = c]) wrong

a) a0 b) b0 c) wrong

a[f = b; m = c]) wrong

a) a0 f = b in a0

a:f) b

a) a0 m = c in a0 c(a0)) d

a:m) d

a) a0 no f in a0

a:f) wrong

a) a0 no m in a0

a:m) wrong

a) a0 f in a0 b) b0 (6= wrong)

a:f := b) a0ff b0g

a) a0 m in a0 c) c0 (neqwrong)

a:m := c) a0fm c0g

a) a0 no f in a0

a:f := b) wrong

a) a0 no m in a0

a:m := c) wrong

a) a0 b) wrong

a:f := b) wrong

a) a0 c) wrong

a:m := c) wrong

wrong) wrong

Discussion

In these rules, we have made some choices of order of evaluation. We believe that all

of the choices are reasonable, and they simplify our presentation. In particular, the

rules for functions are usual ones for call-by-value reduction. More interestingly, we

evaluate �elds and methods before they are collected into objects, rather than delay

their evaluation until they are accessed. Thus, if b does not reduce to a result, then

neither do a:f := b and a[f = b; m = c] (unless they reduce to wrong). This seems

like the most sensible choice for a call-by-value functional language, particularly

14

with the context of an imperative language in mind. In an imperative language,

b may depend on program variables, and these have to be accessed before they

change; b can even make reference to a:f.

We have made other choices that cannot be detected in a typed setting. For

example, the rules allow storing a non-function c as method of an object a, with

a:m := c. An error is produced only if the method is invoked. However, if c is not a

function then a:m := c is not typable; thus the possibility allowed by the reduction

rules is irrelevant for well-typed programs.

3.4 Subject reduction

With the syntax of Baby Modula-3 complete, we start the study of syntactic prop-

erties. We obtain a subject-reduction theorem:

Theorem 1

If a) a0 and ` a : A then ` a0 : A.

A very typical substitution lemma and some additional syntactic observations

are useful in the proof of the theorem:

Lemma 1

If A and B are closed, E; x : B ` a : A, and ` b : B for a result b, then E ` a[b=x] : A.

Proof

The proof is by induction on the length of a proof of E; x : B ` a : A. The only

important cases are those to do with functions, and they are treated abundantly in

the literature.

Proposition 1

If E ` a : A Self=S is derivable, then A is an object type expression of the form

Root[fi : Bi; mj : Cj] : : : [fk : Bk; ml : Cl], and a is a term of the corresponding form

nil[fi = bi; mj = cj] : : : [fk = bk; ml = cl].

Proof

The proof is an easy induction on derivations.

Now we strengthen the claim of Theorem 1, and prove:

Lemma 2

Assume that a) a0.

� If ` a : A then ` a0 : A.

� If ` a : A Self=S then ` a0 : A Self=S.

Proof

The proof is by induction on the length of the reduction derivation. The cases for

reductions to wrong are vacuously true; we treat only one of them, as an example.

Also, by Proposition 1, ` a : A Self=S can hold only if a is built from nil by

extension, and so we consider the second part of the claim only in the appropriate

cases. Finally, we include only cases for the object constructs, the other ones being

standard.

In most of this proof, we work with types up to provable equality.

15

� The case of nil) nil is trivial.

� Suppose that ` a[f = b; m = c] : D and consider the rule:

a) a0 an object result no f; m in a0

b) b0 (6= wrong) c) c0 (6= wrong)

a[f = b; m = c]) a0[f = b0; m = c0]

The assumption implies that for some D0 we have ` a[f = b; m = c] : D0 and

` a[f = b; m = c] : D0 Self=D0, with D0 (provably equal to) a subtype of D

(possibly D itself). By Proposition 1 it follows that D0 has the form A[f : B; m : C]

and ` a : A Self=D0. Moreover, it follows that ` b : B and ` c : G!C for

some G with ` D0 � G. By induction hypothesis, ` a0 : A Self=D0, ` b0 : B,

and ` c0 : G!C. Hence, it follows that ` a0[f = b0; m = c0] : D0 Self=D0, and

so that ` a0[f = b0; m = c0] : D0. Since ` D0 � D, subsumption yields the result

` a0[f = b0; m = c0] : D.

In this case, because of the form of the terms involved, the second half of the

subject-reduction claim is relevant. For this second half, we need to prove that

` a[f = b; m = c] : D Self=S implies ` a0[f = b0; m = c0] : D Self=S. While

this proof is not trivial, it is a simple variant of the one just given.

� Suppose that ` a:f : B and consider the rule:

a) a0 f = b in a0

a:f) b

Inspection of the type rules shows that ` a : A for some object type A and,

further, f : B0 in A with B0 (provably equal to) some subtype of B (possibly

B itself). By induction hypothesis, ` a0 : A; since a0 is an object result and

f : B0 in A, the proof of ` a0 : A must involve a proof of ` b : B0, and by

subsumption we can obtain ` b : B.

� Suppose that ` a:m : C and consider the rule:

a) a0 m = c in a0 c(a0)) d

a:m) d

As in the previous case, ` a : A for some object type A and, further, m : C0 in A

where C0 is provably equal to a subtype of C (possibly C itself). By induc-

tion hypothesis, ` a0 : A. Now it follows that for some A0 and D, ` c : D!C0,

` A0 � D, ` A0 � A, and ` a0 : A0. Subsumption yields ` a0 : D, and the type-

checking rule for application yields ` c(a0) : C0. By induction hypothesis,

` d : C0. Subsumption �nally yields ` d : C, as desired.

� Suppose that ` a:f : B and consider the rule:

a) a0 no f in a0

a:f) wrong

As in the case where the value of a �eld is read without error, we obtain that

` a0 : A for some object type A and f : B0 in A for some B0 such that ` B0 � B.

It is easy to see that this contradicts the assumption no f in a0.

� Suppose that ` a:f := b : A and consider the rule:

a) a0 f in a0 b) b0 (6= wrong)

a:f := b) a0ff b0g

16

Much as in other cases, it must be that, for some A0 and B, ` a : A0, ` A0 � A,

f : B in A0, and ` b : B. By induction hypothesis, ` a0 : A0 and ` b0 : B. Now

a proof that ` a0ff b0g : A0 can be obtained from the proof that ` a0 : A0

by replacing the typing proof for the f �eld of a0 with the proof of ` b0 : B.

The proof that ` a0ff b0g : A follows by subsumption.

� Suppose that ` a:m := c : A and consider the rule:

a) a0 m in a0 c) c0 (6= wrong)

a:m := c) a0fm c0g

In the present case, it must be that, for some A0, C, and D, ` a : A0, ` A0 � A,

m : C in A0, ` c : D!C, and ` A0 � D. By induction hypothesis, ` a0 : A0 and

` c0 : D!C. A proof that ` a0fm c0g : A0 can be obtained from the proof

that ` a0 : A0 by replacing the typing proof for the m method of a0 with the

proof of ` c0 : D!C. The proof that ` a0ff b0g : A follows by subsumption.

