89

Compositional Refinement
of Interactive Systems

Manfred Broy

July 15, 1992

Systems Research Center

DEC's business and technology objectives require a strong research program. The
Systems Research Center (SRC) and three other research laboratories are committed to
filling that need.

SRC began recruiting its first research scientists in 1984—their charter, to advance
the state of knowledge in al aspects of computer systems research. Our current
work includes expl oring high-performance persona computing, distributed computing,
programming environments, system modelling techniques, specification technology,
and tightly-coupled multiprocessors.

Our approach to both hardware and software research isto create and use real systems
so that we can investigate their properties fully. Complex systems cannot be eval uated
solely in the abstract. Based on this belief, our strategy isto demonstrate the technical
and practical feasibility of our ideas by building prototypes and using them as daily
tools. The experience we gain is useful in the short term in enabling us to refine our
designs, and invaluableinthelong termin hel ping usto advance the state of knowledge
about those systems. Most of the mgjor advances in information systems have come
through this strategy, including time-sharing, the ArpaNet, and distributed personal
computing.

SRC a so performswork of amoremathematical flavor which complementsour systems
research. Some of thiswork isin established fieldsof theoretical computer science, such
astheanalysisof agorithms, computational geometry, and logicsof programming. The
rest of thiswork explores new ground motivated by problems that arisein our systems
research.

DEC has a strong commitment to communicating the results and experience gained
through pursuing these activities. The Company values the improved understanding
that comes with exposing and testing our ideas within the research community. SRC
will thereforereport resultsin conferences, in professional journals, and in our research
report series. Wewill seek usersfor our prototype systems among those with whomwe
have common research interests, and we will encourage collaboration with university
researchers.

Robert W. Taylor, Director

Compositional Refinement of Interactive Systems

Manfred Broy

July 15, 1992

Manfred H. B. Broy is at the Institut fr Informatik, Technische Universitat Minchen,
Postfach 20 24 20, 8 Munchen 2, Germany

E-mail: broy@informatik.tu-muenchen.de

The author was partially supported by the German Ministry of Research and Technol -
ogy (BMFT) as part of the compound project “KORSO - Korrekte Software” and by
the German Research Community (DFG) project SPECTRUM

©Digital Equipment Corporation 1992

This work may not be copied or reproduced in whole or in part for any commercial
purpose. Permission to copy in whole or in part without payment of fee is granted
for nonprofit educational and research purposes provided that al such whole or partial
copies include the following: a notice that such copying is by permission of the
Systems Research Center of Digital Equipment Corporation in Palo Alto, Cadlifornia;
an acknowledgment of the authors and individual contributors to the work; and all
applicable portions of the copyright notice. Copying, reproducing, or republishing for
any other purpose shall require alicense with payment of fee to the Systems Research
Center. All rightsreserved.

Abstract

We usefunctional specification techniquesto describe systems and their compo-
nents. We define the notions of property refinement and interaction refinement for
interactive systems and their components. Interaction refinement allows changes
to the syntactic interface (the number of channelsand the sorts of messageson the
channels) aswell asthe semantic interface (causdlity flow between messagesandin-
teraction granularity). We provethat these notions of refinement are compositional
with respect to sequential and parallel composition, communication feedback, and
recursive declarations of system components. These proofs demonstrate that re-
finements of networks can be accomplished in a modular way by refining their
components. We generalize the notions of refinement to refining contexts. Finally,
we definefull abstraction for specificationsand show compositionality with respect
to this abstraction as well.

CONTENTS

Contents

1

Introduction
Specification

Composition
3.1 Compositionof Functions
3.2 Compositionof Specifications

Refinement, Representation, Abstraction
41 Propety Refinement
42 InteractionRefinemento

Compositionality of Interaction Refinement
5.1 Sequentia and Paralel Composition.
52 Feedback

Recursively defined Specifications
6.1 Semantics of Recursively Defined Specifications
6.2 Refinement of Recursively Specified Components

Predicate Transfor mer s as Refinements
Conclusion

Appendix: Full Abstraction

Vi

11

12
12
13

21
21
23

28
28
30

34

41

42

1 INTRODUCTION 1

1 Introduction

A distributed interactive system consists of a family of interacting components. To
reduce complexity, they can be developed by a number of successive steps. In each
step, the system is described in more detail and closer to an implementation level. We
speak of levels of abstraction and of stepwise refinement in system devel opment.

Logica implication provides a simple concept of stepwise refinement when logical
specifications are used to describe the behavior of system components. A system com-
ponent specification is a refinement of another specification if it exhibitsal specified
properties and possibly more. Refinement allows the replacement of system specifica
tions by more refined ones exhibiting more specific properties.

M ore sophisticated noti onsof refinement allow therefinement of asystem component to
one exhibiting quite different propertiesthan theorigina one. Inthiscase, however, we
need a concept relating the behaviors of the refined system component to behaviors of
the original one such that behaviors of the refined system component can be understood
to represent behaviors of the original. The behavior of interactive system components
isbasicaly given by their interaction with their environment. Therefore the refinement
of system components basically hasto deal with the refinement of their interaction. We
will introduce such a notion of interaction refinement.

Concepts of refinement for software systems have been investigated since the early
1970s. Data structure refinement is treated in Hoare's pioneering paper [Hoare 72].
Theseideaswerefurther explored and devel oped (see, for instance, [Jones 86], [Broy et a. 86],
[Sannella 88], see [Coenen et d. 91] for a survey). The idea of refining interacting
systems has aso been treated in numerous papers (see, for instance, [Lamport 83],
[Abadi, Lamport 90], and [Back 90]).

Typicdly, distributedinteractive systems are composed of anumber of componentsthat
interact, for example, by exchanging messages or by updating shared memory. Various
forms of composition alow the construction of systems from smaller ones. Parallel
and sequential composition, communication feedback, and recursion are basic forms
of composition for systems.

A method for specifying system components is called compositional (or modular)
for a set of forms of composition if the specifications of composed systems can be
derived from the specifications of the constituent components. We call a refinement
concept compositional, if refinements of a composed system are obtained by giving
refinements for the components. Traditionally, compositiona notions of specification
and refinement for concurrent systems are considered hard to obtain. For instance, the
elegant approach of [Chandy, Misra88] is not compositional with respect to liveness
properties and does not provide a compositional notion of refinement.

Note that it only makes sense to talk about compositionality with respect to a set of
forms of composition. Forms of composition of system components define an algebra
of systems, aso called a process algebra. Not al approaches to system specifications

1 INTRODUCTION 2

emphasize forms of composition for systems. For instance, in state machine oriented
specifications, systems are modelled by state transitions. No particular forms of com-
position of system components are used. As a consequence compositionality is less
significant there. Approachesthat favor describing systems using forms of composition
are called “agebraic’. A discussion of the advantages and disadvantages of algebraic
versus nonal gebrai ¢ approaches can be found, for instance, in [Janssen et a. 91].

Finding compositional specification methods and compositional interaction refinement
concepts is difficult. Compositional refinement seems especialy difficult to achieve
for programming languages with tightly coupled parallelism, such asthe “rendezvous’
concept in CCS and CSP. In tightly coupled parallelism, the actions are used directly
for the synchronization of paralld activities. Therefore the granularity of the actions
cannot be refined, in general, without changing the synchronization structure (see, for
instance, [Aceto, Hennessy 91] and [Vogler 91]).

The following sections present a compositional notion of refinement where the gran-
ularity of interaction can be refined. We use functional, purely descriptive, “nonoper-
ationa” specification techniques. The behavior of distributed systems interacting by
communication over channels is represented by functions processing streams of mes-
sages. Streams of messages represent communication histories on channels. System
component specifications are predicates characterizing sets of stream processing func-
tions. System components described that way can be composed and decomposed using
the above mentioned forms of composition such as sequential and parallel composition
aswell as communication feedback. With these formsof compositionall kindsof finite
dataprocessing nets can be described. Allowingin additionrecursive declarationseven
infinite data processing nets can be described.

In thefollowing, concepts of refinement for interactive system components are defined
that allow one to change both the number of channels of a component as well as the
granularity of themessages sent by it. In particular, basic theorems are proved that show
that our notion of refinement iscompositional for the basic compositional formsaswell
asfor recursivedeclarations. Accordingly for anarbitrary net of interacting components
arefinement is schematically obtained by giving refinements for its components. The
correctness of such arefinement foll owsaccording to the proved theorems schematically
from the correctness proofsfor the refinements of the components.

We give examples for illustrating the compositionality of refinement. We have deliber-
ately chosen very simple examples to keep their specifications small such that we can
concentrate on the refinement aspects. The simplicity of these examples does not mean
that much more complex examples cannot be treated.

Finally we generdize our notion of refinement to refining contexts. Refining contexts
allow refinements of components where the refined presentation of the input history
may depend on the output history. In particul ar, thisalows unreliable componentsto be
understood as refinements of reliable components, as long as the refining context takes
care of the unreliability. Refining contexts are represented by predicate transformers
with specia properties. We give examples for refining contexts.

