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Abstract

We sketch a method for deduction-oriented software and system development The
method incorporates formal machine-supported specification and verification as activ-
itiesin software and systems development. We describe experiences in applying this
method. These experiences have been gained by using the L P, the Larch proof assistant,
asatool for anumber of small and medium size case studiesfor theformal development
of softwareand systems. LPisused for the verification of the devel opment steps. These
case studiesinclude

e quicksort,
o the mgority vote problem,
e code generation by acompiler and its correctness,

e an interactive queue and its refinement into a network.

The developmentsrange over level s of requirement specifications, designs and abstract
implementations. The main issues are questions of a development method and how to
make good use of aformal tool like LPin a goal-directed way withinthe development.
Wefurther discuss of the val ue of advanced specification techniques, most of which are
deliberately not supported by L P and itsnotation, and their significancein devel opment.
Furthermore, wedi scussissuesof enhancement of asupport systemlikeLPandthevaue
and the practicability of using formal techniques such as specification and verification
in the development process in practice.
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Chapter 1

| ntroduction

Achieving reliable, provably correct programs and system designs seems impossible.
Formal methods of specification and verification are advocated for doing theimpossible.
However, so far, in practice, formal methods have been considered too difficult and
too costly. Moreover, many advocates of forma methods of program development
have dedlt only with small examples, often just toy examples. When more complex
examples have been treated the complexity has been only in their logica structure, not
their size. So there have been (and are) considerable doubts about, whether formal
techniques can be of help in practice and if they scale up. Nevertheless, in recent years
there has been considerable interest in formal hardware verification. Serious attempts
have been undertaken to verify hardware designs (cf. [MacKenzie 91]).

1.1 Significance of Formal Verification

Forma methods are advocated as helpful for improving the reliability of software
systems. In the early days of forma methods, the verification of programs (often
caled “post mortem verification”) was one of the main issues. However, it soon
became obvious that it is much more appropriate not to wait until a program has
been fully developed to verify it, but to start from a given forma specification of
the problem and then to construct program and correctness proof step by stept. This
makes the verification simpler (and in many applicationsisthe only way to manage the
congtruction of the correctness proof at all) and, even more important, directly supports
the construction of a correct program. Program transformations have been advocated
for arigorous machine-supported top down approach aong these lines (cf. [CIP 84]).

IMost programs designed in a conventional way turn out to be incorrect, anyhow, so averification cannot
be successful.
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1.2 Significance of Formal Specification

Even the most advanced verification techniques cannot solve the problem of reliability
of software as such. The reliability of “correct” (formally verified) programs crucially
depends on the adequacy of their formal specifications. Only if the requirements are
properly captured formally, can the verification make sense?. Clearly, the assumption
of a given formal specification is academic. In practica applications, it is a major
task in development to capture all requirements and to work out aformal requirement
specification from vague and often contradictory informal specifications. Moreover, it
is often necessary to change and refine theinitial specification during the devel opment
process (if tolerablefromtheapplication point of view) taking new insightsinto account
and to get more useful, more efficient or more elegant solutions.

So the derivation of requirement specifications plays a crucial role in development.
It is necessary to pay more atention to the derivation of an adequate requirement
specification. Conseguently, requirement engineering or specification engineering is
one of the most important areas of applying forma methods.

The use of forma techniques, including verification techniques, has advantages at
the level of requirement engineering. However, it needs a quite different type of
development method. And as a consequence it needs quite different support tools.

Many applications of software engineering, especially intechnical domains, have elab-
orate models and theories. Thisis called domain specific knowledge. In some domains
this knowledge is formalized. Often, however, the domain specific knowledge is for-
malized only partialy or not at all. Thisbrings additiona problems for programming
and forma methods. The domain specific knowledge hasto be captured by the software
engineer and brought into forms such that thisknowledge can be used both for aformal
specification and for the representation in a program.

In particular, when applying formal methods, it cannot be the task of the software
engineer to replay all thetheoretica proofs of the specific domain of application. What
is needed is the capture of the theories and theorems of the application domain by
formalisms that are adequate for the further development and where the validity of
this formalization can be checked in a validation step as easily as possible. What is
needed is a well-defined interface between the world of application and the world of
programming. Axiomatic specification can provide such an interface.

1.3 Using LP: The Case Studies

Larch (cf. [Guttag et al. 85]) has been proposed as afamily of axiomatic specification
languages. Larch interface languages for a variety of programming languages (cf.

250 the remark above about the expected incorrectness of programs can be repeated when talking about
the validity of specifications: most specifications do not capture the problem adequately, anyhow.
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[Garland, Guttag 90], [ Guttag, Horning 86a), [ Guttag, Horning 86b]) arenow available.
For thetechnical details of the LP, the Larch proof assistant, (cf. [Garland, Guttag 91]),
an introductionto Larch and how to use it practically we refer to the cited reports. A
comprehensive presentation of Larch and LP is given in [Guttag, Horning 93].

TheLPisatool that supports proofsabout axiomatic specifications. LP isbased on the
concept of rewriting. Larch and also LP follow the philosophy to keep everything as
simple as possible.

LPdoesnot provideadecision procedure. LPmainly providesaconvenient notation and
machinery for defining rewrite rules by axiomatic techniques and applying them. All
proofsare carried out by applying the rewriterules, proofs by case splitting, induction,
contradiction, and application of rules of inference. Also the logical derivations are
carried out by applying rewrite and deduction rules.

The user of LP has to guide the system. LP can find rather simple proofs (which
nevertheless can be quite time consuming when carried out by hand) without user
interaction. The construction of a proof and the debugging of the specification and the
implementation are done hand in hand.

Thefollowing four examples of the use of the LP as atool for requirement engineering
and deduction-oriented program devel opment are treated:

e quicksort,
o the mgority vote problem,
e acompiler and its correctness,

e aninteractive queue and its refinement into a network.

Formal specifications are given for the examples and steps of developments as well as
proofs of their correctness. Throughout the examples, the properties and adequacy of
the LP as atool for program devel opment are discussed.

This study has been carried out to aso gain further insights what kind of advanced
specification languages and support systems are needed when working with rigorously
formal methodsin program development. The author is currently in charge of aproject
for developing a deduction oriented program devel opment methods and an advanced
specification language for its support. The specification language under devel opment
iscaled SPECTRUM (cf. [SPECTRUM 92]). One purpose of this study is to understand
and document where advanced specification concepts and languages like SPECTRUM
may have impacts and advantages when using them in a development oriented style.
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What LP Does Not Have

When designing a specification language or a verification support system, there are
always conflicting goals. One goad is to keep everything as simple and small as
possible. Then things are easy to learn, to understand and to start to use. Another goa
isto providealot of functionality and alot of support for specific steps of devel opment
and proof. Then powerful support can be given, even in difficult cases of devel opment.

2.1 Basic Philosophy of Larch and LP

Larch and LP are deliberately kept extremely simple. This has a great number of
advantages. First of al, Larch and LP are very simpleto learn, especially for someone
familiar with the basics of algebraic specifications. The LP notation for specification
supports sorts, function symbols (even in infix notation), variables and equations. In
contrast to classical logics, in LP there are two versions of equaity “=" which is the
equality test and “==" which is the main operator of an equation. Semanticaly, there
isno difference. Operationally, with respect to the calculus, thereis a big difference.

The LP notation is a specification language of the first generation. Of the fancy
features, as described below, LP includes only a limited infix notation and function
symbol overloading.

Larch and LP are based on the concept of loose semantics. Moreover, the logics at
the level of axioms and the logics at the level of Booleans are identified. Therefore,
although LP (version 2.1) does not have conditiona equations in the sense of rewrite
rules, it does have full propositional equational logic, since equality as an operation is
always available. Oneisnot alowed to write



CHAPTER 2. WHAT LPDOESNOT HAVE 5

However, one may write instead:
(x=yAy=2 =x=2z) ==true

LP does not support, however, the following specification concepts that can be found
in anumber of advanced specification languages.

2.2 Advanced Specification Concepts

The specification and design language SPECTRUM isunder devel opment at the Technical
University of Munich (see [SPECTRUM 91]).

Like LP, SPECTRUM is based on the concept of loose semantics. This means that
specifications are seen as systems of signatures and axioms. Every agebra of proper
signature that fulfills the axioms is accepted as model. No general constraints like
initiality or terminality ispreimposed. We consider |oose semanti cs as more appropriate
for devel opment and refinement oriented specification techniques. I1n loose semantics
one may refine specifications by adding properties in terms of additional axioms to
specifications with the effect that the class of models of the refined specification is
always included in the class of models of the original one. In terms of logic the proof
systemsaremonotone: adding sorts, function symbols, and propertiesnever invalidates
logical properties of the given specifications. This is not true for initia or terminal
semantics. Induction techniques are available in both in LP and in SPECTRUM only if
they are explicitly stated by specia axioms.

SPECTRUM s intended to support in addition to the concepts of the LP specification
formalism the following features:

e alogic of partial functions and definedness: often in software specifications
partial operations occur. In Larch and LP it is suggested to handle these partia
functionsby total functionsand by underspecification. This meansthat the value
of afunctionis deliberately left unspecified for some arguments. However, due
to the totality assumption it is known that the function has a regular value for
those arguments. This assumption does not work, however, in connection with
full recursion (compare the compiler example and the example of the interac-
tive queue). Therefore SPECTRUM includes a full logic of partia functions and
definedness.

e higher order elements: often it is helpful to reason about functions as el ements
(compare the example of compiler correctness). This gives a lot of expressive
power. Therefore SPECTRUM supportsfunctional sortsand A-notation. However,
thecarrier setsassociated with functional sortsarenot,in general, thefull function
spaces but just subsets of the classical mathematical function spaces.

o fixed point theory and infinite objects: often it is useful to define eements
by recursion which technically means as fixed points of monotonic or even



CHAPTER 2. WHAT LPDOESNOT HAVE 6

continuous functions. This leads to “infinite” objects and fixed point reasoning
(compare the exampl es of compiler correctness, and of interactive queues). Such
concepts are not explicitly supported by LP, but arein SPECTRUM.

o full predicate logic of quantifiers: for abstract specifications quantifiers are ex-
tremely helpful. Also the logica reasoning often gets more transparent when
quantifiers are used. SPECTRUM supports full first-order predicate logic with ar-
bitrary nesting of existential and universal quantifiers. This extension isplanned
for LP.

e polymorphism: when dealing with general concepts of specifications like se-
guencesit is convenient to allow to write Seq X for arbitrary sorts X (so that one
canwrite Seq Nat aswell as Seq Char and even Seq Seq Nat) andto useaways
the same function names with polymorphic axioms such as ( first(x@s) = x
for al x of arbitrary sort) for manipulating these sequences. This makes spec-
ifications shorter and more readable (see [Cardelli, Wegner 85], [Cardelli 87]).
In LP overloading is supported, which allows to use the same function names
for different sorts, but for sequences over different sorts always new sort names
have to be invented and axioms (and proofs) have to be repeated (see the ex-
ample of compiler correctness where sequences are used for representing labels,
programs, stacks etc.). SPECTRUM supportsfull ad-hoc-polymorphism! (a poly-
morphic form of overloading), which includes a so parametric polymorphism.

e inheritance and subsorting: there are situations, where sorts are conveniently
defined as subsorts of other sorts (let Nat be asubsort of 1 nt) and the operations
are inherited. LP does not support subsorting nor inheritance. In the examples,
neither subsorting nor inheritance were seen to be extremely helpful®. However,
subsorting and inheritance may show their full power in large scale commercia
applications using object-oriented techniques. The current version of SPECTRUM
includes inheritance and subsorting in arestricted form, although we have some
doubts about their significance.

e advanced combining forms for specifications as a concept for specifying in the
large: for specifying larger systems appropriate concepts for composing specifi-
cations are needed. LP does not support any forms of composing specifications.
Therefore, itisfair to say that LP supportsonly reasoning in thesmall. Thisdoes
not apply to Larch, where anumber of conceptsfor composing specifications are
included. SPECTRUM provides a number of operators for composing specifica-
tions. An important issue isalogica framework for reasoning about composed
specifications (called reasoning in the large). Thisis also a goal of SPECTRUM
(cf. [Wirsing 91]). In the examples treated in thisreport, reasoning in the large

11t is not so clear what parametric polymorphism looks like at the specification level where it is not
possible to distinguish between a defining and an applied occurrence of a function symbol.

?In the example of the interactive queue, it might be helpful to see the set of data messages as a subsort
of the set of messagesincluding the request signal.
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was hardly needed, since the examples are relatively small. Only in the cases of
compiler correctness, support for reasoning in the large might have been of some
convenience,

e parameterization: parameterized specificationsare considered animportant topic
by many researchers in axiomatic specification techniques. Nevertheless, ex-
plicitly parameterized specifications can be completely replaced by adequate
concepts for composing specifications. Conseguently, neither Larch nor LP nor
SPECTRUM offer explicit parameterization for specifications.

All thelisted conceptsare believed to be hel pful for certain specificationtasksespecially
when dealing with large and complicated systems. However, they aso make the
language and the design cal culus more complicated and more difficult to learn and to
use.

