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Authors Abstract

Traditional methods for specifying and reasoning about concurrent systems work
for real-time systems. Using TLA (the temporal logic of actions), we illustrate
how they work with the examples of a queue and of a mutual-exclusion protocol.
In general, two problems must be addressed: avoiding the real-time programming
version of Zeno’s paradox, and coping with circularitieswhen composing real -time
assumption/guarantee specifications. Their solutionsrest on properties of machine
closure and realizability.
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1 Introduction

A new class of systemsisoften viewed as an opportunity to invent anew semantics.
A number of years ago, the new class was distributed systems. More recently,
it has been rea-time systems. The proliferation of new semantics may be fun
for semanticists, but developing a practical method for reasoning formally about
systemsis alot of work. It would be unfortunate if every new class of systems
required inventing new semantics, along with proof rules, languages, and tools.

Fortunately, no fundamental changeto theold methodsfor specifying and reasoning
about systems is needed for these new classes. It has long been known that the
methods originally developed for shared-memory multiprocessing apply equally
well to distributed systems[7, 11]. The first application we have seen of a clearly
“off-the-shelf” method to a rea -time algorithm was in 1983 [16], but there were
probably earlier ones. Indeed, the“extension” of an existingtemporal logicto real-
time programs by Bernstein and Harter in 1981 [6] can be viewed as an application
of that logic.

The old-fashioned methods handle real time by introducing a variable, which we
call now, to represent time. Thisideais so simple and obviousthat it seems hardly
worth writing about, except that few people appear to be aware that it works in
practice. We therefore describe how to apply a conventional method to real-time
systems.

Any formalism for reasoning about concurrent programs can be used to prove
properties of real-time systems. However, in a conventional formalism based on
a programming language, real -time assumptions are expressed by adding program
operationsthat read and modify the variable now. The result can be a complicated
program that is hard to understand and easy to get wrong. We takeas our formalism
TLA, thetemporal logic of actions[13]. In TLA, programs and properties are rep-
resented aslogical formulas. A real-time program can be written asthe conjunction
of itsuntimed version, expressedinastandardway asa TLA formula, anditstiming
assumptions, expressed in terms of a few standard parameterized formulas. This
separate specification of timing properties makes real-time specifications easier to
write and understand.

The method is illustrated with two examples. The first is a queue in which the
sender and receiver synchronize by the use of timing assumptions instead of ac-
knowledgements. We indicate how safety and liveness properties of the queue
can be proved. The second exampleis an n-process mutua exclusion protocol, in
which mutual exclusion depends on assumptions about the length of time taken by



the operations. Its correctnessis proved by a conventional invariance argument.

We also discuss two problems that arise when time is represented as a program
variable—problems that seem to have received little attention—and present new
solutions. The solutions are expressed in terms of TLA, but they can be applied to
any formalism whose semantics is based on sequences of states or actions.

The first problem is how to avoid the rea-time programming version of Zeno's
paradox. If time becomesan ordinary program variable, then one can inadvertently
write programsin which time behavesimproperly. An obviousdanger isdeadlock,
where time stops. A more insidious possibility is that time keeps advancing but
is bounded, approaching closer and closer to some limit. One way to avoid such
“Zeno” behaviorsisto place an apriori lower bound on the duration of any action,
but this can complicate the representation of some systems. We provide a more
genera and, we fedl, amore natural solution.

The second problem is coping with the circularity that arises in open system spec-
ifications. The specification of an open system asserts that it operates correctly
under some assumptions on the system’s environment. A modular specification
method requires a rule asserting that, if each component satisfies its specification,
then it behaves correctly in concert with other components. This rule is circu-
lar, because a component’s specification requires only that it behave correctly if
its environment does, and its environment consists of al the other components.
Despite its circularity, the rule is sound for specifications written in a particular
style[1, 15, 17]. By examining an apparently paradoxical example, we discover
how real-time specifications of open systems can be written in thisstyle.

2 Closed Systems

We briefly review how to represent closed systemsin TLA. A closed system is
one that is self-contained and does not communicate with an environment. No
one intentionally designs autistic systems; in a closed system, the environment is
represented as part of the system. Open systems, in which the environment and
system are separated, are discussed in Section 4.

We begin our review of TLA with an example. Section 2.2 summarizes the formal
definitions. A more leisurely exposition appears in [13], and most definitions in
the current paper are repeated in a list in the appendix. Section 2.3 reviews the
concepts of safety [4] and machine closure [2] (also known as feasibility [5]) and
relatesthemto TLA, and Section 2.4 defines a useful class of history variables|[2].



ival . oval

ibit obit

Figure 1: A simple queue.
Propositions and theorems are proved in the appendix.

2.1 ThelLossy-Queue Example

We introduce TLA with the example of the lossy queue shown in Figure 1. The
interface consists of two pairs of “wires’, each pair consisting of a val wire that
holds a message and a boolean-valued bit wire. A message m is sent over a pair
of wires by setting the val wire to m and complementing the bit wire. Input to
the queue arrives on the wire pair (ival, ibit), and output is sent on the wire pair
(oval, obit). Thereisno acknowledgment protocol, so inputsare lost if they arrive
faster than the queue processes them. The property guaranteed by thislossy queue
is that the sequence of output messages is a subseguence of the sequence of input
messages. In Section 3.1, we add timing constraints to rule out the possibility of
|ost messages.

A specification is a TLA formula IT describing a set of alowed behaviors. A
property P isaso a TLA formula. The specification IT satisfies property P iff
(if and only if) every behavior alowed by IT is aso allowed by P—that is, if T1
implies P. Similarly, a specification W implements IT iff every behavior alowed
by W isalso allowed by IT, so implementation means implication.

The specification of the lossy queue is a TLA formula that mentions the four
variables ibit, obit, ival, and oval, as well as two internal variables: g, which
equals the sequence of messages received but not yet output; and last, which
equals the value of ibit for the last received message. (The variable last is used
to prevent the same message from being received twice.) These six variables are
flexible variables; their values can change during a behavior. We aso introduce
arigid variable Msg denoting the set of possible messages; it has the same value
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throughout a behavior. We usualy refer to flexible variables simply as variables,
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A ibit, obit € {true, false}

A ival, oval € Msg

A last = ibit

A q={)

A ibit = —ibit

A ival’ € Msg

A (obit, oval, g, last)’ = (obit, oval, g, last)

A last # ibit

A g =qo (ival)

A last’ = ibit

A (ibit, obit, ival, oval)’ = (ibit, obit, ival, oval)

A g # ()

A oval’ = Head(q)

A q = Tail(q)

A Obit" = —obit

A (ibit, ival, last)’ = (ibit, ival, last)

Inp v EnQ v DeQ
(ibit, obit, ival, oval, g, last)
|n|tQ AN D[NQ]U

3q, last : Mg

Figure2: The TLA specification of alossy queue.

and to rigid variables as constants.

The TLA specification is shown in Figure 2, using the following notation. A
list of formulas, each prefaced by A, denotes the conjunction of the formulas,
and indentation is used to eliminate parentheses. The expression ( )) denotes the
empty sequence, {(m)) denotesthe singleton sequence havingm asitsoneelement, o
denotes concatenation, Head (o) denotesthefirst e ement of o, and Tail (o) denotes
the sequence obtained by removing thefirst element of o. The symbol £ meansis
defined to equal .

Thefirst definitionis of the predicate Inity, which describes the initial state. This
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predicate asserts that the values of variablesibit and obit are arbitrary booleans, the
values of ival and oval are elements of Msg, the values of last and ibit are equal,
and the value of q isthe empty sequence.

Next is defined the action Inp, which describes all state changes that represent the
sending of an input message. (Since thisis the specification of a closed system, it
includesthe environment’sInp action.) Thefirst conjunct, ibit' = —ibit, assertsthat
the new value of ibit equals the complement of its old value. The second conjunct
asserts that the new value of ival is an element of Msg. The third conjunct asserts
that the value of the four-tuple (obit, oval, g, last) is unchanged; it is equivalent to
the assertion that the value of each of the four variables obit, oval, g, and last is
unchanged. The action Inp is always enabled, meaning that, in any state, a new
input message can be sent.

Action EnQ represents the receipt of a message by the system. Thefirst conjunct
assertsthat lastisnot equal to ibit, so the message ontheinput wire has not yet been
received. The second conjunct asserts that the new value of g equals the sequence
obtained by concatenating the old value of ival totheend of gq’sold value. Thethird
conjunct asserts that the new value of last equals the old value of ibit. The fina
conjunct asserts that the values of ibit, obit, ival, and oval are unchanged. Action
EnQisenabled in astateiff the values of last and ibit in that state are unequal.

The action DeQ represents the operation of removing a message from the head of
g and sending it on the output wire. It isenabled iff the value of g isnot the empty
sequence.

The action Ny is the specification’s next-state relation. It describes al allowed
changes to the queue system’s variables. Since the only allowed changes are the
ones described by the actions Inp, EnQ, and DeQ), action N is the disjunction of
those three actions.

In TLA specifications, it is convenient to give a name to the tuple of all relevant
variables. Here, we call it v.

FormulaIlq istheinternal specification of thelossy queue—theformulaspecifying
all sequences of valuesthat may be assumed by the queue’s six variables, including
the interna variables g and last. Its first conjunct asserts that Initq is true in the
initial state. Its second conjunct, d[Ng],, asserts that every step is either an Mg
step (a state change allowed by Ag) or else leaves v unchanged, meaning that it
leaves all six variables unchanged.

Formula @, is the actual specification, in which the interna variables g and last
have been hidden. A behavior satisfies @ iff thereissomeway to assign sequences



of valuesto g and last such that I, is satisfied. The free variables of ®, areibit,
obit, ival, and oval, so @ specifies what sequences of values these four variables
can assume. All the preceding definitions just represent one possible way of
structuring the definition of ®; there are infinitely many ways to write formulas
that are equivaent to @ and are therefore equival ent specifications.

TLA is an untyped logic; a variable may assume any value. Type correctnessis
expressed by the formula OT, where T is the predicate asserting that all relevant
variables have values of the expected “types’. For theinterna queue specification,
the type-correctness predicate is

To = A ibit, obit, last € {true, false} (1)
A ival, oval € Msg
A g € Msg*

where Msg* is the set of finite sequences of messages. Type correctness of I is
asserted by theformulalIlq = OTg, whichiseasily proved [13]. Typecorrectness
of & followsfrom ITq = OTg by the usual rulesfor reasoning about quantifiers.

Formulas I1q and ¢4 are safety properties, meaning that they are satisfied by an
infinite behavior iff they are satisfied by every finite initial portion of the behav-
ior. Safety properties allow behaviors in which a system performs properly for a
while and then the values of al variables are frozen, never to change again. In
asynchronous systems, such undesirablebehaviorsare ruled out by adding fairness
properties. We could strengthen our lossy-queue specification by conjoining the
weak fairness property WF, (DeQ) and the strong fairness property SF,(EnQ) to
I1q, obtaining

3q, last: (Initg A O[Ng], A WF,(DeQ) A SF,(EnQ)) 2

Property WF,(DeQ) asserts that if action DeQ is enabled forever, then infinitely
many DeQ steps must occur. This property implies that every message reaching
the queue is eventually output. Property SF,(EnQ) asserts that if action EnQ is
enabled infinitely often, then infinitely many EnQ steps must occur. It impliesthat
if infinitely many inputs are sent, then the queue must receive infinitely many of
them. The formula (2) implies the liveness property [4] that an infinite number of
inputs produces an infinite number of outputs. Thisformula also impliesthe same
safety properties as &o. A formula such as (2), which is the conjunction of an
initial predicate, aterm of the form O[.A]¢, and afairness property, is said to bein
canonical form.



2.2 TheSemanticsof TLA

We begin with some definitions. We assume a set of constant values, and we et
[ F] denote the semantic meaning of aformula F.

state A mapping from variables to values. We et s.x denote the value that state s
assignsto variable x.

state function An expression formed from variables, constants, and operators.
The meaning of a state function is a mapping from states to values. For
example, x + 1 is a state function such that [x + 1](s) equalss.x + 1, for
any states.

predicate A boolean-valued state function, suchasx > y + 1.

transition function An expression formed from variables, primed variables, con-
stants, and operators. The meaning of atransitionfunctionisamapping from
pairsof statesto values. For example, x + y’ + lisatransition function, and
[x+y + 1](s, t) equalsthevaues.x +t.y + 1, for any pair of statess, t.

action A boolean-valued transition function, suchasx > (y' + 1).

step A pair of states s, t. Itiscalled an A step iff [LA] (s, t) equalstrue, for an
action A. Itiscalled astuttering step iff s = t.

f’ The transition function obtained from the state function f by priming all the
freevariablesof f,so[[f'](s,t) = [ f](t) for any statess and t.

[A]l; Theaction A v (f’ = f), for any action A and state function f.
(A)s Theaction A A (T’ #£ f), for any action A and state function f.

Enabled A For any action A, the predicate such that [ Enabled .A](s) equas
3t : [AJ (s, t), for any state s.

Informally, we often identify a formula and its meaning. For example we say that
apredicate P istruein state s instead of [ P](s) = true.

