
94

How to Write a Proof

Leslie Lamport

February 14, 1993

Systems Research Center

DEC's business and technology objectives require a strong research program.

The Systems Research Center (SRC) and three other research laboratories

are committed to �lling that need.

SRC began recruiting its �rst research scientists in l984|their charter, to

advance the state of knowledge in all aspects of computer systems research.

Our current work includes exploring high-performance personal computing,

distributed computing, programming environments, system modelling tech-

niques, speci�cation technology, and tightly-coupled multiprocessors.

Our approach to both hardware and software research is to create and use

real systems so that we can investigate their properties fully. Complex

systems cannot be evaluated solely in the abstract. Based on this belief,

our strategy is to demonstrate the technical and practical feasibility of our

ideas by building prototypes and using them as daily tools. The experience

we gain is useful in the short term in enabling us to re�ne our designs, and

invaluable in the long term in helping us to advance the state of knowledge

about those systems. Most of the major advances in information systems

have come through this strategy, including time-sharing, the ArpaNet, and

distributed personal computing.

SRC also performs work of a more mathematical
avor which complements

our systems research. Some of this work is in established �elds of theoretical

computer science, such as the analysis of algorithms, computational geome-

try, and logics of programming. The rest of this work explores new ground

motivated by problems that arise in our systems research.

DEC has a strong commitment to communicating the results and experience

gained through pursuing these activities. The Company values the improved

understanding that comes with exposing and testing our ideas within the

research community. SRC will therefore report results in conferences, in

professional journals, and in our research report series. We will seek users

for our prototype systems among those with whom we have common research

interests, and we will encourage collaboration with university researchers.

Robert W. Taylor, Director

How to Write a Proof

Leslie Lamport

February 14, 1993

c
Digital Equipment Corporation 1993

This work may not be copied or reproduced in whole or in part for any com-

mercial purpose. Permission to copy in whole or in part without payment

of fee is granted for nonpro�t educational and research purposes provided

that all such whole or partial copies include the following: a notice that

such copying is by permission of the Systems Research Center of Digital

Equipment Corporation in Palo Alto, California; an acknowledgment of the

authors and individual contributors to the work; and all applicable portions

of the copyright notice. Copying, reproducing, or republishing for any other

purpose shall require a license with payment of fee to the Systems Research

Center. All rights reserved.

i

Author's Abstract

A method of writing proofs is proposed that makes it much harder to prove

things that are not true. The method, based on hierarchical structuring, is

simple and practical.

ii

Contents

1 Mathematical Proofs 1

2 An Example 2

2.1 The High-Level Proof : 2

2.2 Lower Levels of the Proof : 3

3 Further Details 5

3.1 A More Compact Numbering Scheme : : : : : : : : : : : : : : 5

3.2 Proof by Cases : 6

4 How Good Are Structured Proofs? 9

4.1 My Experience : 9

4.2 Writing Structured Proofs : 10

4.3 Reading Structured Proofs : 10

4.4 The Future : 11

Acknowledgements 11

References 12

iii

1 Mathematical Proofs

Mathematical notation has improved over the past few centuries. In the

seventeenth century, a mathematician might have written

There do not exist four positive integers, the last being greater

than two, such that the sum of the �rst two, each raised to the

power of the fourth, equals the third raised to that same power.

(1)

How much easier it is to read the modern version

There do not exist positive integers x, y, z, and n, with n > 2,

such that xn + y
n = z

n.
(2)

Yet, the structure of mathematical proofs has not changed in 300 years.

The proofs in Newton's Principia di�er in style from those of a modern

textbook only by being written in Latin. Proofs are still written like essays,

in a stilted form of ordinary prose.

Formulas written in prose, like (1), are hard to understand and hard to

get right. Proofs written in prose are also hard to understand and hard to

get right. Anecdotal evidence suggests that as many as a third of all papers

published in mathematical journals contain mistakes|not just minor errors,

but incorrect theorems and proofs.