It is the purpose of this study to understand better the implications of the simplicity
of Larch and LP and where certain concepts that are not available turn out actualy to
be painfully missing in the devel opment process. The treated examples were chosen
especially to study aspects of development that are related to this question.
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M ethod

Formal techniques are not easy to understand, to learn, and to use. To be able to
apply particular formal techniques, one has to understand the basi ¢ theory behind them.
Furthermore, one hasto learn how to apply the rules of the formal technique correctly.
Finally, one has to understand how to apply a couple of rules to achieve a particular
goal. Structuring the work towards an overall goa into subgoals and organizing the
work in steps to achieve these subgoasis what a method should provide.

3.1 Avoiding Methodological Strait-Jackets

A method is not supposed to make life harder, although, unfortunately, many methods
proposed in the area of formal techniques do make it harder.

Numerous beautiful forma derivations and verifications for impressively complex
exampl es have been published as mil estones of systematic software design and applying
formal techniques. Quite clearly, the authors did not find the elegant derivations they
finally presented intheir papersintheir first attempts. In most cases, theauthorsworked
very hard to find finaly the elegant solution, and its nice presentation as published.
They were surely messing around, trying this and that, following dead ends, writing
down specifications or assumptions that were inconsistent or otherwise flawed. This
isnot bad. It isthe way solutionsin science and technology are generally found and
explored. Writing down an incorrect hypothesisor giving an inconsistent set of axioms
isnot harmful —if careful analysisthen findsthe flaws.

Of courseg, it would be inadequate (and sometimes offensive) to publish al the failing
and incorrect attempts in a development in addition to the final solution. However,
it is not very honest to present the final polished version of a derivation as if it had
been found in a straightforward top down manner right away. And it can be harmful to
advocate that devel opment should be donejust in theway the derivation was presented.
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Every innocent victim that triesto use such a method will come to the conclusion that
he/sheisafool or, morerightly, that the author cheated. Itisnot surprisingthat software
engineersoften get frustrated in thisway when trying out formal techniquesin practice.

In the following a methodological framework is introduced, very much aong the
lines of experiencesthat | gained in using formal techniques on small to medium size
case studies. Observing my own proceeding when tackling a problem | came to the
conclusion that appropriate methods should leave room for freedom and flexibility in
experimenting with solutionsand trying out ideas, but should also help to organize the
work such that therigor of formal techniques pays and that after a successful ending of
the development there remain no doubts about its correctness and that finally a proved
solutionis established.

Of course, amethod cannot guarantee to guide the devel oper to a solution®. However,
methods should support the developer in his'her task such that the validity of the devel -
opment is assured after all steps of a development have been carried out successfully
following the method.

3.2 A Method for Deduction Oriented Design

In deduction oriented program design the phases of requirement capture, design, veri-
fication, and the construction of an implementation are integrated and supported by the
goal-directed use of formal techniques. All these activitiesare merged in an appropriate
goal directed proceeding. Such amethod is sketched in the following.

Weusewell established al gebraicor moregeneral axiomatictechniquesfor representing
specifications. We use the usual notion of a signature, that is afamily of sorts (names
for carrier sets) and afamily of function symbols (names for functions). Furthermore,
in specifications we write formulas for a given signature. We use a logical caculus
that allowsto deduce (prove) formulas from given ones. Asusua inlogicsfor sets of
formulas A and ©:

AFO®

we write in order to express that the formulas in ® can be logically deduced from
the formulas in A by the deductive theory. The deductive theory is assumed to be
monotonic, such that from

AFO®
and .

ACA
we may be conclude .

AFO®

This requirement of monotonicity of the deductive theory isfulfilledin LP.

10therwise, the design could be completely automated.
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In principle, we propose a method that works with just three classes of development
steps called enrich, verify, and revise. We consider specifications S = (X, A, ©),
where

e X isadignature, that isafamily of sorts (hamesfor carrier sets) and afamily of
function symbols (names for functions) with given functionalities,

e A isaset of formulas (based the signature X) called axioms,

e O isaset of formulas (based the signature X) called theorems, which can be
deduced from the axioms, formally A = ©. This requirement is to be checked
using LP.

We call specifications enjoying these properties well-formed. The idea of axioms and
theoremsis directly supported in Larch by the “implies’ clause.

We are interested in an incremental method for constructing specifications. Therefore
we assume that we start with aspecification where the set of theoremsisempty and then
step by step provetheorems. By proving alogical formulabefore putting it into the set
of theorems we can be sure that the derived specifications are aways well-formed.

We use the following three classes of devel opment steps:

e enrich: in an enrichment step we freely add sorts, functions, and axioms to the
specification under development. Of course, thisis dangerous in the sense that
we might obtain an inconsistent specification that way. However, we will never
transform awell-formed specification into a nonwell-formed specification, since
our deductive theory is monotonic.

e derive: a derivation is used for proving a theorem. This way we can add a
theorem to the set of theorems. A special case is the elimination of an axiom
by its derivation from the remaining axioms. In this case we have identified the
axiom as being redundant and we can delete it from the axioms and add it to the
theorems. 1n both cases, we turn awell-formed specification into a well-formed
specification by a derivation.

e revise: often a development will lead to a stage where certain design decisions
in the requirement capture and in the design are recognized as inadequate with
respect to the requirements or simply as inconsistent. Then, to get rid of these
problems in a revision, we set back the development to an earlier version of
the development process. Thisis such a smple idea that in many methods it
is not mentioned explicitly. However, if we recognize a decision (an enrich
step) as inadequate and take it back only after a long sequence of development
steps, it is unacceptable for usto throw away all the work carried out in between.
Certainly some of thework hasto bethrown away. But large portionsof thework
done after the inadequate enrichment might be usable (“reused”) in the revised
development.
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In practice, a strong support of revision as a step in development may be the most
important prerequisite for the cost effective applicability of forma methods.

We have carried out the case studies given in thefollowing along thelines of astepwise
development method including roughly the following substeps:

e domain theory specification,

e requirement capture and specification,

design specification,

e implementation.

For some of the case studies, not al steps of this development scheme are carried out
actualy in the following.

Larch and LP are used in combination with interface specification languages designed
for individua programming languages such as C or Modula 3. In contrast, we follow a
more purist approach, and a so present programsaat thelevel of LP. Intuitively speaking,
aprogram at thelevel of LP isa specification where all theaxioms are of a constructive
form, that is, can be interpreted as rewrite rules or recursive declarations.

3.3 How to Ensure Consistency

A specification iscalled contradictory, if fromitsaxiomsevery formulacan be deduced.
In particular, then true == false can be deduced in LP. A contradictory specification
does not have a model and is therefore inconsistent. Notice that we do not accept a
mathematical structure as a model where true == falseisvalid. The fundamental
problem with the axiomatic approach to program and system development is the prob-
lem of ensuring adequacy and proving the consistency of a specification. An academic
solution to this problem would be that consistency is proved by giving a specification
where al axioms are in a constructive form (for which consistency can be assumed by
fixed point arguments). In practical developments (even for toy examples) inconsis-
tent specifications are often written. Thisis not an unsolvable problem. As soon as
inconsistencies are identified in the course of a development a revision is carried out
by backtracking to aprevious (hopefully consistent) version and then taking adifferent
path of enrichment.

Of course, we are only interested in specifications that are not contradictory. Unfortu-
nately, there is no way to prove the consistency of a specification within LP. A proof
true £ falsefor aspecification in LP doesnot say that the specification is consistent.
It might be the case that in addition we can provetrue = false. Soinconsistency, but
not consistency can be provedin LP.
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Thisis a severe problem. If auxiliary functions and predicates are used in a proof,
then the proof may be valid only because of contradictions in the specifications of
the auxiliary functions. As a consequence, a proof in LP using auxiliary functions
is, strictly speaking, useless, if we cannot argue that the auxiliary equations of the
functions do not introduce inconsistencies.

Let us therefore briefly discuss the consistency of specifications. Clearly, we may
assume that a specification without any axiomsis consistent. But specificationswithout
axioms are not very interesting. So let us ask, whether there is a way to enrich a
consistent specification while maintai ning consi stency.

Onepossibleway to make surethat consistency ismaintainedisto consider only axioms
of aspecia form. An equation of the form

f (X1, ..., Xn) =t

wherexy, ..., Xy arevariablesand t isan arbitrary term that does not contain f iscalled
an explicit equation for f. If in aspecification for a set of functions only one explicit
axiom is given for each function in the set, then the functions are called explicitly
specified.

A way for specifying functions quite similar to explicit specifications are specifications
by structural recursion. A function symbol f is said to be specified by structural
recursion, if f isdescribed by axiomsof theform (1 <i < m):

Ci = f(E) =t

where the function symbol f does not occur in theterms® E;.

A (consistent) moddl with given signature X is called fixed point algebra, if for any
functional enrichment by arbitrary systems of function symbols explicitly specified by
equations over X there exists an extension of that model (without adding elements to
sorts) such that the explicit equations are fulfilled.

The models of LP are not fixed point algebras, in general. For enrichments of L P spec-
ifications by functions specified by structura recursion the propositionthat consistency
ismaintained requires a proof showing that foral i, j,1 <i <m,1<j <m(letx
and y be fresh variables):

CGACAXx=EBAy=FE =t =t

Thisproof, however, can be quitedifficult, if the function symbol f occursintheterms
ti.

20ften, it is required that only so called constructor functions occur in the terms E; .
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3.4 Focusof the Case Studies

Our maininterest in thelittle case studies presented in the followingis not so much the
detailed description of al the steps and technicalities of the verification of thetheorems
using LP, but rather the explanation of the overall structure of the developments and
proofs.

There are severa phases of development that may be, or in the sense of a rigorous
method, must be, supported by proofs. The proofs can be structured into the overall
proof structure, also called the proof architecture, and a number of smaller straight-
forward proofs of subtheorems. We do not indicate and discuss technically, how we
verified the simpler subtheoremsin LP.

Our main interest in the following isin discussing the techniques of LP, and where the
simplicity of LP forces one sometimes to find time-consuming auxiliary constructions
for expressing the required structures.

We also present in the following al the notation exactly as it appears in our proofsin
LP and do not give nicely edited formulas using the potentials of IATEX, since it might
be more interesting for the reader to see the formulas as they are seen at the screen of a
terminal when working with LP.



Chapter 4

Quicksort

In this chapter we devel op a requirement specification and a program for quicksort and
verify the program (the algorithm presented in equational form) with respect to the
specification. We present both the program and the specification in LP.

4.1 TheDomain Theory for Sorting

We start the devel opment by providing a domain theory for sorting. It mainly consists
in the theory of linearly ordered sets and of sequences.

We do not give the axioms for natural numbers and sequences here. They can be
looked up in the appendix. Just note, i @s denotes the sequence obtained by putting
the element i in front of s, S'r denotes the concatenation of the two sequences s and
r, nbr(s) denotes the number of elements, also called the length, of sequence s, i#s
denotesthenumbers of copiesof i inthesequences, and es denotesthe empty sequence.

4.2 TheRequirement Specification for Sorting

We start by giving the requirement specification for sorting. We introduce functions
issort and sorted.

dec op sorted : Seq -> Bool
issort : Seq, Seq -> Bool

.a.ssert issort(s, r) => ( (i#s) = (i#r) & sorted(r)) (1)

sorted(es)

14
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sorted(i @s)
sorted(i @j @)) = ((i =<j) & sorted(j@®))

Of course we would rather have written in full predicate logic:
issort(s,r) =Vi € Nat : (i#s) = (i#r) A sorted(r)

However, because of therestriction of LPto logical expressionswithout quantification,
we are not alowed to specify issort that way in LP. We may write, however, in LP
guantification in when-clauses and add the foll owing axiom for the predicate i ssor ted:

assert when (forall i) (i#s) = (i#r) & sorted(r)
yield issort(s, r)

This deduction rule alone, however, and the axiom (1) alone, provide only a loose
specification of the predicate issort. By (1) only constraints for the positive part of
issort are given. The assignment issort(s) = false for al s is consistent with (1).
By (2) only the constraints for the negative part of issort are given. The assignment
issort(s) = true for al s is consistent with (2). The logically strongest predicate!
that fulfillsthisaxiom is exactly the predicate we are interested in. However, if we are
able to prove a property just based on the deduction rule above, the proof is valid for
all predicates and therefore also for the strongest one. Thisis an interesting aspect of
loose specifications that deserves further methodological anaysis.

If we use both axioms (1) and (2) for issort, thenissort is uniquely characterized.
It is an inconvenience in LP that due to missing quantifier notation we have to write
two axioms to define the function issort, when it is much more adequately and more
readably defined by one axiom.

The quantifier for issort can be avoided by introducing the data structure of bags and
by mapping sequences s by a function mb to bags mb(s). Then the specification of
issort reads:

issort(s,r) = (mb(s) = mb(r) A sorted(s))

but again we pay the price of introducing a new specification and an additional function.

Also the axiom of the function sorted looks nicer if specified by quantifiers:
sorted(s) =Vs, € Seq,i,jeNat :s=5"1"]", =1 < |

In addition, using these forms of explicit specifications one can be sure not to introduce

any inconsistencies.

Based on the introduced predicates the requirement specification of quicksort can be
given.