2 SPECIFICATION 3

An appendix treats full abstraction of functiona specifications for these composing
forms.

2 Specification

In this section we introduce the basic notions for functiona system models and func-
tional system specifications. In the following we study system components that ex-
change messages asynchronously via channels. A stream represents a communi cation
history for a channel. A stream of messages over a given message set M is afinite or
infinite sequence of messages. We define

M® =4 M* U M*®

We briefly repeat the basic concepts from the theory of streams that we shall use later.
M ore comprehensive explanations can be found in [Broy 90].

e By x™y we denote the result of concatenating two streams x and y. We assume
that X~y = X, if x isinfinite.

e By () we denote the empty stream.

o If astream x isa prefix of astream y, wewritex C y. Therelation C is called
prefix order. Itisformally specified by

—~

XCy=q¢ 3ze MY :Xx"z=y

e By (M®)" we denote tuplesof n streams. The prefix ordering on streams as well
as the concatenation of streamsis extended to tuples of streams by elementwise
application.

A tuple of finite streams represents a partial communication history for a tuple of
channels. A tuple of infinite streams represents a total communication history for a
tuple of channels.

The behavior of deterministic interactive systems with n input channels and m output
channelsis modeled by (n, m)-ary stream processing functions

f (MO — (M2)™

A stream processing function determines the output history for a given communication
history for the input channelsin terms of tuples of streams.

2 SPECIFICATION 4

Example1l Stream processing function

Let aset D of dataelements be given and let the set of messages M be specified by:
M=DuU{?

Herethe symbol ?isasignal representing arequest. For dataelementsd € D astream
processing function
(c.d) : MY - M?

is specified by
YVee D,xe M? : (c.d)(?™X) =d™?"(c.d)(X)
A (cd)(Eex) =e(c.e)(X)

Thefunction (c.d) describesthe behavior of asimple storage cell that can store exactly
one data element. Initialy d is stored. The behavior of the component modeled by
(c.d) can beillustrated by an example input

(Cd)(?A?Adl/\? Adz/\? AdgAd4A? Ad5AX) =
dAdAdlAdlAdzAdzAdgAd4Ad4Ad5A(C.d5).X

The function (c.d) is a simple example of a stream processing function where every
input message triggers exactly one output message.

End of example

In the following we use some notions from domain and fixed point theory that are
briefly listed:

e A stream processing functioniscalled prefix monotonic,if for al tuplesof streams
X,y € (M®)" we have
XCy= fxC fy

We denote the function application f (x) by f.x to avoid brackets.
e By LISwe denote aleast upper bound of aset S, if it exists.

A sat Siscaled directed, if for any pair of elements x and y in Sthere existsan
upper bound of x and y in S.

A partialy ordered set is called complete, if every directed subset has a least
upper bound.

e A stream processing function f is called prefix continuous, if f isprefix mono-
tonic and for every directed set S C M we have:

f.uS=u{fx:xe S}

2 SPECIFICATION 5

The set of streams as well as the set of tuples of streams are complete. For every
directed set of streams there exists aleast upper bound.

We model the behavior of interactive system components by sets of continuous (and
therefore by definition also monotonic) stream processing functions. Monotonicity
models causality between input and output. Continuity models the fact that for every
behavior the system’s reaction to infinite input can be predicted from the component’s
reactionsto all finite prefixes of thisinput!. Monotonicity takes care of thefact that in
an interactive system output already produced cannot be changed when further input
arrives. The empty stream isto be seen as representing the information “further com-
munication unspecified”. Note, in the example above by the preimposed monotonicity
of the function (c.d) we conclude (c.d)({)) = (); otherwise, we could construct a
contradiction.

A specification describes a set of stream processing functionsthat represent the behav-
iorsof the specified systems. If thisset isempty, the specification is called inconsi stent,
otherwise it is called consistent. If the set contains exactly one element, then the
specification is caled determined. If this set has more then one element, then the
specification is called underdetermined and we aso speak of underspecification. As
we shall see, an underdetermined specification may be refined into a determined one.
An underdetermined specification can aso be used to describe hardware or software
unitsthat are nondeterministic. An executable system is called nondeterministic, if it
is underdetermined. Then the underspecification in the description of the behaviors
of a nondeterministic system allows nondeterministic choices carried out during the
execution of the system. In the descriptive modeling of interactive systems there is
no difference in principle between underspecification und the operationa notion of
nondeterminism. In particular, it does not make any difference in such a framework,
whether these nondeterministic choices are taken before the execution starts or step by
step during the execution.

The set of dl (n,m)-ary prefix continuous stream processing functionsis denoted by
SPFy

The number and sorts of input channels as well as output channels of a specification
are called the component’s syntactic interface. The behavior, represented by the set
of functions that fulfill a specification, is called the component’s semantic interface.
The semantic interface includesin particular the granularity of the interaction and the
causality between input and output. For simplicity we do not consider specific sort
informationfor theindividual channels of componentsin the followingand just assume
M to be a set of messages. However, dl our results carry over straightforwardly to
stream processing functions where more specific sorts are attached to the individua
channels.

1This does not exclude the specification of more elaborate liveness propertiesincluding fairness. Note,
fairnessis, in general, a property that hasto do with “fair” choices between an infinite number of behaviors.

2 SPECIFICATION 6

e — —»
n Q m
e — —»

Figure 1: Graphical representation of a component Q

A specification of a possibly underdetermined interactive system component with n
input channels and m output channels is model ed by a predicate

Q: SPF, — Bool

characterizing prefix continuousstream processing functions. Q iscalled an (n, m)-ary
system’ s specification. A graphical representation of an (n, m)-ary system component
QisgiveninFigurel. The set of specifications of thisform is denoted by

SPEC/,
Example2 Specification

A component called C (for storage Cell) with just one input channel and one output
channdl is specified by the predicate C. The component C can be seen asasimple store
that can store exactly one dataelement. C specifies functions f of the functionality:

f:M?—> M?

Let the sets D and M be specified as in example 1. If C receives a data element it
sends a copy on its output channels. If it receives arequest represented by the signal
?, it repeats itslast data output followed by the signal ?to indicate that thisis repeated
output. The signa ?is used thisway for indicating a “read storage content request”.
Thesigna ?triggerstheread operation. A dataelement intheinput stream changes the
content of thestore. Themessaged triggersthewriteoperation. Initialythecell carries
an arbitrary data element. This behavior is formalized by the following specification
for C:
C.f=3deD: f=(d

where the auxiliary function (c.d) is specified asin example 1. Notice that the data
element stored initially is not specified and thus component C is underdetermined.

End of example

3 COMPOSITION 7

For a deterministic specification Q where for exactly one function q the predicate Q is
fulfilled, in other words where we have

Qfs f=q

we often write (by misuse of notation) simply q instead of Q. This way we identify
determined specifications and their behaviors.

By Im € SPET we denote theidentity function; that is we assume
Vx e (MM X =X

We shall drop theindex m for I, whenever it can be avoided without confusion.

By Qn, € SPF! we denote the function that produces for every input just the empty
stream as output on al its output channels; that iswe define

vx e (M®)": Q) .x = ()™

Similarly we write t™ for the unique function in SPFJ"; in other words the function
with m input channels, but with no output channels.
By £, € SPECH, we denote the logically weakest specification, which is the specifi-
cation that isfulfilled by al stream processing functions. It is defined by

Vf e SPREN & f

By “? we denote thefunctionthat producestwo copiesof itsinput. We have “?e SPF},
and

VX € (M®)" :% X = (X, X)

By nXme SP R we denote the function that permutes itsinput streams as follows (
letx € (M), y e (M)):

X (x.y) = (y.%)

Again we shall drop theindex n aswell asmin Q) £/, " and “? whenever it can be
avoided without confusion.

3 Composition

In this section we introduce the basic forms of composition namely sequential compo-
sition, parallel composition and feedback. These compositional forms are introduced
for functionsfirst and then extended to component specifications.

3 COMPOSITION 8

3.1 Composition of Functions

Given functions
f € SPF!, ge SPFX

wewrite

fig
for the sequential composition of the functions f and g which yields a function in
SPF" where

(f;9).x=g(f(x)
Given functions
f € SPFM, ge SPF™

wewrite

fllg

for the parallel composition of the functions f and g which yields a function in

SPFIT2 where (let x € (M), y € (M®)™2):

(flg).(x, y) = (f.x, 9.y)

We assumethat “ ; " has higher precedence than “||”. Given afunction
f € SPFI™
wewrite
wf

for the feedback of the output streams of function f to itsinput channels which yields
afunctionin SPF? where

(uf)x=fixray: f(x,y)

Here fix denotes the fixed point operator associating with any monotonic function f
itsleast fixed point fix.f. Thusy = (uf).x meansthat y is the least solution (with
respect to the prefix ordering) of the equationy = f (X, y). We assume that “ " has
higher precedence than the binary operators “;” and “||”. A graphical representation

for feedback is givenin Figure 2.