Statement (2) is easier to read than statement (1) for two reasons: vari-

ables are given names, and formulas are written in a more structured fashion.

The bene�ts of using names is obvious. The bene�t of structure is less ob-

vious; we are so used to formulas like xn + y
n = z

n that we tend to take

their structure for granted, and to think they are easy to read just because

they are short. Although the brevity of the formula helps, it is primarily

its structure that makes it easier to understand than a prose version. The

expression

x raised to the power n

plus

y raised to the power n equals z raised to the power n

is quite long, but it is easy to read because of its structure.

The same principles that make formulas easier to understand can make

proofs easier to understand: proof steps should be referred to by name, and

the structure of the proof should be manifest.

The proof style I advocate is a re�nement of one, called natural deduction,

that has been used by some logicians for almost a century. Natural deduction

1

has been viewed primarily as a method of writing proofs in a formal logic.

What I will describe is a practical method for writing the less formal proofs of

ordinary mathematics. It is based on hierarchical structuring|a successful

tool for managing complexity.

Avoiding mistakes when manipulating formulas requires careful, detailed

calculations. Avoiding mistakes when proving theorems requires careful, de-

tailed proofs. When �rst shown a detailed, structured proof, most mathe-

maticians react: \I don't want to read all those details; I want to read only

the general outline and perhaps some of the more interesting parts." My

response is that this is precisely why they want to read a hierarchically struc-

tured proof. The high-level structure provides the general outline; readers

can look at as much or as little of the lower-level detail as they want. How-

ever, until one gets used to them, structured proofs do look intimidating.

The ideal tool for reading a structured proof would be a computer-based

hypertext system. It would allow the reader to concentrate on a particular

level in the structure, suppressing lower-level details. In a printed version,

one can ignore lower-level details only by skipping over that part of the text.

While this is not ideal, the structure is displayed by the format, making such

skipping fairly easy|certainly much easier than in a prose-style proof, where

the format provides little clue to the logical structure.

2 An Example

I have discovered a remarkable proof of (2), but it is too long to use here

as an example. Instead, I take as an example the classic proof that
p
2 is

irrational. Letting Q denote the set of rationals, the precise statement of

the result to be proved is

Theorem There does not exist r in Q such that r2 = 2.

To illustrate hierarchical structure, the proof is carried out to a much lower

level of detail than necessary for a typical reader.

2.1 The High-Level Proof

The high-level structure of the proof|what one would see �rst with a hyper-

text system|appears in Figure 1. The proof assumes a lemma from which

one can deduce that, for any integer n, if 2 divides n2 then 2 divides n. The

set of integers is denoted by Z.

2

Theorem There does not exist r in Q such that r2 = 2.

Proof sketch: We assume r2 = 2 for r 2 Q and obtain a contradiction. Writing
r = m=n, where m and n have no common divisors (step 1), we deduce from
(m=n)2 = 2 and the lemma that both m and n must be divisible by 2 (steps 2
and 3).
Assume: 1. r 2 Q

2. r2 = 2
Prove: False

1. Choose m, n in Z such that
1. gcd(m;n) = 1
2. r = (m=n)

2. 2 divides m.

3. 2 divides n.

4. Q.E.D.

Figure 1: The highest level of a structured proof of the irrationality of
p
2.

After the statement of the theorem comes a Proof Sketch, which is

an informal explanation of the following proof. The proof sketch serves as

a \road map" to the proof, helping the reader understand intuitively why

the proof works. This proof is so simple that the proof sketch is almost

super
uous|the only information it provides that is not obvious from the

high-level proof itself is that the lemma is used to prove steps 2 and 3.

Next comes the Assume and Prove clauses. They assert that to prove

the theorem, it su�ces to assume the two hypotheses r 2 Q and r2 = 2, and

to prove false.

Finally comes the proof. This is a sequence of statements that ends

with \Q.E.D.", which denotes the assertion to be proved|in this case, false.