INote, falseis stronger than true.

(2)
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dec op quicksort : Seq -> Seq
The basic requirement specification for quicksort then reads:
assert issort(s, quicksort(s)) (*)

We do not add thisrequirement specification for the function quicksort tothelL P spec-
ification, although thiswould be perfectly correct for obtai ning a sufficient requirement
specification for sorting. We rather go on with the development and givea constructive
description of quicksort and prove (*).

If higher order conceptswere available (whichisnot the casein LP), we could introduce
apredicate:
sorter : (Seq — Seq) — Bool

specified by the axiom:
sorter (f) = Vs e Seq,i € Nat : (i#s) = (i#f(s)) A sorted(f(s))
Then we can specify quicksort by the following formula:
sorter (quicksort)

The ability to write predicates on functions provides possibilities to express the re-
lationship between requirement and design specifications more explicitly within the
logic.

4.3 Design Specification

The next step isto give a more algorithmic (“constructive”) description of quicksort.
For doing this we use two functionslepart (“leftpart”) and ripart (“rightpart”) that
filter out those el ements of a sequence that are lessthan agiven e ement or not lessthan
agiven element respectively. It reads as follows:

dec op lepart, ripart : Nat, Seq -> Seq

assert quicksort(es) = es

qui cksort (i @) =
qui cksort(lepart (i, s)) (i @uicksort(ripart(i, s)))

Again we might have preferred to introduce a predicate on functions:

isquick : (Seq — Seq) — Boodl
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where
isquick(f) = (Vi,s: f(es) =esA f(i@s) = f(lepart(i,s)) (@ f (ripart(i, s))))
Then we can express the correctness condition more explicitly by

isquick( f) = sorter(f)

The equations for quicksort as they are given here can be understood to provide an
inductive definition of quicksort. They can aso be seen as recursive definitions as
used in a functional program for computing quicksort. However, in contrast to the
classical semantic interpretation of the semantics of programming languages, where a
least solution (aleast fixed point) is associated with arecursive equation, in the loose
semantics of LP any solution can be chosen in amodel. That in the case of quicksort
the solutionisuniquely determined (in terms of fixed point theory: there existsjust one
fixed point for the equation above) may not be obvious at afirst sight?.

4.4 Implementation and Verification

In proceeding top down we might give only nonconstructive specifications for the
functions lepart and ripart such as the following formulas that can be read as the
requirement specifications for the functionslepart and ripart.

(i#ripart(j, s))
(i#lepart(j, s))

if() =<i, i#s, 0)
if(i <j, i#s, 0)

In a more explorative, and therefore more redlistic, scenario the necessity to assert or
to prove these propositions about lepart and ripart during the correctness proof for
quicksort might only be discovered while attempting to carry out this proof.

Aswith quicksort, we do not add these requirement specifications to our specification,
but rather give constructive specifications for the functionslepart and ripart such as:

assert
lepart (i, es) = es
lepart(i, (j&@)) =if(j <i, j@epart(i, s), lepart(i, s))

ripart(i, es) = es
ripart(i, (j@®)) =if(i =<j, j@ipart(i, s), ripart(i, s))

2In fixed point algebras for functions that are specified just by one equation of the form f(x) = ...
solutions do always exist, or, in other words, adding functions with just explicit equations to a consistent
fixed point algebradoes not introduce inconsistencies. This doesnot hold in LP, but in SPECTRUM. Thiswill
be discussed in more detail in the conclusions.
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It is a straightforward proof by induction on s in LP to show that the constructive
specificationsimply the nonconstructiveformulas given abovefor thefunctionsl epart
and ripart. The nonconstructive formulas are also useful in the correctness proof for
quicksort.

In the proof of the correctness of quicksort, we need a number of auxiliary lemmas.
Of course, the need for these lemmas is again perhaps only discovered when trying to
carry out the correctness proof for quicksort. Nevertheless, we list the lemmas here

separately.

when i < j yield (i#ripart(j, s)) =0
when j =< i yield (i#ripart(j, s)) = (i#s)
when i < j yield (i#lepart(j, s)) = (i#s)
when j =<i vyield (i#lepart(j, s)) =0

nbr (lepart(j, s)) =< nbr(s)
nbr(ripart(j, s)) =< nbr(s)

These lemmas turned out to be not particularly difficult to prove in LP. All require
induction on s. The proofsare rather straightforward.

For proving that the result of quicksort is sorted we have to prove that lepart and
ripart do aproper split according to the size of the elements in their arguments. For
being able to formul ate this property we introduce the following auxiliary operators.

dec op << : Seq, Nat -> Bool
=<< : Nat, Seq -> Bool

assert es << i

(@) <<i) =((j <i) & (s <<i))

i =<< es

(i =< (j@®)) = ((i =<j) & (i =<<59))

We would rather have specified the operators in a more descriptive explicit style by
axioms of the form:

(s<<i)=Vj:0< (j#s)=j <i

Thisis not possiblein LP due to the very restricted ways of using quantifiers. Again
the consistency of the explicit specification is obvious, while theimplicit specification
given above requires a short analysis.

It isstraightforward, however, that the consistency of our specification is not destroyed
by the axioms used to specify these auxiliary operators, since they are defined induc-
tively on the set of sequences. Based on the introduced operators we prove a coupl e of
further lemmas by inductionon s. They read as follows.
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((i =<j) &(j =<<5)) = ((i =<j) & (i =<<'5) & (j =<<s))
sorted(i @) = ((i =<<s) & sorted(s))

when i =<j yield i =<<ripart(j, s)

when j =<i yield lepart(j, s) <<

when i =<j yield (i =<<lepart(j, s)) = (i =<<s)
when j < i yield lepart(j, s) <<

when j < i yield (ripart(j, s) <<i) = (s <<i)

((r°s) << k) = ((r << k) & (s << k))

k =<< ripart(k, s)
lepart(k, s) << k

(i =<<(r°s)) = ((i =<=<<7r1) & (i ==<9))

sorted(s"(i@)) = (sorted(s”(i@s)) & sorted(i @))
(sorted(j @) & ((j@®) << i)) => sorted((j @) (i @s))
(sorted(s) & (s << i)) => sorted(s” (i @s))

Having all these lemmas avail able we have nearly al at hand to complete the proof of
the main theorem. This proof consists of two independent parts: it requires the proof
of

prove sorted(qui cksort(s))

aswell as of

prove (i #qui cksort(s)) = (i#s)

We start with the latter part. Unfortunately the proof isfar from being straightforward
in LP. Certainly, it hasto be a proof by induction. However, an induction proof using
the fact that sequences are generated by the empty sequence and the operation append
cannot be used directly. In LPadirect application of thisinduction principlefor proving
for instance (as part of proving (*)):

prove (i #qui cksort(s)) = (i#s)

iscarried out by proving of the following two subgoals.

prove (i #qui cksort(es))
prove (i #qui cksort(sc))

(i #es)
(i#sc) =>
(i #qui cksort (m@&c)) = (i #m&c)
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According to the conventions of LP sc denotesaconstant in LP. Thefirst propositionis
trivid. Itsproof in LP isstraightforward. Unfortunately, the second proposition cannot
be proved (without induction), because quicksort (m@sc) is rewritten by the second
axiom for quicksort as given above into aform that does not match

(i#quicksort(sc)) = (i#sc)

Therefore, we prove the correctness of quicksort by induction on the natural numbers.
We carry out following proof tasks in LP by induction on m:

prove (nbr(s) =< m => ((i#quicksort(s)) = (i#s))

Here nbr (s) denotes the number of elements in the sequence s (the length or size of s
). The proofs require induction over the natural number m and in the induction step
then induction over the sequence s. After this formula has been proved, m can be
instantiated by nbr (s) which makes the premise true and yieldsthe required theorem.

Finally for proving that the result of quicksort isin fact sorted we prove thefollowing
auxiliary lemmas by the same technique as above.

nbr(s) =< m=> (k =<< quicksort(s)) = (k =<< s)
nbr(s) =< m=> (quicksort(s) << k) = (s << k)

Given these lemmas we prove using LP the second basic formulas indicating the
correctness of quicksort.

prove (nbr(s) =< m => sorted(quicksort(s))

A critical point to be mentioned again is the demonstration of the consistency of the
axioms for the auxiliary functions like << and =<<. Although the consistency of the
defining axioms is quite obvious, consistency is not and cannot be formally proved
withinLP. Therefore the correctness of the machine checked proof for quicksort relies
on the consistency of these specifications.

It is quite obvious that it cannot be expected that even a very sophisticated verifier
could prove the correctness of quicksort without human interaction. The number of
auxiliary lemmas and operatorsis rather high and too specific.



Chapter 5

Majority Vote

The solution to the mgjority vote problem is a typical smal, but logically intricate,
algorithm. The program published in [Misra, Gries 82] for computing the majority of
an array of elements is one of those programs that are hard to understand when given
only in optimized form. The program reads as follows (let b[0 : n — 1] be the array of
elements for which the absolute magjority is computed):

i,c:=0,0;

doi #n— if wv="0i] —Ci=c+2i+1
O c=i —Ci,v:=c+2,i+1,b[i]
O c#inv#Dbl] —i=i+1
fi

od

The postcondition for this program reads as follows:
Only v may occur morethann — 2timesinb.

Even after studyingthe verification of thisprogram, givenin theassertion method style,
it may be clear that, but not why, the algorithm works. This algorithm, which we are
going to develop using specification and verification techniques, was discovered by
Boyer and Moore (see [Boyer, Moore]).

We are interested in the algorithm as a nice example of specification and verification.
Our main concern is giving a convincing and simple to understand presentation of
the basic ideas used in the algorithm. We give here a deduction-oriented derivation
for this example and a correctness proof for the derivation steps that was constructed
interactively with the help of LP.

21
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5.1 TheDomain Theory

We basically use numbers and bags as our domains. The specification of numbersis
given in the appendix. The specification of bagsis given in the following.

decl are sort Bag, Data

dec var b, b0, bl, b2 : Bag
dec var d, dO, di, d2 : Data

dec op ebag . -> Bag
@) . Data, Bag -> Bag

makebag : Data -> Bag
++ : Bag, Bag -> Bag
- - : Bag, Bag -> Bag

nbr . Bag -> Nat
# : Data, Bag -> Nat

assert ac ++
assert Bag generated by ebag, @@
assert

dl @ (d2 @b) = d2 @ (dl @b)

d#ebag
(d#(d0 @@b))
(d#(bl ++ b2))

0
if( d =do, succ(d#b), d#b)
((d#bl) + (d#b2))

nbr ( ebag)

0
nbr (d @@ b) S

= succ(nbr (b))

makebag(d) = (d @@ ebag)

b -- ebag = b

(d @b) -- (d @hb0) =b -- b0

(d#b) = 0 == Db -- (d @b0) = b -- b0
Thefollowing theorems can be easily obtained by simple proofsin LP.

(nbr(b) = 0) = (b = ebag)

(not(b = ebag)) = (0 < nbr(b))
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nbr (bl ++ b2) = nbr(bl) + nbr(b2)

b ++ ebag = b
(bl ++ (d @@b2)) = d @@ (bl ++ b2)

((d @hl) = (d @b2)) = (bl = b2)
(d#b) = 0 => b -- makebag(d) = b

(b -- (bl ++ b2)) = (b -- bl) -- b2
bl -- bl == ebag

(b++b0) -- b0 = b
((d @b) -- (d @ebag)) = b
when 0 < (d#(b -- b0)) yield 0 < (d#b)

An interesting extension of bags is obtained by the introduction of a function any that
selects an e ement from anonempty bag and a complementary functiondr op that drops
this element from the bag.

dec op any : Bag -> Data
drop : Bag -> Bag

assert any(d @b) =d | (not(b = ebag) & any(d @@b) = any(b))
drop(b) = b -- makebag(any(b))

According to the semantic models of LP specificationsthe functionsany and drop are
not nondeterministic, but underspecified. In every mode of bagswe havethat for every
bag b the element any(b) is the same. But in different models any(b) can compute
different results. We obtain the foll owing theorem:

prove b = ebag | b = any(b) @@ drop(b)

Thistheorem is proved in a straightforward manner in LP.

5.2 TheRequirement Specification

In the requirement specification we describe the basic problem we want to dea with.
Givenabag b an element i is called an absolute majority of b, if thefollowing formula
holds:

nbr (b) < 2 x (i#b)

Obvioudly if there exists an absolute mgjority it isunique. The basic requirement of
the magjority problem is to compute the absolute mgjority of abag in linear time, if it
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exigts. If abag has no absolute majority we call it anarchic. The mgjority vote problem
can be rephrased as follows: develop an agorithm for computing the function

major : Bag — Data

that fulfills the following requirement: if the bag b is not anarchic, then the function
maj or returnsthe element which isthe absolute majority in b.