Since the type rules do not give any type for wrong, it follows:

Corollary 1

If a) a0 and ` a : A then a0 is not wrong.

4 Semantics

This section concerns the denotational semantics of Baby Modula-3. Subsection 4.1

is about the untyped semantics of the terms of the language; this part is relatively

straightforward, although it involves a few subtle choices. Subsection 4.2, which is

harder, gives a semantics for the type system. Subsection 4.3 is a short discussion of

program veri�cation. Subsection 4.4 brie
y describes a second, stronger semantics

for the type system.

4.1 Semantics of terms

We interpret the language in an untyped model. After describing this untyped

model in the �rst subsection, we de�ne the interpretation of the terms of Baby

Modula-3. Subsection 4.1.3 relates this interpretation with the reduction rules of

Section 3. The preliminary material on the untyped model is rather technical. It

contains details not necessary for understanding most of the rest of the paper.

4.1.1 Preliminaries

The underlying assumptions on the untyped model are much as in (MacQueen et

al., 1986); we assume a complete partial order (D;v) such that:

� There is an increasing sequence pn : D!D of continuous projections with

least upper bound the identity. Further, p0 constantly equals ?.

17

� There are strict, continuous embedding-retraction pairs (e; r) between D and

each of O, (D!D)?, and (L!D).

O
e
�! D

r
�! O

(D!D)?
e
�! D

r
�! (D!D)?

(L!D)
e
�! D

r
�! (L!D)

Here O is a two-point partial order f�g?; we view � as the error value. As usual

(D!D) is the complete partial order of continuous functions fromD toD, and

(D!D)? is its lifting. (The importance of lifting is discussed further below.)

Finally, L is a set of labels ff0; f1; : : : ; m0; m1; : : :g, and the summand (L!D)

can be viewed, roughly, as the set of records over these labels. This summand

is essentially a product (of D over L), and we can make this product strict or

not. Having a strict product amounts to identifying all elements that map any

label to ?, and interpreting them all as ?; a non-strict product keeps these

elements separate. A strict semantics corresponds better to our reduction

rules and is closer to full abstraction, while a non-strict semantics a�ords us

more
exibility. The de�nitions below can be read with either choice.

We omit the various e's and r's in most of what follows, and do not distinguish

them. We view O, (D!D), and (L!D) as subsets of D.

� Let ; denote function composition, so that (x; y)(z) = y(x(z)). For all i,

pi+1(e(�)) = e(�)

pi+1(e(f)) = e(pi; f ; pi) f 2 D!D

pi+1(e(o)) = e(o; pi) o 2 L!D

An element v of D is �nite if v v tkhuki implies v v ui for some i, and the least

n for which pn(v) = v is the rank of v.

To obtain D, one can solve an appropriate domain equation, such as:

D = O + (D!D)? + (L!D)

by the usual \limit of a sequence of iterates" method.

4.1.2 De�nitions

We de�ne the semantics function for terms:

[[]] : (V!D)!(E!D)

where V is the set of variables and E the set of expressions. We call a mapping

� in V!D an environment and write [[a]]� for the semantics of a term a with an

environment �. When a is closed, we may write [[a]], omitting � since it is irrelevant.

If f is a function (for example, an environment) and l is in its domain, we write

ffl vg for the function that maps l to v and is otherwise identical to f . (The

same notation is used for a di�erent but related notion in Subsection 3.3.)

We set:

[[x]]� = �(x)

18

[[fun(x : A)b]]� = �v:([[b]]�fx vg)

[[b(a)]]� = if [[a]]� 6= � and [[b]]� 2 (D!D)

then [[b]]�([[a]]�)

else �

[[nil]]� = the constantly � function in L!D

[[a[f= b; m = c]]]� = if [[a]]� 2 (L!D), [[a]]�(f) = �, [[a]]�(m) = �,

[[b]]� 6= �, and [[c]]� 6= �

then [[a]]�ff [[b]]�gfm [[c]]�g

else �

[[a:f]]� = if [[a]]� 2 (L!D) then [[a]]�(f) else �

[[a:m]]� = if [[a]]� 2 (L!D) and [[a]]�(m) 2 (D!D)

then [[a]]�(m)([[a]]�)

else �

[[a:f := b]]� = if [[a]]� 2 (L!D), [[a]]�(f) 6= �, and [[b]]� 6= �

then [[a]]�ff [[b]]�g

else �

[[a:m := c]]� = if [[a]]� 2 (L!D), [[a]]�(m) 6= �, and [[c]]� 6= �

then [[a]]�fm [[c]]�g

else �

[[wrong]]� = �

This de�nition is given in a metalanguage where conjunctions and conditionals are

strict and evaluated left to right, and 2 is a strict membership test. For example,

if [[a]]� = ? then immediately [[a[f = b; m = c]]]� = ?.

4.1.3 Soundness

The main theorem about the term interpretation states the soundness of reduction.

This theorem says that reduction does not change the meaning of programs:

Theorem 2

If a and b are closed and a) b then [[a]] = [[b]].

Proof

The proof is by induction on the derivation of a) b. It relies on the observations:

� If d is a result then [[d]] 6= ?.

� If d is a result then it is a proper result if and only if [[d]] 6= �.

� If d is a result then it is a function result if and only if [[d]] 2 (D!D).

� If d is a proper result then [[(fun(x : A)b)(d)]] = [[fun(x : A)b]]([[d]]) = [[b[d=x]]].

� If d is a result then it is an object result if and only if [[d]] 2 (L!D).

� If d is an object result and f = b in d then [[d]](f) = [[b]].

� If d is an object result and m = c in d then [[d]](m) = [[c]].

19

� If d is an object result with no f in d then [[d]](f) = �.

� If d is an object result with no m in d then [[d]](m) = �.

� If d is an object result with no f; m in d, and b and c are proper results,

then [[d[f = b; m = c]]] = [[d]]ff [[b]]gfm [[c]]g.

� If d is an object result with f in d and b is a proper result, then [[dff bg]] =

[[d]]ff [[b]]g.

� If d is an object result with m in d and c is a proper result, then [[dfm cg]] =

[[d]]fm [[c]]g.

With these observations, we treat two cases as examples:

� Suppose that a:f reduces to b using the rule:

a) a0 f = b in a0

a:f) b

Since a0 is a result, [[a0]] 6= ?. Since f = b in a0, a0 is an object result, so [[a0]] 2

(L!D), and [[a0]](f) = [[b]]. The induction hypothesis [[a]] = [[a0]] together with

the de�nition of [[]] yields that [[a:f]] = [[b]].

� Suppose that a:f reduces to wrong using the rule:

a) a0 no f in a0

a:f) wrong

Since a0 is a result, [[a0]] 6= ?. Since no f in a0, [[a0]](f) = �. The induction

hypothesis [[a]] = [[a0]] together with the de�nition of [[]] yields that [[a:f]] = �,

that is, [[a:f]] = [[wrong]].

