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Abstract

We use functional specification techniques to describe systems and their compo-
nents. We define the notions of property refinement and interaction refinement for
interactive systems and their components. Interaction refinement allows changes
to the syntactic interface (the number of channels and the sorts of messages on the
channels) as well as the semantic interface (causality flow between messages and in-
teraction granularity). We prove that these notions of refinement are compositional
with respect to sequential and parallel composition, communication feedback, and
recursive declarations of system components. These proofs demonstrate that re-
finements of networks can be accomplished in a modular way by refining their
components. We generalize the notions of refinement to refining contexts. Finally,
we define full abstraction for specificationsand show compositionality with respect
to this abstraction as well.
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1 Introduction

A distributed interactive system consists of a family of interacting components. To
reduce complexity, they can be developed by a number of successive steps. In each
step, the system is described in more detail and closer to an implementation level. We
speak of levels of abstraction and of stepwise refinement in system development.

Logical implication provides a simple concept of stepwise refinement when logical
specifications are used to describe the behavior of system components. A system com-
ponent specification is a refinement of another specification if it exhibits all specified
properties and possibly more. Refinement allows the replacement of system specifica-
tions by more refined ones exhibiting more specific properties.

More sophisticatednotions of refinement allow the refinement of a system component to
one exhibitingquite different properties than the original one. In this case, however, we
need a concept relating the behaviors of the refined system component to behaviors of
the original one such that behaviors of the refined system component can be understood
to represent behaviors of the original. The behavior of interactive system components
is basically given by their interaction with their environment. Therefore the refinement
of system components basically has to deal with the refinement of their interaction. We
will introduce such a notion of interaction refinement.

Concepts of refinement for software systems have been investigated since the early
1970s. Data structure refinement is treated in Hoare’s pioneering paper [Hoare 72].
These ideas were further explored and developed (see, for instance, [Jones 86], [Broy et al. 86],
[Sannella 88], see [Coenen et al. 91] for a survey). The idea of refining interacting
systems has also been treated in numerous papers (see, for instance, [Lamport 83],
[Abadi, Lamport 90], and [Back 90]).

Typically, distributed interactive systems are composed of a number of components that
interact, for example, by exchanging messages or by updating shared memory. Various
forms of composition allow the construction of systems from smaller ones. Parallel
and sequential composition, communication feedback, and recursion are basic forms
of composition for systems.

A method for specifying system components is called compositional (or modular)
for a set of forms of composition if the specifications of composed systems can be
derived from the specifications of the constituent components. We call a refinement
concept compositional, if refinements of a composed system are obtained by giving
refinements for the components. Traditionally, compositional notions of specification
and refinement for concurrent systems are considered hard to obtain. For instance, the
elegant approach of [Chandy, Misra 88] is not compositional with respect to liveness
properties and does not provide a compositional notion of refinement.

Note that it only makes sense to talk about compositionality with respect to a set of
forms of composition. Forms of composition of system components define an algebra
of systems, also called a process algebra. Not all approaches to system specifications
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emphasize forms of composition for systems. For instance, in state machine oriented
specifications, systems are modelled by state transitions. No particular forms of com-
position of system components are used. As a consequence compositionality is less
significant there. Approaches that favor describing systems using forms of composition
are called “algebraic”. A discussion of the advantages and disadvantages of algebraic
versus nonalgebraic approaches can be found, for instance, in [Janssen et al. 91].

Finding compositional specification methods and compositional interaction refinement
concepts is difficult. Compositional refinement seems especially difficult to achieve
for programming languages with tightly coupled parallelism, such as the “rendezvous”
concept in CCS and CSP. In tightly coupled parallelism, the actions are used directly
for the synchronization of parallel activities. Therefore the granularity of the actions
cannot be refined, in general, without changing the synchronization structure (see, for
instance, [Aceto, Hennessy 91] and [Vogler 91]).

The following sections present a compositional notion of refinement where the gran-
ularity of interaction can be refined. We use functional, purely descriptive, “nonoper-
ational” specification techniques. The behavior of distributed systems interacting by
communication over channels is represented by functions processing streams of mes-
sages. Streams of messages represent communication histories on channels. System
component specifications are predicates characterizing sets of stream processing func-
tions. System components described that way can be composed and decomposed using
the above mentioned forms of composition such as sequential and parallel composition
as well as communication feedback. With these forms of composition all kinds of finite
data processing nets can be described. Allowing in addition recursive declarations even
infinite data processing nets can be described.

In the following, concepts of refinement for interactive system components are defined
that allow one to change both the number of channels of a component as well as the
granularityof the messages sent by it. In particular, basic theorems are proved that show
that our notion of refinement is compositional for the basic compositional forms as well
as for recursive declarations. Accordingly for an arbitrary net of interacting components
a refinement is schematically obtained by giving refinements for its components. The
correctness of such a refinement follows according to the proved theorems schematically
from the correctness proofs for the refinements of the components.

We give examples for illustrating the compositionality of refinement. We have deliber-
ately chosen very simple examples to keep their specifications small such that we can
concentrate on the refinement aspects. The simplicity of these examples does not mean
that much more complex examples cannot be treated.

Finally we generalize our notion of refinement to refining contexts. Refining contexts
allow refinements of components where the refined presentation of the input history
may depend on the output history. In particular, this allows unreliable components to be
understood as refinements of reliable components, as long as the refining context takes
care of the unreliability. Refining contexts are represented by predicate transformers
with special properties. We give examples for refining contexts.
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An appendix treats full abstraction of functional specifications for these composing
forms.