We obtain a number of useful rules by the fixed point definition of ©f. Asasmple
conseguence of the fixed point characterization, we get the unfold rules:

pf =7 |uf); f

put =5 u((1]f);)
A graphical representation of the unfold rules for feedback isgiven in Figure 3.

3 COMPOSITION

Figure 2: Graphical representation of feedback

T f);)

Figure 3: Graphical representation of the unfold rules for feedback

3 COMPOSITION 10

X |
—_—T > 1
i f 9y>
X |
i f gyi
Jalniu) 5

Figure 4: Graphical representation of semiunfold

A useful rule for feedback is semiunfold that alows one to move components outside
or inside the feedback loop (let g € SPET):
p(f;) =n(l9); ;g

A graphical representation for semiunfold is given in Figure 4.

For reasoning about feedback loops and fixed points the following specia case of
semiunfold is often useful:

fix ry: mfx,y)y=mfixay: f(x,m"y)

Theruleisan instance of semiunfoldwithg = A y : m™y. The correctness of thisrule
can aso be seen by the following argument: if y istheleast fixed point of

Ly :m™f(x,y)
and Y isthe least fixed point of
Ay T Y)

then ¥ = m™y and thus
y=may:f(x,my)

Semiunfold isa powerful rule when reasoning about results of feedback loops.

3 COMPOSITION 1

3.2 Composition of Specifications

We want to compose specifications of components to networks. Each form of com-
position introduced for functions can be extended to component specifications in a
straightforward way. Given component specifications

Qe SPEC], Re SPECK

wewrite
QR
for the predicate in SP ECY, where
(Q;R.f & 3q,r:QgqARraf=aq;r

Trivialy we have for al specifications Q € SPECT, the following equations:

Q1l=Q
;Q=0Q
Q1 =1"

Given specifications
Q € SPEC!,, Re SPEC!S

wewrite

QIR

for the predicate in SPEC]; 72, where

(QIR).f & 3q,r: QgARr A f=qlr
Given specification
Q e SPECI™

wewrite

nQ
for the predicatein SPECT, where

rQ).f < 39:QaAf=uq
For feedback over underdetermined specifications we get the following rules’:

uQ=71;(|uQ); Q

2For determined system specifications Q we get the stronger rules nQ = Y; (1|xQ); Q and
©nQ = T; u((1Q); Q) which do not hold for underdetermined systems, in general. The erroneous as-
sumption that these rules are valid also for underdetermined systems is the source for the merge anomaly
(see[Brock, Ackermann 81]).

4 REFINEMENT, REPRESENTATION, ABSTRACTION 12

nwQ = T; u((1Q); Q)

A useful rule for feedback is fusion that allows one to move components that are
not affected by the feedback outside or inside the feedback operator application. Let
R e SPECK:

R uQ = n((RII); Q

n((QIT™: (HIR) = w(Q); (HIR)

With the help of the basic functionsand the forms of composition introduced so far we
can represent all kinds of finite networks of systems (data flow nets). Our composing
formslead to an agebra of system descriptions.

4 Refinement, Representation, Abstraction

In this section we introduce concepts of refinement for system components both with
respect to the properties of their behaviors as well as with respect to their syntactic
interface and granularity of interaction.

We start by defining a straightforward notion of property refinement for system com-
ponent specifications. Then we introduce a notion of refinement for communication
histories. Based on thisnotion we define the concept of interaction refinement for inter-
active components. This notion allows refining a component by changing the number
of input and output channels as well as the granularity of the exchanged messages.

4.1 Property Refinement

Specifications are predicates characterizing functions. Thisleads to a simple notion of
refinement of component specifications by adding logical properties.
Given specifications

Q. Q € SPEC”,

(NQ iscalled a (property) refinement of Q
if foral f € SPFy:

Q.f = Q.f
Then we write
Q=Q
If (5 is a property refinement for Q, then (5 has all the properties Q has and may be
some more. Every behavior that Q showsis also a possible behavior of Q.

30f course, our combinatorial style for defining networks is not always very useful, in practice, since
the combinatorial formulas are hard to read. However, we prefer throughout this report to work with these
combinatorial formulas, since thisputsemphasison the compositional forms and the structure of composition.
For practical purposesa notation with named channelsis often more adequate.

4 REFINEMENT, REPRESENTATION, ABSTRACTION 13

All considered composing forms are monotonic for the refinement relation asindicated
by the following theorem.

Theorem 1 (Compositionality of Refinement)
(= QA Q= Q)= (Q1: Q= Qi Q)

Q= QWA(Q= Q)= (QQ = QiQ)
Q= Q= wQ= 1Y

Proof: Straightforward, since al operators for specifications are defined pointwise on

the sets of functionsthat are specified.
O

A simpleexampl eof aproperty refinement i sobtai ned for the component C as described
in Example 2 on page 8 if we add properties about the data element initially stored in
thecell. A property refinement does not allow one to change the syntactic interface of
acomponent, however.

4.2 Interaction Refinement

Recall from section 2 that streams model communication histories on channels. In
more sophisticated development steps for a component the number of channels and
the sorts of messages on channels are changed. Such steps do not represent property
refinements. Therefore we introduceamore general notion of refinement. To be ableto
do thiswe study concepts of representation of communication histories on n channels
modeled by atuple of n streams by communication histories on m channels modeled
by atuple of m streams.

Tuples of streams y € (M®)™ can be seen as representations of tuples of streams
x € (M®)", if we introduce a mapping p € SPF] that associates with every x its
representation. p iscalled arepresentation function. If p isinjectivethenitiscaled a
definite representation function. Note, a mapping p isinjective, if and only if:

VX, X:pX=pX=X=X

If aspecification R € SPEC], is used for the specification of a set of representation
functions, Ris called a representation specification.

Example 3 Representation Specification

We give a representation specification R that alows streams of data e ements and
requests to be represented by two separate streams, one of which carries the requests

4 REFINEMENT, REPRESENTATION, ABSTRACTION 14

and the other of which carries the data elements. The representation functions are
mappings p of the following functionality:

piM? {2/} x (DU

Here ./ isused as a separator signal. It can be understood as a time tick that separates
messages. Given streams x and y let [X, y] denote a pair of streams and [x, y]"[X, Y]
the elementwi se concatenation of pairs of streams, in other words:

X YI7IX. 9] = [x"X, y~V]

Let Ticks be defined by the set of pairs of streams of ticks that have equal length:
Ticks = ([, /1 : ke IN}

We specify the representation specification R explicitly as follows:

Rp=Vde D, xe M?: JteTicks: p(?™x) =t7[2 ()] p.Xx
A JteTicks: pd™x) =t"[V,d" V] p.x

Note, by the monotonicity of the specified functions:
Rp =3t eTicks: p.{) =t
The computation of arepresentation isillustrated by the following example:
,O(?A?Adl/\ ?77d” ?77d3T X)) =
[77 V-7 Vo Y
.

The example demonstrates how the time ticks are used to indicate in the streams p (X)
the order of the requests relatively to the data messages in the original stream x.

End of example
The elementsin the images of the functions p with R.p are called representations.

Definition 1 (Definite representation specification) A representation specification
Riscalled definite, if

VX, X, 0, p: RopARpPDAPpX=pX=>X=X
In other words R is definite, if different streams x are always differently represented.

Obvioudly, if R isadefinite representation specification, then all functions p with R.p
are definite. For definite representation specifications for elements x and X with x # X

4 REFINEMENT, REPRESENTATION, ABSTRACTION 15

the sets of representation elements {p.x : R.p} and {p.X : R.p} are digoint. Note, the
representation specification given in the example above is definite.

For every injectivefunction, and thusfor every definite representation function p, there
existsafunction € SPF]" such that:

pya=I

The function « is an inverse to p on the image of p. The function « is caled an
abstraction for p. Notice that « is not uniquely determined if p is not surjective. In
other words, the elementsin (M®)™ are not all used as representations of elementsin
(M®)" there may be several functionsa with A.«, as defined below.

The concept of abstractions for definite representation functions can be extended to
definite representation specifications.

Definition 2 (Abstraction function) Let R € SPECH, be a definite representation
specification; afunctiona € SPF]! with

Ra=1
is called an abstraction function for R.

The existence of abstractions follows from the definition of definite representation
specification. Again for definite representation specifications the abstraction functions
« are uniquely determined only on theimage of R, that is on the union of the images
of functions p with R.p.

Definition 3 (Abstraction for a definite representation specification) Let A € SPEC]
be the specification with
Aa & Ra=I

Then A is called the abstraction for R.
For consistent definite representation specifications R with abstraction A we have
R A=

If p; A= 1 = R.p then R containsall possible choices of representation functionsfor
the abstraction A.