Think of this proof as the left half (the statements) of a high-school geometry

style proof, the right half (the reasons) being omitted.1

2.2 Lower Levels of the Proof

Let us now examine the proof of step 1, which appears in Figure 2. It is

clear enough what must be proved, so no Assume/Prove is needed. The

proof consists of �ve steps, numbered 1.1 through 1.5. There is also a Let

1In their introductory plane geometry course, American students are taught to write

proofs in a two-column format, the left column containing a sequence of statements and

the right column containing their justi�cations.

3

1. Choose m, n in Z such that
1. gcd(m;n) = 1
2. r = (m=n)

1.1. Choose p, q in Z such that q 6= 0 and r = p=q.

Let: m
�

= p= gcd(p; q)

n
�

= q= gcd(p; q)

1.2. m;n 2 Z

1.3. r = m=n

1.4. gcd(m;n) = 1

1.5. Q.E.D.

Figure 2: The proof of Step 1.

statement, which de�nes the required m and n. (I prefer
�

= to the more

common symbol � for \equals by de�nition", since � can also mean logical

equivalence.)

Each of these �ve steps in turn has its proof. The proof of 1.1 is just

Proof: By assumption :1.

Assumption :1 is the �rst assumption (r 2 Q) in the proof of the theorem.

(The numbering scheme for assumptions is explained below.) A hierarchical

proof must stop somewhere. The general question of where to stop is ad-

dressed in Section 4.2. In this proof, we assume the reader understands that

the de�nition of Q implies that r can be written as the requisite quotient of

integers. The proof of 1.2 is the equally simple.

Proof: 1.1 and de�nition of m and n.

Step 1.3 is proved by a string of equalities, each with a brief justi�cation.

Proof: m=n =
p= gcd(p; q)

q= gcd(p; q)
[De�nition of m and n]

= p=q [Simple algebra]
= r [By 1.1]

This type of proof, consisting of a string of equalities, is simple and di-

rect; it works as well for proving any transitive relation, such as <, logical

equivalence, and implication. It should be used whenever possible.

Step 1.4 has the multistep proof shown in Figure 3, consisting of steps

1.4.1 through 1.4.3. The \1.4:1" in the proof of step 1.4.1 denotes assump-

tion 1 (s divides m) in the proof of step 1.4. The theorem itself is considered

4

1.4. gcd(m;n) = 1

Proof: By the de�nition of the gcd, it su�ces to:
Assume: 1. s divides m

2. s divides n
Prove: s = 1

1.4.1. s � gcd(p; q) divides p.
Proof: 1.4:1 and the de�nition of m.

1.4.2. s � gcd(p; q) divides q.
Proof: 1.4:2 and de�nition of n.

1.4.3. Q.E.D.
Proof: 1.4.1, 1.4.2, and the de�nition of gcd.

Figure 3: The proof of step 1.4.

.

to be a step having the null string as its number, which explains why \:1"

denotes assumption 1 of the theorem.

3 Further Details

3.1 A More Compact Numbering Scheme

The numbering scheme used in the example is �ne for short proofs, with

few levels of nesting. However, long proofs can have many levels|I often

write proofs more than six levels deep. The number 3.1.1.1.1.2 takes a lot

of space, and having to distinguish it from 3.1.1.1.2 can soon lead to eye

strain.

We eliminate long step numbers by abbreviating 3.1.1.1.2, a �ve-part

step number ending in 2, as h5i2. Figure 4 shows a fragment of a proof

written with the two numbering styles. To understand why abbreviated

numbers su�ce, consider where step 3.1.1.1.2 can be used in this proof. The

step can be used only after it is proved, but it cannot be used anywhere after

its proof. Step 3.1.1.1.2 cannot be used in the proof of step 3.1.1.2 because

it was proved under the assumption of step 3.1.1.1, which is di�erent from

step 3.1.1.2's assumption. The step can be used only where the assumptions

under which it was proved hold, which means that it can be used only within

the proof of its parent, step 3.1.1.1. Step 3.1.1.1.2 is the only one in the proof

of its parent with a �ve-part number ending in 2. Although there can be

many proof steps with the same abbreviated number h5i2, no two of them

5

3.1.1.1. Assume: x 2 S

Prove: : : :

3.1.1.1.1. : : :
3.1.1.1.2. : : :
3.1.1.1.3. Q.E.D.