2 Specification

In this section we introduce the basic notions for functional system models and func-
tional system specifications. In the following we study system components that ex-
change messages asynchronously via channels. A stream represents a communication
history for a channel. A stream of messages over a given message set M is a finite or
infinite sequence of messages. We define

M! Dd f MŁ [ M1

We briefly repeat the basic concepts from the theory of streams that we shall use later.
More comprehensive explanations can be found in [Broy 90].

ž By x_y we denote the result of concatenating two streams x and y. We assume
that x_y D x , if x is infinite.

ž By hi we denote the empty stream.

ž If a stream x is a prefix of a stream y, we write x v y. The relation v is called
prefix order. It is formally specified by

x v y �d f 9z 2 M! : x_z D y

ž By .M!/n we denote tuples of n streams. The prefix ordering on streams as well
as the concatenation of streams is extended to tuples of streams by elementwise
application.

A tuple of finite streams represents a partial communication history for a tuple of
channels. A tuple of infinite streams represents a total communication history for a
tuple of channels.

The behavior of deterministic interactive systems with n input channels and m output
channels is modeled by .n;m/-ary stream processing functions

f : .M!/n ! .M!/m

A stream processing function determines the output history for a given communication
history for the input channels in terms of tuples of streams.
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Example 1 Stream processing function

Let a set D of data elements be given and let the set of messages M be specified by:

M D D [ f?g
Here the symbol ? is a signal representing a request. For data elements d 2 D a stream
processing function

.c:d/ : M! ! M!

is specified by

8e 2 D; x 2 M! : .c:d/.?_x/ D d_?_.c:d/.x/
^ .c:d/.e_x/ D e_.c:e/.x/

The function .c:d/ describes the behavior of a simple storage cell that can store exactly
one data element. Initially d is stored. The behavior of the component modeled by
.c:d/ can be illustrated by an example input

.c:d/. ?_?_d1
_? _d2

_? _d3
_d4

_? _d5
_x/ D

d_d_d1
_d1

_d2
_d2

_d3
_d4

_d4
_d5

_.c:d5/:x

The function .c:d/ is a simple example of a stream processing function where every
input message triggers exactly one output message.

End of example

In the following we use some notions from domain and fixed point theory that are
briefly listed:

ž A stream processing function is called prefix monotonic, if for all tuples of streams
x; y 2 .M!/n we have

x v y) f:x v f:y

We denote the function application f .x/ by f:x to avoid brackets.

ž By tS we denote a least upper bound of a set S, if it exists.

ž A set S is called directed, if for any pair of elements x and y in S there exists an
upper bound of x and y in S.

ž A partially ordered set is called complete, if every directed subset has a least
upper bound.

ž A stream processing function f is called prefix continuous, if f is prefix mono-
tonic and for every directed set S � M! we have:

f: t S D tf f:x : x 2 Sg
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The set of streams as well as the set of tuples of streams are complete. For every
directed set of streams there exists a least upper bound.

We model the behavior of interactive system components by sets of continuous (and
therefore by definition also monotonic) stream processing functions. Monotonicity
models causality between input and output. Continuity models the fact that for every
behavior the system’s reaction to infinite input can be predicted from the component’s
reactions to all finite prefixes of this input1. Monotonicity takes care of the fact that in
an interactive system output already produced cannot be changed when further input
arrives. The empty stream is to be seen as representing the information “further com-
munication unspecified”. Note, in the example above by the preimposed monotonicity
of the function .c:d/ we conclude .c:d/.hi/ D hi; otherwise, we could construct a
contradiction.

A specification describes a set of stream processing functions that represent the behav-
iors of the specified systems. If this set is empty, the specification is called inconsistent,
otherwise it is called consistent. If the set contains exactly one element, then the
specification is called determined. If this set has more then one element, then the
specification is called underdetermined and we also speak of underspecification. As
we shall see, an underdetermined specification may be refined into a determined one.
An underdetermined specification can also be used to describe hardware or software
units that are nondeterministic. An executable system is called nondeterministic, if it
is underdetermined. Then the underspecification in the description of the behaviors
of a nondeterministic system allows nondeterministic choices carried out during the
execution of the system. In the descriptive modeling of interactive systems there is
no difference in principle between underspecification und the operational notion of
nondeterminism. In particular, it does not make any difference in such a framework,
whether these nondeterministic choices are taken before the execution starts or step by
step during the execution.

The set of all (n,m)-ary prefix continuous stream processing functions is denoted by

S P Fn
m

The number and sorts of input channels as well as output channels of a specification
are called the component’s syntactic interface. The behavior, represented by the set
of functions that fulfill a specification, is called the component’s semantic interface.
The semantic interface includes in particular the granularity of the interaction and the
causality between input and output. For simplicity we do not consider specific sort
information for the individual channels of components in the following and just assume
M to be a set of messages. However, all our results carry over straightforwardly to
stream processing functions where more specific sorts are attached to the individual
channels.

1This does not exclude the specification of more elaborate liveness properties including fairness. Note,
fairness is, in general, a property that has to do with “fair” choices between an infinite number of behaviors.
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Qn
-

-

m
-

-

Figure 1: Graphical representation of a component Q

A specification of a possibly underdetermined interactive system component with n
input channels and m output channels is modeled by a predicate

Q : S P Fn
m ! Bool

characterizing prefix continuous stream processing functions. Q is called an .n;m/-ary
system‘s specification. A graphical representation of an .n;m/-ary system component
Q is given in Figure 1. The set of specifications of this form is denoted by

S P ECn
m

Example 2 Specification

A component called C (for storage Cell) with just one input channel and one output
channel is specified by the predicate C. The component C can be seen as a simple store
that can store exactly one data element. C specifies functions f of the functionality:

f : M! ! M!