ANRTLA (raw TLA) formulaisan expression built from actions, classical operators
(boolean operators and quantification over rigid variables), and the unary tempora
operator O. The meaning of an RTLA formula is a boolean-vaued function on



behaviors, where a behavior is an infinite sequence of states. The meaning of the
operator O is defined by

[OF](81. %28, ..) = VN> 0:[FI(S, Sut. Sz - )

Intuitively, OF asserts that F is “always’ true. The meaning of an action as
an RTLA formula is defined in terms of its meaning as an action by letting
[Al(s1, S, S, - . .) equal [A](s1, S2). A predicate P is an action; P is true for
a behavior iff it is true for the first state of the behavior, and OP istrueiff P is
truein all states. For any action A and state function f, theformula O[.A]; istrue
for abehavior iff each stepisan A step or elseleaves f unchanged. The classica
operators have their usual meanings.

A TLA formulaisonethat can be constructed from predicates and formulas O[ A ¢
using classical operators, O, and existential quantification over flexible variables.
The semantics of actions, classical operators, and O are defined as before. The
approximate meaning of quantification over a flexible variable is that 3x : F is
true for a behavior iff there is some sequence of values that can be assigned to x
that makes F true. The precise definition appears in [13] and is recalled in the
appendix. Asusua, wewrite3 Xy, ..., X, : Finsteadof 3x;:...,3x%,: F.

A property is a set of behaviors that is invariant under stuttering, meaning that
it contains a behavior o iff it contains every behavior obtained from o by adding
and/or removing stuttering steps. Theset of all behaviorssatisfyinga TLA formula
is aproperty, which we often identify with the formula

For any TLA formula F, action A, and state function f:

OF £ —O-F
WF;(A) = OO—(Enabled (A);) v OO(A)
SFi(A) = <oO-(Enabled (A)) v OO(A),

Theseare TLA formulas, since & (A)¢ equals —~O[—.A];.

2.3 Safety and Fairness

A finitebehavior isafinite sequence of states. We say that afinite behavior satisfies
aproperty F iff it can be continued to an infinite behavior in F. A property F is
a safety property [4] iff the following condition holds: F contains a behavior iff



it is satisfied by every finite prefix of the behavior.! Intuitively, a safety property
asserts that something “bad” does not happen. Predicates and formulas of the form
O[.A]¢ are safety properties.

Safety properties form the closed sets for a topology on the set of all behaviors.
Hence, if two TLA formulas F and G are safety properties, then F A G isalso a
safety property. The closure C(F) of aproperty F isthe smallest safety property
containing F. It can be shown that C(F) is expressiblein TLA, for any TLA
formula F.

If IT isasafety property and L an arbitrary property, thenthepair (IT, L) ismachine
closed iff every finite behavior satisfying IT can be extended to an infinite behavior
inIT A L. Proposition 1 below shows that machine closure generalizes the concept
of fairness. The canonical formfor aTLA formulais

3x : (Init A O[N], A L) (3)

where (Init A O[A/],, L) ismachine closed and x isatuple of variables called the
internal variables of the formula. The state function v will usually be the tuple
of all variables appearing free in Init, A/, and L (including the variables of x).
A behavior satisfies (3) iff there is some way of choosing values for x such that
(@ Initistrueintheinitia state, (b) every stepis either an A step or leaves al the
variablesin v unchanged, and (c) the entire behavior satisfies L.

An action A is said to be a subaction of a safety property IT iff for every finite
behaviors, .. ., s, satisfying IT with Enabled A truein states,, thereexistsastate
Sh.1 suchthat (s, Shy1) isan A stepandsy, . . ., S, satisfiesIT. By thisdefinition,
A isasubaction of Init A O[N], iff2

Init A O[N], = O((Enabled .A) = Enabled (A A [A],))

Two actions.A and B are digjoint for a safety property IT iff no behavior satisfying
[T containsan A A B step. By thisdefinition, A and B are disjoint for Init A O[A/],
iff

Init A O[A], = O-=Enabled (A A BA[N],)

Thefollowing result showsthat the conjunction of WF and SF formulasisafairness
property. It isaspecia case of Proposition 4 of Section 4.

10ne sometimes defines sy, . . ., s, to satisfy F iff the behavior sy, ..., S1, Sy Sh, ... iSIN F.
Since properties are invariant under stuttering, this alternative definition leads to the same definition
of asafety property.

2We let = havelower precedencethan the other boolean operators.

9



Proposition 1 If IT is a safety property and L is the conjunction of a finite or
countably infinite number of formulas of the form WF,, (A) and/or SF, (A) such
that each (A),, isa subaction of IT, then (T1, L) ismachine closed.

In practice, each w will usually beatupleof variableschanged by the corresponding
action A, so (A),, will equa .A.2 In the informal exposition, we often omit the
subscript and talk about A when we really mean (A),,.

Machine closure for more general classes of properties can be proved with the
following two propositions, which are proved in the appendix. To apply thefirst,
one must provethat 3x : TT isasafety property. By Proposition 2 of [2, page 265],
it suffices to prove that TT has finite internal nondeterminism (fin), with x as its
internal state component. Here, fin means roughly that there are only a finite
number of sequences of valuesfor x that can make afinite behavior satisfy IT.

Proposition 2 If (T1, L) is machine closed, X is a tuple of variables that do not
occur freein L, and 3x : IT is a safety property, then ((3x : TI), L) is machine
closed.

Proposition 3 If (T1, L,) ismachineclosed and IT A L, implies L, then (T1, L)
is machine closed.

24 History-Determined Variables

A history-determined variableis one whose current value can be inferred from the
current and past values of other variables. For the precise definition, let

Histth, f,g,v) = (h=f) A O[0 =g) A (V' # V)] (4)

where f and v are state functionsand g is a transition function. A variableh is
a history-determined variable for a formula IT iff TT implies Hist(h, f, g, v), for
some f, g, and v such that h occursfree in neither f nor v, and h’ does not occur
freeing.

If f andv donotdependonh,and g doesnot dependonh’, then3h : Hist(h, f, g, v)
is identicaly true. Therefore, if h does not occur free in formula @, then 3h :
(®AHist(h, 1, g, v)) isequivaentto ®. Inother words, conjoiningHist(h, f, g, v)
to ® doesnot changethebehavior of itsvariables, soit makesh a“dummy variable”
for ®—infact, itisaspecial kind of history variable [2, page 270].

SMore precisely, T A A will imply w’ # w, where T is the type-correctnessinvariant.

10



As an example, we add to thelossy queue’s specification @ a history variable hin
that records the sequence of values transmitted on the input wire. Let

Hin = Ahin= () (5)
A O[ A hin = hino (ival’))

A (ival, ibit)" # (ival, ibit) ]inival.ibit

Then Hi, equalsHist(hin, { )), hino({ival’)), (ival, ibit)), sohinisahistory-determined
variablefor &4 A Hip, and 3hin: (o A Hin) equals @q.

If hisahistory-determined variable for a property IT, then IT is fin, with h as its
internal state component. Hence, if T is a safety property, then 3h : TTisaso a
safety property.

3 Real-Time Closed Systems

We now use TLA to specify and reason about timing properties of closed systems.
Section 3.1 explains how time and timing properties can be represented with TLA
formulas, and Section 3.2 describes how to reason about these formulas. The prob-
lem of Zeno specifications is addressed in Section 3.3. Our method of specifying
and reasoning about timing propertiesisillustrated in Section 3.4 with the example
of areal-time mutual exclusion protocol.

3.1 Timeand Timers

In real-time TLA specifications, rea time is represented by the variable now.
Although it has a special interpretation, now is just an ordinary variable of the
logic. Thevalueof nowisawaysarea number, and it never decreases—conditions
expressed by the TLA formula

RT 2 (now € R) A O[now € (nNow, 00)]now

where R isthe set of real numbersand (r, co)is{t e R:t >r}.

It isconvenient to make time-advancing steps distinct from ordinary program steps.
Thisis done by strengthening the formula RT to

RT, = (noweR) A O[(Now € (Now, 00)) A (V' = v)]now

11



This property differs from RT only in asserting that v does not change when now
advances. Simple logical manipulation shows that RT, is equivaent to RT A
O[now = now],, and

Init A O[N], ART, = Init AON A (noW = now)], A RT

Real-time constraints are imposed by using timers to restrict the increase of now.
A timer for IT isastate functiont such that IT impliesd(t € R U {£o0}). Timer t
is used as an upper-bound timer by conjoining the formula

MaxTime(t) = (now < t) A O[NoW < t']now

to a specification. Thisformula asserts that now is never advanced past t. Timer t
is used as alower-bound timer for an action .4 by conjoining the formula

MinTime(t,Av) = O[A = (t <now)],

to a specification. Thisformula assertsthat an (A), step cannot occur when nowis
lessthant.*

A common type of timing constraint asserts that an .4 step must occur within §
seconds of when the action .A becomes enabled, for some constant §. After an A
step, the next A step must occur within § seconds of when action A is re-enabled.
There are @t |east two reasonable interpretations of this requirement.

The first interpretation is that the A step must occur if .4 has been continuously
enabled for § seconds. Thisis expressed by MaxTime(t) whent isastate function
satisfying

VTimer(t, A, 8,v) = A t=if Enabled (A), then now+§
ese oo
A O[ At/ =if (Enabled (A),)
then if (A4), v —Enabled (A),
then now + §
dse t
ese o

AV ?é v ](t,v)

4Unlike the usual timers in computer systems that represent an increment of time, our timers
represent an absolute time. To allow the type of strict time bound that would be expressed by
replacing < with < in the definition of MaxTime or MinTime, we could introduce, as additional
possible values for timers, the set of all “infinitesimally shifted” real numbersr—, wheret < r~ iff
t <r,foranyreast andr.
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Such at iscdaled avolatile §-timer.

Another interpretation of the timing requirement is that an .A step must occur if
A has been enabled for a total of § seconds, though not necessarily continuously
enabled. Thisis expressed by MaxTime(t) whent satisfies

PTimer(t, A, 8,v) = At=now+s
A O[ A t' = if Enabled (A),
then if (A), then now + §
dse t
dse t + (now — now)
A (v, NOW)" # (v, NOW) Jt,v.now

Such at is called a persistent §-timer. We can use §-timers as lower-bound timers
aswell as upper-bound timers.

Observethat VTimer (t, A, §, v) hastheformHist(t, f, g, v) andthat PTimer(t, A, 8, v)
has the form Hist(t, f, g, (v, now)), where Hist is defined by (4). Thus, if formula

IT implies that a variable t satisfies either of these formulas, then t is a history-
determined variable for IT.

Asan exampleof theuseof timers, wemakethelossy queue of Section 2.1 nonlossy
by adding the following timing constraints.

e Values must be put on a wire a most once every dsg seconds. There are
two conditions—oneon the input wire and one on the output wire. They are
expressed by using dsg-timers tjn, and tpeg, for the actions Inp and DeQ, as
lower-bound timers.

e A value must be added to the queue at most A, Seconds after it appearson
theinput wire. Thisis expressed by using a Arc,-timer Tgng, for the enqueue
action, as an upper-bound timer.

e A value must be sent on the output wire within Ag,y seconds of when it
reaches the head of the queue. Thisis expressed by using a Ag,g-timer Tpeg,
for the dequeue action, as an upper-bound timer.

The timed queue will be nonlossy if Arey < dsng. 1N this case, we expect the Inp,
EnQ, and DeQ actions to remain enabled until they are “executed”, so it doesn’t
matter whether we use volatile or persistent timers. We use volatiletimers because
they are alittle easier to reason about.

13



The timed version HtQ of the queue's internal specification Ilq is obtained by
conjoining the timing constraintsto Iq:

M, = ATq A RT, (6)
A VTimer (tinp, INP, dsnd, v) A MinTime(tinp, INP, v)
7AN VTlmer(tDeQ, DeQ, dsnd, V) A MinTi fTE(tDeQ, DeQ, V)
7AN VTlmer(TEnQ, EnQ, Arev, v) A MaxTi fTIE(TEnQ)
7AN VTlmer(TDeQ, DeQ, Agnd, V) A MaxTi fTIE(TDeQ)

The external specification @, of the timed queue is obtained by existentialy
quantifying first the timers and then the variables g and last.

FormulaIly, of (6) isnotinthecanonica formforaTLA formula. A straightforward
calculation, using the type-correctnessinvariant (1) and the equivalenceof (OF) A
(0G) and O(F A G), converts the expression (6) for HtQ to the canonical form
given in Figure 3.> Observe how each subaction A of the original formula has a
corresponding timed version A'. Action A" is obtained by conjoining .4 with the
appropriate relations between the old and new values of the timers. If A hasa
lower-bound timer, then A" a so has a conjunct asserting that it is not enabled when
now isless than thistimer. (The lower-bound timer t;,, for Inp does not affect the
enabling of other subactions because Inp is disjoint from all other subactions; a
similar remark applies to the lower-bound timer tpeg.) Thereisalso anew action,
QTick, that advances now.

Formula HtQ isthe TLA specification of a program that satisfies each maximum-
delay constraint by preventing now from advancing before the constraint has been
satisfied. Thus, the program “implements” timing constraints by stoppingtime, an
apparent absurdity. However, the absurdity resultsfrom thinkingof aTLA formula,
or the abstract program that it represents, as a prescription of how something is
accomplished. A TLA formulaisreally adescription of what issupposed to happen.
Formula I, says only that an action occurs before now reaches a certain value. It
isjust our familiarity with ordinary programs that makes usjump to the conclusion
that now is being changed by the system.