Example4 Abstraction

For the representation specification R described in example 3 the abstraction functions
« are mappings of the functionality:

a1 {2/} x (DU{/)H” > M?

4 REFINEMENT, REPRESENTATION, ABSTRACTION 16

The specification of A reads asfollows.
Aa=VdeD,xe{? ./}, ye (DU{/DH*:

(77X y) =7aXy)
A a(VXVTY) =ax,y)
A (VX dVTY) =dTalx, y)

Itisastraightforward rewriting proof that indeed:
R A=

The specification A shows a considerable amount of underspecification, since not all
pairsof streamsin {?, \/}* x (D U {,/})® are used as representations.

End of example

Paralel and sequential composition of definite representations leads to definite repre-
sentations again.

Theorem 2 Let R € SPEC% be definite representation specificationsfor i = 1, 2;
then
RilIRx

Ri; R

(assuming m; = n; in the second formula) are definite representation specifications.

Proof: Sequentia and parallel composition of injective functions leads to injective

functions.
O

Trivially we can obtai n the abstractions of the composed representations by composing
the abstractions.

For many applications, representation specifications are neither required to be deter-
mined nor even definite. For an indefinite representati on specification sets of representa
tion elementsfor different elements are not necessarily digoint. Certain representation
elements y do occur in severa sets of representationsfor elements. They ambiguously
stand for (“represent”) different elements. Such an element may represent the streams
x aswdl as X, if p.x = p.X for functions p and p with R.p and R.p. For indefinite
representation specifications the represented elements are not uniquely determined by
the representation elements. A representation element y stands for the set

{x:3dp:RpApx=Y]}

For a definite representation specification R thisset contains exactly one element while
for an indefinite representation specification R this set may contain more than one

4 REFINEMENT, REPRESENTATION, ABSTRACTION 17

element. In the latter case, of course, abstraction functions« with R; « = | do not
exist.

However, even for certain indefinite representations we can introduce the concept of
an abstraction.

Definition 4 (Uniform representation specifications) A
consistent specification R € SPECY, is called a uniform representation specification,
if there exists a specification A € SPEC] such that for all p:

Rop= R Ap=p

The specification A is called again the abstraction for R.

The formula expresses that (R; A) is a left-neutral element for every representation
function in R. Essentialy the existence of an abstraction expresses the following
property of R: if for different elements x and X the same representations are possible,
then every representation function maps these elements onto equal representations.
More formally stated, if there exist functions p and p with R.p and R.p such that

p.X=pX
then for al functions p with R.p:
pX=pX

Thus if elements are identified by some representation functions, thisidentification is
present in al representation functions. The same amount of informationis “forgotten”
by al the representations. The representation functionsthen are indefinitein auniform
way. Definite representations are always uniform.

A functionisinjective, if for al x and X we have:

PX=pX=>X=X

A function that is not injective p defines a nontrivial partition on its domain. A
representation specification isuniformif and only if al functions p with R.p definethe
same partition.

For a uniform representation specification R with abstraction A the product (R; A)
reflects the underspecification in the choices of the representations provided by R.
If for a function y with (R; A).y we have X = y.X, then x and X have the same
representations.

Definition 5 (Adequate representation) Auniformrepresentation specification Rwith
abstraction A is called adequate for a specification Q, if:

QR A=Q

4 REFINEMENT, REPRESENTATION, ABSTRACTION 18

n Q m
_—
R R
—
Y n Q m Y
— —

Figure 5: Commuting diagram of interaction refinement

Adeguacy means that the underspecificationin (R; A) does not introduce more under-
specificationinto Q; R; Athanwasalready presentin Q. Note, definiterepresentations
are adeguate for all specifications Q.

Definition 6 (Interaction refinement) GivenrepresentationsR € SPEC], R € SPECY
and specifications Q € SP ECﬁm, Q € SPEC), we say that Q isan interaction refine-
ment of Q for the representation specifications R and R, if

R Q= QR

This definition indicates that we can replace via an interaction refinement a system
of the form Q; R by a refined system of the form R; 6 We may think about the
relationship between Q and 6 as follows: the specification Q specifies a component
on a more abstract level while 6 gives a specification for the component at a more
concrete level. Instead of computing at the abstract level with Q and then trandating
the output via R onto the output representation level, we may trandate the input by R
onto theinput representation level and computewith 6 We obtain one of thesefamous
commuting diagrams as shown in Figure 5.

Definition 7 (Adequate interaction refinement) Theinteraction refinement of Q for
the representation specifications R and R is called adequate for a specification Q, if R
isadequatefor Q.

For adequateinteraction refinements using uniformrepresentation specificati ons Rwith
abstraction A € SPEC™, we obtain

4 REFINEMENT, REPRESENTATION, ABSTRACTION 19

n Q m
_—
4
R A
—
| n Q m
— —

Figure 6: Commuting diagram of interaction refinement

since from the interaction refinement property we get
RQA= QRA
and by the adequacy of R for Q
QR A=Q

which showsthat R; 6; Aisa (property) refinement of Q. A graphical illustration of
adequate interaction refinement is shown in Figure 6.

The following table summarizes the most important definitions so far.

| Table of definitions

Q property refinement of Q Q.f = Q.f

R consistent, definite with abstr. A R A=1

R uniform with abstraction A Ro=R Ap=p

R adequate for Q withabs. A QR A=Q

Inter. refinement Q of Q for R, R RQO=QR
Adeguate inter. refinement R uniform and adequate for Q

4 REFINEMENT, REPRESENTATION, ABSTRACTION 20

The notion of interaction refinement allows one to change both the syntactic and the
semantic interface. The syntactic interface is determined by the number and sorts
of channels; the semantic interface is determined by the behavior of the component
represented by the causality between input and output and by the granularity of the
interaction.

Example5 Interaction Refinement

We refine the component C as given in Example 2 into a component C that has instead
of oneinput and one output channel two input and two output channels. The refinement
C usesoneof itschannels carryingthesigna ? asaread channel and one of itschannels
carrying data as a write channel. Let R and A be given as specified in the examples
above

We specify the interaction refinement Cof C explicitly. C specifies functions of
functionality:

f {2V} x (DU/D? = (2 V17 x (DU{V/D”

We specify: R
C.f=3deD: f=hd

where the auxiliary function h is specified by:
h:D— ({2 V}* x (DU{VDH” = {2/} x (DU{/H?)
vd,ee D,xe {2, /}°, ye (DU{/DH*:

hd)(?x,y) =[V"2d V]~ (hd)(X,y)
A (hd)x YTy =Y Y] (had)X,)
A (e x,dV7y) =[Y,d V] (hd)(, y)

Itisastraightforward proof to show:
R, C=C:R

Assume p with R.p and h such that there exist f and d with C.f and f = h.d; we
prove by induction on the length of the stream x that thereexist 5 with R.p and c.d as
specified in example 1 such that:

(h.d).p.x = p.(c.d).x
For x = () we obtain: there existst € Ticks such that:

(h.d).p.x =
(h.d).t =

t =

p.X =
p.(c.d).x

5 COMPOSITIONALITY OF INTERACTION REFINEMENT 21

Now assume the hypothesisholdsfor x; thereexistst € Ticks:

(h.d).p(?"x) =
(h.d)y@~[? 01" px) =
t~[vV"2, d™V] " (hd).p.x =
p(d~(c.d).x) =
p(c.d)(?™x)

Thereexistst € Ticks:

(h.e).p(d™x) =
(he)t [V, dV]"p.x) =
t~[V,d~ V]~ (h.d).p.x =
pd™(c.d).x) =
p(c.e)(d™x)

This concludes the proof for finite streams x. By the continuity of h and p the proof is
extended to infinite x.

End of example

Continuing with the system devel opment after an adequate interaction refinement of a
component we may decide to leave R and A unchanged and carry on by just further
refining Q.

5 Compositionality of I nteraction Refinement

Large nets of interacting components can be constructed by our forms of composition.
When refining such large netsit is decisive for keeping the work manageabl e that inter-
action refinements of the components lead to interaction refinements of the composed
system.

In the following we prove that interaction refinement is indeed compositiona for
sequential and parallel composition and for communi cation feedback.

5.1 Sequential and Parallel Composition

For systems composed by sequential compositions, refinements can be constructed by
refining their components.

Theorem 3 (Compositionality of refinement, seq. composition) Assume @ isan
i Qtagdion refinement of Q; for the representations R_; and R, for i = 1, 2, then
Q1; Q: isaninteraction refinement of Qq; Q; for the representations Ry and Ry.