� Suppose that a:m reduces to d using the rule:

a) a0 m = c in a0 c(a0)) d

a:m) d

Since a0 is a result, [[a0]] 6= ?. Since m = c in a0, a0 is an object result, so

[[a0]] 2 (L!D), and [[a0]](m) = [[c]]. Moreover, since c is a result, [[c]] 6= ?. The

rest of the proof is by cases:

| Assume that [[c]] 2 (D!D). The induction hypothesis [[a]] = [[a0]] together

with the de�nition of [[]] yields that [[a:m]] = [[a]](m)([[a]]), that is, [[a:m]] =

[[c]]([[a0]]). Since [[a0]] 2 (L!D), [[c]]([[a0]]) = [[c(a0)]], and the induction

hypothesis [[c(a0)]] = [[d]] yields that [[a:m]] = [[d]].

| Assume that [[c]] 62 (D!D). The induction hypothesis [[a]] = [[a0]] together

with the de�nition of [[]] yields that [[a:m]] = �. Moreover, [[c(a0)]] = �

because [[a0]] 6= ?, and the induction hypothesis [[c(a0)]] = [[d]] yields that

[[d]] = � as well.

It is now easy to see why we take (D!D)? rather than (D!D) in the de�nition

of the semantic domain. The lifting leaves room for a least function di�erent from

D's ?; this means that we can de�ne the meaning of a result fun(x : A)b to di�er

from ? even if b is constantly ?. We take advantage of this freedom. This choice

is embodied in the reduction rules, where evaluation does not go under function

20

binders; it is re
ected in the denotational semantics; and it is then essential for

the proof that the reduction rules are correct with respect to the denotational

semantics.

On the other hand, we do not take (L!D)? instead of (L!D). The extra
ex-

ibility obtained by lifting (L!D), while not problematic, is unnecessary because

we adopt a strict semantics of objects (so for example nil[f = b; m = c] denotes ?

if b does). The treatment of a non-strict language may be a good exercise.

It would be worthwhile to study the semantics further, and in particular to con-

sider issues beyond soundness, such as adequacy and full abstraction. We postpone

the study of these issues.

4.2 Semantics of types

Having given the semantics in an untyped model, we view the types as certain

subsets of this untyped model. These subsets are ideals (MacQueen et al., 1986).

Ideals su�ce for our purpose|studying type rules. However, they do not yield a

proper model of typed lambda calculi, because they do not validate one of the stan-

dard equational rules for typed lambda calculi, the � rule (see for example (Gunter,

1992, pp. 44, 265)).We discuss the � rule and alternatives to ideals in Subsection 4.4.

After some preliminaries, we de�ne the ideal interpretation and then use it to

prove the soundness of the type rules of Baby Modula-3. As in the previous sub-

section, the preliminaries are rather technical; the details are not essential for an

intuitive understanding of the main de�nitions below.

4.2.1 Preliminaries

An ideal is a subset I of D with the properties:

� I is nonempty;

� I is closed downwards in the v order;

� I is closed under limits of increasing sequences in the v order.

We write Idl for the set of all ideals that do not contain �. By convention, the

variables R, T , Rd , Te, : : : , and S range over Idl. In the next subsection, all types

are interpreted as ideals in Idl.

The distance between two ideals is 2�r , where r is the minimum rank of the

elements in one ideal but not the other, and it is 0 if the two ideals are equal. The

set of all ideals with this distance function is a complete metric space, and so is

Idl. Furthermore, by the Banach Fixpoint Theorem, if F is a contractive (distance-

reducing) map between ideals then it has a unique �xpoint; and if it maps Idl to

Idl, then the �xpoint is in Idl as well. This is the basis of the usual interpretation

of recursive types.

4.2.2 De�nitions

In this section, we de�ne the semantics function for types:

[[]] : (TV!Idl)!(TE!Idl)

21

where TV is the set of type variables and TE the set of type expressions. A mapping

� in TV!Idl is a type environment, and we write [[A]]� for the semantics of a

type A with the environment �. By de�nition, [[X]]� = �(X). For convenience, we

merge environments and type environments, and call environments the functions

in (V!D) \ (TV!Idl).

The relation � is simply interpreted as ideal containment. The function-space

operator is given by:

R!T = f?g [ff 2 (D!D) j f(R) � Tg

and we set:

[[A!B]]� = [[A]]�![[B]]�

It turns out to be useful to interpret expressions of the form A Self=S as ordinary

types. Intuitively, A Self=S is much like the object type A, but the self-application

present in the semantics of A objects is replaced with an application to an element of

S. Thus, A Self=S is essentially a record type. For example, if A = [f : Nat; m : Nat]

then A Self=S can be seen as the type hhf : Nat; m : S!Natii, the type of all records

with a �eld f of type Nat and a �eld m of type S!Nat.

The de�nition of [[A Self=S]]� assumes that A is an object type expression. It

relies on two auxiliary functions:

� hAi
S

� is an obvious generalization of [[A Self=S]]�, since we set:

[[A Self=S]]� = hAi
[[S]]

�

�

with

h i : Idl!(TV!Idl)!(TE!Idl)

� Given a list of ideals R, T , : : :and a list of labels f, m, : : :of equal length,

RS (f : R; m : T; : : :) is the set of objects that map f to values in R, m to

functions from S to T , : : : . This is a semantic version of the record type that,

informally, can be written hhf : R; m : S!T; : : :ii.

The auxiliary functions are de�ned by:

hRooti
S

� = (L!D)

hA[f : B; m : C]i
S

� = hAi
S

� \R
S(f : [[B]]�; m : [[C]]�)

hMu(X)Ai
S

� = hAi
S

�fX [[Mu(X)A]]�g

RS (f : R; m : T; : : :) = fo 2 (L!D) j o(f) 2 R ^ o(m) 2 (S!T) ^ : : :g

The de�nition is by induction on the size of type expressions. The reference to [[]],

whose de�nition is not yet complete, is justi�ed below.

As suggested in the overview, �(S)hAi
S

� provides a reasonable interpretation for

the object type A. This interpretation does not validate the rules for subtyping, but

a simple variant does. Denoting the lub operation on ideals by
S
, we de�ne:

[[A]]� =
[
f�(S)(hAi

S

� \R
S(fd : Rd ; me : Te; : : :)) j

fd; me; : : : a �nite list of distinct labels not in Ag

22

Roughly, [[A]]� can be understood as the union of �(S)hBi
S

� over all extensions B of

A. It should be intuitively clear that this new interpretation is forced to validate

the rules for subtyping, and we prove that it validates all other rules as well.