In LP the requirement specification along these lines reads as follows:

dec op mmjor . Bag -> Data
anarchic : Bag -> Bool

.a.ssert (nbr(b) < (2 * (d#b))) => not(anarchic(b))
not (anarchic(b)) => (nbr(b) < (2 * (major(b)#b)))

Contraposition for the first axiom gives:
prove anarchic(b) => ((2 * (d#b)) =< nbr(b))

It is not obvious that the specification of the predicate anarchic is complete. The
compl eteness of the specification can be shown as follows. We distinguish two cases.
Assume that that there exists an absolute majority d for a bag b. Then according to
the first axiom anarchic(b) is false. Now assume that that there does not exist an
absolute majority for a bag b. Then according to the second axiom anarchic(b) is
true, since otherwise maj or (b) would deliver a mgjority for b. Therefore, assuming
that the specification is not contradictory, the predicate anar chic is uniquely specified.

A better specification of anarchic is obtained, if we use existential quantification:
anarchic(b) = —3d € Data: nbr(b) < 2(d#b)

By this specification the predicate anar chic trividly is uniquely determined. Further-
moreitisclear that by the specification no contradictionsare introduced. The function
maj or in the LP specification can be seen as the Skolem function for the existential
quantifier in this explicit specification of the predicate anarchic. Again this explicit
version of a specification for the predicate anar chic seems more readable.

Notice, if a bag b is anarchic, nothing is required about the value major (b). The
function maj or is deliberately not uniquely specified. The magjority vote problem is
underspecified.

5.3 Design Specification

In the design specification we formulate the basic ideas for a solution. In the case of
the majority vote the basic ideais to compute the mgjority by splitting the given bag b
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into two bags such that one of these bagsisanarchic and the other oneis homogeneous.
A bag is caled homogeneous, if al its elements are equal. In LP the notion of a
homogeneous bag is easily defined.

dec op hono : Bag -> Bool

assert (honmo(b) & (0 < (d#b))) => (any(b) = d)
(not(dl = d2) & (0 < (di#b)) & (0 < (d2#b))) =>
not (hono( b))

Again an explicit specification of the predicate homo can be given as follows when
using quantifiers:

homo(b) = Vdy, d> € Data: 0 < (di#th) A0 < (do#h) = d1 = d»

Next let us define the splitting of bags. We introduce the sort PairofBag for pairs of
bags.

dec sort Pairof Bag
dec op cb : Bag, Bag -> PairofBag
pl, p2 : pairofbag -> Bag

bl
b2

assert  pi(ch(bl, b2))
p2(cb(bl, b2))

We introduce the splitting operation called dis (for “dissection”) and give the basic
axiomsfor it.

dec op dis : Bag -> PairofBag
assert pl(dis(b)) ++ p2(dis(b)) =b
hono( p2(di s(b)))
anar chi c(pl(dis(b)))

It is not obvious that the specification of the function dis is free of contradictions. In
other words, itisnot obviousthat thereexistsafunction di s that fulfill sthe specifications
above. We do not enter into the discussion of the consistency of the specification of
dis here. Wereturn to that question in the following section. At the moment, we just
want to be sure about the correctness of the design idea, provided it is consistent. The
correctness of the designideaisindicated by the following main theorem.

prove not (anarchic(b)) => (nbr(b) < (2 * (any(p2(dis(b)))#b)))
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Thetheorem showsthat any(p2(dis(b))) hasexactly theproperty required for maj or (b)
and therefore we may solve our problem by defining:

maj or (b) = any(p2(dis(b)))

For proving the main theorem in LP we proved afew additiona theoremsin LP. Three
of them are:

prove ((d#pl(dis(b))) + (d#p2(dis(b))))
prove not (anarchi c(b)) => not (p2(di s(b)
prove (nbr(b) < ( 2 * (d#b))) => ( 0 <

= (d#b)
) = ebag)
(d#p2(dis(b))))

Based on these theorems the main theorem showing the correctness of the design
specification has been proved in LP.

54 |Implementation

In the design specification the function dis was only specified. Now we give a con-
structive specification for it. We do not include the assertions given in the requirement
specification, but start again with a specification based on the specification of bags.
We introduce a function scan and specify it by an explicit axiom. The function scan
computes the second component of the result of the function dis.

decl are op scan : Bag -> Bag

The dissection of abag aong thelinesdescribed in the previous section is not uniquely
determined. We now give a constructive description of the function scan based on the
functionsany and drop.

For the empty bag the function scan obvioudly hasto deliver the empty bag as result:
scan(ebag) = ebag

The empty bag is both homogeneous and anarchic.

L et now anonempty bag b be given. For an a gorithmto computethe function scan we
look for amethod to compute scan(b) from scan(drop(b)). Inductively let us assume
that scan(drop(b)) is homogeneous and that drop(b) — scan(drop(b)) is anarchic.
We distinguish two cases:

(1) Thebag a @@ scan(drop(b)) is homogeneous; then we simply define
scan(b) = a @@ scan(drop(b))

since clearly a @@ scan(drop(b)) is homogeneous and b — scan(b) is anar-
chic provided drop(b) — scan(drop(b)) is anarchic, which we may assume by
inductive arguments.
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(2) Thebag a @@ scan(drop(b)) is not homogeneous; then we define
scan(b) = drop(scan(drop(b)))

Clearly then scan(b) ishomogeneous provided scan(dr op(b)) is homogeneous.
Moreover b—scan(b) isanarchic provided dr op(b) —scan(drop(b)) isanarchic,
since b — scan(b) is obtained from drop(b) — scan(drop(b)) by adding two
different elements. If we add two different elements to abag that is anarchic the
resulting bag is anarchic, too.

These considerations|ead to following constructive axioms for scan:

assert
scan( ebag)
scan(any(b) @@ drop(b))

ebag

i f (hono(any(b) @ scan(drop(b))),
any(b) @@ scan(drop(b)),
drop(scan(drop(b))) )

Based on the function scan we can define the function dis as given in the previous
section in a straightforward way:

dis(b) = cb(b — scan(b), scan(b))

Then the first specifying equation for dis is trivially fulfilled. Now we could go on
and prove the other two equations based on the specifications of the functions homo
and anar chic. However, that would not show that our specification is consistent, since
the axioms for the functions homo and anar chic might be inconsistent. Therefore,
we prove instead the consistency of the axioms of these functions, too, by giving
congtructive specifications for the functions homo and anar chic and then proving the
defining axioms as theorems. So we give anew specification based just on bags.

dec op mmjor . Bag -> Data
anarchic, homo : Bag -> Bool

.a.ssert maj or (b) = any(scan(b))

hono( ebag)
hono( nakebag(d))

honmo(d @ (d0 @b)) = ((d = dO) & hono(d0 @@b))

dec op conp : Bag, Nat -> Bool
assert conp(ebag, i) = true
conp(makebag(d), i) = (succ(0) < i)

conp(d @b, i) = (((d#(d @b)) =<i) & conp(b, i))
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anarchi c(b) = conp(b, nbr (b))

Based on this specification we proved the basic theorems of the correctness of the the
design and the consistency of the specification in LP:

prove not(anarchic(b)) => (nbr(b) < (2 * (mjor(b)#b)))
prove (nbr(b) < (2 * (d#b))) => not(anarchic(b))
prove (hono(b) & (0 < (d#b))) => (any(b) = d)
prove (not(dl = d2) & (0 < (d1#b)) & (0 < (d2#b))) =>
not (hono( b))

The proofs are not particularly difficult to carry out in LP. They mostly are done by
induction on b and by cases.

The theorems above prove not only the correctness, but also the consistency, of the
developed solution.

The procedural program as given in [Misra, Gries82] can easily be obtained from
the constructive equation for scan by representing bags by arrays and homogeneous
bags by apair consisting of a data element and a number, where the number indicates
how often the given data element occurs in the represented homogeneous bag. In the
program given at the beginning of this chapter the homogeneous bag is represented as
follows: b[i] represents the element in the homogeneous bag (if it is not empty) and
C — i represents the number of elementsin it.
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Code Generation

The verification of the correctness of compilersisatempting problemwhichisfar from
being trivial. Compiler correctnessis essential, since, if acompiler is not correct, then
the correctness of a program in the source language is not sufficient to guarantee the
correctness of the generated target |anguage code.

We concentratein thefoll owingon correctness of code generation andignoreall aspects
of compilers having to do with scanning, parsing and context checking. To keep our
case study manageable, we use afairly simple source language and a quitesimpletarget
language.

A similar specification of code generation has been verified by Heinrich Hu3mann (see
[Humann 91]) using the RAP system (see [ Geser, Hulmann 91]) and the TIP verifier
(see [Fraus, Humann 91]) on top of it, but full recursion was not treated, there.

6.1 Correctnesslssuesin Code Generation

Compiler correctnessisdifficult for thefollowingtwo reasons. First of all, compilersare
rather large and complex pieces of software. Their specification includes a specification
of al the details of two programming languages, namely the source and the target
language, including context-free syntax, context conditions', and semantics. The
specification of a compiler must say that syntactically well-formed programs written
in the source language are trand ated into syntactically correct programs in the target
language and that the results of executing the generated programs are equivalent to the
results of evaluating the source programs.

A functional language that provides full computability such that all computable func-
tions can be expressed necessarily introduces the possibility of recursion and looping

10ften called also “ static semantics”, which is bad terminology.

29



CHAPTER 6. CODE GENERATION 30

computations. Thecritical problem of looping computationsand recursion isthat a call
of arecursivefunction may |ead to an infinite computation. We speak of divergence and
of adiverging (evaluation of) function application. It iswell known that in a program-
ming language supporting full computability the problem of diverging computations
cannot be avoided.

In the proof of the correctness of code generation we wish to prove that converging
function calls are correctly evaluated by the generated code. For diverging calls we
cannot expect that the execution of the generated code converges. So, athough the
function that does the code generation is total (every syntactically correct program
is trandated into a finite assembler code program) the code generator necessarily
trandates (at least certain) diverging programs into diverging code. Divergence is
generally undecidable and therefore there is no hope for a compiler that recognizes
divergence and treats it by some form of error handling. The possibility of divergence
makes the correctness arguments for code generation essentialy more difficult.

6.2 The Semantic Basis

In this section we give the specification of the semantic basis that is used both for the
source language and for the target language of our compiler.

The semantic basis consists of the sorts and operationsthat are used to give meaning to
our source and target language. Since LP isafirst order language we have to encode
higher order functions by first order functions, introducing sorts that stand for sets of
functions. We use following semantic basis:

decl are sort

Dat a, % dat a el enents
Fct, % functions PairDD -
> Dat a
Fsb, % set of function synbols
Fct Fct Fct % functionals Fct -
> Fct
Pai r DD % pai rs of data

declare var d, dO, dl1, d2 : Data

o, 00, ol, 02 : Fct

f, fo, f1, f2 : Fsb

t, t0, t1, t2 : FctFctFct
a

, a0, al, a2 : PairDD

decl are op
! : Fct, PairDD -> Data % function application
cFct : Fsb -> Fct % interpretation of Fsb
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test : Data -> Bool

cons : Data, Data -> PairDD

! . FctFctFct, Fct ->
fix : FctFctFct -> Fct

Def : Data -> Bool
Def : PairDD -> Bool

bottom: -> Data

31

% data as conditions

Fct % functi onal
% fixed point operator

% Def i nedness of data

% undef i ned

% pai ring function

application

The general rules of extensionality of functions (functionsare identical if for al argu-
mentstheir results are identical) and of thefixed point operator (fix(t) isafixed point
of the functiont) are formulated by the following axioms:

assert
assert
assert
assert

Pai r DD gener ated by cons
when (forall o) (t1!o)
when (forall a) (olla)
(trfix(t)) = fix(t)

(t2!'o) yield t1
(o2'a) yield ol

t2
02

For treating divergence in fixed point theory, it is common to introduce a special
semantic element L called bottom, representing the result of diverging computations.
Thenall carrier sets D (inour casetheset Data of dataelementsandtheset Pair DD =
Data x Data) are extended by L :

Dl =DuU{l}

On every extended set D+ the so called flat ordering C is introduced as follows (for

X,y e DY)

XCy=x=Lvx=y)

In the proof, we replace this ordering by a predicate:

where

Def : D — Bool

Def (x) = (x #£ 1)

Then we write

instead of

Def(xX) => x =y

XCy
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This dlowsus to make better use of the mechanismsin LP.

This semantic basis of an uninterpreted sort of data e ements and binary functionsis
used to describe the semantics both of the source and the target language.