5 COMPOSITIONALITY OF INTERACTION REFINEMENT 22

Proof: A straightforward derivation shows the theorem:

Ry; 61; Qz = {monotonicity of “;”, Ql interaction refinement of Qq}
Q1; Ry; Q2 = {monotonicity of “;”, Q- interaction refinement of Q,}
Qu; Qs R

Example6 Compositionality of Refinement for Sequential Composition

Let Cand C be specified as in the example above. Of course, we may compose C as
well as C sequentially. We define the components CC and CC by:

CC =df C; C
6(\: =df 6; 6

Note, CC isacell that repeatsitslast input twice on asigna ?. It is a straightforward
application of our theorem of the compositionality of refinement that CC isarefinement
of CC:

R;CC= CC; R

Of course, since R; A = | wedso havethat R; 6(\3; Aisaproperty refinement of CC.

End of example
Refinement is compositional for parallel composition, too.
Theorem 4 (Compositionality of refinement for parallel composition) Assumefji is
an inleraction refinement of Q; for the representations R and R; for i = 1, 2 then
Q11| Q2 is an interaction refinement of Q|| Q; for the representations Ry||R, and

Rl Re.

Proof: A straightforward derivation shows the theorem:

(Rl Ez); (61|| (:3:2) = {rEIefor sequential and parallel composition}
(Ri; QDII(R; Q2) = {Q interaction refinement for Q;}
(Qu; RD[(Q2; Ry) = {rulefor sequential and parallel composition}

(Q111Q); (RillRy)

O

For sequentia and parallel composition compositionality of refinement isquitestraight-
forward. This can be seen from the simplicity of the proofs.

5 COMPOSITIONALITY OF INTERACTION REFINEMENT 23

5.2 Feedback

For the feedback operator, refinement is not immediately compositional. We do not
obtain, in genera, that M@ is an interaction refinement of 1 Q for the representations
Rand R provided 6 isan interaction refinement of Q for the representations R|| R and
R. Thisistrue, however, if | = (A; R) (see below). The reason is as follows. In
the feedback loops of 1 Q we cannot be sure that only representations of streams (i.e.
streams in the images of some of the functions characterized by R) occur. Therefore,
we have to give adightly more complicated scheme of refinement for feedback.

Theorem 5 (Compositionality of refinement, feedback) Assume 6 isaninteraction
refinement of Q for the representation specifications R||R and R where R is uniform;
then w((1|A; R); Q) isaninteraction refinement of 1 Q for the representations R and
R.

Proof: We prove:

(R u((1A; R); Q). f = (uQ); R). f
From L
(R (1| A; R:; Q)). f

we conclude that there exist functions p, §, p, and & such that R.p, Q.§, R, and Aa
and furthermore

f = p; (@ 2); @
Since 6 is an interaction refinement of Q for the representations R|IR and R for
functions p with R.p and p with R.p and § with Q.q there exist functions g and o
such that Q.q and R.5 hold and furthermore
(plp);d=0a; P

Given x, by the continuity of p, G, o, and &, we may define w((1 |@; 2); §).0.X by UV
where R

Yo=("
Moreover, because of the continuity of g, we may define p.(1q).x by p. L y; where

Yo= ()"

yi+l = Q(X’ yl)
We prove:
p.UY =Y

5 COMPOSITIONALITY OF INTERACTION REFINEMENT 24

by computational induction. We prove by inductionon i the following proposition:

-~ ~ -~

YiEp.Yi EVYia

Ifi =0, we have:

= {Yo istheleast element}
P.Yo C {yo istheleast el ement}
0.9(X, Yo) = {refinement property}

q(o.X, 0.Yo) E {Yo isthe least eement}
q(o.X, p.@.Yo) = {definition of ¥}
Vi

Assume now the proposition holdsfor i; then we obtain:

Vit1 = {definition of §i 1}
Glo.X, p.a.yi) E {induction hypothesis}
G(p.x, p.a.p.y;) = {uniformity of R}

q(o.X, p.yi) = {refinement property}
0.9(X, i) = {definition of yi 1}
p-Yi+1

Furthermore we get:
0.Vl = {definition of y,1 }
0.9(X, i) = {refinement property}
Gp.X, p.Y) = {uniformity of R}

G(o.X, p.a.p.y;) C {induction hypothesis}
g(,o.x, p.a.Viy1) = {definition of ¥}
Yi+2

From thiswe conclude by the continuity of 5 that:
Uy =p.UYi

and thus
(n((Mle; 2); @)).p.X = p.u(Q).x

and finally _
(w(Q); R).(o; u((Ila;) @)

O

Assuming an adequate refinement allows usto obtain immediately the following corol-
lary.

5 COMPOSITIONALITY OF INTERACTION REFINEMENT 25

Theorem 6 (Compositionality of adequate refinement, feedback) Assume 6 isan
adequateinteraction refinement of Q for the representations R|| Rand R with abstrac-
tion A then u(Q; A; R) isan interaction refinement of 1 Q for the representations R
and R.

Proof: Let al the definitions be as in the proof of the previous theorem. Since the
interaction refinement is assumed to be adequate there exists a function g with Q.q
such that

Lo p=00
Carrying out the proof of the previous theorem with @ instead of q and p instead of p
we get:
n((lle; p); @) = (u@); o
By straightforward computational induction we may prove

pn@; o p) = w((l l@; p); @)

This concludes the proof.
O

Assumingthat A; R containstheidentity asarefinement we can simplify therefinement
of feedback loops.

Theorem 7 Assume 6 is an interaction refinement of Q for the representations R||R
and R with abstraction A and assume furthermore

| = AR
then 6 is an interaction refinement of 1. Q for the representations R and R.

Proof: Straightforward deduction shows:
RMG%"_A
R uw((HA R): Q) =
nwQ; R

O

Note, even if | isnot arefinement of A; R, in other wordseven if | = A; R does not
hold, other refinements of A; R may be used to simplify and refine the term A; Rin
w((1A; R); Q). By thefusionrule for feedback as introduced in section 3 we obtain:

R u(Q: AR =u(RI; ;AR

This may allow further refinements for Q; A; R.

5 COMPOSITIONALITY OF INTERACTION REFINEMENT 26

Example7 Compositionality of Refinement for Feedback

Let usintroduce the component F with two input channels and one output channdl. It
specifies functions of the following functionality:

f:M®x MY —> M?
F is specified as follows:

F.f=vx,yeM?:3deD: f(x,y) =g(x,d"y)

where the auxiliary function g is specified by

g: M?x M® - M®
wherevd,ee D,me M, x,y e M®:

g(x,d=?7y) =g, d7y)

A 9(?x,dTy) =dT?77g(X, y)
A gdTx,ety) =dTgx,y)

Itisastraightforward proof that for the specification C as defined in Example 1:
uF=C

We carry out this proof by induction on thelength of the input streams x. We show that
wf fulfillsthe defining equationsfor functionsc.d in the definition of C in Example 2.
Let f beafunctionwith F. f and g be afunction as specified abovein the definition of
F. We have to consider just two cases: by the definition of f there exists g as defined
above such that: there existsd:

w(H).(?7x) =
fixay:g(?x,d7y) =
fixay:d™?7gx,d7y) =
d~?"fixa y:gx,d™?7y) =
d~?"fixa y:gx,d7y)

p(f).e"x) =
fix.ay:gEex,doy) =
fixay:e gy =
e fixAy:gx ey
Induction on the length of x and the continuity of the function g conclude the proof.

Therefinement F of F accordi ng to the representation specification R from example 3
specifies functions of the functionality:

f {2V} x (DUVD? x {2/} x (DU{VD? = {2/} x (DU{/D”

5 COMPOSITIONALITY OF INTERACTION REFINEMENT 27

It reads as follows:
Ff=wvxXyV:3deD: fx%X V.y) =0 XV y,d V"9
where the auxiliary function g is specified by
g: {2V} x (DU{V/DH? x {2/} x (DUVD? = {2V} x (DU {VH”

vd,ee D,x,ye {2 /}*.X,Ye (DU{/H*:
gx.X. 77y,) =3x.X VY, 9)
G x, XV y,d VY =V 2d V]I X VT Y YY)
g/ x, d VXV y eVTy) =Y. d VT X Y. D)
9V XV XYY =YX Y. D
X XVTY YY) =X Y.)

> > > >

We have (again, this can be proved by a straightforward rewrite proof):
(RIR; F=F; R
Moreover, we have according to Theorem 5:
R (1A R; F) = (uF); R

and therefore R
R u((IA R; F)=C; R

Note, therefinement is definiteand therefore adequate for F. Thereforewemay replace
pr((HIA; R); F) by u(F; A R).

The component M(ﬁ; A; R) can be further refined by refining A; R. Let us, therefore,
look for asimplification for A; R. We do not have

Il = AR

since by the monotonicity of all « with A.« we have:

(otherwise we obtain a contradiction, since by monotonicity the first elements of
a (X, d™y) haveto coincidefor all x and y). Therefore for al p with R.p:

at eticks : p.a((),d™ () =t7[(), ()]

Thisindicatesthat therearenofunctions p and a with R.p and A.« suchthat p.a.X = X
isvaidfor dl x. We therefore cannot simply refine A; Rinto .