The form of the semantic de�nition

The functions h i and [[]] are de�ned jointly by induction on the size of type

expressions. In each case, hAi and [[A]] are de�ned in terms of hA0i and [[A0]] for A0

smaller than A, with the exception of the case where A is a recursive type. In that

case, the expression for hMu(X)Ai refers to [[Mu(X)A]] and vice versa. We have:

[[Mu(X)A]]� =
[
f�(S)(hMu(X)Ai

S

� \R
S (fd : Rd ; me : Te; : : :)) j

fd; me; : : : a �nite list of distinct labels not in Ag

=
[
f�(S)(hAi

S

�fX [[Mu(X)A]]�g
\RS (fd : Rd ; me : Te; : : :)) j

fd; me; : : : a �nite list of distinct labels not in Ag

but this is equivalent to:

[[Mu(X)A]]� = �(T)
[
f�(S)(hAi

S

�fX Tg \R
S (fd : Rd ; me : Te; : : :)) j

fd; me; : : : a �nite list of distinct labels not in Ag

= �(T)[[A]]�fX Tg

This reformulation removes the apparent circularity in the de�nition of h i and [[]].

The de�nition of [[]] for object types relies on the existence of certain �xpoints.

Corollaries 2 and 3 guarantee the existence of these �xpoints, and also say that

they are included in L!D.

Finally, note that [[A]]� cannot simply be de�ned as the union of �(S)hBi
S

� over all

extensions B of A. That appealing de�nition would be circular, because an extension

B may mention A, like A[f : A; m : A], and then �(S)hBi
S

� would itself be de�ned in

terms of [[A]]
�
.

4.2.3 Soundness

Next we check the soundness of the type rules with respect to our interpretation.

We start with a number of propositions that simplify the argument.

Basic properties of h i

Proposition 2

For all S, f, R, m, T , : : : , RS(f : R; m : T; : : :) � (L!D).

Proof

This follows directly from the de�nition of RS(f : R; m : T; : : :).

Proposition 3

For all object type expressions A, all S, and all �, hAi
S

� � (L!D).

23

Proof

The argument is an easy induction on the structure of A (more precisely, on the

structure of a proof that A is an object type expression).

Proposition 4

For all f, R, m, T , : : : , RS (f : R; m : T; : : :) is contractive in S and in R, T , : : : .

Proof

First we check the claim for S. For RS (f : R), this holds because RS(f : R) does

not depend on S. For RS(m : T), this follows from the contractiveness of! (proved

in (MacQueen et al., 1986)), since RS(m : T) uses S as argument to !. These two

cases imply the general case, since \ is nonexpansive and RS(f : R; m : T; : : :) =

RS(f : R) \RS (m : T) \ : : : .

The claim for the other arguments, R, T , : : : , is handled similarly, since they too

occur only as arguments to !.

Proposition 5

For all object type expressions A and all �, hAi
S

� is contractive in S.

Proof

As for many of the propositions below, the argument is by induction on the structure

of the proof that A is an object type expression. That is, we treat the cases of object

type expressions of the forms Root, A[f : B; m : C], and Mu(X)A. In the last two cases

we assume, as induction hypothesis, that the claim is true for A.

� For Root, hRooti
S

� is constant and hence contractive.

� By de�nition, hA[f : B; m : C]i
S

� is hAi
S

� \R
S(f : [[B]]�; m : [[C]]�). We obtain that

hA[f : B; m : C]i
S

� is contractive in S using the induction hypothesis, Proposi-

tion 4, and the nonexpansiveness of \.

� By de�nition, hMu(X)Ai
S

� is hAi
S

�fX [[Mu(X)A]]
�
g, and the induction hypothesis

applies immediately (but using �fX [[Mu(X)A]]�g as environment).

Corollary 2

For all f, R, m, T , : : : , all object type expressions A, and all �,

hAi
S

� \R
S (f : R; m : T; : : :)

has a unique �xpoint as a function of S. This �xpoint is included in L!D.

Proof

Since \ is nonexpansive, Propositions 4 and 5 yield that hAi
S

� \R
S(f : R; m : T; : : :)

is contractive in S, and hence has a unique �xpoint. Moreover, Propositions 2 and 3

show that this function has range L!D, and hence its �xpoint is in L!D.

Proposition 6

For all object type expressions A and all �, hAi
S

�fX Tg is contractive in T . For all

type expressions A and all �, [[A]]�fX Tg is nonexpansive in T .

24

Proof

The claims are proved together, with an induction over a derivation that ` A obj

or ` A:

� For A = X, the �rst result is vacuous (since X is not an object type expression)

and the second one obvious.

� For A a function type, the �rst result is vacuous and the second one obvious.

� For A = Root, both results are easy, since Root does not depend on X.

� For A = A0[f : B; m : C], the �rst claim follows from the induction hypothesis

and Proposition 4, since \ preserves contractiveness; the second claim follows

from the �rst one since [, \, and � all preserve contractiveness.

� For A = Mu(X0)A0, the �rst claim follows from the induction hypothesis, since

hMu(X0)A0i
S

�fX Tg = hA
0i
S

�fX TgfX0 [[Mu(X0)A0]]�g
; the second claim follows from

the �rst one, as in the case of A = A0[f : B; m : C].

Corollary 3

For all object type expressions A and all �,

S
f�(S)(hAi

S

�fX Tg \R
S (fd : Rd ; me : Te; : : :)) j

fd; me; : : : distinct labels not in Ag

has a unique �xpoint as a function of T . This �xpoint is included in L!D.

Proof

The �rst part follows from Proposition 6, since [, \, and � all preserve contrac-

tiveness. The second part follows from Corollary 2.

Proposition 7

For all S, S, and �,

[[Root]]� = hRooti
S

� = [[Root Self=S]]� = (L!D)

Proof

We have hRooti
S

� = (L!D) from the de�nitions, and hence

[[Root Self=S]]� = (L!D)

Now we can calculate the semantics of Root. It is given as a union, and one of

the sets that participates in this union is �(S)hRooti
S

� . Since hRooti
S

� is identically

L!D, its �xpoint is L!D. The other sets in the union are included in L!D, by

Corollary 2, so it follows that [[Root]]� = (L!D).

Proposition 8

For all f, R, m, T , : : : , RS (f : R; m : T; : : :) is antimonotonic in S.

Proof

This follows immediately from the antimonotonicity of ! in its �rst argument,

since RS(f : R; m : T; : : :) uses S as �rst argument to ! in otherwise monotonic

contexts.

25

Proposition 9

For all object type expressions A and all �, hAi
S

� is antimonotonic in S.

Proof

This proof is almost identical to that of Proposition 5.

Note that Proposition 9 would be false if A was somehow allowed to refer to S. Some

object-oriented languages provide constructs that support analogous references to

the \Self" type. The use of a bounded intersection (\bounded quanti�cation")might

be of help in recovering from this problem. If S0 is a new variable, the function

\S�S0hAi
S

� is guaranteed to be antimonotonic in S0; it coincides with hAi
S

� for the

language we treat. The viability of this solution may deserve investigation.

On recursive types

Proposition 10

For all object type expressions A and all �, [[Mu(X)A]]� = [[A]]�fX [[Mu(X)A]]
�
g.