6.3 The Source Language

The sourcelanguagein our exampleisafunctional language, called FPinthefollowing,
with recursive function declaration. For simplicity we consider a language where
all function symbols are binary with fixed interpretations. Each function symbol is
associated with a single binary function. Only one function symbol can be declared
recursively. Moreover, we use only a fixed pair of “standard” identifiers, namely x;
and x, for parameters. This allows us to write a code generator without having to go
into a discussion of symbol tables. Nevertheless, the code generator confronts us with
all the principa problems of treating recursion.

decl are sort Exp, % expr essi ons
Fp % functi onal programns
decl are var e, e0, el, e2, e3, ed : Exp
fp: Fp
decl are op % the functional |anguage FP
cst . Data -> Exp
x1l, x2 : -> Exp
ei f : Exp, Exp, Exp -> Exp
eap : Fsb, Exp, Exp -> Exp

letrec : Fsb, Exp, Exp -> Fp

val . Exp, Fsb, Fct -> Fct % interpretation of FP
fu . Fsb, Exp -> FctFctFct % functional for FP prograns
nmean . Fp -> Fct % meani ng function

nmean : Fsb, Exp -> Fct

A functional program has aways the following simple form
letrec(f, e, e0)

In a notation providing more syntactic sugar that reads

Ax1, x2:e0 where letrec f = Ax1,x2:¢e
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For instance afunction f that computes xg * (X1 + 1) * ... * (X2 — 1) * X, can be defined
asfollows:

letrec(f,
eaf (1 ess(x2,x1), cst(1), mult(x1, f(add(x1,cst(1)),
f(x1, x2)
)

The semantics of FP is formalized by the following axioms. First it is stated how
expressionsand FP programs are generated. Thisisused later asthebasisfor proofsby
structural induction on the structure of terms. Then a specification of the definedness
predicate Def isgiven, followed by the specification of the function val. Finally the
function f u is specified and the meaning function mean for programs.

assert Exp generated by cst, x1, x2, eif, eap
assert Fp generated by letrec

x2))),

assert % def i nedness axi ons

Def (cons(dl, d2))

Def (f!a)

Def (val (cst(d), f, o)!a)
Def (val (x1, f, o)!a)

Def (val (x2, f, o0)!a)

(Def (d1) & Def(d2))

(Def (d) & Def(a))
Def ( a)
Def ( a)

Def (val (eif(e0, el, e2), f, o)la) =
(Def(val (e0, f, o)la) &
((test(val (e0, f, o)la) & Def(val(el, f, o)lta)) |
(not(test(val (e0, f, o)la)) & Def(val (e2, f, o0)'a))))

Def (val (eap(f0, el, e2), f, o)la) =
(Def(val (el, f, o)la) &
Def (val (e2, f, o)la) &
Def (if(fO =f, o, cFct(f0))!
cons( val (el, f, o)la, val(e2, f, o)la)))

(val (cst(d), f, o)ta) =if (Def(a), d, botton)

> Def (a) % strictness assunption

(val (x1, f, o)!cons(dl, d2)) = if(Def(dl) & Def(d2), di, bottom
(val (x2, f, o)!cons(dl, d2)) = if(Def(dl) & Def(d2), d2, bottom

(val (eif(e0, el, e2), f, o)la) =
i f(Def(val (e0, f, o)!a),
if(test(val (e0, f, o)!a),
val (el, f, o)!a, val(e2, f, o)la),
bott on
(val (eap(f0, el, e2), f, o)la) =
(if(fo =f, o, cfct(f0))!cons(val (el, f, o)la, val(e2, f,

o)!a))
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assert
assert

(fu(f, e)to) = val(e, f, 0)
mean(l etrec(f, e, e0)) = val (e0, f,
mean(f, e) = fix(fu(f, e))

nmean(f, e))

Function application is strict in FP such that an application of a function aways
evaluates to bottom if one of the arguments is bottom. We use an uninterpreted
functional semantic basis for describing the meaning of the functiona programming
language. Hence our proof of compiler correctness can be applied to any semantic
structure with strict basic functions.

6.4 The Target Language

The target language is a simple assembler language ASP for a computer that has a
stack and exactly two storage cells for carrying the values of actual parameters of the
functional programs. It is not difficult to extend both the target language and the target
machine to a more el aborate concept of storage.

The most delicate question for the assembler languageis the treatment of the labelsfor
the goto statements. We decided to use symbolic addressesin gotos. Therefore aset of
labelsisintroduced. Labels are strings of markers where markers are e ements of the
st {0, 1, 2, 3.

decl are sort

Asp, % assenbl er prograns
Com % commands of ASP
Mar k % mar kers for |abels
Label % | abel s
declare op % conmmands
I ab Label -> Com
apcst Fsb -> Com
junp, cjunp Label -> Com
pushl, push2 -> Com
return, swap -> Com
pushD Data -> Com
pushL Label -> Com
% assenbl er prograns
nul | -> Asp
@ : Com Asp -> Asp

- : Asp, Asp -> Asp
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init : -> Label % | abel s
@: Mark, Label -> Label

0, 1, 2, 3 : -> Mark
Themeaning of ASPisspecified by an abstract machine called ASPM. Weintroducethe

sort of configurations representing the control and the data state space for thismachine.
A configuration consists of

the global program being executed,
o thestack of dataand labels,
o the program counte,

e apair of data.

Usually a machine executes a program text with the help of a program counter rep-
resented by, say, a natural number. The number identifies a position in the program.
Initially the counter is 0 and by every instruction it is updated. For our machine we
prefer not to introduce natural numbers explicitly to represent program counters. We
use avery abstract representation instead. In our machine the program counter is rep-
resented by an ASP program that is a postfix of the globa program text. Of course,
it is rather simple to replace thisform of a program counter given by a postfix in the
global program by a natural number pointing at the position of the postfix in the global
program.

For defining the operational semantics of ASP and ASPM a single-step function is
introduced that specifies the steps of execution. The function goto computes for a
givenlabel and agiven ASP program the continuation, which isagain an ASP program.
The specification of the function step that specifies one execution step of the machine
followsclassica patterns.

decl are sort

St ack, % st acks of | abels and data
Label , % sets of |abels
Conf % confi gurations
decl are op
enpty : -> Stack
@ . Data, Stack -> Stack
@ . Label, Stack -> Stack

step : Conf -> Conf
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goto : Label, Asp -> Asp
cnf : Asp, Stack, Asp, PairDD -> Conf
decl are var

p, pO, pl, p2, pc : Asp

c, ¢c0, c1, c2 : Com

m nD, ml, n? . Label

s, s0, s1, s2 . Stack

k, kO, k1, k2 : Mark

cf, cfO . Conf

assert
step(cenf(p, s, lab(m @c, a)) =
cnf(p, s, pc, a)
step(cnf(p, dO@d@®), apcst(f)@c, a)) =
cnf(p, (cFct(f)!cons(dO, d)) @, pc, a)
step(cnf(p, dO@d@), swap@c, cons(dl, d2))) =
cnf(p, di@d2@), pc, cons(dO, d))
step(cnf(p, d@ma@ddl@d2@))), return@c, a)) =
cnf(p, d@, goto(m p), cons(dl, d2))
step(cnf(p, s, jump(m @c, a)) =
cnf(p, s, goto(m p), a)
Def (d) =>
step(cnf(p, d@, cjump(m @c, a)) =
if(test(d), cnf(p, s, goto(m p), a),
cnf(p, s, pc, a))
push( d) @c, a)) =
cnf(p, d@, pc, a)
step(cnf(p, s, pushL(m @c, a)) =
cnf(p, m&, pc, a)
step(cenf(p, s, pushl@c, cons(dl, d2))) =
cnf(p, d1@, pc, cons(dl, d2))
step(cnf(p, s, push2@c, cons(dl, d2))) =
cnf(p, d2@, pc, cons(dl, d2))

step(cnf (p,

n

The execution of a goto statement uses the function goto. Itiseasily axiomatized.

assert goto(m null) = nul |
goto(m | ab(nD) @) =if(m=n0, p, goto(m p))
goto(m apcst(f)@) = goto(m p)
goto(m swap@) = goto(m p)
goto(m return@) = goto(m p)
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goto(m junp(n0)@) = goto(m p)
goto(m cjunp(nD) @) = goto(m p)
goto(m pushD(d) @) = goto(m p)
goto(m pushL(nD) @) = goto(m p)
goto(m pushli@) = goto(m p)
goto(m push2@) = goto(m p)

The execution of a program is carried out by iterating the execution steps until the
program counter becomes null. The iteration of executing stepsis defined recursively.
The function exec iterates the step function until the program counter is null. For
particular programs this execution may run forever.

The function cycle as specified in the following takes as an argument an iteration
function w mapping configurationsto configurations. If a configuration ¢ is terminal
(if the program counter is null), then cycle(w)(c) = c, otherwise cycle(w)(c) =
w(step(c)). The least fixed point of the function cycle has the fixed point property
fix(cyce) = cycle(fix(cycle)). Hence, if a configuration c is terminal (if the
program counter isnull), then fix(cycle)(c) = cycle( fix(cycle))(c) = c, otherwise
cycle( fix(cycle))(c) = fix(cycle)(step(c)). Thisshows that the application of the
function fix(cycle) to aconfigurationc leadsto an iterated application of the function
step until the program counter of the configurationisnull. If thisnever happens, then
the execution does not terminate.

decl are sort
Fct CC, % functi ons Conf -> Conf
Fct FCCFCC % functi ons Fct CC -> Fct CC

decl are op

exec : -> Fct CC
fix . Fct FCCFCC -> Fct CC
cycle : -> Fct FCCFCC

! : Fct FCCFCC, FctCC -> FctCC
! . Fct CC, Conf -> Conf

decl are var
w, w0, wi, w2 : FctCC
r, ro, rl, r2 : Fct FCCFCC
assert
(rifix(r)) = fix(r)
exec = fix(cycle)
((cyclelw!lenf(p, s, null, a)) =cnf(p, s, null, a)
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((cyclelw!lenf(p, s, c@c, a)) =
(W step(cenf(p, s, c@c, a)))

The result of a computation is the top element of the stack when the execution comes
toahalt. It can be obtained as follows.

decl are op
result : Conf -> Data
assert result(cnf(p, d&, pc, a)) =d

As we have aready pointed out, for our simple machine ASPM a control state is
represented by a pair (po, p1) wWhere pg isthe “global program” and p; is a postfix of
Po representing the program counter. We write p; < po to indicatethat p; is a postfix
of po. If p1isapostfix of pp then p; uniquely determines a natural number i with
0 < i < length(pg) which can be seen asthe more realistic representation of a control
counter. It is not difficult to replace the pair (po, p1) by a pair (po,i) wherei isa
natural number with 0 < i < length(po).

6.5 Code Generation

Code generation can be easily expressed in LP by equations for the source language
congtructs. Inthefollowingthecompilationfunctionisspecifiedin LP. For aFPprogram
letrec(f, e, €0) code is produced that contains code (generated from the expression €)
for the recursively declared function identified by the function symbol f and for the
expression e0. The produced code aways containsthe codefor therecursively declared
function followed by the code for for evaluating the expression e0. We use the label
init tolabel the code for therecursively declared function thelabel 1@init tolabel the
codefor for evaluating the expression e0. Theintroduced functionsservethefollowing
purposes (et e be an expression, f be afunction symbol, and m be alabel).
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trans(e, m, f) yieldsthe ASP code for computing the value of e using the
label m (and containsonly | abel sobtained fromm by prefixing
m by markers); for al function symbols in the expression e
distinct from the function symbol f, code is produced that
correspondsto callsof therespective primitivefunction, while
for the function symbol f, recursive calls are generated,

comp(p) yields the ASP code generated for program p,

rectrans(f,e) yieldsthe ASP code for the recursive declaration of the func-

tion symbol f by e,

etrans(e, f) yields the ASP code for computing the value of e.

The LP specification of these functionsis straightforward.

decl are op

trans :  Exp, Label,
conp : Fp

etrans :  Exp, Fsb
rectrans : Fsb, Exp

assert
trans(cst(d), m f)
trans(x1l, m f)
trans(x2, m f)

trans(eif(e0, el, e2), m f) =
( trans(e0, 0@n
( cjunmp(m
( trans(e2, 1@n
( junp(3@m
( lab(m

( trans(el, 2@n

( 1ab(3@n

nul |

trans(eap(fO0, el, e2) , m f) =
trans(e2, 2@n
( trans(el, 1@n
if(fo = f, swap
( pushL(m
( junp(init)
( lab(m

f)
f)

f)

Fsb -> Asp

-> Asp
-> Asp
-> Asp

(pushD(d) @null)
(pushl @null)
(push2 @nul 1)

'9® '®

- ®

>

@

P@e®

% condi tion
% el se-part

% t hen- part

))))))

% recursive call
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nul | ))),
apcst (f 0) @
nul | ))

comp(letrec(f, e, e0)) =rectrans(f, e) = etrans(e0, f)

rectrans(f, e) = ( lab(init) @
( trans(e, (O@nit), f) ~

( return @

nul | )))

etrans(e0, f) = ( trans(eO0, (l1@nit), f) ~
nul | )

The code generator generates first the code for the recursive function declaration and
then the code for the expression. Recall that there is only one recursive function per
program.

All labels are different in the generated code. Thisisused by the following assertions.
We introduce the postfix relation between ASP programs explicitly as follows.

decl are op =< : Asp, Asp -> Bool % postfix ordering
assert p=<p

assert when ((p0~pc) =< p) yield (pc =< p)

assert when ((c@c) =< p) vyield (pc =< p)

Therulefor computing continuationsthen reads as follows.

assert when ((lab(m @1) =< conp(fp))
yield goto(m, conp(fp)) = pl

This assertion can easily be proved with the axioms given for the function goto. It
iscertainly part of the correctness proof for code generation to prove these assertions.
We do not describe here how to carry out this proof, but rather concentrate on the main
proof of correctness of code generation.