By 3.1.1.1.1 and assumption 3.1.1.1.
3.1.1.2. Assume: x 2 T

Prove: : : :

: : :

h4i1. Assume: x 2 S

Prove: : : :

h5i1. : : :

h5i2. : : :

h5i3. Q.E.D.
By h5i1 and assumption h4i.

h4i2. Assume: x 2 T

Prove: : : :

: : :

Figure 4: Part of a proof, with long and abbreviated step numbers.

have the same parent, so at most one of them may be used at any point

in the proof. A reference to step h5i2 always refers to the most recent step

with that number. Part 3 of the statement of step h5i2 is numbered h5i2.3.
References to assumptions can be abbreviated even more. An assump-

tion can be used only in the proof of a step, or the proof of one of its

descendants. We let h5i denote the assumption of the level-�ve step that is

an ancestor of (or is) the current step, and h5i:3 denote the third numbered

part of that assumption. Since the statement of the theorem has a zero-part

number, its assumption is number h0i.
Figure 5 contains the complete proof of our example, written with the

abbreviated numbering scheme.

3.2 Proof by Cases

Proof by cases can be expressed with a Case step, where

Case: Statement of assumption.

is an abbreviation for

Assume: Statement of assumption.

Prove: Q.E.D.

The proof of the �nal \Q.E.D." step explains why the cases considered are

exhaustive; it is usually simple. Figure 6 illustrates the use of the Case

construct to structure a proof by induction. Note how step h1i1 is used in

the proofs of both cases, showing why Case steps provide more
exibility

than would a strictly hierarchical proof-by-cases construct.

6

Theorem There does not exist r in Q such that r2 = 2.

Proof sketch: We assume r2 = 2 for r 2 Q and obtain a contradiction. Writing
r = m=n, where m and n have no common divisors (step h1i1), we deduce from
(m=n)2 = 2 and the lemmathat bothm and nmust be divisible by 2 (h1i2 and h1i3).
Assume: 1. r 2 Q

2. r2 = 2
Prove: False

h1i1. Choose m, n in Z such that
1. gcd(m;n) = 1
2. r = (m=n)

h2i1. Choose p, q in Z such that q 6= 0 and r = p=q.
Proof: By assumption h0i:1.

Let: m
�

= p= gcd(p; q)

n
�

= q= gcd(p; q)

h2i2. m;n 2 Z

Proof: h2i1 and de�nition of m and n.

h2i3. r = m=n

Proof: m=n =
p= gcd(p; q)

q= gcd(p; q)
[De�nition of m and n]

= p=q [Simple algebra]
= r [By h2i1]

h2i4. gcd(m;n) = 1

Proof: By the de�nition of the gcd, it su�ces to:
Assume: 1. s divides m

2. s divides n
Prove: s = 1

h3i1. s � gcd(p; q) divides p.
Proof: h2i:1 and the de�nition of m.

h3i2. s � gcd(p; q) divides q.
Proof: h2i:2 and de�nition of n.

h3i3. Q.E.D.
Proof: h3i1, h3i2, and the de�nition of gcd.

h2i5. Q.E.D.

h1i2. 2 divides m.

h2i1. m2 = 2n2

Proof: h1i1.1 implies (m=n)2 = 2.

h2i2. Q.E.D.

Proof: By h2i1 and the lemma.

Figure 5: A proof of the irrationality of
p
2.

7

h1i3. 2 divides n.

h2i1. Choose p in Z such that m = 2p.
Proof: By h1i2.

h2i2. n2 = 2p2

Proof: 2 = (m=n)2 [h1i1.2 and h0i:2]
= (2p=n)2 [h2i1]
= 4p2=n2 [Algebra]

from which the result follows easily by algebra.

h2i3. Q.E.D.