Let the sets D and M be specified as in example 1. If C receives a data element it
sends a copy on its output channels. If it receives a request represented by the signal
?, it repeats its last data output followed by the signal ? to indicate that this is repeated
output. The signal ? is used this way for indicating a “read storage content request”.
The signal ? triggers the read operation. A data element in the input stream changes the
content of the store. The message d triggers the write operation. Initially the cell carries
an arbitrary data element. This behavior is formalized by the following specification
for C:

C: f � 9d 2 D : f D .c:d/
where the auxiliary function .c:d/ is specified as in example 1. Notice that the data
element stored initially is not specified and thus component C is underdetermined.

End of example
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For a deterministic specification Q where for exactly one function q the predicate Q is
fulfilled, in other words where we have

Q: f , f D q

we often write (by misuse of notation) simply q instead of Q. This way we identify
determined specifications and their behaviors.

By Im 2 S P Fm
m we denote the identity function; that is we assume

8x 2 .M!/m : Im:x D x

We shall drop the index m for Im whenever it can be avoided without confusion.

By �n
m 2 S P Fn

m we denote the function that produces for every input just the empty
stream as output on all its output channels; that is we define

8x 2 .M!/n : �n
m :x D him

Similarly we write †m for the unique function in S P Fm
0 ; in other words the function

with m input channels, but with no output channels.

By Łn
m 2 S P ECn

m we denote the logically weakest specification, which is the specifi-
cation that is fulfilled by all stream processing functions. It is defined by

8 f 2 S P Fn
m : Łn

m: f

By
n
7 we denote the function that produces two copies of its input. We have

n
72 S P Fn

2n
and

8x 2 .M!/n :
n
7 :x D .x; x/

By
n m
� 2 S P FnCm

nCm we denote the function that permutes its input streams as follows (
let x 2 .M!/n; y 2 .M!/m ):

n m
� .x; y/ D .y; x/

Again we shall drop the index n as well as m in �n
m;Łn

m; †n and
n
7 whenever it can be

avoided without confusion.

3 Composition

In this section we introduce the basic forms of composition namely sequential compo-
sition, parallel composition and feedback. These compositional forms are introduced
for functions first and then extended to component specifications.
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3.1 Composition of Functions

Given functions
f 2 S P Fn

k ; g 2 S P Fk
m

we write
f I g

for the sequential composition of the functions f and g which yields a function in
S P Fn

m where
. f I g/:x D g. f .x//

Given functions
f 2 S P Fn1

m1; g 2 S P Fn2
m2

we write
f kg

for the parallel composition of the functions f and g which yields a function in
S P Fn1Cn2

m1Cm2 where (let x 2 .M!/n1; y 2 .M!/n2):

. f kg/:.x; y/ D . f:x; g:y/

We assume that “ I ” has higher precedence than “k”. Given a function

f 2 S P FnCm
m

we write
¼ f

for the feedback of the output streams of function f to its input channels which yields
a function in S P Fn

m where

.¼ f /:x D f ix :½ y : f .x; y/

Here f ix denotes the fixed point operator associating with any monotonic function f
its least fixed point f ix : f . Thus y D .¼ f /:x means that y is the least solution (with
respect to the prefix ordering) of the equation y D f .x; y/. We assume that “¼” has
higher precedence than the binary operators “I” and “k”. A graphical representation
for feedback is given in Figure 2.

We obtain a number of useful rules by the fixed point definition of ¼ f . As a simple
consequence of the fixed point characterization, we get the unfold rules:

¼f D 7I .Ik¼f /I f

¼ f D 7I¼..Ik f /I f /

A graphical representation of the unfold rules for feedback is given in Figure 3.
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f
-

x
-

y
-

�
�

�

�

¼ f

Figure 2: Graphical representation of feedback

f
-

x
-

-

f
-

y
-

y
-

�
�

�

�

¼ f

' $

f
-

x
-

-

f
-

y
-

y
-

�
�

$

%

7I¼..Ik f /I f /
� �

Figure 3: Graphical representation of the unfold rules for feedback



3 COMPOSITION 10

f
-

x
-

g-

y
-

�
�

�

�

f
- g y

-

x
-

g-

y
-

�
�

�

�

Figure 4: Graphical representation of semiunfold

A useful rule for feedback is semiunfold that allows one to move components outside
or inside the feedback loop (let g 2 S P Fm

m ):

¼. f I g/ D ¼..Ikg/I f /I g
A graphical representation for semiunfold is given in Figure 4.