3.2 Reasoning About Time

FormulaTly, isasafety property; itis satisfied by abehavior in which no variables
change values. In particular, it allows behaviors in which time stops. We can rule

SFurther simplification of this formula is possible, but it requires an invariant. In particular, the
fourth conjunct of DeQ! can be replaced by Teng = TEnQ-
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Init, = A Initg
A now e R
A tinp = NOW + dgng
AN tDeQ = TEnQ = TDeQ = o0

[I>

Inp' A Inp
At = NOW + Sgg

Inp
A Tgng = if last’ # ibit’ then now + Ay else oo

A (tpeq. Toe@)” = if g = () then (oo, 00) else (tpeq, Toe)
A NOW = now

EnQ' £ A EnQ
A TénQ = 00
A (tpeq. Toe@)’ = if g = () then (NOW + dgng, NOW + Agyg)
else (tDeQ, TDeQ)
A (tinp, NOW)" = (tjpp, NOW)

DeQ' = A DeQ
7AN tDeQ < now
A (tpeqs Tpe@)’ = if @ = (()) then (oo, 00)
gse (NOW + 8gng, NOW + Agng)
A Teg = if last’” = ibit’ then co else Teng

QTick = A now e (now, min(Tpeq, Teng)]
A (v, tinp, tpe, Tpe, TEn) = (v, tinp, 1peq, Tpeq, TEnQ)
vt 2 (v, now, tinp, tpeq; Tpe, TEnQ)
t A it
Iy = A In|tQ

A O[Inp' v EnQ' v DeQ' v QTick]y

Figure 3: The canonica form for ITY, where (r, s] denotes the set of reals u such
thar <u<s.
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out such behaviors by conjoining to IT,, the liveness property

NZ £ VteR:<O®hows t)

which asserts that now gets arbitrarily large. However, when reasoning only about
rea-time properties, this is not necessary. For example, suppose we want to
show that our timed queue satisfies a real-time property expressed by formula !,
whichisalso a safety property. If IT(, implies ', then ITi, A NZ implies W' A NZ.
Conversely, we don't expect conjoiningalivenessproperty to add safety properties,
if TTy, A NZ implies W', then IT{, by itself should imply W'—a point discussed in
Section 3.3 below. Hence, thereis no need to introduce the liveness property NZ.

A safety property we might want to prove for the timed queue is that it does not
lose any inputs. To expressthisproperty, let hin be the history variable, determined
by Hi, of (5), that records the sequence of input values; and let hout and Hgy: be
the analogous history variable and property for the outputs. The assertion that the
timed queue loses no inputsis expressed by

Iy A Hin A Howt = O(hout < hinp)

wherea < g iff o isaninitial prefix of 8. Thisisa standard invariance property.
The usua method for proving such properties|eads to the following invariant

A TQ A (tlnp, noweR) A (TEnQ, tDeQ, TDeQ € RU{o0})

A nowW < MinN(Teng, Tpeg)

A (last = ibit) = (Teng = 00) A (hinp = hout o q)

A (last #ibit) = (Teng < tinp) A (hinp = houto g o (ival))

A @=() = (Toeg = 00)
and to the necessary assumption Aycy < dsng. (Recall that Tq isthetype-correctness
predicate (1) for Ig.)

Property NZ is needed to prove that real-time properties imply liveness properties.
The desired liveness property for the timed queue is that the sequence of input
messages up to any point eventually appears as the sequence of output messages.
It isexpressed by

My ANZ = Vo : O((hinp = 0) = ¢(hout = 0))
Thisformulais proved by first showing
HtQ ANZ = WF,(EnQ) A WF,(DeQ) (7
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and then using a standard liveness argument to prove
My, A WF,(EnQ) A WF,(DeQ) = Vo : O((hinp=0) = <(hout = o))

The proof that HtQ A NZ implies WF,(EnQ) is by contradiction. Assume EnQ is
forever enabled but never occurs. An invariance argument then shows that T,
implies that Teng forever equals its current value, preventing now from advancing
past that val ue; and thiscontradictsNZ. The proof that T, ANZ impliesWF, (DeQ)
issimilar.

3.3 TheNonZeno Condition

The timed queue specification IT, asserts that a DeQ action must occur between
Ssnd and Agg Seconds of when it becomes enabled. What if Agyg < 8sng? If an
input occurs, it eventually is put in the queue, enabling DeQ. At that point, the
value of now can never become more than Agg greater than its current value, so
the program eventually reaches a “time-blocked state”. In a time-blocked state,
only the QTick action can be enabled, and it cannot advance now past some fixed
time. In other words, eventually a state is reached in which every variable other
than now remains the same, and now either remains the same or keeps advancing
closer and closer to some upper bound.

We can attempt to correct such pathologica specifications by requiring that now
increase without bound. Thisiseasily done by conjoiningthe liveness property NZ
to the safety property IT%,, but that doesn’t accomplish anything. Since HtQ A NZ
rules out behaviors in which now is bounded, it alows only behaviors in which
thereisnoinput, if Agg < dng- Such a specification is no better than the original
specification HtQ. Thefact that the safety property alowsthe possibility of reaching
atime-blocked stateindicatesan error in the specification. One doesnot add timing
constraints on output actions with the intention of forbidding input.

We call a safety property Zeno if it alows the system to reach a state from which
now must remain bounded. Moreprecisely, asafety property ITisnonZeno iff every
finite behavior satisfying IT can be completed to an infinite behavior satisfying IT
in which now increases without bound. In other words, IT is nonZeno iff the pair
(IT, NZ) is machine closed.®

Zeno specifications can be a source of incompleteness for proof methods. Only
nonZeno behaviors are physically meaningful, so a real-time system with specifi-

8An arbitrary property IT is nonZeno iff (C(IT), IT A NZ) is machine closed. We restrict our
attention to real-time constraints for safety specifications.
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cation IT satisfiesa property W if IT A NZ = W. Most methods for proving safety
propertiesuseonly safety propertiesashypotheses, sothey can proveITANZ = W
for safety properties TT and W only by proving IT = W. NonZenonessof IT means
that ITANZ = W holdsiff [T = W does. However, if [TisZeno, thenTIANZ = W
could hold even though TT = W does not, and these methods will be unable to
prove that the system with specification IT satisfies W. NonZenonessis therefore
required for completeness.

The following result can be used to ensure that a real-time specification written in
terms of volatile §-timers is nonZeno.

Theorem 1 Let v bethetuple of variablesfreein Init or /. The property

A Init A O[N], A RT,
AV el :Vﬂm(ti,Ai,5i,U) 7AN MinTifTE(ti,.Ai,U)
AV e J:VTimer (T, A;, Aj, v) A MaxTime(T))

is nonZeno if now does not appear in v, | and J arefinite sets, and for all i € |
andj € J:

1. (A;), isasubaction of Init A O[N], whose free variables appear in v,

2. (Ai), and (A4;), aredigoint for Init A O[N], ifi # |,

3. §; and A; arepositiverealsand, ifi = j, then§; < A},

4. thet; and T; are distinct variables different from now and fromthe variables

inv.

We can apply the theorem to prove that the specification HtQ isnonZeno if dgng <
Asnd- The hypotheses of the theorem are checked as follows.

1. Actions (DeQ), and (EnQ), imply Ng, so they are subactions of I1q.

2. Theconjunctionof any two of theactions (Inp),, (DeQ),, and (EnQ), equals
false, so the actions are pairwisedisjoint for ITq.’

3. The hypothesisdgg < Agd iSUsed here.

"Actually, the type-correctness predicate Ty, is needed to prove that (Inp), A (DeQ), equals
false.
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4. Trivial.

The theorem is valid for persistent as well as volatile timers. Any combination
of VTimer and PTimer formulas may occur, except that a single A, cannot have a
persistent lower-bound timer t, and a volatile upper-bound timer T,. All of these
results are corollaries of the following theorem, which in turn is a consequence of
Theorem 4 of Section 4.

Theorem 2 Let

e I1 be a safety property of the form Init A O[A],,,

e t and T; be timersfor IT and let A, be an action, for alli e I, j € J, and
kel UJ,wherel and J are sets, with J finite,

eIl' 2 IT ART, A
Vi el :MinTime(t;, Ai,v) A Vj e J:MaxTime(T,))

If 1. (A), and (A;), aredigoint for I1, for all i € | and j € J with
P # ],
now
2. (a) doesnot occur freein v,
(b) (now =r) A (v = v) isasubactionof IT, for all r € R,

3. forallj e J:
(@ (Aj), A (now = now) isa subaction of II.
(b) 1 = V'I'Imer('l'j,Aj,A,-,v),Ol’
[T = PTimer (T, A;, A}, v), where Aj € (0, 00),
(c) ' = O(Enabled (A4;), =
Enabled ((A;
(A

Yo A (NOW = Now)))
(d) (" =v) = (Enabled (4;),

= (Enabled (4;),))
4. ' = dty < T, foral ke | N J,
then (IT, NZ) is machine closed
M ost honaxi omati c approaches, including both real -time process algebrasand more
traditional programming languageswith timing constraints, essentially uses-timers

for actions. Theorem 2 implies that they automatically yield nonZeno specifica-
tions.

19



Theorem 2 can be further generalized in two ways. First, J can beinfinite—if IT'
impliesthat only afinite number of actions .A; with j € J are enabled before time
r, forany r € R. For example, by letting .A; be the action that sends message
number j, we can apply the theorem to a program that sends messages number 1
through n at time n, for every integer n. This program is nonZeno even though
the number of actions per second that it performs is unbounded. Second, we can
extend the theorem to the more genera class of timers obtained by letting the A;
be arbitrary real-valued state functions, rather than just constants—if all the A; are
bounded from below by a positive constant A.

Theorem 2 can be proved using Propositions 1 and 3 and ordinary TLA reasoning.
By these propositions, it suffices to display aformula L that is the conjunction of
fairness conditions on subactions of TT1' such that IT* A L impliesNZ. A suitable L
iSWFmow,) (C), where C is an action that either (a) advances now by min.; A if
alowed by the upper-boundtimers T;, or else asfar asthey do allow, or (b) executes
an (A4;), action for which now = T;. The proof in the appendix of Theorem 4,
which implies Theorem 2, generalizes this approach.

Theorem 2 does not cover all situations of interest. For example, one can require
of our timed queue that the first value appear on the output line within e seconds
of when it is placed on the input line. This effectively places an upper bound on
the sum of the times needed for performing the EnQ and DeQ actions; it cannot be
expressed with §-timerson individual actions. For these general timing constraints,
nonZenoness must be proved for the individual specification. The proof uses the
method described above for proving Theorem 2: we add to the timed program IT'
a liveness property L that is the conjunction of any fairness properties we like,
including fairness of the action that advances now, and provethat TT' A L implies
NZ. NonZenonessthen follows from Propositions 1 and 3.

There isanother possible approach to proving nonZenoness. One can make granu-
larity assumptions—| ower boundsboth on the amount by which nowisincremented
and on theminimum delay for each action. Under these assumptions, nonZenoness
isequivalent to the absence of deadlock, which can be proved by existing methods.
Granularity assumptions are probably adequate—after all, what harm can come
from pretending that nothing happensin less than 10~-%° nanoseconds? However,
they can be unnatural and cumbersome. For example, distributed a gorithms often
assume that only message delays are significant, so the time required for local
actionsisignored. The specification of such an agorithm should place no lower
bound on the timerequired for alocal action, but that would violateany granularity
assumptions. We believe that any proof of deadlock freedom based on granularity
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can be translated into a proof of nonZenoness using the method outlined above.

So far, we have been discussing nonZenoness of the interna specification, where
both the timers and the system’s internal variables are visible. Timers are defined
by adding history-determined variables, so existentialy quantifying over them
preserves nonZenonessby Proposition 2. We expect most specificationstobefin[2,
page 263], so nonZenonesswill also be preserved by existentially quantifying over
the system’sinternal variables. Thisisthe casefor the timed queue.

34 An Example: Fischer’sProtocol

As another example of real-time closed systems, we treat a simplified version of
a real-time mutual exclusion protocol proposed by Fischer [9], [12, page 2]. The
example was suggested by Schneider [18]. The protocol consists of each process
i executing the following code, where angle brackets denote instantaneous atomic
actions:

a: await (x = 0);

b: (x:=1i);

c. await (X =1i);

cs. critical section

Thereisamaximum delay A, between the execution of the test in statement a and
the assignment in statement b, and a minimum delay . between the assignment in
statement b and the test in statement c. The problem isto prove that, with suitable
conditionson Ay and &, this protocol guarantees mutua exclusion (at most one
process can enter itscritical section).

Aswritten, Fischer’s protocol permits only one process to enter its critical section
onetime. The protocol can be converted to an actual mutual exclusion algorithm.
The correctness proof of the protocol is easily extended to a proof of such an
algorithm.

The TLA specification of the protocol is given in Figure 4. The formula TT¢
describing the untimed version is standard TLA. We assume a finite set Proc of
processes. Variable x represents the program variable x, and variable pc represents
the control state. The value of pc will be an array indexed by Proc, where pcfi]
equals one of the strings “a”, “b”, “c”, “cs” when control in processi is at the
corresponding statement. Theinitial predicate Initg assertsthat pcli] equals“a” for
each processi, so the processes start with control at statement a. No assumption
on theinitia value of x is needed to prove mutual exclusion.