Proof

By de�nition, [[Mu(X)A]]� equals �(T)[[A]]�fX Tg. In turn, �(T)[[A]]�fX Tg equals

[[A]]�fX [[Mu(X)A]]�g
by unfolding.

Proposition 11

If A and B are type expressions with the same in�nite unfolding then [[A]]� = [[B]]�
for all �.

Proof

Proposition 10 shows the soundness of �nite unfolding. The soundness of in�nite

unfolding follows because the semantics of a recursive type is the limit of the se-

mantics of its �nite unfoldings. (In a �nite unfolding up to depth n, we \plug"

with Root any branches that would go beyond depth n.) In turn, this limit prop-

erty holds because [[D[f : X; m : Y]]] is contractive in the interpretation of X and Y, by

Proposition 4, and because recursion can go only through the types of �elds and

methods in object types.

On subtyping

Proposition 12

For all object type expressions A[f : B; m : C] and all �,

[[A[f : B; m : C]]]� � [[A]]�

26

Proof

[[A[f : B; m : C]]]�
=
S
f�(S)(hA[f : B; m : C]i

S

� \R
S(fd : Rd ; me : Te; : : :)) j

fd; me; : : : distinct labels not in A[f : B; m : C]g

=
S
f�(S)(hAi

S

� \R
S(f : [[B]]�; m : [[C]]�) \R

S (fd : Rd ; me : Te; : : :)) j

fd; me; : : : distinct labels not in A; not f; mg

=
S
f�(S)(hAi

S

� \R
S(f : [[B]]�; m : [[C]]�; fd : Rd ; me : Te; : : :)) j

fd; me; : : : distinct labels not in A; not f; mg

�
S
f�(S)(hAi

S

� \R
S(fd : Rd ; me : Te; : : :)) j

fd; me; : : : distinct labels not in Ag

= [[A]]�

The inclusion step depends on the facts that f and m do not occur in A and that

[[B]]�; [[C]]� 2 Idl.

On extension and assignment

Proposition 13

If A is an object type expression with no f; m in A, � an environment, and [[a]]� 2

hAi
S

� , [[a]]�(f) = �, [[a]]�(m) = �, [[b]]� 6= �, [[c]]� 6= �, then [[a[f = b; m = c]]]� 2 hAi
S

� .

Proof

The argument is by induction on the structure of the proof that A is an object type

expression:

� For Root, we use Proposition 3: if [[a]]� 2 hRooti
S

� then [[a]]� 2 (L!D), and

hence [[a[f = b; m = c]]]� 2 hRooti
S

� .

� Consider an object type expression of the form A[fd : Bd; me : Ce], with fd and

me distinct from f and m. If [[a]]� 2 hA[fd : Bd; me : Ce]i
S

� then [[a]]� 2 hAi
S

� , and

then [[a[f = b; m = c]]]� 2 hAi
S

� by [[a]]�(f) = �, [[a]]�(m) = �, [[b]]� 6= �, [[c]]� 6= �,

and the induction hypothesis. In addition, [[a]]� 2 R
S(fd : [[Bd]]�; me : [[Ce]]�),

and hence [[a]]� 2 (L!D); since fd and me are distinct from f and m, and

[[a]]�(f) = �, [[a]]�(m) = �, [[b]]� 6= � and [[c]]� 6= �, we get [[a[f= b; m = c]]]� 2

RS (fd : [[Bd]]�; me : [[Ce]]�). Therefore, if [[a]]� 2 hA[fd : Bd; me : Ce]i
S

� then

[[a[f = b; m = c]]]� 2 hA[fd : Bd; me : Ce]i
S

� .

� The case of object type expressions of the form Mu(X)A is handled by unfolding

the de�nition of hMu(X)Ai
S

� and invoking the induction hypothesis with the

environment �fX [[Mu(X)A]]�g.

(In this proof, as in many others below, the case of expressions that denote ? is

rather trivial, since ideals are required to contain ? by de�nition; we tend to ignore

this case.)

Proposition 14

For all R, T , and S:

27

� If o 2 RS(f : R) then o(f) 6= �.

� If o 2 RS(m : T) then o(m) 6= �.

Proof

Since R 2 Idl, it cannot contain �. This settles the �rst claim. The argument for

the second claim is almost identical, with S!T instead of R.

Proposition 15

For all object type expressions A, all S, and all �:

� If [[a]]�(f) 6= � and [[b]]� 6= � then:

| If [[a]]� 2 hAi
S

� and no f in A then [[a:f := b]]� 2 hAi
S

� .

| If [[a]]� 2 R
S(fd : Rd ; me : Te; : : :) and f is not among fd, me, : : : then

[[a:f := b]]� 2 R
S(fd : Rd ; me : Te; : : :).

� If [[a]]�(m) 6= � and [[c]]� 6= � then:

| If [[a]]� 2 hAi
S

� and no m in A then [[a:m := c]]� 2 hAi
S

� .

| If [[a]]� 2 R
S(fd : Rd ; me : Te; : : :) and m is not among fd, me, : : : , then

[[a:m := c]]� 2 R
S(fd : Rd ; me : Te; : : :).

Proof

For �elds and for methods, the �rst claim is proved by induction on the structure

of the proof that A is an object type expression, with a proof similar to that for

Proposition 13; the second claim is proved directly from the de�nitions.

On reading and invocation

We de�ne an operator that re
ects the self-application present in the semantics of

object type expressions:

dAe� = fo 2 (L!D) j o 2 hAi
Cfog
� g

where Cfog is the least ideal containing o, that is, fv j v v og.

Proposition 16

For all object type expressions A and all �:

� If f : B in A and o 2 dAe� then o(f) 2 [[B]]�.

� If m : C in A and o 2 dAe� then o(m) 2 (D!D) and o(m)(o) 2 [[C]]�.

Proof

We obtain the �rst result by induction on the structure of the proof that A is an

object type:

� For Root the proof is vacuous, as Root has no �elds or methods.

� For A[f : B; m0 : C], the proof is immediate from the de�nitions.

� For A[f0 : B0; m0 : C] with f 6= f0 the proof follows from the induction hypothesis.

� Recursive object type expressions are handled by unfolding.

The claim for methods is proved similarly.

28

Proposition 17

For all object type expressions A and all �,

�(S)hAi
S

� � dAe�

Proof

The �xpoint considered exists, by Proposition 5. Now we argue by induction on the

structure of the proof that A is an object type:

� If A is Root, then the result follows from dRoote� = (L!D), which in turn

follows from Proposition 7.

� Assume that A is A0[f : B; m : C]. Let T = �(S)hAi
S

� , and let v be an element

of T . By unfolding, such a v is also in hAi
T

� . The de�nitions yield v 2 hA0i
T

� .

By Proposition 9, we also have v 2 hA0i
Cfvg
� , since Cfvg � T . In addition,

the de�nitions also give v(f) 2 [[B]]�, and v(m)(u) 2 [[C]]� for every u 2 T . In

particular, for u = v, we get v(m)(v) 2 [[C]]�. The properties of ideals yield that

v(m)(v0) 2 [[C]]� for every v0 v v. Combining these results with v 2 hA0i
Cfvg
� ,

we obtain the desired conclusion from the de�nitions.