Proof: By h2i2 and the lemma.

h1i4. Q.E.D.

Proof: h1i1.1, h1i2, h1i3, and de�nition of gcd.

Figure 5 (continued)

Theorem All natural numbers are interesting.
Assume: n a natural number.
Prove: n is interesting.

h1i1. A number is interesting if it is the smallest number not in an interesting set.

Proof: By de�nition of interesting.

h1i2. Case: n = 0

Proof: By h1i1, since 0 is the smallest natural number not in ;.

h1i3. Case: 1. n > 0
2. n� 1 is interesting

Proof: By h1i1, since case assumption h1i implies that fk : k > n � 1g is
interesting.

h1i4. Q.E.D.

Proof: Steps h1i2 and h1i3, assumption h0i, and mathematical induction.

Figure 6: The Case construct.

8

4 How Good Are Structured Proofs?

4.1 My Experience

Some twenty years ago, I decided to write a proof of the Schroeder-Bernstein

theorem for an introductory mathematics class. The simplest proof I could

�nd was in Kelley's classic general topology text [4, page 28]. Since Kelley

was writing for a more sophisticated audience, I had to add a great deal of

explanation to his half-page proof. I had written �ve pages when I realized

that Kelley's proof was wrong. Recently, I wanted to illustrate a lecture on

my proof style with a convincing incorrect proof, so I turned to Kelley. I

could �nd nothing wrong with his proof; it seemed obviously correct! Read-

ing and rereading the proof convinced me that either my memory had failed,

or else I was very stupid twenty years ago. Still, Kelley's proof was short

and would serve as a nice example, so I started rewriting it as a structured

proof. Within minutes, I rediscovered the error.

My interest in proofs stems from writing correctness proofs of algorithms.

These proofs are seldom deep, but usually have considerable detail. Struc-

tured proofs provided a way of coping with this detail. The style was �rst

applied to proofs of ordinary theorems in a paper I wrote with Mart��n

Abadi [2]. He had already written conventional proofs|proofs that were

good enough to convince us and, presumably, the referees. Rewriting the

proofs in a structured style, we discovered that almost every one had seri-

ous mistakes, though the theorems were correct. Any hope that incorrect

proofs might not lead to incorrect theorems was destroyed in our next col-

laboration [1]. Time and again, we would make a conjecture and write a

proof sketch on the blackboard|a sketch that could easily have been turned

into a convincing conventional proof|only to discover, by trying to write

a structured proof, that the conjecture was false. Since then, I have never

believed a result without a careful, structured proof. My skepticism has

helped avoid numerous errors.

I have also found structured proofs very helpful when I need a variant

of an existing theorem, perhaps with a slightly weaker hypothesis. In a

properly written proof, where every use of an assumption or a proof step

is explicit, simple text searching reveals exactly where every hypothesis is

used.

9

4.2 Writing Structured Proofs

A structured proof format by itself will not eliminate errors. Proofs must be

written carefully, with enough detail. Most errors come from not carrying

out the proof to enough levels. The lowest-level, paragraph-style proofs

should be short and completely transparent. One must be a skeptical reader

of one's own proofs. My own rule of thumb is to expand the proof until the

lowest level statements are obvious, and then continue for one more level.

This takes discipline. But, unlike conventional proofs, in which adding more

detail can make a proof more confusing, structured proofs accommodate as

much detail as desired.

Structured proofs are longer than conventional ones. Although the for-

matting is partly responsible, structured proofs are longer mainly because

they include more detail. They make it obvious when steps have been for-

gotten or important details omitted. They make it hard to be sloppy. The

assertion \this case is similar to the previous one" is not acceptable; one

is forced to �nd the appropriate general step that makes the proof of both

cases easy. Writing a rigorous proof is harder than writing a sloppy one,

and lazy writers will �nd excuses to avoid doing it. A common excuse is

that structured proofs are too long. But, shorter proofs are not necessarily

better ones; the shortest proof is always \left as an exercise for the reader."