Next come the definitions of the three actions corresponding to program statements
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Init- = Vi e Proc : pcfi] = “a”
Go(i,u,v) = Apci]=u
A pcfi]l =v
AYjeProc:(j#i) = (pc[jl=pc[jD

A 2 Gol,“a",b") A (x=X =0)
B 2 Gol,"v",“c’) A (X' =1i)
G = Go(i,“c”,“cs”) A (X=X =1)
Ne 2 3ieProc: (4 Vv B VG
Me = Inite A O[NVelopo
It 2 AT A RT x.po
A Yi € Proc : A VTimer(Ty[i], Bi, Ay, (X, pC))
A MaxTime(Ty[i])
A Yi € Proc : A VTimer (t[i], Go(, “c”, “cs”), 8., (X, pc))
A MinTime(t[i], Ci, (X, pc))
oL = 3T, t: ML

Figure4: The TLA specification of Fischer’s real-time mutual exclusion protocol.

a, b, and c. They are defined using the formula Go, where Go(i, u, v) asserts
that control in processi changes from u to v, while control remains unchanged in
the other processes. Action .A; represents the execution of statement a by process
i; actions B; and C; have the analogous interpretation. In this simple protocol, a
process stops when it getstoits critical section, so there are no other actions. The
program’s next-state action A/r isthe disunction of all these actions. Formula Il
asserts that al processes start at statement a, and every step consists of executing
the next statement of some process.

Action B; is enabled by the execution of action .4;. Therefore, the maximum delay
of Ay, between the execution of statements a and b can be expressed by an upper-
bound constraint on a volatile A,-timer for action 55;. The variable T, is an array
of such timers, where Ty[i] isthe timer for action 5;.

The constant §. i sthe minimum delay between when control reaches statement ¢ and
when that statement is executed. Therefore, we need an array t. of lower-bound
timers for the actions C;. The delay is measured from the time control reaches

22



statement ¢, so we want t[i] to be a §.-timer on an action that becomes enabled
when processi reaches statement ¢ and isnot executed until C; is. A suitablechoice
for thisactionis Go(i, “c”, “cs”).

Adding these timers and timing constraints to the untimed formula I yields
formula It of Figure 4, the specification of the real-time protocol with the timers
visible. The fina specification, ®%, is obtained by quantifying over the timer
variables T, and t.. Since B; isasubaction of I1g and pcfi] = “c” isdigjoint from
B;,forali and j in Proc, Theorem 2 impliesthat IT;: isnonZenoif A ispositive.
Proposition 2 can then be applied to provethat @} is nonZeno.

Mutual exclusion asserts that two processes cannot be in their critical sections at
the sametime. It isexpressed by the predicate

Mutex = Vi, j e Proc: (pcfi] = pc[j] = “cs”) = (i = |)
The property to be provedis
Assump A @} = OMutex (8)

where Assump expresses the assumptions about the constants Proc, Ay, and §.
needed for correctness. Since the timer variables do not occur in Mutex or Assump,
(8) isequivaent to

Assump A T = OMutex

The standard method for proving this kind of invariance property leads to the
invariant

A now e R
A Vi € Proc:
A Tli], te[i] € RU {oco}
A pcli] € {*a”, “b”, “c”, “cs”}
A (pcfi] =%cs”) = A x =i
A YjeProc:pcj]#“b”
A (pcfi] =) = AXx#0
AV eProc:(pe[j] ="b") = (t[i] > To[jD
A (pcfi] =“b") = (T[i] < how + §;)
A now < Tyli]

and the assumption

Assimp = (0 ¢ Proc) A (Ap, 8 € R) A (Ap < &)
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4 Open Systems

A closed system is solipsistic. An open system interacts with an environment,
where system steps are distinguished from environment steps. Sections 4.1 and
4.2 reformulate a number of conceptsintroduced in [1] that are needed for treating
open systemsin TLA. Some new results appear in Section 4.3. The following two
sections explain how reasoning about open systems is reduced to reasoning about
closed systems, and how open systems are composed.

4.1 Receptiveness and Realizability

To describe an open system in TLA, one defines an action p such that u steps
are attributed to the system and —u steps are attributed to the environment. A
specification should constrain only system steps, not environment steps.

For safety properties, the concept of constraining is formalized as follows: if u is
an action and TT a safety property, then IT constrains at most w iff, for any finite
behavior s, ..., s, and state S.,1, if 51, ..., S, satisfies IT and (S,, Svy1) iSa—u
step, then sy, . .., S,,1 satisfies 1. The generalization to arbitrary properties of
constraining at most 1 is pu-receptiveness. Intuitively, IT is u-receptive iff every
behavior in IT can be achieved by an implementation that performs only 1 steps—
the environment being able to perform any —u step. The concept of receptiveness
is due to Dill [8]. The generalization to p-receptivenessis developed in [1].8 A
safety property is w-receptiveiff it constrainsat most .

The generalization of machine closure to open systems is machine realizability.
Intuitively, (TT, L) is u-machine redizable iff an implementation that performs
only u steps can ensure that any finite behavior satisfying TT is completed to an
infinite behavior satisfying IT A L. Formally, (T1, L) is defined to be p-machine
realizable iff (TT, L) ismachine closed and IT A L is u-receptive. For u equal to
true, machine realizability reduces to machine closure.

8To translate from the semantic model of [1] into that of TLA, we let agents be pairs of states and
identify an action . with the set of all agentsthat are . steps. A TLA behavior s, s, . . . corresponds
to the sequence s; —> S, —> S5 —> ..., where o; equals (S_1, ). With this translation, the
definitions in [1] differ from the ones given here and in the appendix mainly by attributing the
choice of initial state to the environment rather than to the system, requiring initial conditionsto be
assumptions about the environment rather than guarantees by the system.
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4.2 The — Operator

A common way of specifying an open system is in terms of assumptions and
guarantees [10], requiring the system to guarantee a property M if its environment
satisfies an assumption E. An obvious formalization of such a specification is
the property E = M. However, this property contains behaviors in which the
system violates M and then the environment later violates E. Because the system
cannot predict what the environment will do, such behaviors cannot occur in any
actual implementation. A behavior o generated by any implementation satisfies
the additional property that if any finite prefix of o satisfies E, then it satisfies M.
We can therefore formalize the assumpti on/guarantee specification by the property
E — M, definedby: 0 € E —+ M iff o € (E = M) and, for every finite prefix
p of o, if p satisfies E then p satisfies M. If E and M are safety properties, then
E - Misaswel.

For safety properties, the operator — istheimplication operator of an intuitionistic
logic [3]. Most valid propositional formulas without negation remain valid when
= isreplaced by —, if al the formulas that appear on the left of a — are safety
properties. For example, the following formulas are valid if ® and IT are safety
properties.
® >l —=>VY) = (PAI) - W 9
@—->VA >V = (@VI) >V

For any TLA formulas @ and I1, the property & — IT is expressibleas a TLA
formula.

4.3 Proving Machine Realizability

Propositions 1-3, which concern machineclosure, havegeneralizationsfor machine
realizability. Proposition 1 is the special case of Proposition 4 in which @ and u
are identically true. Proposition 3 is similarly a specia case of Proposition 5 if
(true, L) ismachine closed—that is, if L, isalivenessproperty. Thisissufficient
for our purposes, sinceNZisaliveness property. Thegeneralization of Proposition 2
is omitted; it would be analogousto Proposition 10 of [1].

Proposition 4 is stated in terms of u-invariance, which generalizes the ordinary
concept of invariance. A predicate P is a u-invariant of a formula IT iff, in any
behavior satisfying IT, no u-step makes P false. This condition is expressed by
the TLA formulall = O[(u A P) = P']p.
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Proposition 4 If TT and ® are safety properties, IT constrains at most w, and L
is the conjunction of a finite or countably infinite number of formulas of the form
WEF, (A) and/or SF, (A), where, for each such formula,

1. (A), isasubactionof TT A @,
2. I A® = a[{A), = ulw,

3. if A appearsin aformula SF,(A), then Enabled (A), isa —u-invariant
of TT A @,

then (& — I1, & = L) is u-machinerealizable.

Proposition 5 If ® and IT are safety properties, (& — IT, L,) and (true, L,)
are pu-machine realizable, and ® A IT A Ly implies L,, then (& — II, L)) is
u-machine realizable.

4.4 Reduction to Closed Systems

Consider aspecification E — M, where E and M are safety properties. We expect
the system’s requirement to restrict only system steps, meaning that M constrains
a most . Thisimpliesthat E —~ M aso constrains at most . We also expect
the environment assumption E not to constrain system steps; formally, E does not
constrain p iff it constrainsat most —u and it is satisfied by every (finite behavior
consisting only of an) initia state.’

Suppose E and M have the following form:

E
M

D[ILL \% NE]'U
Init A \:|[—|,LL \Y Nm]v

> Il

Then E doesnot constrain i and M constrainsat most w. If the system’s next-state
action Ay implies i, and the environment’s next-state action Az implies—p, then
a simple calculation shows that

EAM = Init A ONg VNuly (10)

Conjunctionrepresentsparallel composition, so E A M istheformuladescribingthe
closed system consisting of the open systemtogether withitsenvironment. Observe

9The asymmetry between constrains at most and does not constrain arises because we assign the
system responsibility for theinitial state.
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that E A M has precisely the form we expect for a closed system comprising two
components with next-state actions Vg and Vy,.

We can make the inverse transformation from a closed system specification IT to
the corresponding assumption/guarantee specification E — M such that IT equals
E A M, where E doesnot constrain u and M constrainsat most p. Thisis possible
because any safety property IT can be written as such a conjunction.

Implementation means implication. A system with guarantee M implements a
system with guarantee M, under environment assumption E, iff E — M implies
E = M. When E and M are safety properties, E — M implies E — M iff
E A M implies E A M. Thus, proving that one open system implements another
is equivalent to proving the implementation relation for the corresponding closed
systems. Implementation for open systemstherefore reduces to implementation for
closed systems.

45 Composition

Thedistinguishingfeature of open systemsisthat they can be composed. The proof
that the composition of two specificationsimplements athird specification is based
on the following result, which is a reformulation of Theorem 2 of [1] for safety
properties.

Theorem 3 If E, E;, E,,, My, and M, are safety properties and u; and u, are
actions such that

1. E; doesnot constrain u; and E, does not constrain 4.,
2. M; constrainsat most 1, and M, constrains at most i,

then the following proof ruleisvalid:
EAM;AM, = E;AE
(E]_ —1 Ml) AN (E2 —1 Mz) = (E —1 Ml/\ Mz)

Thistheorem is essentialy the same as Theorem 1 of [3]; the proof is omitted.

5 Real-Time Open Systems

In Section 3, we saw how we can represent time by the variable now and introduce
timing constraints with timers. To extend the method to open systems, we need
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only decide how to separate timing properties into environment assumptions and
system guarantees. An examination of a paradoxical example in Section 5.1 leads
to the general form described in Section 5.2, where the concept of nonZenonessis
generalized.

5.1 A Paradox

Consider the two components 77, and 7, of Figure 5. Let the specification of
IT, be P, = Py, which asserts that it writes a “good” sequence of outputs on x
if its environment writes a good sequence of inputson y. Let P, — P, bethe
specification of IT,, so IT, writesagood sequence of outputson y if itsenvironment
writes a good sequence of inputson x. If Py and P, are safety properties, then it
appears that we should be able to apply Theorem 3, our composition principle, to
deduce that the composite system /7, satisfies P, A Py, producing good sequences
of valueson x and y. (We can define 1 and ., so that writing on x isa ., action
and writingon y isa i, action.)

Now, suppose Py and P, both assert that the value O is written by noon. These
can be regarded as safety properties, since they assert that an undesirable event
never occurs—namely, noon passing without a 0 having been written. Hence, the
composition principle apparently asserts that I7,, sends 0's along both x and y by
noon. However, the specifications of 17, and 7, are satisfied by systemsthat wait
for a0 to be input, whereupon they immediately output a 0. The composition of
those two systems does nothing.

This paradox depends on the ability of a system to respond instantaneously to an
input. Itistemptingto ruleout such systems—perhapseven to outlaw specifications
like these. We show that this Draconian measure is unnecessary. Indeed, if the
specification of I7, isstrengthenedto assert that a0 must unconditionally be written
on y by noon, then there is no paradox, and the composition does guarantee that a
0 iswritten on both x and y by noon. All paradoxes disappear when one carefully
examines how the specifications must be written.

To resolve the paradox, we examine more closely the specifications § and S of
IT; and IT,. For simplicity, let the only possible output actions be the setting of x
and y to 0. The untimed version of § then asserts that, if the environment does
nothing but set y to 0, then the system does nothing but set x to 0. Thisisexpressed
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Figure 5: The composition of two systems.

in TLA by letting

My
My

X'=0)A(y=Y) v = X #X
Y =0 A X=X

A
A

and defining the untimed version of specification S to be

Ofve v MyJxy) = O[—v1 vV Myl xy) (11)

To add timing constraints, we must first decide whether the system or the environ-
ment should change now. Sincethe advancing of now isamythical action that does
not have to be performed by any device, either decision is possible. Somewhat
surprisingly, it turnsout to be more convenient to l et the system advancetime. With
the convention that initial conditions appear in the system guarantee, we define:

Ny 2 My A (NOW = now) MT, = MaxTime(T,)
N, & M, A (now = now) MT, = MaxTime(T,)
T« = ifx#0then12dseco pi = vV (NOW # now)
T, £ ifys#0Othen12dsecc
= = O[11 vV Myl x.y.now
M; = (now=0) A O[-p1V Nluynow A Ry A MT,

Adding timing constraints to (11) the same way we did for closed systems then
leads to the following timed version of specification S .

(E]_ AN MTy) —> Ml (12)
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However, thisdoesnot havetheright form for an open system specification because
MT, constrainsthe advance of now, so the environment assumption constrains ;.
The conjunct MT, must be moved from the environment assumption to the system
guarantee. Using (9), we rewrite (12) as:

S & E —» (MT, —> M;)

This has the expected form for an open system specification, with an environment
assumption E; that does not constrain u; and a system guarantee MT, — M, that
constrains at most ;.