6.6 Veification

Having specified the compiler function we can assign a meaning to programs in the
source language by trandating them to ASP programs, executing them and taking the
result as the meaning of the source program. In LP thisis expressed as follows.
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decl are op crean . Fp -> Fct

Xi :  Fsb, Exp, Exp, FctCC, Stack -> Fct
assert
cnean(letrec(f, e, e0)) = xi(f, e, e0, exec, enpty)

(xi(f, e, e0, w, s)la) =
result(w cnf(conp(letrec(f, e, e0)), s, etrans(e0, f), a))

Compiler correctness now can be specified as follows. Our compiler is correct, if for
every FP program and every pair of argumentsfor thisprogram, whenever thisprogram
terminates, so does the execution of the generated code and the results coincide.

Of course, before starting a more sophisticated proof, an idea, how to organize the
proof, must be found. We speak of the architecture of a proof. Such a proof idea
often needs careful investigation of the specifications under consideration, especially
for finding out as early as possible whether a proof idea does not work.

If the specifications are large and complex, a tuned notation is extremely helpful.
Thereforeweintroducein additionto theL P notation amore sophi sticated mathematical
one that hopefully makes the discussion of the proof principles more comprehensible.
Theintroductionof such atuned mathematical shorthandisof significant helpinfinding
the correctness proof.

Let us first formulate the correctness condition for code generation. Let e, €0 be
expressionsand f beafunction symbol. The program

letrec(f, €0, el)

stands for the function (note, once more, the parameters are aways denoted by the
identifiers x1, x2; therefore every expression containing only these two variables can
be read as representing a binary function in the arguments x1 and x2):

Ax1, x2:e0 where letrec f = Ax1,x2:e

The recursive declaration for f associates afunction f with the function symbol f by
the fixed point operator where

f = fix(ef) where tf[f] = val(e, f, f)

Here val (e, f, f) stands for the value obtained by evaluating the expression e while
using the function f asthe interpretation of the function symbol f.

Thefunctional cycle isabbreviated by o in thefollowing. It has the functionality

o . (Conf - Conf) — (Conf — Conf)
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wherefor all configurationsc:

(c[w])(c) = step(c)

if the program counter of the configuration c isnot null and

(o[wh(©) =c
otherwise. If the program counter isnull, result(c) gives thetop data element of the
stack in configuration c.

The fundamental theorem indicating the correctness of the compiler reads as follows
(remember, in the specification of ASPM the function fix(c') was abbreviated by exec):
val (€0, f, fix(9) = £2%(fix(0))

where
57*(g).a = result(g(enf(p, s, po, &)))
wherea isapair of arguments and

p = rectrans(f, e)"p0

pO = etrans(e0, f)

The core of the correctness proof for code generation is therefore a proof of the
equivalence of two recursively defined functions.

Basicdly, as well-known from fixed point theory, there are the following proof rules
availablefor proving properties about recursively defined functions. Let T be acontin-
uous function.

Fixed Point Rule:
fix(r) = [ fix(r)]

Least Fixed Point Rule:
g=r[dg]l= fixx) S g

Computational Induction:
u{fi :i € N} = fix(r) where fo = Q, fi 1 = [ fi]

Here Q standsfor the function Ax : L.

When trying to carry out a proof it is very important to recognize whether a proof
technique might be successful or not. It isamaor decision for the correctness proof
for the code generator which of the rules are to be applied.

Since LP is equation oriented, a proof based just on the fixed point rule would be
most convenient. However, a careful inspection of our basic theorem shows that a
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proof purely based on the fixed point rule cannot work. fix(c) represents repetitive
recursion. Therefore, if an application fix(o) diverges for a given argument nothing
can be said about the value that other fixed pointsof ¢ may yield for thisargument.

Consider for the moment the natural numbers for the sort Data and the rather stupid
recursive declaration:
letrec f(x1,x2) = f(x1,x2)+1

Thereisnosolutionfor f besides f = Q. For thefunction exec whereexec = fix(o)

we obtain:
exec(cnf(p, s, trans(eap( f, x1, x2)), a)) =

exec(cnf(p, §, trans(eap( f, X1, x2))°c, a))

where § is abtained from s by pushing a number of labels and parameter values onto
the stack s and c is some code.

Certainly there are many functions that fulfill the equation for exec above. So pure
fixed point reasoning cannot be sufficient for proving the correctness of fix(o). Itis
theleast fixed point of the function o that should have the required property. Therefore
we use the following rule that is a generalization of transformational induction. Let «
be a continuousfunction.

Transformational Induction:
vV k[flEé=«[[flE &) = «[fix@)] CE&

The correctness of this rule can be proved in a straightforward way by computational
induction (for 7). From

vik[fleé = «[fllCé
weobtainfor fy = , fi,1 = r[ fi] by inductiononi that
k[filC &

Therefore 3
k[ fix(™)] =«[u{fi ;i e N})]E &

Thisrule, in contrast to computational induction, has the advantage that we do not have
to introduce the natural numbers explicitly into the proof.

By thisrulewecan show that, whenever fix(zf)(d1, d2) converges, sodoes fix(o)(cnf(..., cons(dl, d2))
and both coincide. This means that we prove the somewhat weaker theorem:

val (€0, f, fix(z9)) C £2%(fix(0))

To prove this theorem by induction on the structure of the expressions we need an
appropriate embedding.
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We formulate thisembedding and based on it the correctness theorem. In thefollowing
we consider the program
letrec(f, €0, el)

in the source language FP; let the following abbreviations be introduced:

Po = comp(letrec( f, ey, 1))

T = fu(f, &)

v[f,e] =val(e f, )

Zmlel trans(e, m, f)

k[s, pi] =2ra: fix(o)(enf(po, s, p1, @),

Note, f standsfor afunction symbol while f stands for afunction. The correctness of
code generation isimplied by the following formula

Ve: O[fix[r], €
where Q[ f, €] isan abbreviation for:
tmlel"p1 < po = «[v[f, €l@)s, p](@) E «[s, &ml€]"pal (@)
A first attempt to carry out the proof isto use computational induction to prove:
fCt[f]AO[f, e = O[r[f]. €]

by induction on the structure of the expression e. When trying to carry out this proof,
then we have to face the following nasty problems.

e Intheinductionstep for thecase e = eap( f, e3, &5) wehaveto provethetheorem
for e = ey where g isthe body of the recursive declaration. For ey an induction
hypothesisis not available, since & is not a subexpression of e, in general, and
therefore the proof gets stuck.

In our first version of the proof of compiler correctness this problem was overcome
by structuring the proof into two steps treating recursive calls and nonrecursive cals
separately. Then acomplicated rephrasing of the semantics of FP was used such that the
compiler correctnessfor thissemantics could be provedin LP aswell astheequiva ence
of the orignal semantica definition for FP with the rephrased one.

After the proof was finished, Birgit Schieder studied it and discovered a more direct
proof that avoided the rephrasing of the semantics of the source language, by proving
amore genera formula using quantifiers explicitly (see [Schieder 92]). As Schieder
pointed out to me the proof can be greatly simplified by proving the following main
theorem

fCr[flave: O[f, e = Ve: O[], €
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instead of the theorem above. Clearly, this theorem also implies by computational
induction:
Ve: O[fix[r], €

but it turns out that it is much simpler to prove. Technicaly it means that we apply
computational induction first and then apply structural induction on the structure of the
expressions, rather than the other way around. In LPthe main theorem readsasfollows:

prove
when

(forall a, s, pl, m, e)

((Def((val(e, f, 0) ! a) ) &

((trans(e, nl, f) "pl) =< p0))

=

((exec!cnf(pO, s, trans(e, ml, f) “pl, a)) =

(exec!cnf(p0O, (val(e,f,0)!a) @s, pl, a)))) -> true,

pO -> conp(letrec(f,e0,el))

yield

((Def(val (e, f, o) ! cons(dl, d2)) &

((trans(e, m f)"pl) =< p0) )

=

(exec!cnf(p0O, s, trans(e, m f) "pl, cons(dl, d2) )) =
(exec!cnf(p0, (val (e,f,0)!cons(dl,d2) ) @s, pl, cons(dl, d2))))

The proof requires some definedness reasoning that is introduced in the following
paragraph.

6.7 Logic of Definedness

When proving theorems by computational induction we have to reason about defined-
ness. The introduction of the definedness reasoning into the LP specification reads as
follows.

decl are op =< : Data, Data -> Bool
assert (dl =< d2) = ((d1 = bottom | (dl = d2))
assert Def (d1) = not(dl = botton)

For functionsthe partial ordering isintroduced as follows:

decl are op =< : Fct, Fct -> Bool
assert when (forall a) (ol ! a) =< (02! a) yield ol =< 02
assert 0l =< 02 => (0lla) =< (02!a)
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Furthermore the monotonicity of the involved functionsis required.

assert (al =< a2) => ((olal) =< (o0la2))
assert (01 =< 02) => ((t!'ol) =< (tlo2))

These rules are used in the correctness proof.

6.8 Proof of the Main Theorem

Finally we proved the main theorem in LP using the axioms of definedness. The proof
itself is not particularly difficult. It justisalong proof by structural induction taking
into account all the forms expressionsin FP can have.

Proving the correctness of a compiler is a quite serious proof task. It requires in
particular techniques from domain and fixed point theory. The consistency of the LP
specification for the compiler correctness proof is not obvious a al. It is basicaly
justified by the consistency of fixed point theory. Also the correct application of the
rules from fixed point theory has not been checked within LP.

Proving compilers correct isatask that has been investigated by many researchers (see
the pioneering paper [London 71], and furthermore, for instance, [Manasse, Nelson 84],
[Bevier 89], [HuRmann 91], [Reeves 91], [Rus 90]), however, arigorous formal proof
of the correctness of recursive functions was always considered to be one of the more
difficult aspects.

The correctness proof for code generation involves, in general, the following forms of
induction:

1. computational induction,

2. induction on the structure of the expressions.

In the proof presented above, both induction principles were combined to prove a
carefully selected generaized theorem, from which the main theorem of compiler
correctness can be deduced.



Chapter 7

| nter active Queues

LPisafunctional specification language. Properties about interactive systems can be
proved with the help LP, if we give functional representations for such systems. Of
course, we can define state transition systems by functional means and therefore treat
such systems with the help of LP. Another way to reason about interactive systems,
also supported by LP, is offered by functional system descriptions aong the lines of
[Broy 90].

In the following sections we specify an interactive queue, give an implementation in
terms of states and an implementation by an infinite network. We provethe correctness
of the implementations within LP. The example is taken from [Broy 88] where the
theoretical background is described in detail .

7.1 TheDomain Theory

We use the the data types of streams and of messages. For simplicity we just use
natural numbers as messages (for every natura number i by dt(i) we denote the
message consisting of i) and a specia message rq as a request signal. The set of
messages reads as follows:

decl are sort Message

decl are var m m, nm : Message
decl are op rq : -> Message
decl are op dt . Nat -> Message
assert (rq =dt(i)) = false

assert Message generated by rq, dt

Streams are sequences of messages. The specifications of streams reads in LP as
follows:

47
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decl are sort Stream
decl are var s, r, s1, s2, rl, r2 : Stream

m nl, nR : Message
decl are op es : -> Stream % enpty stream
Message, Stream -> Stream % prefixing
- Stream Stream -> Stream % concat enat i on
assert es"s = s
s"es = s

(mMs)"r = (mM(s"r))

((Ms) =(mM"s1)) =( m=m &s =5sl1)
(es = (nmMs)) = false

(s"r)"sl1 = s"(r"sl)

(s"s1 =s"s2) = (sl = s2)
(s1l”s =s2"s) = (sl = s2)
assert stream generated by es, ":Message, Stream-> Stream

The sort Stream as introduced here includesonly finite streams, not infinite streams as
the domain of streams as used in [Broy 90].

7.2 TheRequirement Specification

The behavior of interactive system components can be described using the concept of
streams. We do not go deeper in this subject and just refer to [Broy 90].

An interactive queue that isinitially empty can be specified based on the concept of
streams in LP as follows. Here the predicate norq is used as an auxiliary construct.
The propositionnor q(s) istrue, if and only if the stream s does not contain the signal

rg.

decl are op q . Stream-> Stream
decl are op norq : Stream-> Bool
assert

q(rg”s) =rqq(s) _
norq(r)  =>q(dt(i)"(r°(rg”s))) = dt(i) a(r"s)
nor q(s) => q(s) = es

true
fal se

nor g( es)
norqg(rq"s)
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norqg(dt(i)”s)
norq(r”s)

nor q(s)
norqg(r) & norq(s)

The specification of the function q basically expresses the following properties:

e when arequest signa rq isreceived whilethe queueis empty then thissigna is
sent back and the queue remains empty;

e wWhenarequest signal r q isreceived after receiving adatamessagedt (i) followed
by afinite sequence r of data messages, then the first data message in the input
stream, whichisdt (i), issent in response;

e aslong asthere are no request signalsin the input there is no output.

This describes the behavior of a queue in terms of finite histories of interactions. The
function g isuniquely specified thisway.

In thefollowing we give two constructive descriptionsfor interactive queues. Thefirst
oneisbased on a state concept. The second one uses an infinite network of cells.