We continue the refinement by refining p. We take into account properties of F. A
simple rewriting proof shows:

(RI1):; F= (RII); F; AR

6 RECURSIVELY DEFINED SPECIFICATIONS 28

Summarizing our refinements we obtain:

R; uﬁ:>A

pr((RI); F)) =
r((RID; Fr A R) =
R u(F; AR) =

Ry w((11A; R); F)

This concludes our example of refinement for feedback.
End of example

Recall that every finite network can be represented by an expression that isbuilt by our
forms of composition. The theorems show that a network can be refined by defining
representation specifications for the channels and by refining all its components. This
provides a modular method of refinement for networks.

6 Recursively defined Specifications

Oftenthebehavior of interactivecomponentsisspecified by recursion. Givenafunction
t: SPEC], — SPEC],

arecursive declaration of a component specification Q is given by a declaration based
ont:
letrec Q.f = 7[Q]. f

Recursive specifications arerestricted in thefollowingto functionst that exhibit certain
properties.

6.1 Semanticsof Recursively Defined Specifications

A function T where _
t:SPF} — SPF/

is monotonic with respect to implication, if:
Q= Q = ¢[Q = <IQD

A set {Q i1 € IN} of specifications is called a chain, if for al i € IN and for al
functions f € SPF}:

Q1(f)= Qi (f)

6 RECURSIVELY DEFINED SPECIFICATIONS 29

A function t is continuouswith respect to implication, if for every chain {Q; :i € IN}
and all for functions f € SPF}:

7[Q].f =Vi € IN: 7[Q].T where Q.f =Vi e IN: Qi(f)
Note, the set of all specifications forms a complete lattice.
Definition 8 (Predicate transformer) A predicate transformer isa function
7 : SPECN — SPEC!)

that is monotonic and continuouswith respect to implication (refinement).

Note, if 7 is defined by t[X] = Net(X) where Net (X) is a finite network composed
of basic component specifications by our forms of composition, then ¢ is a predicate
transformer.

A recursive declaration of acomponent specification Q isgiven by a defining equation
(often called the fixed point equation) based on a predicate transformer z:

letrec Q = [Q]
A predicate Q iscalled afixed point of if:
Q=1[qQ]

In general, for afunction t there exist severd predicates Q that are fixed pointsof 7 .
In fixed point theory a partia order on the domain of 7 is established such that every
monotonic function t has a least fixed point. This fixed point is associated with the
identifier f by arecursive declaration of theform f = 7. f. For defining the semantics
of programming languages the choice of the ordering, which determines the notion of
the least fixed point, has to take into account operational considerations. There the
ordering used in the fixed point construction has to reflect the stepwise approximation
of aresult by the execution. For specifications such operational constraints are less
significant.

Therefore we choose a very liberal interpretation for recursive declarations of specifi-
cationsin the following. For doing so we define the concept of an upper closure of a
specification. The upper closureis again a predicate transformer:

E: SPEC;, — SPEC],
It is defined by the following equation:
E[Q].f =3g: QgAgLC f

Notice that E isa classical closure operator, since it has the following characteristic
properties:

(Q= Q = (E[Q] = E[QD

6 RECURSIVELY DEFINED SPECIFICATIONS 30

Q= E[Q]
E[Q] = E[E[QI]

A predicate Q is caled upward closed, if Q = E[Q]. Note, by E the least element Q2
is mapped onto the specification £ that isfulfilled by every function, that is E[Q2] = L.
From amethodol ogical point of view it is sufficient to restrict our attention to specifica
tionsthat are upward closed*. This methodological consideration and the considerable
simplification of the formal interpretation of recursive declarations are the reasons for
considering only upward closed solutions of recursive eguations.

A predicate transformer ¢ iscalled upward closed, if for al predicates Q we have:

[Q] = E[[Q]]

By the recursive declaration

letrec Q = 7[Q]
we associate with Q the predicate that fulfillsthe following equation:

Qf=VielN: Q.f
where the predicates Q; are specified by:
Qo =t

Q1= E[7[Q]]

According to this definition we associate with a recursive declaration the logically
weskest® predicate Q such that

Q= E[[Ql]
The predicate Q isthen denoted by fix.z.

6.2 Refinement of Recursively Specified Components

A uniform representation specification R with abstraction A is called adequate for the
predicate transformer <, if for all predicates X:

X, R A= X)= (r[X]; R A= 1[X])

4Taking the upper closure for a specification may change its safety properties. However, only safety
properties for those behaviors may be changed where the further output, independent of further input, is
empty. A systemwith such abehavior doesnot produce a specific message on an output channel, even, if we
increase the streams of the messages on the input channels. Then what output is produced on that channel
obviously isnot relevant at all.

5Trueis considered weaker than false.

6 RECURSIVELY DEFINED SPECIFICATIONS 31

Adeguacy implies that specifications for which R is adequate are mapped by r onto
specifications by for which R is adequate again.

Uniforminteractionrefinement iscompositional for recursive definitionsbased on pred-
icate transformers for which the refinement isadequate. Again definite representations
are dways adequate.

Theorem 8 (Compositionality of refinement for recursion) Let representation spec-
ifications R and R be given, where R is uniformwith abstraction A and adequate for
the predicate transformer

T : SPEC, — SPEC,
For a predicate transformer
7 : SPEC], — SPECH

where _
Rt=*L R

and for all predicates X, X:
(R X=X R = (R7X] = 1[X: R
we have

R; fix.x X:7[X; A, Rl = fix.t; R

Proof: Without loss of generality assume that the predicate transformers ¢ and 7 are
upward closed. Define

Q =t
Q41 =1[Q]
Q=t

Qa=7[Q: AR
We prove: o
Q;RA=Q
This proposition is obtained by a straightforward induction proof oni. Fori = 0 we
have to show:
LR A=L

which is trividly true, since £ holds for al functions. The induction step reads as
follows: from

Q:RA=Q

6 RECURSIVELY DEFINED SPECIFICATIONS 32

we conclude by the adequacy of z:

Qi+1; RRA= {ddfinitionof Qi 1)}
7[Q]; R, A= {adequacy of T and induction hypothesis)
[Qi] = {definition of Q; 41}
Qit1
We prove by inductiononi: R _
RQ=Q:R
For i = 0, we haveto prove:
Rt=LR

Thisispart of our premises. Now assume the induction hypothesisholdsfor i; trivially
RQ:AR=RQ:AR
Therefore, with X = R; Q;; Aand X = Qi; A; Rby our premise we have:
R7[Q: AR = 7[R Q: Al: R

By theinduction hypothesisand by thefact Q; R A = Q weobtanR; Q;; A= Q;
as can be seen by the derivation

;@;
i R;

OO0
> >l
44

We obtain:

R Q1= {definition of Q1)

R 7[Q: A Rl = {premiseforr,7withX = R, Q;; A, X = O;; A: R}
7[R; Qi; Al: R= {uniformity of R, see above}

1[Q; R=> {definition of Q1)

Qi1; R

Note, for definite representations R the premise
Rt=tR

isalwaysvalid as the foll owing straightforward derivation shows:

Rt = {definition of £}
RiAL:R= {snceR A=1}
£:R

We immediately obtain the following theorem as corollary. It can be useful for simpli-
fying the refinement of recursion.

6 RECURSIVELY DEFINED SPECIFICATIONS 33

Theorem 9 Given the premisses of the theorem above and in addition
| = AR
we have
R, fixT= fix.t; R

Proof: The theorem is proved by a straightforward deduction:

R; fixT= {premise}
R; fix.A X:7T[X; A; Rl = {theorem 8}
fix.t; R

i
Note, even if | isnot arefinement of A; R, that iseven if | = A; R does not hold,
other refinements of A; R may be used to simplify theterm A; Rin the specification.
fixa X:7[X; A; R]
Example8 Compositionality of Refinement for Recursion

Of course, instead of giving afeedback loop asin example 7 above we may a so define
an infinite network recursively by®:

letrec Q = [Q]
where
t[X]=7; (11X); F
Again we obtain (as a straightforward proof aong the lines of the proof above for
uF = C shows):
Q=C
Itisalso astraightforward proof to show that
(R X= X; R = (RFX] = 1[X; R

where R R R
T[X] =715 (LI A R); F
Therefore we have R
RQ=QR
where

letrec Q = 7[Q]
by our compositionality results. Again A; R can bereplaced by itsrefinement as shown
above,

End of example

Using recursion we may define even infinite nets. The theorem above shows that a

6The predicate transformer 7 is obtained by the unfold rule for feedback

7 PREDICATE TRANSFORMERSAS REFINEMENTS 34

refinement of an infinite net that is described by a recursive equation is obtained by
refinement of the components of the net.