The specification S of the second component in Figure 5 is similar, where w,, E,,
M,, and S are obtained from w4, E;, My, and § by substituting 2 for 1, x for y,
and y for x.

We now compose specifications § and $. The definitions of M; and M, and the
observationthat P — Q implies P = Q yield

(MTyx v MTy) A (MTy = M) A (MT; — M) = M A M, (13)
The definitions of M; and M, and simple temporal reasoning yield
EAMAM; = EfLAE (14)

where
A
E = O[up1V u2]xy.now

Combining (13) and (14) proves
EAMT,VvMT) AMT, = M)A MT, =+ M) = EEAE

We canthereforeapply Theorem 3, substituting EA(MT,vMT,) for E, MT, — M;
for My, and MT, — M, for M,, to deduce

SAS = (EAMTVMT)) = (MTy, = M;) A (MTx - My))
Using the implication-like properties of —, thissimplifiesto
SANS = (E=-MTy =+ M) A (MTx = My)) (15)

All one can conclude about the composition from (15) is: either x and y are both
0 when now reaches 12, or neither of them is 0 when now reaches 12. Thereisno
paradox.
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As another example, we replace S, by the specification E, — M,. This specifi-
cation, which we call S, asserts that the system sets y to 0 by noon, regardless of
whether the environment sets x to 0. The definitionsimply

MTyAEAMT, = M) AM, = EEAE
and Theorem 3 yields
SAS = (E—- MT, = M) A Myp)
Since M, implies MT,, thissimplifiesto
SAS = (E—- M A M)

The composition of S and S does guarantee that both x and y equal 0 by noon.

5.2 Timing Constraintsin General

Our no-longer-paradoxical example suggests that the form of a real-time open
system specification should be

E—+(P—-M) (16)

where M describes the system’s timing constraints and the advancing of now,
and P describes the upper-bound timing constraints for the environment. Since
the environment’s lower-bound timing constraints do not constrain the advance of
now, they can remainin E. Aswe observed in Section 4.4, proving that one open
specification implements another reduces to the proof for the corresponding closed
systems. SinceE — (P — M) isequivaentto (E A P) — M, theclosed system
corresponding to (16) isthe expected one, E A P A M.

For the specification (16) to be reasonable, its closed system version, EA P A M,
should be nonZeno. However, this is not sufficient. Consider a specification
guaranteeing that the system produces a sequence of outputsuntil the environment
sends a stop message, where then'™ output must occur by time (n — 1)/n. Thereis
no timing assumption on the environment; it need never send a stop message. This
is an unreasonabl e specification because now cannot reach 1 until the environment
sends its stop message, so the advance of time is contingent on an optional action
of the environment. However, the corresponding closed system specification is
nonZeno, since time can always be made to advance without bound by having the
environment send a stop message.
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If advancing now isau action, then a system that controls u actions can guarantee
time to be unbounded while satisfying a safety specification Siff the pair (S, NZ)
is u-machine realizable. We therefore take this condition to be the definition of
nonZenonessfor an open system specification S.

For specifications in terms of §-timers, nonZenoness can be proved with gener-
alizations to open systems of the theorems in Section 3.3. The following is the
generdization of the strongest of them, Theorem 2. It is applied to a specification
of theform (16) by substituting E A P for E.

Theorem 4 With the notation and hypotheses of Theorem 2, if E and M are safety
properties such that IT = E A M, and

5. M constrains at most 1,

6. (@ (Ax), = u,forallkel U,
(b) (now # now) = u

then (E — M!, NZ) is u-machine realizable, where

Mt 2 M A RT, A
Vi el :MinTime(t;, Ai,v) A Vj e J:MaxTime(T))

The proof of Theorem 4, which appears in the appendix, is similar to the proof of
Theorem 2 sketched in Section 3.3. It uses Propositions4 and 5 instead of Propo-
sitions 1 and 3. Since machine realizability implies machine closure, Theorem 2
followsfrom Theorem 4 by letting E and 1 equal true and M equal TT.

Theorem 4 appliesto theinternal specifications, whereall variablesare visible. For
closed systems, existential quantification is handled with Proposition 2. For open
systems, the generalization of this proposition—the analog of Proposition 10 of
[1]—is needed.

6 Conclusion

6.1 What WeDid
We started with a simple idea—specifying and reasoning about real-time systems

by representing time as an ordinary variable. Thisidealed to an exposition that
most readers probably found quite difficult. What happened to the simplicity?
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About half of the expositionis areview of concepts unrelated to real time. All the
fundamental concepts described in Sections 2 and 4, including machine closure,
machine realizability, and the — operator, have appeared before [1, 2]. These
conceptsaresubtle, but they areimportant for understanding any concurrent system;
they were not invented for real-time systems.

We chose to formulate these concepts in TLA. Like any language, TLA seems
complicated on first encounter. We believe that a true measure of simplicity of a
formal language is the simplicity of its formal description. The complete syntax
and formal semanticsof TLA are givenin about 1-1/2 pages of figuresin [13].

We never claimed that specifying and reasoning about concurrent systemsis easy.
Verifying concurrent systems is difficult and error prone. Our assertions that one
formula follows from another, made so casualy in the exposition, must be backed
up by detailed calculations. We have omitted the proofs for our examples, which,
donewith the same detail asthe proofsin the appendix, occupy some twenty pages.

We did claim that existing methods for specifying and reasoning about concurrent
systems could be applied to real-time systems. Now, we can examine how hard

they wereto apply.

Wefound few obstaclesintherealm of closed systems. The second author hasmore
than fifteen years of experiencein theformal verification of concurrent algorithms,
and we knew that old-fashioned methods could be applied to red-time systems.
However, TLA is relatively new, and we were pleased by how well it worked.
The formal specification of Fischer’s protocol in Figure 4, obtained by conjoining
timing constraintsto the untimed protocol, is as simple and direct as we could have
hopedfor. Moreover, theformal correctness proofs of thisprotocol and of the queue
example, using the method of reasoning described in [13], were straightforward.
Perhaps the most profound discovery was the relation between nonZenoness and
machine closure.

Open systems made up for any lack of difficulty with closed systems. State-based
approaches to open systems were a fairly recent development, and we had little
experience with them. Studying real-time systems taught us a great deal, and
led to a number of changes from the approach in [1]. For example, we now
write specifications with — instead of =, and we put initial conditions in the
system guarantee rather than in the environment assumption. Many alternative
ways of writing real-time specifications seemed plausible; choosing one that works
was surprisingly hard. Even the simple idea of putting the environment’s timing
assumptionsto theleft of a — in the system’s guarantee came only after numerous
failed efforts. Although the basic ideas we need to handle real-time open systems
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seemto bein place, westill have much tolearn before reasoning about open systems
becomes routine.

6.2 Beyond Real Time

Real-time systems introduce a fundamentally new problem: adding physical con-
tinuity to discrete systems. Our solution is based on the observation that, when
reasoning about a discrete system, we can represent continuous processes by dis-
crete actions. If we can pretend that the system progresses by discrete atomic
actions, we can pretend that those actions occur at a singleinstant of time, and that
the continuous change to time also occurs in discrete steps. If there is no system
action between noon and +/2 seconds past noon, we can pretend that time advances
by those /2 secondsin asingle action.

Physical continuity arises not just in real-time systems, but in “real-pressure” and
“real-temperature” process-control systems. Such systems can be described in the
sameway as real-time systems:. pressure and temperature aswell astime are repre-
sented by ordinary variables. The continuous changesto pressure and temperature
that occur between system actions are represented by discrete changes to the vari-
ables. The fundamental assumption is that the real, physical system is accurately
represented by a model in which the system makes discrete, instantaneous changes
to the physical parametersit affects.

The observation that continuous parameters other than time can be modeed by
program variables has probably been knownfor years. However, thefirst published
work we know of that uses thisidea, by Marzullo, Schneider, and Budhiraja[14],
appeared only recently.
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Appendix

A Definitions

A.1 Statesand Behaviors

¥: Theset of dl states (assignmentsof valuesto variables).

¥*:  The set of finite behaviors (finite sequences of states).

¥ The set of behaviors (infinite sequences of states).

Ar Theempty sequence.

lo| [foro € * U X*]: Thelengthof o.

oy [forc € T*UX®and0 < n < |o]]: Then'" state in the sequenceo.

oy [foroc e Z*UX>®and0 < n < |o]]: Thefinite behavior oy, ..., o,; equal to A
whenn = 0.
o oS[foro € £*ands € £]: Thefinite behavior oy, ..., 0/, S.

o ~t1[foro,7 € Z*oro, v € T*]: o and t are equal except for stuttering steps
(repetitions of identical states).
o >~ T [for x atupleof variablesand either o, r € X* oro, v € ).
There exist behaviorso and T such that
Ao~ocandT>~t
A o] =7l
A for every integern < ||, the stateso,, and 7,, are equal except for the
values they assign to the variables of x.

A.2 Predicatesand Actions

predicate: A subset of 3.

state function: A mapping from X to the set of values.

action: A subsetof ¥ x X.

transition function: A mapping from X x ¥ to the set of values.

P’ [for P apredicate]: Theaction {(s,t) :t € P}.

f'[for f agtatefunction]: Thetransition function suchthat f'(s,t) = f(t).
Enabled A [for A an action]: Thepredicate{se X : (Tt e o : (5, 1) € A)}.
[A]¢ [for A anactionand f agtatefunction]: A v (f' = f)

(A)¢ [for A anactionand f astatefunction]: —[—.A]; (equals. A A (f’ # ).
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A.3 Properties

property: A subset IT of X*° such that for any o, 7 in ¥, if 0 >~ t theno € 1
iff T € II.
OTIT [for IT a property]:
The property {o € 0® : (Vn > 0: 0y, Opy1, ... € D}
O[A]s [for A anactionand f astate function]:
The property {o € £ : (Yn > 0: (0n, 0ny1) € [Alf)}.
<TI [for IT aproperty or an action of theform (A)¢]: —O—I1
[T ~+ @ [for IT and @ properties]: O(I1 = <)
WF; (A) [for f astate function and .4 an action]:
The property (OO (A)¢) v (OO—Enabled (A)¢).
SF¢ (A) [for f astatefunctionand .A an action]:
The property (O (A)¢) v (CO—-Enabled (A)¢).
3x : IT [for x atupleof variables and IT a property]:
Theproperty {o € *°: (Jp € I1: p ~, 0)}.

A.4 Closure and Safety

o = I1 [for o € £* and IT aproperty]:
Thereexistst € IT and n suchthat o = t|,.
C(IT) [for T aproperty]: Theproperty {oc € *: (Vn > 0: 0|, &= IT}.
safety property: A property IT such that IT = C(IT).
(T1, L) machine closed [for IT and L properties]: TT =C(IT A L)
® —> IT [for ® and IT properties]: The property consisting of al behaviors o such
that
A o € dimplieso € I1
A fordln>0: 0|, = ®implieso|, = II.

A5 Realizability

[T constrains at most . [for IT a safety property and w an action]:
Forany s e X and p € £* with|p| > 0, if p = ITand (p,, S) ¢ i, then
poskEIlL
IT does not constrain y [for TT a safety property and 1 an action]:
IT constrainsat most — ., and every behavior of length 1 satisfies IT.
wu-strategy [for u an action]: A mapping f from X*to X U{ 1 }suchthat f (p) # L
implies (p,, f(p)) € u, for any sequence p € T* with p # A.
O, (f) [for p anactionand f apu-strategy]: The set of behaviors o such that
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AT =0
A fordln > 0: (on, 0ny1) € wimplieson,; = f(o|n)
A forinfinitely many n: f(o|,) = L or (6,, 0ny1) € .
O, (f, p) [for uanaction, f au-strategy, and p € £*]: If p = A then O, (), else
the set of behaviorso such that
AN T =04
A fordln > |t|: (6n, 0ne1) € pimplieso,, = f(oln)
A forinfinitely many n: f(o|,) = L or (6,, 0ny1) € .
IT is u-receptive [for IT aproperty and u an action]: For every behavior o € IT there
existsa pu-strategy f suchthato € O, (f)and O,(f) C II.
(1, L) is u-machine realizable [for TT and L propertiesand u an action]:
(1, L) ismachine closed and TT A L is u-receptive.

B Proofs

B.1 Proof Notation

We use hierarchically structured proofs. The theorem to be proved is statement
(0)1. Theproof of statement (i) j iseither an ordinary paragraph-style proof or the
sequence of statements (i + 1)1, (i 4+ 1)2, ... and their proofs. A proof may be
preceded by a proof sketch, which informally describes the proof. Within a proof,
(k) denotesthe most recent statement with that number. A statement has theform
ASSUME: Assump Prove: Goal
which is abbreviated to Goal if there is no assumption. The assertion Q.E.D. in
statement number (i 4+ 1)k of the proof of statement (i) j denotesthe goa of state-
ment (i) j. The statement
CAsE: Assump
isan abbreviation for
ASSUME: Assump Prove: Q.E.D.
Withinthe proof of statement (i) j, assumption (i) denotesthat statement’s assump-
tion, and (i).k denotes the assumption’s k" item.

We recommend that proofs beread hierarchically, fromthetop level down. Toread
the proof of along level-k step: (i) read thelevel-(k + 1) statementsthat comprise
its proof, together with the proof of thefinal Q.E.D. step (which isusualy a short
paragraph), (ii) read the proof of each level-(k 4 1) step, in any desired order.
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B.2

Proof of Proposition 2

AssuME: 1. (I1, L) is machine-closed.