For reasoning about feedback loops and fixed points the following special case of
semiunfold is often useful:

f ix :½ y : m_ f .x; y/ D m_ f ix :½ y : f .x;m_y/

The rule is an instance of semiunfold with g D ½ y : m_y. The correctness of this rule
can also be seen by the following argument: if y is the least fixed point of

½ y : m_ f .x; y/

andey is the least fixed point of
½ey : f .x;ey/

theney D m_y and thus
y D m_½ y : f .x;m_y/

Semiunfold is a powerful rule when reasoning about results of feedback loops.
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3.2 Composition of Specifications

We want to compose specifications of components to networks. Each form of com-
position introduced for functions can be extended to component specifications in a
straightforward way. Given component specifications

Q 2 S P ECn
k ; R 2 S P ECk

m

we write
QI R

for the predicate in S P ECn
m where

.QI R/: f , 9q; r : Q:q ^ R:r ^ f D qI r
Trivially we have for all specifications Q 2 S P ECn

m the following equations:

QI I D Q

I I Q D Q

QI †m D †n

Given specifications
Q 2 S P ECn1

m1; R 2 S P ECn2
m2

we write
QkR

for the predicate in S P ECn1Cn2
m1Cm2 where

.QkR/: f , 9q; r : Q:q ^ R:r ^ f D qkr
Given specification

Q 2 S P ECnCm
m

we write
¼Q

for the predicate in S P ECn
m where

.¼Q/: f , 9q : Q:q ^ f D ¼q

For feedback over underdetermined specifications we get the following rules2:

¼Q) 7I .Ik¼Q/I Q

2For determined system specifications Q we get the stronger rules ¼Q D 7I .Ik¼Q/I Q and
¼Q D 7I¼..IkQ/I Q/ which do not hold for underdetermined systems, in general. The erroneous as-
sumption that these rules are valid also for underdetermined systems is the source for the merge anomaly
(see [Brock, Ackermann 81]).
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¼Q) 7I¼..IkQ/I Q/

A useful rule for feedback is fusion that allows one to move components that are
not affected by the feedback outside or inside the feedback operator application. Let
R 2 S P ECk

n :
RI¼Q D ¼..Rk I /I Q/

¼..Qk†m /I .IkR// D ¼.Q/I .IkR/

With the help of the basic functions and the forms of composition introduced so far we
can represent all kinds of finite networks of systems (data flow nets)3. Our composing
forms lead to an algebra of system descriptions.

4 Refinement, Representation, Abstraction

In this section we introduce concepts of refinement for system components both with
respect to the properties of their behaviors as well as with respect to their syntactic
interface and granularity of interaction.

We start by defining a straightforward notion of property refinement for system com-
ponent specifications. Then we introduce a notion of refinement for communication
histories. Based on this notion we define the concept of interaction refinement for inter-
active components. This notion allows refining a component by changing the number
of input and output channels as well as the granularity of the exchanged messages.

4.1 Property Refinement

Specifications are predicates characterizing functions. This leads to a simple notion of
refinement of component specifications by adding logical properties.
Given specifications

Q; eQ 2 S P ECn
meQ is called a (property) refinement of Q

if for all f 2 S P Fn
m : eQ: f ) Q: f

Then we write eQ) Q

If eQ is a property refinement for Q, then eQ has all the properties Q has and may be
some more. Every behavior that eQ shows is also a possible behavior of Q.

3Of course, our combinatorial style for defining networks is not always very useful, in practice, since
the combinatorial formulas are hard to read. However, we prefer throughout this report to work with these
combinatorial formulas, since this puts emphasis on the compositional forms and the structure of composition.
For practical purposes a notation with named channels is often more adequate.
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All considered composing forms are monotonic for the refinement relation as indicated
by the following theorem.

Theorem 1 (Compositionality of Refinement)

.eQ1 ) Q1/ ^ .eQ2 ) Q2/) .eQ1I eQ2 ) Q1I Q2/

.eQ1 ) Q1/ ^ .eQ2 ) Q2/) .eQ1keQ2 ) Q1kQ2/

.eQ) Q/) .¼eQ ) ¼Q/

Proof: Straightforward, since all operators for specifications are defined pointwise on
the sets of functions that are specified.

2

A simple example of a property refinement is obtained for the component C as described
in Example 2 on page 8 if we add properties about the data element initially stored in
the cell. A property refinement does not allow one to change the syntactic interface of
a component, however.

4.2 Interaction Refinement

Recall from section 2 that streams model communication histories on channels. In
more sophisticated development steps for a component the number of channels and
the sorts of messages on channels are changed. Such steps do not represent property
refinements. Therefore we introduce a more general notion of refinement. To be able to
do this we study concepts of representation of communication histories on n channels
modeled by a tuple of n streams by communication histories on m channels modeled
by a tuple of m streams.

Tuples of streams y 2 .M!/m can be seen as representations of tuples of streams
x 2 .M!/n , if we introduce a mapping ² 2 S P Fn

m that associates with every x its
representation. ² is called a representation function. If ² is injective then it is called a
definite representation function. Note, a mapping ² is injective, if and only if:

8x; x : ²:x D ²:x ) x D x

If a specification R 2 S P ECn
m is used for the specification of a set of representation

functions, R is called a representation specification.

Example 3 Representation Specification

We give a representation specification R that allows streams of data elements and
requests to be represented by two separate streams, one of which carries the requests
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and the other of which carries the data elements. The representation functions are
mappings ² of the following functionality:

² : M! ! f?;pg! ð .D [ fpg/!