7 Predicate Transformers as Refinements

So far we have considered the refinement of components by refining on one hand their
tuples of input and on the other hand their tuples of output streams. A more general
notion of refinement is obtained by considering predicate transformers themselves as
refinements.

Definition 9 (Refining context) A predicate transformer
R : SPECY, — SPEC!
iscalled a refining context, if there exists a mapping
A : SPEC| — SPEC!
called abstracting context such that for all predicates X we have:

ARX = X

Refining contexts can be used to define a quite general notion of refinement.

Definition 10 (Refinement by refining contexts) Let R be arefining context with ab-
stracting context .A. A specification Q is then called a refinement for the abstracting
context A of the specification Q, if:

AQ=Q
Note, R.Q isa refinement of the specification Q for the abstracting context .A.

Refining contexts may be defined by the compositional formsintroducedinthe previous
sections.

Example9 Refining Contexts

For component specifications Y with one input channel and two output channels we
define a predicate transformer

A: SPEC) — SPEC]

by the equation:
AY = n(PII); Y); (I

7 PREDICATE TRANSFORMERSAS REFINEMENTS 35

Ay :

X z |
EREN

e P Y e

Figure 7: Graphical representation of A.Y

where the component P specifies functions
p:D®x{? .} — D”
A graphical representation of A.Y isgiveninFigure 7. Let P be specified by:

Pp=vxeD?ye{?.}”: p(m™x,?7y) =mp(m X, Y)
A PMEXYTY) = px, Y)

For a component specification X with one input channel and one output channel we
define a predicate transformer:

R : SPEC} — SPEC]

where
R.X=Q; (1IX)

where the component Q specifies functions
q:D?— {?./}°x D®
Let Q be specified by:
Qg=VvVxeD?:3keIN:VielN:i <k=

qm') =[7"1, ()]
A QUM mx) = [(FFH Y m] 7 g.x

Let mk stand for the finite stream of length k containing just copies of the message m.
To show that .A and R define arefining context we show that:

ARX =X
which is eguivaent to showing that for all specifications X:
p((PIT); Qs (HIX)); (FIIT) = X

7 PREDICATE TRANSFORMERSAS REFINEMENTS 36

Thisisequivalent to:
pr((PII1); Q) (T =1

which is eguivaent to the formula

VP, q,X:P.pA Qg = Xx= (u((I:; p; s (T1)).x

which can be shown by a proof based on the specifications of P and Q. Let ~ stand
for (12| 1) and N\ stand for the function (t/11). For functions p and g with P.p and
Q.q thereexistsk € IN suchthat Vi € IN withi < k:

N-fixay, zig.p (M, (7)Y, 2) =
N-fixdy, zig(m)” pmox, y)) =
N-fixaay, zi[?T 017 g.pmTx, y) =
- fixAy, z:q.p. ~/ (Mx, (?tH)"y, 2)

This can be shown by a straightforward proof of inductiononi. By thiswe obtain for
i=k+1

NCGfixay, zigp./ (MX,y, 2 =

N\ fixAay, z:q.p. v/ (Mx, (FH "y, 2)

Furthermore:

N\ Cfixay, zig.p. / (Mmx, (KT y, 2) =
N-Fixay, z:g(mth - pmex, y)) =
NGFixay, s [(FTH Y m g p(mex, y) =
NCFiXay, z:g.pmox, (2PHVoy) =
N\ Cfixay, z: [(2H Y, m o g p(m™x, y) =
m- N\ .fixAy, z:g.p(MX,y) =
m- N\ .fixAy, z:q.p. ./ (MX,Y, 2
We obtain
(5 P Q) NI(M™X) =
NCGfixay zig.p./ (Mmx,y, 2 =
m- N\ .fixAy, z:q.p. ./ (MX,Y, 2
By induction on the length on x and the continuity of the involved functions the
proposition above is proved.

End of example

Context refinement is indeed a generaization of interaction refinement. Given two
pairs of definite representation and abstraction specifications R, A and R, A by

AY=R/Y; A

RX=A X;R

7 PREDICATE TRANSFORMERSAS REFINEMENTS 37

<
I

Figure 8: Graphical representation of the master/save system

arefining context and an abstracting context is defined, since
ARX =
A(A X;R) =
R (A X; R; A=
X

Refining contexts lead to a more general notion of refinement than interaction re-
finement. There are specifications Q and Q such that there do not exist consistent
specifications R and A where R
RQA=Q
but there may exist refining contexts R and .4 such that
AQ=Q

Refining contexts may support the usage of sophisticated feedback loops between
the refined system and the refining context. This way a dependency between the
representation of the input history and the output history can be achieved.

A very genera form of arefining context is obtained by a specia operator for forming
networks called master/slave systems. For notational convenience we introduce a
special notation for master/dave systems. A graphical representation of master/dave
systemsisgivenin Figure8. A master/save systemisdenoted by Q[H1. It consistsof
two components Qand H calledthemaster Q € SPEC, ! andtheslaveH € SPEC].
Then Q|H7 € SPEC,. All theinput of the slave is comes via the master and al the
output of the slave goes to the master. The master/dlave system is defined as follows:

QUHT = s((QIT): (el H): X): (™1

or in amore readabl e notation:

(QIHD.f =3g,h: Qg A HhA f =qlh]

7 PREDICATE TRANSFORMERSAS REFINEMENTS 38

whereVvx, Y, z
(qLh]).x = zwhere (z, y) = fix.A z, y: q(X, h.y)

We can define a refining context and an abstracting context based on the master/dave
system concept: we look for predicate transformers

R : SPEC! — SPEC|

with abstracting context _
A SPEC, — SPEC],

and for specifications V € SPEC,I™ and W e SPEC]'* where the refining context

and the abstracting context are specified as follows:
R.X=V[X]
AY = WLY]
and the following requirement is fulfilled:
WLV X1 = X

We give an analysis of thisrequirement based on afurther form of composition called

a cooperator. The cooperator is denoted by < wherem, n € IN. For specifications

Q e SPECI**, Q e SPECT! the cooperator is defined s follows:

R -
(Q< Q) e SPEC™™

m-+m

k
—
~—

k

QT Q.f=30,:QqAQgA f =@ T 0

where
k
@5 O-(X,X) = (2,2 where (.Y, y,2) = fixA 2V, y,Z: (X, Y), YV, X)

A graphical presentation of the cooperator isgivenin Figure9.

A straightforward rewriting shows that the cooperator isindeed a generdization of the
master/dave. For H € SPECf:

QY H=QlH]

In particular we obtain:

WIVIXTT = WS (V£ X) = (W T V)LX]

7 PREDICATE TRANSFORMERSAS REFINEMENTS 39

| R |

QT Q :
x z

oy | © |
X ! Y Q Lz

Figure 9: Graphical representation of the cooperator

and therefore the condition:
W|VI[X]] = X

reads as follows: _
(WS V)IXT = X

The following theorem gives an analysis for the component W <= V.

Theorem 10 Theimplication

(W V)IX] = X
implies
BN nm
W V)=x
Recall, nXm just swaps its input streams.

Proof: By the definition of cooperation we may conclude that for every function ¢
and every function v such that W.g and V.v and for every f where X. f there existsa
function f where X. f such that:

3Z:(22) = ? WX, f.2) & z= f.x

Sincethisformulaistruefor all specifications X and therefore al so for definite specifi-
cations, the formulaholdsfor dl functions f wherein addition f = f. We obtain for

7 PREDICATE TRANSFORMERSAS REFINEMENTS 40

the constant function f withz = f.x for al x and for al z:

32:(2,2):(5_;‘\—v)(x,z)©z=z

The equation above therefore simplifiesto

37: (12,2 = (¢ _;‘\— v(x, £.2) & f.z= fx

Now we prove that from thisformulawe can conclude:

ﬁzm:@%wmta

We do the proof by contradiction. Assume there exists x such that:

(2,2 = (¢ _;\\— v)(X, f.2)

and x # Z. Then we can choose afunction f such that f.x # f.z. This concludesthe

proof of the theorem.
O

By the concept of refining contexts we then may consider the refined system

QLWLV LHTT1

The refinement of this refined network can then be continued by refining V| H7 and
leaving its environment Q| W|...]] asitis.

Thereis aremarkabl e rel ationship between master/slave systems and the system struc-
tures studied in rely/guarantee specification techniques as advocated among othersin
[Abadi, Lamport 90]. The master can be seen as the environment and the slave as the
system. This indicates that the master/slave situation models a very general form of
composition. Every net with a subnet H can be understood as a master/slave system
QLH] where Q denotes the surrounding net, the environment, of H. This form of
networks is generalized by the cooperator as a composing form, where in contrast to
master/slave systems the situation is fully symmetric.

k
The cooperating components Q and Q in Q S Q can be seen as their mutua en-
vironments. The concept of cooperation is the most general notion of a composing
form for components. All composing forms considered so far are just special cases of
cooperation; for Q € SPEC],, P € SP EC,i(we obtain:

QP=QSP ifm=i
0
QIP=QT P

8 CONCLUSION 41

Let anet N be given with the set ' of components. Every partition of T" into two
digoint sets of components leads to a partition of the net into two digoint subnets say

k
Q and Q such that the net isequal to Q S~ Q wherek denotes the number of channels
in N leading from Q to Q and k denotes the number of channels leading from Qto Q.
Then both subnets can be further refined independently.