2. x atuple of variables, none of which occursfreein L.
3. p isafinite behavior satisfying 3x : IT.

ProVE: There existsan infinite behavior T satisfying (3x : TT) A L suchthat p is

(1)1.

B.3

aprefix of t.
Choose afinite behavior o satisfying IT such that o ~ p.
(2)1. Choose abehavior ¢ such that ¢ € 3x : IT and p aprefix of ¢.
PrOOF: Assumption (0).1.
(2)2. Choose a behavior ¢ suchthat ¢ € IT and ¢ ~, ¢.
PrOOF: (2)1 and the definition of 3x : I1.
(2)3. Thereexistsaninitial prefix o of  suchthat o >~ p.
PrROOF: ¢ ~ ¢ (by (2)2) and p aprefix of ¢ (by (2)1).
(2)4. Q.E.D.
PROOF: (2)2 and (2)3.

. Choose n satisfying IT A L such that o isaprefix of 7.

PrOOF: The existence of t followsfrom (1)1 and assumption (0).1.

. Choose t suchthat t ~, n and p isaprefix of t.

PrROOF: t existsbecause o isaprefix of n (by (1)2) and o >~ p (by (1)1).

. T satisfies3Ix ; IT.

ProOOF: (1)2, (1)3, and the definition of Ix : I1.

. T satisfies L.

PrOOF: (1)2, (1)3, and assumption (0).2.

. QED.

PrOOF: Steps (1)4 and (1)5 imply that © satisfies (3x : TT) A L, and p isa
prefix of ¢ by (1)3.

Proof of Proposition 3

AssuME: 1. (I1, L4) ismachine closed.

2. T A Lyimplies L,.

ProvE: (I1, L,) ismachine closed.

PrOOF: TT = C(IT A Ly)  [(0).1]
C C(ITA Ly [(0).2 and monotonicity of closure]
c (1) [monotonicity of closure]
=1 [(0).1, whichimplies IT closed]

Thisprovesthat IT = C(IT A L). [
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B.4 TwoLemmasAbout Machine-Realizability

Lemmal (I1, L) is u-machine realizableiff for every finite behavior = satisfying
I, thereexistsa p-strategy f suchthatt = O, (f)and O,(f) C IT A L.

PrOOF: Thisis proved in Proposition 9 of [1]. []

Lemma2 (I1, L) is u-machine realizableiff for every finite behavior = satisfying
I, there existsa p-strategy f such that O, (f, t) C IT A L.

(1)1. AssuME: 1. For all finite T such that T = IT, there exists f, such that
a f, isau-strategy.
b.O,(f,,7)CIIAL
2. p afinite behavior such that p = I1.
PrOVE: There existsa u-strategy g such that
A pE Ou(g)
ANOQCITAL
(2)1. Choose g such that, for al o € ¥*:
gle) = if (o =pl) A (0 <o)
then if (n=0)V (pn, pny1) € 1
then pnia
ese |
else f,(0), wheren isthelongest common
prefix of p and o
ProoF: The requisite f, exists by assumption (0).2, since p = I1
impliesn = I, for any prefix n of p.
(2)2. gisapu-strategy.
PrOOF: (0).1aand the the definition of g ((2)1).
(3. 0u(@ STIAL
ProoF: Assumption (0).1b,sincex € O, (g) impliesthatx € O, (f,, n),
where 7 isthe longest common prefix of « and p.
(24. p = 0,(9)
ProOF: The definition of g impliesthat p isa prefix of an element of
0.(9).
(2)5. Q.E.D.
PROOF: (2)2, (2)3, and (2)4.
(1)2. AssuME: (I1, L) is u-machineredizableand t = I1.
PrROVE: Thereexistsa u-strategy f suchthat O, (f,7) CITA L.
(2)1. Choosea u-strategy f suchthatz € O, (f)and O, (f) C IT A L.
PrOOF: Assumption (2) and Lemma 1.
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(2)2. O, (f,ry cTAL
PrROOF: (2)1.2 and the definition of O, (f, 7).
2)3. Q.E.D.
PrROOF: (2)1and (2)2.
1)3. Q.E.D.
PrOOF: By (1)1, (1)2 and Lemma 1.

B.5 Proof of Proposition 4

O ATl
AV el 1 WF, (A4)
AVYj e J:SF, (A4)
. @ and TT are safety properties.
. IT constrains at most 1.
. 1 U J afinite or countably infinite set, which we take to be a set of
natural numbers.
4. Fordlkinl U J:
a (Ag)w, isasubactionof W.
b. ¥ = D[ -Ak U)k = M]wk
5. Fordl j in J: Enabled (A;),, isa—u invariant of W.
PrROVE: (® —I1, ® = L) isu-machineredizable.
By Lemma 2, it suffices to
ASSUME: 6. 7 =@ — I
PrOVE: There existsa u-strategy f such that
O, (f,71) C(® T A (P = L).
PrROOF SKETCH: Defining the strategy f is tantamount to constructing a scheduler
that executes the actions (Ay).,, to satisfy thefairness requirements. Action (Ay).,
is never considered until k steps have occurred, so only finitely many actions are
considered at any point. The next action scheduled is the enabled action that has
been under consideration for the longest time without having been executed. In
the event of ties, the lowest-numbered action is chosen. The strategy f will never
violate ¥, and it stops making moves if ¥ is ever made false by the environment.
In the following definitions, nextact(p) is the k such that the scheduler choosesto
execute (Ay),, after thefinite behavior p.
LET: B = (A u,
n ||
lasttime(p, k) = max ({l 1 1<1 < |p|: (a1, ) € Be} U {K})

LET: ¥
L

4
4

=

ASSUME:

w N

A
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able(p) 2 if p = then theset of naturals
ese {k: p, € Enabled By}
oldestlast(p) = min{lasttime(p, k) : k € able(p)}
nextact(p) = min{k € able(p) : lasttime(p, k) = oldestlast(p)}
(1)1. Choose f suchthat for dl p in X*:
if (able(p) =0) v (p ¢ ¥)
then f(p) =L
ese A (p#1) = (o F(0)) € Bredacto)
Apo f(p)ew
PROOF SKETCH: We must show that, for any p, therequisite f (p) exists.
(2)1. ASSUME: (able(p) #0) A pE W
PROVE: 3seZ: A(p#L) = (0,»S) € Brextactp)
ApoSeW
(3)1. CASE: p=A
PrOOF: Assumption (2) and the definition of p &= W.
(4)1. CASE: p # A
(5)1. Pipl € Enabled Bnextact(p)
(6)1. nextact(p) € able(p)
ProOF: Assumption (2) and the definitionsof nextact and ol destlast.
(6)2. Q.E.D.
PrOOF: Case assumption (4) and the definition of able(p).
(5)2. Q.E.D.
PrOOF: (5)1 and Assumption (0).4a
(4)2. Q.E.D.
PROOF: (3)1and (4)1.
(2)2. QED.
ProOF: The existence of therequired f followseasily from (2)1.
(1)2. f isap-strategy.
AssUME: (p # 1) A (f(p) # 1)
PROVE:  (pjp, T(0)) € 1
PrOOF: (1)1 and assumption (1) imply
A (i1 £(0)) € Brexactp)

npo f(p) EY
and the result follows from (0).4b.

(1)3. O, (f, 1) € (@ = 1T)
PrROOF sKETCH: Thisis a straightforward induction proof; (2)1 isthe base case
and (2)2 istheinduction step.
(2)1. AssuME: o € O, (f, 1)
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PROVE: oo D = I1
PROOF: oo = t|g, and 7 = (® —> IT) by assumption (2) and the definition
of O,(f, 7).
(2)2. AssuME: 1.0 € O,(f, 1)
2.0 E® =11
3.i>0
PROVE: o1 =P =11
(3)1. CASE: | > |7|
(4)1. CASE: (07, 0141) ¢ 1
ProoF: Followseasily from assumption (2).2 and assumption (0) .2, since
IT constrains at most  implies ® — TT constrains at most .
(4)2. CASE: (oi, Oit1) E U
(B)1. 01,1 = f(ol)
PrROOF: Assumption (2).1.
(5)2. Q.E.D.
PrOOF: (5)1, assumption (2).2, and theelse clausein (1)1 (the defini-
tionof f).
(43. Q.E.D.
PrOOF: (4)1and (4)2.
(3)2. CASE: | < |T]
PrOOF: By assumption (0).6 and assumption (2).1, sincei < |t| implies
Olizr = Tlis1-
(3)3. Q.ED.
ProOF: (3)1 and (3)2.
(2)3. Q.E.D.
PrOOF: (2)1, (2)2, mathematical induction, and assumption (0).1.
(1)4. O, (f, 1) (P =1L)
PROOF SKETCH: The proof is by contradiction. Wedefine |E and | O to be the sets
of indicesof actionsthat should be executed infinitely often and that actually are
executed infinitely often, respectively. We show that the existence of aq in IE
but not in 10 leads to a contradiction.
AssUME: 1.0 € O, (f, 1)
20 d
3.dkelud:avkel Ao ¢ WF, (A
bvke Jano ¢ SF, (A
ProvE: flase
LET: IE = {i €| :OOEnabled B} U {j € J: OCEnabled B}

2 (ke lUJ: (0w 0n1) € By forinfinitely many n}
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(21. c e dATI
PrOOF: (1)3 and assumption (1).1, whichimply 0 € & — IT, and (1).2.
(2)2. Choose q such that
l.gelE
2.9¢10
PrROOF: Assumption (1).3.
(2)3. Choose m; such that
1.m>q
2.¥n > my @ (0n-1, 0n) ¢ By
3. my> 7|
PrROOF: (2)2.2
(2)4. Choose m, such that
1.m,>mg
2VkelUJ: (k¢ lO)A(k<my) = VN >my: (0n, Ong1) ¢ Bx
ProoF: Definition of 10.
(2)5. Choose m; such that
1. mg>m,
2VkelUJd:kelOAkk<m) =
An>m,: (N < Mg) A (0On, Ony1) € By
ProoF: Definition of 10.
(2)6. Choose m, such that
1. my; >mg
2. om, € Enabled B,
3.(el)=Vn>m,:o, € Enabled B,
PrOOF: (2)2.1 and the definition of IE.
(2)7. Yyn > m, : LA 0, € Enabled B,
2N (On-1,0n) & 14
PROOF SKETCH: By time my, By is the next action scheduled for execution.
Since By is never again executed (by (2)3), there can be no further p steps.
Since only a u step can disable B, (by assumption (0).5), B4 must be enabled
forever. Theformal proof isby inductionon n; (3)1 isthe base case and (3)2
istheinduction step.
(3)1. om, € Enabled B,
PrOOF: (2)6.
(3)2. AssUME: 1. o,, € Enabled 5,
2. (On-1,0n) & 1
3n>m
PROVE: A ony1 € Enabled B,
A (On, Ont1) € 1

43



(1. (0n, Onya) ¢ 1
ASSUME: (0p, Ony1) € 4
ProvE: flase
(5)1. v nextact(c|n) =Q
vikelUJ: Anextact(ol,) =k
Ak<mg AkéglO
Ak € able(o|,)
(6)1. g € able(o|,)
Assumption (3).1.
(6)2. ASSUME: k > m,
ProOVE: lasttime(o|,, k) > lasttime(o|,, Q)
PrOOF: lasttime(a|,,, K) > m, by definition of lasttime, and m; >
lasttime(o|,, ) by assumption (3).1.
(6)3. AssUME: (k > my) A (k € 10)
ProOVE: lasttime(o|,, k) > lasttime(o |, Q)
PrOOF: lasttime(o |, k) > m, > m; by (2)5,andm; > lasttime(o|,, Q)
by assumption (3).1.
(6)4. v oldestlast(a|,) = q
vikel UJ: Aoldestlast(o|,) =k
Ak<m Ak¢lO
Ak € able(o|n)
PrROOF: (6)1, (6)2, and (6)3.
(6)5. Q.E.D.
PrOOF: (6)4 and definition of nextact.
(5)2. V (0oq, Ont1) € Bq
vikelUJd: A (on,0n1) € By
Ak<mg AkéglO
PrOOF: (5)1, thedefinitionof f ({(1)1), assumption (4),and assumption
(1).1, sincen > || by assumption (3).3 and (2)3—(2)6.
(5)3. Q.E.D.
(6)1. CASE: (0n, 0ns1) € By
PrOOF: Contradicts (2)3, sincen > m; by assumption (3).3 and
(2)4—(2)6.
(6)2. CASE: kel UJ: A (0n, Ony1) € Bx
Ak<m Akg¢lO
ProOF: Contradicts (2)4, sincen > m, by assumption (3).3, (2)5,
and (2)6.
(6)3. Q.E.D.
PrOOF: (6)1 and (6)2.



(4)2. ony1 € Enabled B,
ProOOF: Assumption (3).1, (4)1, (2)1, and assumption (0).5.
(4)3. Q.E.D.
PrROOF: (4)1 and (4)2.
(3)3. Q.E.D.
ProoF: (3)1, (3)2, and mathematical induction.
(2)8. Q.E.D.
3L Vn>my: f(o|n) # L
PrROOF: (2)7.1, assumption (1).1, assumption (1).2, and (1)3.
(3)2. Q.E.D.
PrOOF: (3)1 and (2)7.2 contradict assumption (1).1.
(1)5. Q.E.D.
ProoOF: (1)2, (1)3, and (1)4.