� Assume that A is Mu(X)A0. We have:

hMu(X)A0i
S

� = hA0i
S

�fX [[Mu(X)A0]]�g

and

dMu(X)A0e� = dA
0e�fX [[Mu(X)A0]]�g

The result then follows from the induction hypothesis (used with the envi-

ronment �fX [[Mu(X)A0]]�g).

Main results

We say that � and E are consistent (and write � j= E) if whenever x : A occurs in E

then �(x) 2 [[A]]�.

Theorem 3

Assume that � j= E. Then:

� If E ` A then [[A]]� 2 Idl.

� If E ` A obj then [[A]]� 2 Idl and [[A]]� � (L!D).

� If E ` A = B then [[A]]� = [[B]]�.

� If E ` A � B then [[A]]� � [[B]]�.

� If E ` a : A then [[a]]� 2 [[A]]�.

� If E ` a : A Self=S then [[a]]� 2 [[A Self=S]]�.

Proof

The �rst claim follows immediately from the de�nitions. The second claim,discussed

above, is a consequence of Corollary 2. The third claim follows from Proposition 11,

which justi�es the rules for equality of recursive object types. The fourth claim

29

follows from Proposition 12, which justi�es the subtyping rule for object types.

(The hypotheses of that rule imply that A[f : B; m : C] is an object type expression,

so Proposition 12 is applicable.) It remains to check the soundness of the rules for

typechecking; we discuss those related to objects.

� For
E ` a : A Self=A

E ` a : A
The assumption yields that A is an object type expression, by Proposition 1.

Therefore, [[A]]� is de�ned as a union of �xpoints, one of which is �(S)hAi
S

� .

This set equals hAi
�(S)hAiS

�

� . Since [[A]]� � �(S)hAi
S

� , Proposition 9 implies that

hAi
�(S)hAiS

�

� � hAi
[[A]]

�

� . In short, we obtain:

[[A]]� � �(S)hAi
S

�

= hAi
�(S)hAiS�
�

� hAi
[[A]]�
�

= [[A Self=A]]�

� For
E ` S

E ` nil : Root Self=S

Since [[nil]]� 2 [[Root]]�, the soundness of this rule follows from Proposition 7,

which says that [[Root]]� = [[Root Self=S]]� for any S.

� For

E ` a : A Self=S E ` b : B E ` c : D!C

E ` S�D no f; m in A

E ` a[f = b; m = c] : A[f : B; m : C] Self=S

By assumption, we have that [[a]]� 2 [[A Self=S]]�, [[b]]� 6= �, and [[c]]� 6=

�. Moreover, Proposition 1 guarantees that A is an object type expression

and gives the form of a, and from this form it follows that [[a]]�(f) = � and

[[a]]�(m) = �. Proposition 13 implies that [[a[f = b; m = c]]]� 2 [[A Self=S]]�.

The assumptions also yield [[b]]� 2 [[B]]� and [[c]]� 2 [[S]]�![[C]]�, and hence

[[a[f = b; m = c]]]� 2 R
[[S]]�(f : [[B]]�; m : [[C]]�).

Now it follows from the de�nition of [[A[f : B; m : C] Self=S]]� as the intersec-

tion of [[A Self=S]]� and R
[[S]]

�(f : [[B]]�; m : [[C]]�) that

[[a[f = b; m = c]]]� 2 [[A[f : B; m : C] Self=S]]�

� For
E ` a : A E ` A obj f : B in A

E ` a:f : B
The assumption that E ` a : A means that:

[[a]]� 2
[
f�(S)(hAi

S

� \R
S(fd : Rd ; me : Te; : : :)) j

fd; me; : : : distinct labels not in Ag

30

For [[a]]� �nite, it follows that [[a]]� is in one of the sets that participate in the

union, �(S)(hAi
S

�\R
S (fd : Rd ; me : Te; : : :)). (In�nite elements are handled by

continuity.) Proposition 17 guarantees that [[a]]� is in dA[fd : Rd; me : Te; : : :]e�0 ,

where Rd, Te, : : :are new type variables and �0 extends � to map them to Rd ,

Te, : : : . We also obtain that [[a]]� 2 (L!D).

Now, A[fd : Rd; me : Te; : : :] is an extension of A, and hence f : B in A implies

f : B in A[fd : Rd; me : Te; : : :]. Since [[a]]� 2 (L!D), [[a:f]]� = [[a]]�(f), and

Proposition 16 yields that [[a:f]]� 2 [[B]]�.

� For
E ` a : A E ` A obj m : C in A

E ` a:m : C
The soundness argument for this rule resembles the previous one, using Propo-

sitions 16 and 17. At the end of the argument, we use an additional fact

obtained from Proposition 16, that [[a]]�(m) 2 (D!D); this is needed for

guaranteeing that [[a:m]]� = [[a]]�(m)([[a]]�).

� For
E ` a : A E ` b : B f : B in A

E ` a:f := b : A
Since f : B in A, A must be an object type expression, and we can assume it

is of the form A0[f : B; m : C], all other cases being similar to this one. Assume

further that [[a]]� is �nite. (In�nite elements are handled by continuity.)

If [[a]]� 2 [[A]]� then [[a]]� is in some ideal T � [[A]]� of the form

�(S)(hAi
S

� \R
S(fd : Rd ; me : Te; : : :))

which equals

�(S)(hA0i
S

� \R
S(f : [[B]]�; m : [[C]]�) \R

S(fd : Rd ; me : Te; : : :))

and, by unfolding,

hA0i
T

� \R
T (f : [[B]]�; m : [[C]]�) \R

T (fd : Rd ; me : Te; : : :)

So [[a]]� 2 R
T (f : [[B]]�), and, by Proposition 14, [[a]]�(f) 6= �. If in addition

[[b]]� 2 [[B]]�, then [[a:f := b]]� 2 R
T (f : [[B]]�). Since A0[f : B; m : C] is an ob-

ject type expression, we have no f in A0, and f di�ers from fd, me, : : : , so

Proposition 15 applies, and yields

[[a:f := b]]� 2 hA
0i
T

� \R
T (f : [[B]]�; m : [[C]]�) \R

T (fd : Rd ; me : Te; : : :)

that is, [[a:f := b]]� 2 T , hence [[a:f := b]]� 2 [[A]]�.

� For
E ` a : A E ` g : D!C E ` A�D m : C in A

E ` a:m := g : A

The proof is similar to the previous one. The only di�erence is that here we

use [[g]]� 2 [[A]]�![[C]]� and [[A]]� � T in order to derive that [[a:f := g]]� 2

RT (m : [[C]]�).

The treatment of the rules not related to objects is standard.

31

Corollary 4

If � j= E and E ` a : A then [[a]]� 6= �.