Here
p

is used as a separator signal. It can be understood as a time tick that separates
messages. Given streams x and y let [x; y] denote a pair of streams and [x; y]_[ex;ey]
the elementwise concatenation of pairs of streams, in other words:

[x; y]_[ex;ey] D [x_ex ; y_ey]

Let T icks be defined by the set of pairs of streams of ticks that have equal length:

Ticks D f[pk
;
pk] : k 2 INg

We specify the representation specification R explicitly as follows:

R:² � 8d 2 D; x 2 M! : 9t 2 Ticks : ².?_x/ D t_[?; hi]_²:x
^ 9t 2 Ticks : ².d_x/ D t_[

p
; d_

p
]_²:x

Note, by the monotonicity of the specified functions:

R:² ) 9t 2 Ticks : ²:hi D t

The computation of a representation is illustrated by the following example:

².?_?_d1
_ ?_d2

_ ?_d3
_ x/ D

[ ?_?_
p
_?_

p
_?_ _

p
;

d1
_
p
_ d2

_
p
_ d3

_
p

]_².x/

The example demonstrates how the time ticks are used to indicate in the streams ².x/
the order of the requests relatively to the data messages in the original stream x .

End of example

The elements in the images of the functions ² with R:² are called representations.

Definition 1 (Definite representation specification) A representation specification
R is called definite, if

8x; x ; ²; ² : R:² ^ R:² ^ ²:x D ²:x ) x D x

In other words R is definite, if different streams x are always differently represented.

Obviously, if R is a definite representation specification, then all functions ² with R:²
are definite. For definite representation specifications for elements x and x with x 6D x
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the sets of representation elements f²:x : R:²g and f²:x : R:²g are disjoint. Note, the
representation specification given in the example above is definite.

For every injective function, and thus for every definite representation function ², there
exists a function Þ 2 S P Fm

n such that:

²IÞ D I

The function Þ is an inverse to ² on the image of ². The function Þ is called an
abstraction for ². Notice that Þ is not uniquely determined if ² is not surjective. In
other words, the elements in .M!/m are not all used as representations of elements in
.M!/n there may be several functions Þ with A:Þ, as defined below.

The concept of abstractions for definite representation functions can be extended to
definite representation specifications.

Definition 2 (Abstraction function) Let R 2 S P ECn
m be a definite representation

specification; a function Þ 2 S P Fm
n with

RIÞ D I

is called an abstraction function for R.

The existence of abstractions follows from the definition of definite representation
specification. Again for definite representation specifications the abstraction functions
Þ are uniquely determined only on the image of R, that is on the union of the images
of functions ² with R:².

Definition 3 (Abstraction for a definite representation specification) Let A 2 S P ECm
n

be the specification with
A:Þ , RIÞ D I

Then A is called the abstraction for R.

For consistent definite representation specifications R with abstraction A we have

RI A D I

If ²I A D I ) R:² then R contains all possible choices of representation functions for
the abstraction A.

Example 4 Abstraction

For the representation specification R described in example 3 the abstraction functions
Þ are mappings of the functionality:

Þ : f?;pg! ð .D [ fpg/! ! M!
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The specification of A reads as follows.

A:Þ � 8d 2 D; x 2 f?;pg!; y 2 .D [ fpg/! :

Þ.?_x; y/ D ?_Þ.x; y/
^ Þ.

p
_x;

p
_ y/ D Þ.x; y/

^ Þ.
p
_x; d_

p
_y/ D d_Þ.x; y/

It is a straightforward rewriting proof that indeed:

RI A D I

The specification A shows a considerable amount of underspecification, since not all
pairs of streams in f?;pg! ð .D [ fpg/! are used as representations.

End of example

Parallel and sequential composition of definite representations leads to definite repre-
sentations again.

Theorem 2 Let Ri 2 S P ECni
mi

be definite representation specifications for i D 1; 2;
then

R1kR2

R1I R2

(assuming m1 D n2 in the second formula) are definite representation specifications.

Proof: Sequential and parallel composition of injective functions leads to injective
functions.

2

Trivially we can obtain the abstractions of the composed representations by composing
the abstractions.

For many applications, representation specifications are neither required to be deter-
mined nor even definite. For an indefinite representation specification sets of representa-
tion elements for different elements are not necessarily disjoint. Certain representation
elements y do occur in several sets of representations for elements. They ambiguously
stand for (“represent”) different elements. Such an element may represent the streams
x as well as x , if ²:x D ²:x for functions ² and ² with R:² and R:². For indefinite
representation specifications the represented elements are not uniquely determined by
the representation elements. A representation element y stands for the set

fx : 9² : R:² ^ ²:x D yg
For a definite representation specification R this set contains exactly one element while
for an indefinite representation specification R this set may contain more than one
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element. In the latter case, of course, abstraction functions Þ with RIÞ D I do not
exist.

However, even for certain indefinite representations we can introduce the concept of
an abstraction.

Definition 4 (Uniform representation specifications) A
consistent specification R 2 S P ECn

m is called a uniform representation specification,
if there exists a specification A 2 S P ECm

n such that for all ²:

R:² ) RI AI ² D ²
The specification A is called again the abstraction for R.

The formula expresses that .RI A/ is a left-neutral element for every representation
function in R. Essentially the existence of an abstraction expresses the following
property of R: if for different elements x and x the same representations are possible,
then every representation function maps these elements onto equal representations.
More formally stated, if there exist functionse² and ² with R:e² and R:² such that

e²:x D ²:x
then for all functions ² with R:²:

²:x D ²:x
Thus if elements are identified by some representation functions, this identification is
present in all representation functions. The same amount of information is “forgotten”
by all the representations. The representation functions then are indefinite in a uniform
way. Definite representations are always uniform.

A function is injective, if for all x and x we have:

²:x D ²:x ) x D x

A function that is not injective ² defines a nontrivial partition on its domain. A
representation specification is uniform if and only if all functions ² with R:² define the
same partition.