B.6 Proof of Proposition 5

AssUME: 1. @ and IT are safety properties.
2. (® - II, L,) is u-machinerealizable.
3. (true, L,) is u-machine realizable.
4. O ATI A Ly implies L.
PrROVE: (® — II, L,) isu-machine realizable.
(1)1. AssUME: p isafinitebehavior suchthat p = (® — IT).
PrOVE: There existsa u-strategy f such that
O,(f, p) € (® = II) A L,
(2)1. Choose p-strategy h suchthat O, (h, p) € (& — IT) A L;.
PrOOF: Assumption (0).2, assumption (1), and Lemma 2.
(2)2. For al z, choose a u-strategy g, such that O, (g, 7) < L.
ProOOF: Assumption (0).3 and Lemma 2.
(2)3. Let f(r) = h(r) for r = &, and otherwiselet f(r) = g,(r) wheren
isthe shortest prefix of T suchthat n = ®. Then f isa u-strategy.
ProOOF: By steps (2)1 and (2)2 (which say that h and g, are u-
strategies).
(24. 0,(f,p) S (@ =T A Ly
AssuME: Tt € O, (f, p)
PROVE: 1€ (® —+TI) ALy
(3)1. CASE: T € @
M1 e Oy, p)

45



PrROOF: By assumption (2), since the case assumption (3)
and the definition of f (step (2)3) imply f (z],) = h(t|n)
for all n.
MH2. 1 e(® I ALy
PrOOF: By step (4)1 and the choice of h (step (2)1).
BH3. 1edDATITAL,
PROOF: By step (4)2 and case assumption (3).
(4)4. Q.E.D.
PrOOF: By step (4)3 and assumption (0).4.
(3)2. CASE: T € @
(4)1. Letn betheleast integer such that |, ¢ .
PrOOF: Such an n exists by case assumption (3) and as-
sumption (0).1.
(#2. 7 € 0,(Gep,. Tln)
PrROOF: By step (4)1, assumption (2), and the definition
of f (step (2)3).
MH3. tel,
PrROOF: By steps (4)2 and the choice of g, (step (2)2).
(4)4. Q.E.D.
PROOF: By steps (4)3 and case assumption (3).
(3)3. Q.E.D.
PrROOF: By steps (3)1 and (3)2.
(2)5. Q.E.D.
PrROOF: By steps (2)3 and (2)4.
(1)2. Q.E.D.
ProOF: Theresult followsimmediately from step (1)1 and Lemma 2.

B.7 Proof of Theorem 4

The proof of Theorem 4 israther long and is presented in two steps. Section B.7.1
containsahigh-level view of the proof; Section B.7.2 containsthe complete proof,
omitting definitions and complete subproofs that appear in the high-level view. If
aformula F is aconjunction, we may number the conjunctsand let F.i denotethe
i" one.

The proof uses the following two lemmas.

Lemma 3 (Rule WF1) For any predicates P, Q, and |; actions NV and A; and
state function f; if
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LPAIAIAN] = (PPVQ)
2 PATAIUANAA; = Q
3. PAl = Enabled (A);.

then WF;(A) A Ol AO[N]; = (P~ Q)

ProOOF: Thisisasimple generalization of rule WF1 of [13]; the proof of soundness
isomitted.

Lemma4 For any actions .4 and B, state function f, variable x, predicate P,
and property IT:

1. (@) (Enabled (x' = f)) = true.

(b) If A and B have no primed variablesin common, then
(Enabled A A B) = (Enabled A) A (Enabled 5).

2. (Enabled A) A (—Enabled B) = (Enabled A A =5)

3. (Enabled P A A) = (P A Enabled A)

4. (Enabled 3x : A) = (3x : Enabled A)

5. If A = Bthen (Enabled A) = (Enabled B).

ProOF: These propertiesal follow easily from the definitions.

B.7.1 High-Leve Proof of the Theorem

LEmN I = EAM
Mt £ M A RT, A
Vi el :MinTime(t;, Ai,v) A Vj e J:MaxTime(T))
m = EAM
AssuME: 0. a. IT = Init A O[N], for some predicate Init, action A/, and state
function w.
b.t; isatimer for IT,foraliinl.
c. T isatimer for IT, for dl j in J.
d. Jisafinite set.
1. (Aj), and (A4;), aredigjointfor IT, forali € | and j € Jwithi # j.
now

2. a. does not occur freein v.
b. (now =r) A (v = v) isasubactionof I, forall r € R.
3. Fordl je J:
a (Aj), A (now = now) isasubaction of IT.
b.TT = VTimer(Tj, A;, Aj, v) or
[T = PTimer (T, A, A}, v), where Aj € (0, 00).
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c.I1' = O(Enabled (A;), = Enabled ((4;), A (now = now)))
d. (v =v) = (Enabled (4;), = (Enabled (A;),))
4. 1" = O < T, foralk el N J.
5. E and M are safety properties, and M constrains at most .
6. a (A, = u,fordlk el UJ.
b. (now # now) = u
PrROVE: (E — M!, NZ) is u-machine realizable.
PROOF SKETCH: We show that a fairness condition WFnow, ., (C) implies that now
increases without bound, for a subaction (C) now,., Of T, and then apply Proposi-
tions4 and 5. To prove that now increases without bound, we prove that now = r
leads to now > (r + A) for any number r, where A is the minimum of the A;.
The action C advances now or, if that is impossible because now = T; for some
upper-bound timer T;, it performs the action .4; (thereby advancing T;).
We begin by naming the next-state relations of the RT,, MaxTime,
MinTime, VTimer, and PTimer formulas and defining some actions and predi-
cates, includingC. A B; stepisdefined to bean .4; step that |eaves now unchanged.
An A; or B} stepisan A;j or B; step that satisfiesthelower-boundtiming constraint,
if thereisone. The state function T isthe smallest T; that restricts the advance of
NOW.
LET: RTact,

MaxTact(t)
MinTact(t, A, v)
VTact(t, A, 8, v)

[(now’ € (now, 00)) A (V" = v)]now
[now < t']now
[A = (t <now)],
[At' = if (Enabled (A),)
then if (A), v —Enabled (A),
then now +§
dse t
dse oo
AV # V]
[At' = if Enabled (A),
then if (A), then now+$
dse t
dse t + (now — now)
A (now, v)" # (NOW, )] t.v.now

> 1l 1> 1>

PTact(t, A, 8, v)

P 2 (jel)= (t <now)
Aj 2 A4 AP

B, £ Aj A (now = now)
B £ A} A (now = now)
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T £ min(T,:j e JAEnabled (4),)

A £ min{a;:jeJ)

NowT 2 (now =min(now+ A, T)) A (v = v)
C 2= v (T #now) A NowT

V(T=now) A3jel:(TT=T)AB;
(1)1. Choose Jp and Jy such that:
1.J=J)Ul
23Nk =0
3. V] € J\/ I =>V'I'Imer('|',-,A,-, Aj, U)
4.Vje Jp: I = PTimer(Tj, 4;, A}, v)
PrOOF: Jp and Jy exist by assumption (0).3b.
(1)2. TI' = dInv, where
Inv = 1.A Vi e J:T e[now, oq]
2Anow € R
3AVj e J:(Enabled (4)), =
Enabled ((A4;), A (now = now))
AAVKkel NIt < Ty
5AVYj € Jy: —Enabled (4;), = (Tj = 00)
PROOF SKETCH: It follows immediately from the hypotheses that TT' implies
Olnv.3and Olnv.4. Theproofsfor the other conjunctsof Inv are straightforward
but somewhat tediousinvariance proofs, which are omitted.
(2)1. RT, = dlnv.2
(2)2. Fordl j € J: IT AOInv.2 A MaxTime(T)) = Tlnv.1
(2)3. ' = dlnv.3
(2)4. TI' = dlnv.4
(2)5. ' = dlnv.5
(2)6. Q.E.D.
PROOF: (2)1—(2)5.
(1)3. 1. I = Init A OM
2. ' = Init' A ON?, for some predicate Init'.

where
M 2 AN
A V] e Jp: PTaCt(T,—, Aj, Aj, V)
7AN V] e Jdy: VTaCt(Tj,A,-, Aj, V)
N2 AM
A RTact,

A Vi e | : MinTact(t;, A, v)
A VY] € J: MaxTact(T;)
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ProoF: 1 follows from assumptions (0).0a and (0).3b, and 2 follows from the
definition of IT', since O distributes over A. (A simple calculation shows that
M = [M]s and V' = [A]g, for suitabletuples f and g, so OM and ON* are
TLA formulas.)
(1)4. (C)now.v) 1Sasubaction of IT".
(2)1. Fordl jin J: (B}), isasubaction of IT'.
(2)2. (NowT)now iS asubaction of IT'.
(2)3. QEED.
PrOOF: By (2)1 and (2)2, since (NOWT)now = (NOWT) mow,v)s (B})v =
(B})(now,v), Lemma 4.4 implies that the disjunction of subactions is a sub-
action, and Lemma 4.3 impliesthat if D isa subaction, then P A D isasoa
subaction, for any predicate P.
(1)5. TI' A WF oy (C) = NZ
ProOF: By the Lattice Rule [13], it suffices to
ASSUME: r e R
PROVE:  TT' A WFnow,)(C) = ((NOW =)~ (NOW € [r + A, 00)))
PROOF SKETCH: The standard method of proving that now = r leads to now €
[r+ A, co)istoassumethat now = r and nowisneverin[r + A, co), and derive
acontradiction. Step (2)2 below proves that, if now equalsr and it is hever in
[r + A, 00), thenitisawaysin[r,r + A). It therefore suffices to assume now
isalwaysin[r,r + A) and derive the contradiction.
Thecontradictionisobtained by showing that eventually thereisno upper-bound
timer preventing the advance of now pastr + A. Thetimers that could prevent
the advance of now are the onesin the set U of timersthat are lessthanr + A.
Step (2)4 asserts that U eventually becomes empty, and (2)5 asserts that time
then advancespast r + A.
LET: U {(jed:Tj<r+A}
\% {jedinow<T <r+A}
TimerAct = Vj e J: v VTact(T,, A, A}, v)
2 PTaCt(T, R AJ‘ s AJ‘ s U)
(2)1. Inv = Enabled (C)now,»)
(2)2. IM* =
O((now=r)AOMnowe (—oo,r +A)) = OMow € [r,r + A)))
(2)3. ASSUME: j e J
PrOVE: 1. IMM'AOMowe[r,r+ A)) = O ¢ U)=0(j ¢ U))
2. MM AQmowe [r,r+A) = O(j ¢ V)= 0O( ¢ V))
(2)4. TI' AO(now € [r, 1 + A)) A WFnow(C) = <0OU = 0)

> 11>
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(2)5. AO(now € [r, 1 + A))
AOWMU =9)
A Olnv
A WFnow, ) (C)
= true ~ (nNOW>r + A)
(2)6. Q.E.D.
PROOF: (2)2, (2)4, (2)5, (1)2, and temporal logic.
(1)6. (E = M', E = WFpow.)(C)) is u-machineredizable.
(2)1. M! constrainsat most /.
(2)2. QED.
ProoF: We apply Proposition 4, with E substituted for ®, M* substituted for
I1, and the single formula WFow,., (C). Step (2)1 assertsthat M' constrains
a most . The three numbered hypotheses of the proposition are proved as
follows:
1. (1)4.
2. Assumptions (0).6aand (0).6b and the definition of C.
3. Vacuous.
(1)7. (true, NZ) is u-machine realizable.
PrROOF: Assumption (0).6b.
(1)8. Q.E.D.
PrOOF: Proposition 5, using (0).5, (1)6, (1)7, and (1)5.

B.7.2 Detailed Proof of the Theorem

(1)1. Choose Jp and Jy such that:
1.J=3UJ
23Nk =0
3. V] c J\/ 11 =>V'I'Imer('|',-,A,-, A,—,v)
4.Vje Jp: I = PTimer(Tj, 4;, A}, v)
(1)2. TI' = dlnv, where
Inv 2 1AVj € J: T, € [now, oc]
2A now e R
3AVj e J:(Enabled (4)), =
Enabled ((4;), A (now = now))
AAVKkel NIt < Ty
5AVYj € Jy: —Enabled (4;), = (Tj = 00)
(2)1. RT, = dlnv.2
PrROOF: An invariance proof.
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(2)2. Fordl j € J: T AOInv.2 A MaxTime(T)) = Tlnv.1
ProOOF: Assumption (0).0c and an invariance proof.
(2)3. I = dinv.3
PrOOF: Assumption (0).3c.
(2)4. TI' = dlnv.4
PrOOF: Assumption (0).4.
(2)5. ' = dlnv.5
PrOOF: (1)1.3, assumption (0).3d, and an invariance proof.
(2)6. Q.E.D.
(1)3. 1. 1 = Init AOM
2. ' = Init' A ON?, for some predicate Init'.
where
M 2 AN,
7AN V] e Jp: PTaCt(T,—, Aj, Aj, V)
/\Vj c J\/ . VTaCt(Tj,A,-, Aj, U)
A M
A RTact,
A Vi e | : MinTact(t;, A;, v)
A VY] € J: MaxTact(T;)
(1)4. (C)now.) 1Sasubaction of IT".
(2)1. Fordl jin J: (B}), isasubaction of IT'.
ASSUME: j € J
Prove: TI' = O(Enabled (B}), = Enabled ((B}), AA"))
(3)1. I = O (Enabled ((B}), A M) =
Enabled (A (B})v AM
AV el —{j} i =((A)y A{A))y AM)))
(4)1. I1 = —Enabled 3i el —{j}: (Ai), A (A))y AM)
PrOOF: (1)3.1, assumption (0).1, and Lemma4.4.
(42. Q.E.D.
PrROOF: Lemma 4.2, substituting (5}), A M for Aand3i € | — {j}:
(Aidy A (Aj)y A M for B.
(3)2. A (Bj)y, AN
AV el —{j}=({(Ai)y A (A))y A M)
= A (B})y AM
AVEel —{j}:=({(Ai)y A (A))y A M)
PROOF: A (B}), A N
AV el —{j} 1 =({(Ai)y A (A))y A M)

[I>

Nt
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= [by definition of (5}),]
AN A} A (V' # v) A (NOW = now) A N
AV el = {j} i =((Ai)s A (A))y AM)
= [by definition of A/"]
ANAAMA (V' #v) A (NOW = now)
AV el A = (t < nhow)
AV el = {j}:=((Ai)s A (A))y AM)
= [by definition of A]
ANBANA AMA @ #v) ANOW = NnOW
AVYi el A = (t < now)
AViel —{j}:=(A AA AMA @ #v))
= [by predicatelogic]
AP ANA AMA Q@ #v) A (NOW = NOW)
A (] €l)= (t <now)
AViel —={j}:=(A AA AMA @ #v))
= [by definition of (Ay), and M]
AP ANA AMA Q@ #v) A (NOW = NOW)
A (] €l)=(t <now)
AV el = {j}=((Ai)s A (A))y AM)
= [by definition of Bj]
AP ANA A @ #v) A (NOW = now) A M
AV el = {j}:=((Ai)s A (A))y AM)
= [by definition of (5}),]
A (B})v A M
AV el = {j} i =((Ai)s A (A))y AM)
(3)3. 1 = O (Enabled ((B}), A M) = Enabled ((Bj), AN"))
ProOOF: (3)1, (3)2, and Lemma4.5.