Proof

If � j= E and E ` a : A then [[a]]� 2 [[A]]� by Theorem 3. Moreover, E ` a : A yields

E ` A, and so [[A]]� 2 Idl by Theorem 3. Since � 62 [[A]]�, we obtain [[a]]� 6= �.

Corollary 5

If a) a0 and ` a : A then a0 is not wrong.

Proof

Any � is consistent with the empty environment, so if ` a : A then [[a]]� 6= �, by

Corollary 4. In addition, if a) a0 then [[a]] = [[a0]], by Theorem 2. Hence [[a0]]� 6= �,

and a0 is not wrong.

4.3 Reasoning about programs

The denotational semantics can also serve in validating rules for reasoning about

programs. We only start the explorations of such rules, by giving two simple exam-

ples.

� For assignment to �elds, we have an inequational rule. The relation v is the

evident syntactic representation of the domain order, as in Scott's LCF.

E ` a : A E ` b : B f : B in A

E ` (a:f := b):f v b : B

In order to justify the rule, we observe that (a:f := b):f di�ers from b only

when it denotes ? or �; moreover, the hypotheses exclude this last possibility.

An analogue for this rule in an imperative setting might be that if P is a

predicate, P(b) holds before the assignment a:f := b, and this assignment

terminates, then P(a:f) holds afterwards.

� A similar inequational rule is sound for overriding:

E ` a : A E ` c : D!C E ` A�D m : C in A

E ` (a:m := c):m v c(a) : C

A useful project would be to extend the denotational semantics to a larger frag-

ment of Modula-3, and then prove the soundness of a veri�cation system for that

language. This project is appealing because Modula-3 was designed with formal

methods in mind and there are active e�orts in the speci�cation and veri�cation of

Modula-3 programs (Cardelli and Nelson, 1993; Guttag and Horning, 1993).

4.4 A stronger semantics of types

The ideal semantics of Subsection 4.2 does not validate all reasonable rules. For

example, we might expect that a function in Root!Nat be constant, but it need

not be in the ideal semantics. A stronger semantics may be based on per models

(e.g., (Amadio, 1991; Cardone, 1989; Abadi and Plotkin, 1990)) or, perhaps better,

on parametric per models (e.g., (Bainbridge et al., 1990)).

32

For the sake of simplicity, we do not use pers in the body of this paper. Here we

sketch the modi�cations necessary for obtaining a per semantics, and then discuss

the result. As Amadio and Cardone, we take a metric approach. Finding a per

semantics along the lines of (Abadi and Plotkin, 1990) remains a challenge.

A complete uniform per is a symmetric, transitive, binary relation R on D with

the properties:

� R is nonempty;

� if uRv then (pi(u))R(pi(v)) for all i;

� R is closed under limits of increasing sequences in the v order.

The distance between two pers is 2�r, where r is the minimum rank where the two

pers di�er, and it is 0 if the two pers are equal.

The complete uniform pers that do not relate � to any value provide suitable

denotations for type expressions. The collection of all such complete uniform pers

is CUPer.

The changes required in replacing Idl with CUPer are mostly local. Like ideals,

complete uniform pers can be combined with intersection and (not as easily) with

union. Furthermore, there is a suitable function-space operator:

R!T = f(?;?)g[f(f; g) 2 (D!D) � (D!D) j if xRy then f(x)Tg(y)g

and we can solve �xpoint equations. As for object types, we update the de�nitions

of hRooti
S

� and RS(f : R; m : T; : : :); they become:

hRooti
S

� = (L!D) � (L!D)

RS(f : R; m : T; : : :) = f(o; o0) 2 (L!D) � (L!D) j

(o(f); o0(f)) 2 R ^ (o(m); o0(m)) 2 (S!T) ^ : : :g

Here, as in many other obvious places, we replace L!D with (L!D) � (L!D).

With this change, the propositions up to Proposition 12 are proved as for ideals.

To adapt Propositions 13{15, we interpret v 2 R as (v; v) 2 R, for v a value and

R a per. For Propositions 16 and 17, we note that the least complete uniform per

containing o is Cfog = f(o; o)g [
S

if(pi(o); pi(o))g. The main results follow.

The advantages of pers over ideals in the semantics of typed lambda calculi are

well known (see for example (Gunter, 1992, p. 266)). Basically, pers validate the �

rule, according to which if b and b0 are equal as elements of B for all x in A then

fun(x : A)b and fun(x : A)b0 are equal as elements of A!B. We bene�t from this in

Baby Modula-3, which is an extension of a typed lambda calculus. We also obtain

new equalities of objects. For example, the functions in Root!Nat are constant.

Further, if A is Root[f : Nat; m : Nat] and c and c0 are equal as elements of A!Nat

then nil[f = 0; m = c] and nil[f = 0; m = c0] are equal as elements of A.

The per semantics does not seem to validate all reasonable equations, however.

Consider A0 = Root[f : Nat; m : Nat][f0 : Nat; m0 : Nat], a subtype of A. The objects

nil[f = 0; m = fun(x : A)0]

and

nil[f = 0; m = fun(x : A0)(x:f0)][f0 = 0; m0 = fun(x : A0)(x:m0)]

33

are not equal as elements of A, although they behave identically in any context that

treats them as elements of A.

5 Related work

In the last few years there have been diverse works on the foundations of object-

oriented programming. Some focused on untyped languages, for example Cook's

thesis (1989). We have mentioned the in
uential papers of Cardelli and Mitchell,

which concern typed languages. Here we discuss other works on typed languages.

They are very recent and ongoing, and they seem to be the �rst to present thorough

soundness results. The exact relations between the approaches are not entirely clear

at this point.

We can classify formal accounts of object-oriented languages along two dimen-

sions, the language treated and the description method used:

1. The language treated. There are several main families of object-oriented lan-

guage. In class-based languages, methods are attached to classes, which are

used to generate objects; in delegation-based languages, methods are attached

to individual objects. In particular, delegation-based languages may allow

overriding methods in individual objects (like Baby Modula-3). Such a fea-

ture would be problematic in the class-based languages discussed below.

2. The description method used. Some of the accounts are based on syntac-

tic translations into more or less traditional higher-order languages, such as

System F enriched with subtyping, recursion, and records; when the target

language chosen is su�ciently well understood, this yields a denotational se-

mantics as a side-product. Other accounts give a direct denotational seman-

tics.

Continuing his original work, now with Honsell and Fisher, Mitchell presents a

delegation-based language (1993). The untyped version of this language and that of

Baby Modula-3 are quite similar. The type systems seem incomparable: Mitchell et

al. concentrate on inheritance, but do not provide a subtype relation. Their study

is syntactic, and the main technical result is a subject-reduction theorem.

Bruce (1993) treats a class-based language called TOOPL. The language includes

a rich object system. It does not allow explicit recursion; rather, some recursion is

obtained through the class mechanisms. Bruce's technique draws on a fairly long line

of previous papers, such as (Cook et al., 1990). The method is essentially semantic,

but parts of the constructions can be seen as translations into a language with

recursion and F-bounded universal quanti�ers. The result is rather complicated.