For a uniform representation specification R with abstraction A the product .RI A/
reflects the underspecification in the choices of the representations provided by R.
If for a function 
 with .RI A/:
 we have x D 
:x , then x and x have the same
representations.

Definition 5 (Adequate representation) A uniform representation specification R with
abstraction A is called adequate for a specification Q, if:

QI RI A) Q
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bQbn
-

- bm
-

-

R

?

?

??

Qn
-

-

m
-

-

R

?

?

??

Figure 5: Commuting diagram of interaction refinement

Adequacy means that the underspecification in .RI A/ does not introduce more under-
specification into QI RI A than was already present in Q. Note, definite representations
are adequate for all specifications Q.

Definition 6 (Interaction refinement) Given representations R 2 S P ECn
On, R 2 S P ECm

Om
and specifications bQ 2 S P EC OnOm; Q 2 S P ECn

m we say that bQ is an interaction refine-
ment of Q for the representation specifications R and R, if

RI bQ) QI R

This definition indicates that we can replace via an interaction refinement a system
of the form QI R by a refined system of the form RI bQ. We may think about the
relationship between Q and bQ as follows: the specification Q specifies a component
on a more abstract level while bQ gives a specification for the component at a more
concrete level. Instead of computing at the abstract level with Q and then translating
the output via R onto the output representation level, we may translate the input by R
onto the input representation level and compute with bQ. We obtain one of these famous
commuting diagrams as shown in Figure 5.

Definition 7 (Adequate interaction refinement) The interaction refinement of Q for
the representation specifications R and R is called adequate for a specification Q, if R
is adequate for Q.

For adequate interaction refinements using uniform representation specifications R with
abstraction A 2 S P ECm

i , we obtain

RI bQI A) Q
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bQbn
-

- bm
-

-

R

?

?

??

Qn
-

-

m
-

-

A

66

6

6

Figure 6: Commuting diagram of interaction refinement

since from the interaction refinement property we get

RI bQI A) QI RI A

and by the adequacy of R for Q

QI RI A) Q

which shows that RI bQI A is a (property) refinement of Q. A graphical illustration of
adequate interaction refinement is shown in Figure 6.

The following table summarizes the most important definitions so far.

Table of definitions

eQ property refinement of Q eQ: f ) Q: f

R consistent, definite with abstr. A RI A D I

R uniform with abstraction A R:² ) RI AI ² D ²

R adequate for Q with abs. A QI RI A) Q

Inter. refinement bQ of Q for R; R RI bQ) QI R

Adequate inter. refinement R uniform and adequate for Q
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The notion of interaction refinement allows one to change both the syntactic and the
semantic interface. The syntactic interface is determined by the number and sorts
of channels; the semantic interface is determined by the behavior of the component
represented by the causality between input and output and by the granularity of the
interaction.

Example 5 Interaction Refinement

We refine the component C as given in Example 2 into a component bC that has instead
of one input and one output channel two input and two output channels. The refinementbC uses one of its channels carrying the signal ? as a read channel and one of its channels
carrying data as a write channel. Let R and A be given as specified in the examples
above

We specify the interaction refinement bC of C explicitly. bC specifies functions of
functionality:

f : f?;pg! ð .D [ fpg/! ! f?;pg! ð .D [ fpg/!

We specify: bC: f D 9d 2 D : f D h:d

where the auxiliary function h is specified by:

h : D! .f?;pg! ð .D [ fpg/! ! f?;pg! ð .D [ fpg/!/

8d; e 2 D; x 2 f?;pg!; y 2 .D [ fpg/! :

.h:d/.?_x; y/ D [
p
_?; d_

p
]_.h:d/.x; y/

^ .h:d/.
p
_x;

p
_ y/ D [

p
;
p

]_.h:d/.x; y/
^ .h:e/.

p
_x; d_

p
_y/ D [

p
; d_

p
]_.h:d/.x; y/

It is a straightforward proof to show:

RIbC ) CI R

Assume ² with R:² and h such that there exist f and d with bC: f and f D h:d; we
prove by induction on the length of the stream x that there exist e² with R:e² and c:d as
specified in example 1 such that:

.h:d/:²:x D e²:.c:d/:x
For x D hi we obtain: there exists t 2 Ticks such that:

.h:d/:²:x D

.h:d/:t D
t De²:x De²:.c:d/:x
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Now assume the hypothesis holds for x ; there exists t 2 T icks:

.h:d/:².?_x/ D

.h:d/.t_[?; hi]_²:x/ D
t_[
p
_?; d_

p
]_.h:d/:²:x De².d_.c:d/:x/ De².c:d/.?_x/

There exists t 2 Ticks:

.h:e/:².d_x/ D

.h:e/.t_[
p
; d_

p
]_²:x/ D

t_[
p
; d_

p
]_.h:d/:²:x De².d_.c:d/:x/ De².c:e/.d_x/

This concludes the proof for finite streams x . By the continuity of h and ² the proof is
extended to infinite x .

End of example

Continuing with the system development after an adequate interaction refinement of a
component we may decide to leave R and A unchanged and carry on by just further
refining bQ.

5 Compositionality of Interaction Refinement

Large nets of interacting components can be constructed by our forms of composition.
When refining such large nets it is decisive for keeping the work manageable that inter-
action refinements of the components lead to interaction refinements of the composed
system.

In the following we prove that interaction refinement is indeed compositional for
sequential and parallel composition and for communication feedback.

5.1 Sequential and Parallel Composition

For systems composed by sequential compositions, refinements can be constructed by
refining their components.