8 Conclusion

Thenotion of compositional refinement dependson the operators, the composing forms,
considered for composing a system. Compositionality is not agoal per se. It ishelpful
for performing globa refinements by local refinements. Refining contexts, master ave
systems and the cooperator are of additional help for structuring and restructuring a
system for alowing local refinements.

The previous sections have demonstrated that using functiona techniques a composi-
tional notion of interaction refinement is achieved. The refinement of the components
of alarge net can be mechanically transformed into a refinement of the entire net.

Throughout this paper only notions of refinement have been treated that can be ex-
pressed by continuous representation and abstraction functions. This is very much
along thelines of [CIP 84] and [Broy et a. 86] whereit is considered as an important
methodological simplification, if the abstraction and representation functions can be
used at the level of specified functions. There are interesting examples of refinement,
however, where the representati on functions are not monotonic (see the representation
functionsobtained by theintroductionof timein[Broy 90]). A compositional treatment
of the refinement of feedback loopsin these cases remains as an open problem.

Acknowledgement: Thiswork has been carried out during my stay at Digital Equip-
ment Corporation’sSystems Research Center. The excellent working environment and
stimulating discussions with the colleagues at SRC, in particular Jim Horning, Leslie
Lamport, and Martin Abadi are gratefully acknowledged. | thank Claus Dendorfer,
Ledie Lamport, and Cynthia Hibbard for their careful reading of a version of the
manuscript and their most useful comments.

A APPENDIX: FULL ABSTRACTION 42

A Appendix: Full Abstraction

Looking at functional specifications one may realize that sometimes they specify more
propertiesthan one might beinterested in and that one may observe under the considered
compositional forms. Basicaly we are interested in two observations for a given
specification Q for a function f with Q.f and input streams x. The first one is
straightforward: we are interested in the output streams y where

y = f.x

But, in addition, for controlling the behavior of components especially within feedback
loops we are interested in causality. Given just a finite prefix. X of the considered
input streams x, causality of input with respect to output determines how much output
(which by monotonicity of f isaprefix of y) isguaranteed by f.

More technically, we may represent the behavior of a system component by al ob-
servations about the system represented by pairs of chains of input and corresponding
output streams.

A st {x € (M®)":i € IN} iscaled achain, if for all i € IN we have x; T X 1.
Given a specification Q € SPECY,, apair of chains

(xi € M) i € IN}L {yi € (M®)M i € IN})

iscalled an observation about Q, if there existsafunction f with Q. f such that for al
i € IN:
yi C f.x

and
L{y; 1i € IN} =u{f.x :i € IN}

The behavior of a system component specified by Q then can be represented by all
observations about Q. Unfortunately, there exist functiona specifications which show
the same set of observations, but, neverthel ess, characterize different sets of functions.
For an example we refer to [Broy 90].

Fortunately such functional specifications can be mapped easily onto functional speci-
fications where the set of specified functionsis exactly the one characterized by its set
of observations. For thisreason we introduce a predicate transformer

A : SPEC! — SPEC!

that mapsaspecification onitsabstract counterpart. Thispredicatetransformer basically
congtructs for a given predicate Q a predicate A.Q that is fulfilled exactly for those
continuous functionsthat can be obtained by a combination of the graphs of functions
from the set of functions specified by Q. We define

(A.Q).f =Vx: af: Q. fAf Cy fAafx=fx

A APPENDIX: FULL ABSTRACTION 43

where R R
fEy f=Wvz:zCx= fzC f.2)

By this definition we obtain immediately the monotonicity and the closure property of
the predicate transformer A.

Theorem 11 (Closure property of the predicate transformer A)
(Q=Q = (A.Q=A.Q

Q= AQ
A.Q=A.A.Q

Proof: Straightforward, since Q. f occurs positively inthe definitionof A.Q, f Ty f
and
vx :3f: (A.Q). fAf Cyx fAafx=fx= (A.Q). f

A specification Q iscalled fully abstract, if

Q=A.Q

We may redefine our compositional forms such that the operators deliver always fully
abstract specifications:

Q:P=AQP)
QIP = A(QIP)
nQ=AuQ

All theresults obtained so far carry over to the abstract view by the monotonicity of A,
and by the fact that we have

A(Q; P)=AA.Q; A.P)
A(QIIP) = A(A.Q||A.P)
A(nQ) = A(n A.Q)

Furthermore, given an upward closed predicate transformer T we have: if Q istheleast
solution of

Q=1[qQ]
then Q = A.Q istheleast solution of
Q=A.[Q]
The proof is straightforward. Note, by this concept of abstraction we may obtain

| = AR

A APPENDIX: FULL ABSTRACTION 44

in cases where | = A; R does not hold. This allows additional simplifications of
network refinements.

Note, full abstraction is a relative notion. It is determined by the basic concept of
observability and the composing forms. In the presence of refinement it is unclear
whether full abstraction as defined above is appropriate. We have:

Q=09 =1n.0=A.0

However, if acomponent Q is used twice in a network [Q], then we do not have, in
generd, that for (determined) refinements Q of A.Q there exist (determined) refine-
ments Q of Q such that:

(z[Q] = <[QD

Therefore, when using more sophisticated forms of refinement our notion of full ab-
straction might not always be adeguate.

REFERENCES

References

[Aceto, Hennessy 91]

[Abadi, Lamport 90]

[Back 90]

[Back 90]

[deBakker et d. 90]

[Brock, Ackermann 81]

[Broy et al. 86]

[Broy 90]

[CIP84]

[Chandy, Misra88]

[Coenen et al. 91]

45

L. Aceto, M. Hennessy: Adding Action Refinement to a
Finite Process Algebra. Proc. ICALP 91, Lecture Notes in
Computer Science 510, (1991), 506-519

M. Abadi, L. Lamport: Composing Specifications. Digita
Systems Research Center, Report 66, October 1990

RJR. Back: Refinement Caculus, Part |: Sequen-
tial Nondeterministic Programs. REX Workshop. In:
[deBakker et a. 90], 42-66

R.J.R. Back: Refinement Calculus, Part 11: Parallel and Re-
active Programs. REX Workshop. In: [deBakker et a. 90],
67-93

J. W. de Bakker, W.-P. de Roever, G. Rozenberg (eds.):
Stepwi se Refinement of Distributed Systems. Lecture Notes
in Computer Science 430, Springer 1990

JD. Brock, W.B. Ackermann: Scenarios; A Model of Non-
determinate Computation. In: J. Diaz, |. Ramos (eds.): Lec-
tureNotesin Computer Science107, Springer 1981, 225-259

M. Broy, B. Moller, P. Pepper, M. Wirsing: Algebraicimple-
mentations preserve program correctness. Science of Com-
puter Programming 8 (1986), 1-19

M. Broy: Functional Specification of Time Sen-
sitive Communicating Systems. REX Workshop. In:
[deBakker et al. 90], 153-179

M. Broy: Algebraic methods for program construction:
The project CIP. SOFSEM 82, dso in: P. Pepper (ed.):
Program Transformation and Programming Environments.
NATOASI Series. SeriesF: 8. Berlin-Heidelberg-New York-
Tokyo: Springer 1984, 199-222

K.M. Chandy, J. Misra: Paralld Program Design: A Foun-
dation. Addison Wesley 1988

J. Coenen, W.P. deRoever, J, Zwiers; Assertiona Data Reifi-
cation Proofs: Survey and Perspective. Christian-Albrechts-
Universitat Kid, Ingtitut for Informatik und praktische
Mathematik. Bericht Nr. 9106, February 1991

REFERENCES

[Janssen et al. 91]

[Lamport 83]

[Hoare 72]

[Jones 86]

[Sannella88]

[Vogler 91]

46

W. Janssen, M. Podl, J. Zwiers: Action Systems and Action
Refinement in the Development of Parallel Systems - An
Algebraic Approach. Unpublished Manuscript

L. Lamport: Specifying concurrent program modules. ACM
TOPLAS 5:2, April 1983, 190-222

C.A.R. Hoare: Proofs of Correctness of Data Representa-
tions. Actalnformatica 1, 1972, 271-281

C.B. Jones: Systematic Program Development Using VDM.
Prentice Hall 1986

D. Sanndlla: A Survey of Formal Software Devel opment
Methods. University of Edinburgh, Department of Computer
Science, ECS-LFCS-88-56, 1988

W. Vogler: Bisimulation and Action Refinement. Proc.
STACS91, Lecture Notesin Computer Science 480, (1991),
309-321