7.3 State Based | mplementation

A more constructive description of g is obtained by basing g on an auxiliary function
gs that is specified in amore state-oriented form as follows

decl are op gs : Stream Stream-> Stream

assert gs(es, es) es
gs(es, rq°s) rq-gs(es, s)
gs(dt(i)"r, rq°s) dt (i) qgs(r, s)
gs(r, dt(i)"s) gs(r-(dt(i) " es), s)

The first parameter of gs should be seen as a sequence (or more appropriately as an
element of sort Queue) rather than asa stream. It can be understood as the state of the
interactive queue. A more adequate way to express thiswould be to associate with qs
the functionality

gs: Queue — (Stream — Stream)

where Queue isthe sort of sequences equipped with the operations for queues.

The function gs provides an implementation of the functionq. Thisisprovedin LP by
proving:

prove g(s) = qgs(es, s)
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Figure 7.1: Graphica representation of the component cl

For carrying out this proof we proved following auxiliary theoremsin LP.

prove norg(r) & norq(s) => qgs(r, s) = es
prove norq(rl) => gs(r°rl, s) =qgs(r, rl°s)
prove norq(r) => q(r”s) = qgs(r, s)

All these proofsare carried out in LP by rather straightforward inductionon r and s.

7.4 Interactive Queues as I nfinite Networ ks of Cells

A queue as specified above can beimplemented by an infinite (or better an unbounded)
network of storage cells, each of which can store at most one data item.

74.1 StorageCéls

A storage cell is an interactive component that has two input channels and two output
channels. It can be modeled by afunction that receives two input streams and produces
two streams as output. We describe a storage cell by a ternary function cl. In an
applicationcl (m, s, y) thefirst argument m represents the state of the cell (the message
stored in the cell). The other two parameters are the input streams. The most adequate
functionality for cl therefore would be:

Message — (Stream x Stream — Stream x Stream)

Thisfunctionality can be obtained from the functionality of cl by currying. A graphical
representation of acell cl isgivenin Figure7.1. Initialy, the cell isempty. Thisis
modeled by specifying that rq is stored in the cell initially.

The behavior of a cell can be informally described as follows. If the cell that has
currently stored the data message rq, which, as pointed out, indicates that the cell is
empty, gets a message m on channdl s then:
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e if m = rq, then the signal rq is echoed back on channel n to indicate that the
cell is empty and therefore cannot satisfy the request and the value rq remains
thevalue stored inthe cdll;

o if m=dt(i), thenthe dataelement dt (i) becomes the value stored inthe cell.

If the cell that has currently stored the data message dt (j ) gets amessage m on channel
s then:

e if m = rq, then the data element dt (j) is sent on channel n in response and a
request is sent on channel r; the message received in response to this request on
channd y gets the new value stored in the cell;

e if m = dt(i), then the data element dt (i) is sent further on channel y; the value
dt(j) remainsthevalue stored in the cell.

This behavior can be expressed in LP as follows (clh isintroduced just for technical
reasons as an auxiliary function):

decl are sort Pairof Stream
decl are op cons . Stream Stream -> Pairof Stream
pl, p2 : Pairof Stream-> Stream

cl : Message, Stream Stream -> Pairof Stream
clh . Stream Stream -> Pairof Stream
assert pl(cons(s, r)) S

p2(cons(s, r)) r

cl(m es, r) = cons(es, es)

cl(rq, dt(i)” s, r) =cl(dt(i), s, r)
cl(rq, rgd°s, r) =
cons(rq pl(cl(rqg, s, r)), p2(cl(rqg, s, r)))

cl(dt(j), rg°s, r) =

cons(dt(j) pl(clh(s, r)), rg p2(clh(s, r)))
clh(s, nir) ->cl(m s, r)

cl h(s, es) = cons(es, es)

cl(dt(j), dt(i)"s, r) =

cons(pl(cl (dt(j), s, r)), dt(i) " p2(cl(dt(j),

For these functions a number of theorems are proved in LP that will be used in the
correctness proofsfor the network given below:

S,

r)))
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Figure 7.2: Graphical representation of the network of cells

prove norq(r) => pl(cl(m r, sl)) = es
prove norq(r) => pl(cl(dt(i), r°(rq°sl), rl1)) =

(dt (i) " pl(clh(s1, r1))
prove norq(r) => pl(cl(dt(i), r°s1, rl1)) =

pl(cl (dt(i), s1, r1))

prove norq(r) => p2(cl(dt(i), r, s1)) =r
prove norq(r) => p2(cl(rqg, dt(i)"(r"sl), s)) =
r p2(cl(rq, dt(i)"sli,

These theorems actually show interesting properties of the cell. They alow a better
understanding of the behavior of the cell.

7.4.2 TheNetwork

Aninfinitenetwork of cellscan be used toimplement an interactive queue. A graphical
representation of such an infinite network of cellsisgivenin Figure7.2. The network
can belogically described by arecursive definition for streams.

Weintroducetwo function symbolsqn and gr. For astream s the stream gn(s) denotes
the output produced by the network and the stream gr (s) denotes the stream produced
inside the network as output by the left cell in the network used as input for its right
neighbor.

decl are op gn, qr: Stream-> Stream

The network can be described by recursive equationsfor qr and gn in terms of the cell
functioncl:

(@n(s), qr(s)) =cl(rg, s, qn(@r(s)))
We do not simply use these equations as assertionsin LP. The reason isas follows: in
thetheoretical framework as givenin [Broy 88] fixed points are guaranteed to exist by

)

s))
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the monotonicity of the functionsinvolved. Therefore we simply could state gr and s
by the equations shown above. Since we did not introduce the theoretical framework
of fixed point theory explicitly, we do not give fixed point definitions for gn and gr.
We just introduce predicates as abbreviationsfor the fixed point equations.

decl are op fpr : stream-> bool

assert fpr(s) == (ar(s) = p2(cl(ra, s, an(ar(s)))))
decl are op fpn : stream-> bool
assert fpn(s) == (an(s) = pi(cl(ra, s, an(ar(s)))))

The correctness of the network given above is proved in two steps. In the first step
we prove partia correctness, also called safety properties. In the second step we prove
liveness properties.

743 Safety

Thenetwork isbasically described by equationsfor streams. We prove safety properties
by giving explicit specifications for the functionsgn and gr proving that the functions
gn and gr as specified above form afixed point of the equation describing the network.

Again an auxiliary function gc isintroduced just for convenience for specifying gr.

decl are op gn, qr: Stream-> Stream
gc: Stream Stream-> Stream
assert gn(es) = es
an(rqg sl) = (rg gn(sl))
norqg(sl) => gn(sl) = es
norqg(r) =>
gn(dt (i) (r"(ra’s))) = (dt(i) an(r”s))

ar(s) = qc(es, s)

qc(es, (dt(i)”"s)) = qgc((dt(i)"es), s)
qc(es, (rq”s)) = qc(es, s)

gc(r, es) = es
gqe(dt(j)”s, rg sl) = (rq qc(s, si))
gc(dt(j)"s, dt(i)"sl) =
(dt (i) qc((dt(j)"s) " (dt(i) es), sl))
norg(r) => qc(es, (dt(i)"r)) =r
norqg(r) => qc(dt(i)"(sl), r°s) =
roqc(dt(i)"(s1°r), s)
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For proving the required safety properties of the network we prove that the specified
functions qn and qr are indeed fixed points. For carrying out this proof in LP we
proved the following lemmas:

prove fpr(es)
prove fpr(s) => fpr((rqg°s))
prove fpr((dt(i)~es))
prove norq(r) => fpr(dt(i)"r)
prove fpr(s) => fpr((dt(j) (rq°s)))
prove norq(r) => (fpr(dt(i) " (r"s)) =>
fpr(dt(j) (dt(i)"(r"(ra’s)))))

prove fpn(es)

prove fpn(s) => fpn((rqg°s))

prove norqg(r) => fpn((dt(i)°r))

prove fpn(s) => fpn((dt(j) (rq°s)))

prove norq(r) => (fpn(dt(i)"(r"s)) =>
fpn(dt(j) " (dt(i) " (r"(ra’s)))))

These theorems then allow usto prove the basic safety property:

prove fpn(s)
prove fpr(s)

This concludes the safety proof. In the proof of the safety properties a number of
properties of the function cl are required as well as certain properties of the function
clh. For doing the proofs certain skolem functions have been introduced. Their
description is given in the appendix. Note, again, the proof gets more tedious, since
in LP we cannot assume that there are fixed points of the functionsinvolved. Simply
giving the axioms
fpn(an(s)) A fpr(qr(s)

as definitionsfor gr and gs might already have introduced an inconsistency in LP. In
SPECTRUM the semantic theory ensures that monotonic functions have fixed pointsand
therefore a consistency proof is not necessary.

744 Liveness

We prove the liveness properties for the network by proving that the output has the
required length.

This is probably not the most elegant way of proving liveness. However, since we
were interested in getting experience with LP in carrying out those types of proofs,
we constructed the proof this way. For doing the proof we introduce two auxiliary
functions.
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decl are op nbr, nbrrqg : stream-> nat

assert nbr(es) =20
nbr (ms) = succ(nbr(s))

assert
nbrrq(es) =0
nbrrq((rq”s)) = succ(nbrrq(s))
nbrrq(dt(i)~s) = nbrrq(s)

Then we have: nbr(s) denotes the number of elements, the length, of stream s.
nbrrq(s) denotes the number of occurrences of thesignal rq in the stream s.

For proving the liveness properties we do not include the assertions about gn and qr
as given explicitly in the safety part, but assert that the functionsgn and qr are fixed
pointst:

assert fpr(s) & fpn(s)

Now, we observe that for the function g as introduced in the requirement specification
we have (a proof by inductionis straightforward):

nbr (q(s)) = nbrrq(s)

In the safety part we have aready shown that g isafixed point. It remainsto show that
itistheleast fixed point. Therefore it is sufficient to show the following lemma:

fpr(s) A fpn(s) = nbrrqg(s) < nbr(gn(s))

Theliveness proof isquitestraightforward. It usesanumber of propertiesof ¢l and clh
that are listed in the following. Again these properties are verified by straightforward
(mostly induction) proofsin LP. Finaly we provein LP:

prove nbr(p2(cl(m s, r))) =< nbr(s)
prove nbr(p2(cl(rg, m~ s, r))) < nbr(m~ s)
prove nbrrq(p2(cl(m s, r))) < succ(nbr(r)) =>
nbr (pl(cl(m s, r))) = nbrrq(s)
Based on these properties we proved the following theorem in LP by inductiononii:

prove nbr(s) < i => nbrrq(s) =< nbr(gn(s))

Thistheorem immediately implies:

1Since we have aready proved in the safety part that fixed points exist we can be sure that this does not
causeinconsistencies.



CHAPTER 7. INTERACTIVE QUEUES 56

prove nbrrq(s) =< succ(nbr(gn(s)))

This concludes the liveness part of the correctness proof for the implementation of the
interactive queue by a network.

7.4.5 Fixed Point Reasoning

A more elegant and simpler proof for the correctness of the network is obtained by
defining the function gn as follows:

gn(s) = pa(fixac:cl(rg, s, gn(p2(c))))

where s denotes a stream and ¢ denotes a pair of streams and p; and p, denote thefirst
and second projection function for pairs of streams and fix denotes the fixed point
operator. The following rule is justified by fixed point arguments (et € be a pair of
streams and €"c denote the el ementwise concatenation of the pairs of streams € and ¢
and f beafunction from pairs of streamsto pairs of streams):

fixac:€f(c)=¢€fixac: f(€c)

Using this rule the three defining equations for interactive queues as given in section
7.2 can be derived in LP in arather straightforward way by fold/unfold techniques for
therecursive definition of gn as given above. Since LP does not support A-notationand
higher order functions (such as fix), some parts of A-calculus had to be axiomatized
explicitly in LP to carry out the proof aong theselines. Although we have carried out
these proofsin LP, too, we do not give the LP version of the proof, because we do not
wish to go into the axiomatization of A-calculuswithin LP here.

This concludes the example of the interactive network of storage cells implementing
an interactive queue.
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Conclusion

All the examples of developments as treated in the previous chapters were carried out
using LP to prove all the theorems. The purpose of thiswork was not, of course, to be
sure about the correctness of the examples, but rather to get experience in deduction
oriented program and system development using atool like LP.

Finally, we want to discuss more general aspects of formal techniques in software
and system development and draw at least a number of conclusionsin the light of the
treatment of the examples.

8.1 Discussion of Formal Techniques

The most basic questions, generally asked in connection with formal techniques and
verification support systems, are listed in the following:

(1) Isformal specification and verification possible, in principle?
(2) What doesit cost?

(3) How doesit pay?

(4) Canitbeapplied, in practice?

It was, of course, apart from technical and scientific aspects, one of the purposes of this
study isto obtain input for answers to these questions.

The answer to question (1) isdefinitely “yes’ from my point of view. | cannot imagine
a piece of software, where formal specification and verification is, in principle, not
possible. Our specification techniques and verification techniques are developed far
enough, today. However, certainly there are applications where formal specifications

57
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may not be adequate'. Andwhether specification and verificationispractically possible
and useful when working with large programs is an open question. The difficulties of
scaling up formal techniquesisacrucia problem.