(3)4. I1 = O(P A Enabled (B;), = B A Enabled ((Bj), A M))
ProoF: (1)3, Assumption (0).3a, and the definition of B5;.
(3)5. TI = O ((Enabled (B;),) = Enabled ((B}), A M))

PROOF: (3)4, the definition of 53], and Lemma 4.3.
(3)6. I = O((Enabled (B}),) = Enabled ((B}), A M)
ProOF: (3)5 and (3)3.
(3)7. Q.ED.
PrOOF: (3)6 and the definition of IT', whichimplies IT' = TIT.
(2)2. (NowT)now iS asubaction of IT'.
(3)1. IT* = O ((Enabled (NowT)now) =
(Enabled ({NowT)now A M)))
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(41. II'* = O ((Enabled NowT) = (Enabled (NowT A M)))
PrROOF: (1)3, assumption (0).2b, and the definition of NowT, since IT*
impliesIT.

(4)2. Q.E.D.

PrROOF: (4)1 and Lemma4.3, substitutingnow # T for P (since (NOWT ) now
equals NowT A (now # T)).
(3)2. TI' = TO(Enabled ((NOWT)now A M) =
Enabled ((NowT)now A M)
(M1, (Inv A (NOWT ) now A M) = ((NOWT ) now A N'Y)
(5)1. Inv A (NowT)now = RTact,
ProoF: (1)3(Inv.1 and Inv.2).
(5)2. Vi €1 : (NowT)now = MinTact(t;, A;, v)
ProOF: MinTact(t;, A;,v) = [...],, and (NowT)non implies
v = .
(5)3. Vj € J 1 InvA (NowT)pow A M = MaxTact(T;)
ASSUME: 1. j € J
2. Inv A (NOWT ) now A M
PrROVE:  MaxTact(T;)
(6)1. CasE: Enabled (A)),
(7)1. now < T;
PrOOF: Inv.1, Inv.2, (NOWT)now, and the definitions of NowT,
since case assumption (6) and the definitionof T imply T, > T.
(7)2. CASE: j € Jp
(8)1. Case: T/ =T;
ProOF: (7)1 and the definition of MaxTact(T;).
(8)2. CAsE: T/ =now + A,
PRrROOF: Inv.2, (NOWT ) how, and definition of MaxTact(T;).
(8)3. Q.E.D.
PrOOF: (8)1, (8)2, and case assumption (7), Since case assump-
tion (6) and the definition of PTact(T;, A;, Aj, v) imply that
these are the only possibilities.
(7)3. CASE: j € Iy
8L T =T
PrOOF: Case assumption (7) and the definitions of M and
VTact(T;, Aj, Aj, v), since (NowT), impliesv = v'.
(8)2. Q.E.D.
PrROOF: (7)1, (8)1, and the definition of MaxTact(T;).
(7)4. Q.E.D.
PrROOF: (7)2, (7)3, (1)1.1, and assumption (5).1.
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(6)2. CasE: —Enabled (A4;),
(7)1. now, now € R and now > now.
PrROOF: Inv.1, Inv.2, (NowWT)now, and the definition of T.
(7)2. CASE: j € Jp
(8)1. T/ > now
PrROOF: (7)1, case assumption (7), Inv.1, and the definitions of
M and PTact(Tj, Aj, Aj, v).
(8)2. Q.E.D.
ProoF: (8)1 and the definition of MaxTact(T;).

(7)3. CASE: j € Iy

8L T =00
PrOOF: By case assumption (7) and Inv.5.
(8)2. T/ =00
PrOOF: (8)1, caseassumption (7), and thedefinitionsof M and
VTact(T;, Aj, A}, v), since {(NowT), implies
v="1.
(8)3. Q.E.D.
PrROOF: (7)1, (8)2, and the definition of MaxTact(T;).
(7)4. Q.E.D.
PrROOF: (7)2, (7)3, (1)1.1, and assumption (5).1.
(6)3. Q.E.D.
PrOOF: (6)1 and (6)2.
(5)4. Q.E.D.
ProOOF: (51, (5)2, (5)3, and the definition of A".
(4)2. Q.E.D.

PrOOF: (4)1and (1)2, sinceby Lemma4.3and Lemma4.5, InvAD = &
implies OIlnv = O((Enabled D) = (Enabled &)), for any actions D

and £.
(3)3. Q.E.D.
ProOF: (3)1 and (3)2.
(2)3. Q.E.D.
(1)5. TI' A WFnow.)(C) = NZ

ASSUME: r € R
IT' A WFnow»(€) = ((now=r)~> (NOW € [r + A, 00)))

PROVE:
LEL U 2 {jed:T <r+A)
v 2 {jedinow<T <r+A}

TimerAct = Vj e J:v VTact(T;, A, A, v)
2 PTaCt(T,-, .Aj, Aj, U)
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(2)1. Inv = Enabled (C)now,»)
(3)1. CAsE: T # now
ProOF: By thedefinition of C, since caseassumption (3) implies Enabled (NowT ) o
(3)2. CAsE: T = now
(4)1. Choose j € Jsuchthat (T; = T) A Enabled (4;),.
PROOF: Inv.2, case assumption (3), and the definition of T.
(4)2. Enabled (B;),
ProoF: (4)1, Inv.3, and the definition of (5;),.
(4)3. Enabled (B}),
PROOF: (4)2, Inv.4, case assumption (3), and the definition of (B})v.
(4)4. Q.E.D.
PrROOF: Case assumption (3}, (4)3, and the definition of C.
(3)3. Q.E.D.
ProOF: (3)1 and (3)2.
(2)2. IM* =
O((now=r)AOMnowe (—oo,r +A)) = OMow € [r,r + A)))
(3)1. O[RTact,]now = ((now = r) = T(now € [r, c0)))
PrOOF: A standard invariance argument.
(3)2. O[RTact,]now = O((now = r) = O(now € [r, o0)))
Proor: (3)1 and simpletemporal logic.
(3)3. I = O((now = r) = O(r < now))
PrROOF: (3)2, sinceIT' = RT, and RT, = O[RTact,]now-
(3)4. Q.E.D.
ProoF: (3)3, using the temporal logic tautol ogy
(F~ G)= (FAOH)~ (GAOH))
(2)3. ASSUME: j e J
PrROVE: 1. IM'AO(Mmowe[r,r +A)) = 0O ¢ U)=0( ¢ U))
2. MM AQmowe [r,r+A) = O(j ¢ V)= 0O( ¢ V))
PrOOF: A standard invariance proof, using assumption (0).3b.
(2)4. ' AQ(now € [r, r + A)) A WFpow(C) = <O = @)
PROOF SKETCH: The set V consists of those timersin U that are not equa
to now. To prove that U is eventually empty, we show that, whenever U is
nonempty, eventually U or V getssmaller. SinceU and V arefinite, U must
eventually become empty.
(3)1. AssUME: Ug and Vj sets, with Ug # @.
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PROVE: A OWU C Uy A (VC V)
A O(now € [r,r + A))
A Olnv
A O[TimerAct] now,»)
A WFqow, ) (C)
= (U =Up AV =VW)) ~
(U C Up) v ((U S Up) AV C VW)
PrROOF SKETCH: Thisisastraightforward application of rule WF1 (Lemma3),
with the following substitutions.
LET: | 2 1LAnowe [r,r4+A)
2A (U S Ug A (VS V)
3.A Inv
(U =Up) AV =W
(U CUg) v ((U S U AV C W)
TimerAct
C
(now, v)
D1 I'= (P'v Q)
ProOOF: Obvious.
(42. ASSUME: PA T A" AN A A
PrROVE: Q'
(5)1. CAsE: T = now
(6)1. Choose j in J suchthat (T = T) A (Bj),.
PrOOF: A and case assumption (5).
6)2. T/ >r+ A
PrOOF: (6)1, 1.1, the definition of B}, and Timer Act.
(6)3. jeUAjgU’
PrROOF: (6)1, case assumption (5), and | .1.
(6)4. j ¢ U’
PROOF: (6)2.
(6)5. Q.E.D.
PrROOF: (6)3, (6)4, and |’.2.
(5)2. CAsE: T # now
(6)1. (now =T) A (vVV =)
PrOOF: A and case assumption (5).
(6)2. CASE: T € (now, r + A)
(7)1. Choose | in J suchthat (T; = T) A Enabled (A),.
PrROOF: Case assumption (6) and the definitionof T.

- =0 T
e > e > (>
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(2. v Tj’ = now
VT elr+ A, o]
ProOOF: (6)1, (7)1, |.1, and TimerAct.
(1)3. jeV
PrROOF: (7)1, case assumption (6), and the definition of V.
(4. j ¢V’
PrOOF: (7)2 and the definition of V.
(7)5. Q.E.D.
(73, (NY4,and |'.2.
(6)3. CAsE: T e[r + A, o0]
PrOOF: Impossibleby (6)1 and I'.1.
(6)4. Q.E.D.
PrROOF: (6)2, (6)3, 1.3.1, and case assumption (5).
(5)3. Q.E.D.
ProOOF: (5)1 and (5)2.
(4)3. PA |l = Enabled (A)¢
PrOOF: (2)1.
(4)4. Q.E.D.
PrOOF: (4)1, (4)2, (4)3, and Lemma 3.
(3)2. AssUME: Ug and V; sets, with Ug # 3.
PrROVE: TII' AO(now € [r, 1 + A)) A WFnow)(C) =
(U =Ug AV =VW) ~
(U C U V(U S U A(VC W)
(A1 ' = 0(U S Ug) A (V S V) = O(U S U A (VS W)
ProoOF: Followsfrom (2)3.
(4)2. Q.E.D.

PrROOF: (3)1, (4)1, and (1)2, since IT' = O[TimerAct] now,.) by assump-

tion (0).3b.
(3)3. Q.E.D.

PrOOF: SinceU and V arefinite by assumption (0).0d, it followsfrom (3)2
and the Lattice Rule [13] that TT' A O(now € [r, 1 + A)) A WFnow.) (C)
implies (U = ¢). By (2)3, IT' A O(now € [r,r + A)) implies<O(U =

) = <aUu = 0).
(2)5. AO(now e [r,r 4+ A))
AOWMU =9)
A Olnv

A WFnow,) (C)
= true ~ (NOW > r + A)
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[I>

IAU =0
2Anowe fr,r +A)
3.A Inv

true

now >r + A
true

C

(now, v)

3L I AlI'A[N]f = (P'VvQ)
PrOOF: Immediate, since P’ = true.

(3)2. ASSUME: P AT A" A (N A A

PrRoOVE: Q'
DL Telr+ A, oo]
PrROOF: By I.
(4)2. (NoWT ) now
PrOOF: By (4)1, 1.2, and A.
(4)3. QEE.D.
PrOOF: (4)1, (4)2, and the definition of NowT.

(3)3. PA |l = Enabled (A)¢
PROOF: (3)1.

(3)4. Q.E.D.

ProoOF: (3)1, (3)2, (3)3, and Lemma 3.
(2)6. Q.E.D.
(1)6. (E = M', E = WFpnow.)(C)) is u-machineredizable.
(2)1. M! constrainsat most .
(3)1. M constrainsat most .
PrOOF: Assumption (0).5.
(3)2. RT, constrainsat most p.
PrOOF: Assumption (0).6b.

(3)3. Fordliinl, MinTime(t;, A;, v) constrainsat most .
PrOOF: By definition of MinTime, astep violates MinTime(t;, .4;, v) only if
itisan (A;), step, so thisfollowsfrom Assumption (0).6a

(3)4. Fordl j in J, MaxTime(T;) constrains at most .
PrOOF: Assumption (0).6b.

(3)5. Q.E.D.

PrOOF: (3)1—(3)4 and the definition of M'.
(2)2. QED.

LET:

- =0 T
(1 | o | o I [
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(1)7. (true, NZ) is u-machine realizable.
(1)8. Q.E.D.
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