However, it is possible that this complexity is intrinsic to the project of giving a

semantics to TOOPL.

Another interesting approach is that of Pierce and Turner (1993). Again, they

treat a class-based language. This language is more limited than Bruce's, and in

particular it lacks binary methods. (Pierce and Turner have gone on to propose a

new way to model binary methods (1992).) The semantics of the language is based

34

on a translation, and it exploits abstract data types rather than polymorphic types

and recursion.

Castagna, Ghelli, and Longo (1992; 1992) suggest a very di�erent view of object-

oriented programming languages. They present a core calculus, with classes, sub-

typing, and overloaded functions. It leads to an original treatment of constructs

such as multiple dispatch in the CLOS style (Steele, 1990). (All the other papers

discussed here deal only with single dispatch.)

Modula-3 is a rather traditional language, with no classes, and so is Baby Modula-

3. We present a semantic de�nition, but not a translation into a standard typed

lambda calculus. It is however possible that the semantic de�nition may lead to

such a translation. In particular, the union operation in our semantics of object

types may correspond to an existential quanti�er. Other semantic constructs clearly

correspond to record types, and in that our work continues that of Cardelli and

Mitchell. We leave as an open problem the de�nition of a translation from Baby

Modula-3 into a standard typed lambda calculus.

Thus, Baby Modula-3 di�ers signi�cantly from the other languages used in formal

studies, and the theory of objects presented relies on some new ideas and construc-

tions. However, the various theories of objects seem compatible. A synthesis might

be both viable and useful.

Acknowledgments

I would especially like to thank Luca Cardelli, with whom I originally wrote type

rules for Baby Modula-3 and who helped me in some di�cult choices. Luca Cardelli

and Kim Bruce helped in clarifying the relation between this and previous work.

Bill Kalsow provided useful comments on the presentation and explained delicate

aspects of Modula-3. Bob Harper and Benjamin Pierce provided further comments

on the presentation. Cynthia Hibbard suggested stylistic improvements. Finally,

anonymous referees suggested many improvements both of contents and of form.

35

References

Abadi, M. and Plotkin, G. 1990. A per model of polymorphism and recursive types. In

Proceedings of the Fifth Annual Symposium on Logic In Computer Science Conference,
pages 355{365. IEEE Computer Society.

Amadio, R. and Cardelli, L. 1991. Subtyping recursive types. In Proceedings of the

Eighteenth Annual ACM Symposium on Principles of Programming Languages, pages
104{118. ACM.

Amadio, R. 1991. Recursion over realizability structures. Information and Computation,
91(1):55{85.

Bainbridge, E. S., Freyd, P. J., Scedrov, A. and Scott, P. J. 1990. Functorial polymorphism.

Theoretical Computer Science, 70(1):35{64. Corrigendum in (3)71, April 1990, page 431.

Bruce, K. 1993. Safe type checking in a statically-typed object-oriented programming

language. In Proceedings of the Twentieth Annual ACM Symposium on the Principles

of Programming Languages, pages 285{298. ACM.

Cardelli, L. 1986. Amber. In Cousineau, G., Curien, P.-L. and Robinet, B., editors, Com-

binators and Functional Programming Languages. Lecture Notes in Computer Science

No. 242. Springer-Verlag.

Cardelli, L., Donahue, J., Glassman, L., Jordan, M., Kalsow, B. and Nelson, G. 1988.

Modula-3 report. Research Report 31, Digital Equipment Corporation Systems Re-
search Center.

Cardelli, L. 1992. Extensible records in a pure calculus of subtyping. In Gunter, C. and

Mitchell, J. C., editors, Theoretical Aspects of Object-oriented Programming: Types,

Semantics and Language Design. MIT Press, to appear. A preliminary version has

appeared as SRC Research Report No. 81.

Cardelli, L. and Nelson, G. 1993. Structured command semantics. Draft.

Cardone, F. 1989. Relational semantics for recursive types and bounded quanti�cation.

In Ausiello, G., Dezani-Ciancaglini, M. and Ronchi Della Rocca, S., editors, Automata,

Languages and Programming. Lecture Notes in Computer Science No. 372, pages 164{
178. Springer-Verlag.

Castagna, G., Ghelli, G. and Longo, G. 1992. A calculus for overloaded functions with
subtyping. Technical Report LIENS-92-4, Ecole Normale Sup�erieure.

Castagna, G. 1992. Strong typing in object-oriented paradigms. Technical Report LIENS-

92-11, Ecole Normale Sup�erieure.

Cook, W. R. 1989. A denotational semantics of inheritance. PhD thesis, Brown University.

Cook, W. R., Hill, W. L. and Canning, P. S. 1990. Inheritance is not subtyping. In

Seventeenth Annual ACM Symposium on Principles of Programming Languages, pages

125{135. ACM.

Girard, J.-Y. 1972. Interpr�etation Fonctionnelle et Elimination des Coupures de l'Arith-

m�etique d'Ordre Sup�erieur. Th�ese de doctorat d'�etat, Universit�e Paris VII.

Gunter, C. 1992. Semantics of Programming Languages: Structures and Techniques. Foun-

dations of Computing Series. The MIT Press, Cambridge, Massachusetts.

Guttag, J. V. and Horning, J. J., editors. 1993. Larch: Languages and Tools for Formal

Speci�cation. Texts and monographs in computer science. Springer-Verlag.

MacQueen, D., Plotkin, G. and Sethi, R. 1986. An ideal model for recursive polymorphic

types. Information and Control, 71:95{130.

Mitchell, J. C. 1990. Toward a typed foundation for method specialization and inheri-
tance. In Seventeenth Annual ACM Symposium on Principles of Programming Lan-

guages, pages 109{124. ACM.

Mitchell, J. C., Honsell, F. and Fisher, K. 1993. A lambda calculus of objects and method
specialization. In Proceedings of the Eight IEEE Annual Symposium on Logic in Com-

puter Science, pages 26{38. IEEE Computer Society.

Nelson, G., editor. 1991. Systems Programming in Modula-3. Prentice Hall.

36

Pierce, B. C. and Turner, D. N. 1992. Statically typed multi-methods via partially abstract

types. Draft.
Pierce, B. C. and Turner, D. N. 1993. Object-oriented programming without recursive

types. In Proceedings of the Twentieth Annual ACM Symposium on the Principles of

Programming Languages, pages 299{312. ACM.
Plotkin, G. 1981. A structural approach to operational semantics. Technical Report

DAIMI FN-19, Computer Science Department, Aarhus University, Aarhus, Denmark.

Steele, G. L. 1990. Common Lisp: The Language. Digital Press, Bedford, Massachusetts,
second edition.

Wand, M. 1987. Complete type inference for simple objects. In Proceedings of the Second

Symposium on Logic in Computer Science, pages 37{44. IEEE Computer Society. Cor-
rigendum in Proceedings of the Third Symposium on Logic in Computer Science, page

132, 1988.