The second question cannot be answered very generally. The study for the examples
given in the previous sections was carried out during a stay of 14 weeks a SRC in
Palo Alto during the summer and autumn 1991. The work on the verification and
specification of the examples certainly took less than 4 manweeks. Of course, the
examples studied are toy examples and therefore the time for constructing the proofs
seems rather long. On the other hand, thistime includes al the steps of the problem
specification. Moreover, if inamore practica softwareproductionenvironment similar
applications are treated again and again, then specifications and proof techniques may
bereused in amuch higher degree. Formal techniquesmay helpto producehigh quality
software such that reuse ismore attractivethan for software nowadays. If inaparticular
area of application the domain theory is formalized by specifications and a number of
theorems and proof techniques have been established, then the overhead in tackling
new, but related devel opment tasks is drastically reduced.

The answer to question (3) is even more difficult. Certainly, alot of bugsin program
development can be caught by specification and verification techniques. However, itis
necessary to emphasize that aformally specified and verified programis not necessarily
correct in the pragmatic sense. The specification may not capture the requirements
properly, the proof itself may be carried out not properly (even when using support
systems errors can occur in stating the axioms, not to speak about the correctness of the
support system itself). On the other hand, when observing how much time and energy
iswasted in testing, debugging and maintaining incorrect badly documented software,
we may conclude that even when formal techniques are expensive they may pay.

Question (4) again leads to two answers. In principle, formal techniques can be
practicaly applied, right now. However, when trying to apply formal techniques,
in practice, the following problems will give software engineers pioneering in the
application of forma methods a hard time:

o lack of experience and well educated people,
o lack of awell worked out methods,

o lack of tool support for organizing the work.

Nevertheless, for anumber of areas of applicationformal techniques might neverthel ess
already be applicable and cost-effective.

IWhat isthe formal specification of a pattern recognition procedurefor handwritten letters or for spotting
koalabearsin the jungle.
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8.2 Areasof Enhancement for LP

When using a tool like LP an interesting question concerns aspects for further de-
velopment. It is certainly important to underline here that the suggestions of further
development are not to be misunderstood as a criticism of the design decisions that
have led to the current version of LP. | am perfectly in agreement with a strategy to
start with a simple and basic tool first, to gather some experience and than do a next
step (“little stepsfor littlefeet” as Jim Horning says).

We have aready discussed the significance of languagefeaturesin chapter 2. Herealot
can be added, especially features aready available in Larch, to make the LP notation
more comfortable. In the following we rather concentrate on questions of deduction
and proof support.

8.2.1 MorePower for the Proof Machinery

First of all, it has to be stated already that LP is a proof machinery that needs a lot of
interaction. LP gives practically no hintsfor finding proofs with respect to the proof
structure. The basic proof idea hasto be completely provided by theuser. However, LP
is much more than just a proof checker, athoughit can be and has been used that way.
When carrying out the basic proof steps, the information displayed in the interactive
development of a proof isvaluable for designing the proof. It, in particular, gives hints
why a certain proof step fails, and in some cases, may indicate that the conjecture that
isto be proved may be not atheorem, after all.

At themoment, often it takes a painfully large number of stepsof interaction (including
failing attempts) to carry out quite simple proofsof rather obvious propositiona formu-
las. Here time consuming proofsby cases are often needed. Certainly, additional proof
machinery that can beinvoked, when alevel of detail isreached duringthe construction
of a proof that allowsto complete the proof by purely propositiona reasoning and by
instantiating a number of axioms would be very helpful. This could be done by an
efficient decision procedure.

When dealing with constructive specifications, induction proofsbecome crucial. InLP,
induction on the term structure is well supported. More sophisticated techniques of
induction can be envisaged, including complete induction and induction over terms, as
well asvariables.

Another source of frustration is the amount of input needed by the LP system when
instantiating formulas. Although the “critical pairs’ concept can help here, | found its
use rather indirect. More explicit commands offered by L P would be welcome.
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8.2.2 Support of More Refined Logical Theories

LP supports just a subset of first order predicate logic plus induction. Thisis quite
powerful and, in principle, sufficient. More sophisticated logical concepts like higher
order functions, full quantifiers, logic of partia functions, fixed point theory and much
more can be implemented by specifications on top of LP.

However, thisproceeding has disadvantages. Asit can beseen by the compiler example,
it makes adifference, whether asort for representing functionsisintroduced or whether
functional sorts are available. The same applies for reasoning about partia functions.

It would be nice to make a number of theory and logic transformers available on top
of LP, such that by invoking these transformers more refined logical theories are made
availableto the users.

In any case full first order predicate logic with full treatment of quantifiers should be
supported.

8.2.3 Advanced Proof Support

Certain proof techniques are very well supported by LP. For instance, al kinds of
rewriting proofs can be easily carried out. Other proof techniques are less adequately
supported.

For instance, proofs where for atransitive relation < a proposition
to <ty
isproved by giving asequence of termst; such that:
r<ti<..=<t,

haveto be carried out in LP by instantiating thelaw of transitivity over and over again.

Such proofs are needed in many applications of computer science. Here more tuned
proof techniques might be provided.

Often it is helpful to declare a number of abbreviations for formulating a theorem and
carrying out aprove. Such local declarations might aso be supported.

Abbreviationsfor formulas are also often helpful to make proofs more transparent.

8.24 Supportingthe Theory Management

When dealing with forma specifications and verification very soon we have to deal
with alarge number of unitsof information, such as the axioms of the domain theories,
already verified lemmas, and local assumptions in proofs. This brings two kinds
of problems: storing the information (and the different versions) in an adequately
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structured way and displaying the information during the construction of aproof. Both
problemsare crucial when dealing with larger examples.

So far in LP the specifications and proofs are stored in files, the file management is
done by the user. Axioms are named and can be displayed by name. More associative
forms of information retrieval might be helpful.

Of course, it would be more convenient, if all the file management and the storage and
retrieval of information in interactive specifications and proofswere taken care of by a
more sophisticated LP interface.

Thequestion of revisionsand replay of proofsmay play adecisiverolein devel opments.
At the moment, when some basic axioms in LP specifications are modified, the only
thing auser can doisrerun al hig’her proofs, identifying problems and fixing them, if
possible. More sophisticated support can be imagined here.

8.25 Methodological Support

LP provides a specification language and an interactive verification system based on
rewriting. So far, it does not provide any method nor even hintshow to use such atool
in practica applications.

| believe strongly that for practical applications the question of how to organize the
work, and when to specify what and to how much detail, and when to prove what, is
decisive. More work and more support is needed here.

The problem of consistency should be taken care of. A method should point out which
conditionsare to be proved to ensure consistency of a specification under devel opment.

8.3 LessonsL earned

Working with a mechanica interactive proof support system is, in spite of all frustra-
tions, fun. It provides many vauable insights, not only about proof support systems,
but a so about the organization of proofsand the structuring of specifications.

Asit turns out, many theoretical issues are much less relevant than we expected when
practically working with a system. Other aspects that are theoretically less significant
become morerelevant. Thefeedback obtained by carrying out even moderate size case
studiesis mandatory for ensuring practical relevance of theoretical work.

More experimentation is badly needed. Only if more case studies and additional
practica projectsare doneintrying out the formal techniques, can it be hoped to bring
formal techniques closer to practice in the long run.
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Appendix A

Appendix: Specifications Used

In the following we give a number of specifications as they have been used in the
examples.

A.1 Specification of the Natural Numbers

An LP specification of the natural numbers reads as follows:

declare sort Nat

declare wvar i, j, k : Nat

declare op O, 1, 2: -> Nat
succ © Nat -> Nat
+, ¥ : Nat, Nat -> Nat
=<, < : Nat, Nat -> Bool

assert Nat generated by 0, succ
assert ac +

assert ac *

assert 1 = succ(0)

2 = succ(l)

(succ(i) = 0) = false
(succ(i) = succ(j)) = (i=))
(i+0) =i

(i+succ(j)) = succ(i+j)

(0*j) =0

63
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(succ(i) *j) =@ + (0 *j))
(i =<1i) =true
(succ(i) =<1i) = false

(succ(i) =< succ(j)) = (i =<j)

(i =<j) => (i =< succ(j))
not (i =< j) => not(succ(i) =<j)

(i =<j) &(j =<1i)) =( =]j)
(i =<j) &(j =<k)) =>1i =<Kk

(i <7j) = (succ(i) =<j)

(i (+k) = i)+ * k)
(i <(i +k) =(0<k

(suce(i) * ) = (i + (i * )

(i =< (i+k))

(succ(i) < (k +1i)) = (1 <Kk)
not(0 <i) = (0 =1)

Some of these axioms are in fact theorems that can be proved, mainly by induction, in
astraightforward way.

A.2 Specification of Sequences

The specification of sequencesthat isused inthe example of quicksort reads asfollows:

decl are sort Seq, Nat
declare var s, r, s1, s2, rl1, r2 : Seq
m ml, n2 : Nat

decl are op es -> Seq
@ : Nat, Seq -> Seq

rt : Seq -> Seq
ft : Seq -> Nat

Seq, Seq -> Seq
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nbr : Seq -> Nat
# : Nat, Seq -> Nat
assert
es"s -> s
s"es -> s

(m@)"r -> (m@ s°r))

((m®) = (mM@1)) = (m=nl &s = sl)
(es = (m®)) = fal se

(s"r)"sl1 = s"(r"sl)
(s"s1) = (s"s2) == (sl = s2)
(s1l”s = s2"s) == (s1 = s2)

nbr(es) =0

nbr (m@&) = succ(nbr(s))

(i#es) =0

(iI#(j@)) =if(i =], succ(i#s), i#s)

assert seq generated by es, @
Based on this specification the following theorems were proved using LP.

prove (nbr(s) < succ(0)) == (s = es)

prove nbr (s) < nbr(M®)

prove nbr(r~s) < nbr(r°(ma&))

prove nbr (ma&) < nbr((nl@1)) = nbr(s) < nbr(sl)
prove (T#(s"r)) = ((i#s) + (i#r))

These theorems can be proved mainly by induction in a straightforward way.

A.3 Functions Used in the Safety and L iveness Proof

To be ableto provethe theoremsin the example of the implementation of an interactive
gueue by a network we introduced a bunch of auxiliary functionsand prove some basic
properties about them as listed in the following.

prove (nbr(s) < succ(0)) == (s = es)
prove nbr (s) < nbr(nis)
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prove nbr(r~s) = nbr(r)+nbr(s)
prove nbr(r~s) < nbr(r (nms))
prove nbr(m s) < nbr((m”sl)) = nbr(s) < nbr(sl)
prove nbr(r~s) < nbr(r (nms))

prove nbrrq(r”s) = nbrrqg(r)+nbrrq(s)
prove nbrrq(r°s) < nbrrg(r"(rq°s))
prove nbrrq(s) < succ(nbr(s))

prove nbrrq(r°s) < nbr(r°(rq°s))

prove nbrrq(r (dt(i)"s)) = nbrrg(r~s)..

decl are op rt, dhd, rtl, fdm rdm: stream-> stream
decl are op ft : stream-> nessage

decl are op fdi : stream-> nat

assert dhd( es) = es
dhd(rq"s) = es
dhd(dt(i)"s) = (dt(i) dhd(s))
rtl(es) = es
rtl(rq°s) =s
rtl(dt(i)"s) = rtl(s)
ft(mMs) =m
rt(nms) =s
fdm(es) = es
fdm(dt(i)"s) = (dt(i) es)
fdm(rq”s) = es
rdn{es) = es
rdm(dt(i)"s) = s
rdn(rq’s) = (ra’s)
fdi(dt(i)"s) =i

For these auxiliary functionsthe foll owing theorems have been proved. They are used
in the correctness proof for the safety properties of the network implementation of
queues.

prove s=es | s =(rqrt(s)) | s = (dt(fdi(s)) rt(s))
prove (nbrrg(s) < succ(0)) = norq(s)
prove ((dhd(s) = es) & not(norq(s))) =>
(dt(i)"s) = (dt(i)"(rg'rtl(s)))
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prove

prove
prove
prove
prove

assert
assert
assert
assert

assert
prove

when ((dhd(s) = es) & not(norq(s)))
yield (dt(i)"s) = (dt(i) " (rg°rtl(s)))

nbr(rtl(s)) < nbr(s) | nbr(rtl(s)) = nbr(s)
(nbr(s) < succ(i)) => nbr(rtl(s)) < succ(i)
br(s) <i => (nbr(dhd(s))+nbr(rtl(s))) <
((not (dhd(s) = es) & not(norqg(s)) &
(nbr(s) < succ(i)))) =>
((nbr(dt(j) " (dhd(rt(s)) "rtl(s)))) < succ(i) = true)
nor g(dhd(s)) = true
when ((not (dhd(s) = es) & not(norqg(s))))
yield (dt(i)"s) =dt(i)"(dt(j) (dhd(rt(s)) " (rq°rti(s))))
not (norq(s)) =>
(dt(i)"s) = (dt(i)"(dhd(s)"(rag"rti(s))))
when norq(r) yield dhd(r) =r
when not (norqg(s)) yield nbr(rtl(s)) < nbr(s)
s =es | nbr(rt(s)) < nbr(s)

These theorems can be proved in LP mainly by induction in a straightforward way.
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