When journals are distributed electronically, they can include proofs

down to the lowest reasonable level; the reader can suppress uninteresting

details when viewing the article on the screen or printing it locally. But, for

paper journals, extra pages mean killing extra trees. It may be inappropriate

for a journal to print a proof with so much detail. I recommend that authors

provide two versions of their proofs: a very detailed one for themselves,

the referees, and interested colleagues; and a less detailed one for paper

publication. It is quite easy to convert a detailed proof into a less detailed

one by compressing the lower levels into paragraph-style proofs. Although

the reader must �ll in the low-level details, such proofs are much better than

unstructured ones, in which authors seem to choose randomly which details

to supply and which to omit.

4.3 Reading Structured Proofs

So far, readers' reactions to structured proofs have been mixed. Skeptical

readers|ones who check for errors|like these proofs much more than con-

ventional ones. Readers who want to skim the proofs are less happy with the

10

style. Part of the problem is that the length of the proofs and the unfamiliar

format are intimidating. The best way to read a structured proof is level by

level|�rst reading the high-level steps h1i1, h1i2, h1i3, : : : , then the proofs

of those steps, and so on. However, having to skip over the lower-level steps

makes reading the high-level ones inconvenient. With hypertext, this is not

a problem. With printed text, a layered presentation may help [3, section

B.7 (page 48)].

These structured proofs do not seem ideal for someone who wants to

understand the important ideas of a proof without reading any of the details.

Satisfying such readers may just require better proof sketches. Or, perhaps

a better way of annotating a proof with comments is needed. Hypertext can

provide graphical aids for �nding one's way around a proof and highlighting

important steps. Maybe such aids can be developed for the printed page.

4.4 The Future

Modern mathematical notation has evolved over hundreds of years. Its proof

style is still stuck in the seventeenth century. Mathematicians tend to be

conservative, and many are unwilling to consider that there might be a better

way of writing proofs. But, I am told that mathematicians are embarrassed

to learn that they published incorrect theorems, so they are motivated to

avoid errors. I believe they will like structured proofs if they can be per-

suaded to try them.

Computer scientists are more willing to explore unconventional proof

styles. Unfortunately, I have found that few of them care whether they

have published incorrect results. They often seem glad that an error was

not caught by the referees, since that would have meant one fewer publica-

tion. I fear that few computer scientists will be motivated to use a proof

style that is likely to reveal their mistakes. Structured proofs are unlikely

to be widely used in computer science until publishing incorrect results is

considered embarrassing rather than normal.

The proof style described here has been developed over the past several

years. I have written many hundreds of pages of structured proofs, mostly

of algorithms. I consider the style to be a great improvement over conven-

tional, unstructured proofs. But, this is not the last word on the subject. I

look forward to seeing structured proof styles evolve as mathematicians and

computer scientists �nd better ways to write a proof.

11

Acknowledgements

My information about mathematicians' errors and embarrassment comes

mainly from George Bergman. The Case construct and several other details

of the proof format were developed in discussions with Urban Engberg and

Peter Gr�nning.

References

[1] Mart��n Abadi and Leslie Lamport. Composing speci�cations. In J. W.

de Bakker, W.-P. de Roever, and G. Rozenberg, editors, Stepwise Re�ne-

ment of Distributed Systems, volume 430 of Lecture Notes in Computer

Science, pages 1{41. Springer-Verlag, May/June 1989.

[2] Mart��n Abadi and Leslie Lamport. The existence of re�nement map-

pings. Theoretical Computer Science, 82(2):253{284, May 1991.

[3] Mart��n Abadi and Leslie Lamport. An old-fashioned recipe for real time.

Research Report 91, Digital Equipment Corporation Systems Research

Center, 1992.

[4] John L. Kelley. General Topology. The University Series in Higher Math-

ematics. D. Van Nostrand Company, Princeton, New Jersey, 1955.

12