Theorem 3 (Compositionality of refinement, seq. composition) Assume bQi is an
interaction refinement of Qi for the representations Ri�1 and Ri for i D 1; 2; thenbQ1I bQ2 is an interaction refinement of Q1I Q2 for the representations R0 and R2.
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Proof: A straightforward derivation shows the theorem:

R0I bQ1I bQ2 ) fmonotonicity of “;”, bQ1 interaction refinement of Q1g
Q1I R1I bQ2 ) fmonotonicity of “;”, bQ2 interaction refinement of Q2g
Q1I Q2I R2

2

Example 6 Compositionality of Refinement for Sequential Composition

Let C and bC be specified as in the example above. Of course, we may compose C as
well as bC sequentially. We define the components CC and dCC by:

CC Dd f CIC
dCC Dd f bCI bC

Note, CC is a cell that repeats its last input twice on a signal ?. It is a straightforward
applicationof our theorem of the compositionalityof refinement thatdCC is a refinement
of CC :

RIdCC ) CCI R

Of course, since RI A D I we also have that RIdCCI A is a property refinement of CC.

End of example

Refinement is compositional for parallel composition, too.

Theorem 4 (Compositionality of refinement for parallel composition) Assume bQi is
an interaction refinement of Qi for the representations Ri and Ri for i D 1; 2 thenbQ1kbQ2 is an interaction refinement of Q1kQ2 for the representations R1kR2 and
R1kR2.

Proof: A straightforward derivation shows the theorem:

.R1kR2/I .bQ1kbQ2/ D frule for sequential and parallel compositiong

.R1I bQ1/k.R2I bQ2/ ) fbQi interaction refinement for Qi g

.Q1I R1/k.Q2I R2/ D frule for sequential and parallel compositiong

.Q1kQ2/I .R1kR2/

2

For sequential and parallel composition compositionalityof refinement is quite straight-
forward. This can be seen from the simplicity of the proofs.
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5.2 Feedback

For the feedback operator, refinement is not immediately compositional. We do not
obtain, in general, that ¼bQ is an interaction refinement of ¼Q for the representations
R and R provided bQ is an interaction refinement of Q for the representations RkR and
R. This is true, however, if I ) .AI R/ (see below). The reason is as follows. In
the feedback loops of ¼bQ we cannot be sure that only representations of streams (i.e.
streams in the images of some of the functions characterized by R) occur. Therefore,
we have to give a slightly more complicated scheme of refinement for feedback.

Theorem 5 (Compositionality of refinement, feedback) Assume bQ is an interaction
refinement of Q for the representation specifications RkR and R where R is uniform;
then ¼..IkAI R/I bQ/ is an interaction refinement of ¼Q for the representations R and
R.

Proof: We prove:

.RI¼..IkAI R/I bQ//: f ) ..¼Q/I R/: f

From
.RI¼..IkAI R/I bQ//: f

we conclude that there exist functions ²,bq, ², and Þ such that R:², bQ:bq , R:² , and A:Þ
and furthermore

f D ²I¼..IkÞI ²/Ibq/
Since bQ is an interaction refinement of Q for the representations RkR and R for
functions ² with R:² and ² with R:² and Oq with bQ:q there exist functions q and e²
such that Q:q and R:e² hold and furthermore

.²k²/Ibq D qIe²
Given x , by the continuity of ²,bq , ², and Þ, we may define ¼..IkÞI ²/Ibq/:²:x by tbyi

where by0 D hibmbyiC1 D bq.²:x; ²:Þ:byi /

Moreover, because of the continuity of q , we may define Q²:.¼q/:x by Q²: t yi where

y0 D him

yiC1 D q.x; yi/

We prove: e²: t yi D tbyi
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by computational induction. We prove by induction on i the following proposition:

byi v e²:yi vbyiC1

If i D 0, we have:

by0 v fby0 is the least elementge²:y0 v fy0 is the least elementge²:q.x; y0/ D frefinement propertygbq.²:x; ²:y0/ v fy0 is the least elementgbq.²:x; ²:Þ:by0/ D fdefinition ofby1gby1

Assume now the proposition holds for i; then we obtain:

byiC1 D fdefinition ofbyiC1gbq.²:x; ²:Þ:byi / v finduction hypothesisgbq.²:x; ²:Þ:e²:yi / D funiformity of Rgbq.²:x; ²:yi / D frefinement propertyge²:q.x; yi / D fdefinition of yiC1 ge²:yiC1

Furthermore we get:

e²:yiC1 D fdefinition of yiC1 ge²:q.x; yi / D frefinement propertygbq.²:x; ²:yi / D funiformity of R gbq.²:x; ²:Þ:e²:yi / v finduction hypothesisgbq.²:x; ²:Þ:byiC1/ D fdefinition ofbyiC2gbyiC2

From this we conclude by the continuity of e² that:

tbyi D e²: t yi

and thus
.¼..IkÞI ²/Ibq//:²:x D e²:¼.q/:x

and finally
.¼.Q/I R/:.²I¼..IkÞI ²/Ibq//

2

Assuming an adequate refinement allows us to obtain immediately the following corol-
lary.
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Theorem 6 (Compositionality of adequate refinement, feedback) Assume bQ is an
adequate interaction refinement of Q for the representations RkR and R with abstrac-
tion A then ¼.bQI AI R/ is an interaction refinement of ¼Q for the representations R
and R.

Proof: Let all the definitions be as in the proof of the previous theorem. Since the
interaction refinement is assumed to be adequate there exists a function eq with Q:q
such that

qIe²IÞI ² D eqI ²
Carrying out the proof of the previous theorem witheq instead of q and ² instead of e²
we get:

¼..IkÞI ²/Ibq/ D .¼eq/I ²
By straightforward computational induction we may prove

¼.bqIÞI ²/ D ¼..IkÞI ²/Ibq/
This concludes the proof.

2

Assuming that AI R contains the identity as a refinement we can simplify the refinement
of feedback loops.

Theorem 7 Assume bQ is an interaction refinement of Q for the representations RkR
and R with abstraction A and assume furthermore

I ) AI R

then ¼bQ is an interaction refinement of ¼Q for the representations R and R.

Proof: Straightforward deduction shows:

RI¼bQ)
RI¼..IkAI R/I bQ/)
¼QI R

2

Note, even if I is not a refinement of AI R, in other words even if I ) AI R does not
hold, other refinements of AI R may be used to simplify and refine the term AI R in
¼..IkAI R/I bQ/. By the fusion rule for feedback as introduced in section 3 we obtain:

RI¼.bQI AI R/ D ¼..Rk I /I bQI AI R/

This may allow further refinements for bQI AI R.
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Example 7 Compositionality of Refinement for Feedback

Let us introduce the component F with two input channels and one output channel. It
specifies functions of the following functionality:

f : M! ð M! ! M!

F is specified as follows:

F: f � 8x; y 2 M! : 9d 2 D : f .x; y/ D g.x; d_y/

where the auxiliary function g is specified by

g : M! ð M! ! M!

where 8d; e 2 D;m 2 M; x; y 2 M! :

g.x; d_?_y/ D g.x; d_y/
^ g.?_x; d_y/ D d_?_g.x; y/
^ g.d_x; e_y/ D d_g.x; y/

It is a straightforward proof that for the specification C as defined in Example 1:

¼F D C

We carry out this proof by induction on the length of the input streams x . We show that
¼f fulfills the defining equations for functions c:d in the definition of C in Example 2.
Let f be a function with F: f and g be a function as specified above in the definition of
F. We have to consider just two cases: by the definition of f there exists g as defined
above such that: there exists d:

¼. f /:.?_x/ D
f ix :½ y : g.?_x; d_y/ D
f ix :½ y : d_?_g.x; d_y/ D
d_?_ f ix :½ y : g.x; d_?_y/ D
d_?_ f ix :½ y : g.x; d_y/

¼. f /:.e_x/ D
f ix :½ y : g.e_x; d_y/ D
f ix :½ y : e_g.x; y/ D
e_ f ix :½ y : g.x; e_y/

Induction on the length of x and the continuity of the function g conclude the proof.

The refinement bF of F according to the representation specification R from example 3
specifies functions of the functionality:

f : f?;pg! ð .D [ fpg/! ð f?;pg! ð .D [ fpg/! ! f?;pg! ð .D [ fpg/!
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It reads as follows:bF: f D 8x;ex; y;ey : 9d 2 D : f .x;ex; y;ey/ D bg.x;ex ;p_ y; d_
p
_ey/

where the auxiliary function g is specified by

bg : f?;pg! ð .D [ fpg/! ð f?;pg! ð .D [ fpg/! ! f?;pg! ð .D [ fpg/!

8d; e 2 D; x; y 2 f?;pg!;ex;ey 2 .D [ fpg/! :

bg.x;ex ; ?_y;ey/ Dbg.x;ex;p_ y;ey/
^ bg.?_x;ex;p_ y; d_

p
_ey/ D [

p
_?; d_

p
]_bg.x;ex ;p_ y;

p
_ey/

^ bg.p_x; d_
p
_ex ;p_ y; e_

p
_ey/ D [

p
; d_

p
]_bg.x;ex ; y;ey/

^ bg.p_x;
p
_ex; y;ey/ D [

p
;
p

]_bg.x;ex ; y;ey/
^ bg.x;ex;p_ y;

p
_ey/ Dbg.x;ex; y;ey/

We have (again, this can be proved by a straightforward rewrite proof):

.RkR/I bF D FI R

Moreover, we have according to Theorem 5:

RI¼..IkAI R/I bF/) .¼F/I R

and therefore
RI¼..IkAI R/I bF/) CI R

Note, the refinement is definite and therefore adequate for F. Therefore we may replace
¼..IkAI R/I bF/ by ¼.bFI AI R/.

The component ¼.bFI AI R/ can be further refined by refining AI R. Let us, therefore,
look for a simplification for AI R. We do not have

I ) AI R

since by the monotonicity of all Þ with A:Þ we have:

Þ.hi; d_hi/ D hi
(otherwise we obtain a contradiction, since by monotonicity the first elements of
Þ.x; d_y/ have to coincide for all x and y). Therefore for all ² with R:²:

9t 2 t icks : ²:Þ.hi; d_hi/ D t_[hi; hi]
This indicates that there are no functions² and Þ with R:² and A:Þ such that ²:Þ:x D x
is valid for all x . We therefore cannot simply refine AI R into I .

We continue the refinement by refining p. We take into account properties of bF. A
simple rewriting proof shows:

.Rk I /I bF ) .Rk I /I bFI AI R
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Summarizing our refinements we obtain:

RI¼bF )
¼..Rk I /I bF//)
¼..Rk I /I bFI AI R//)
RI¼.bFI AI R//)
RI¼..IkAI R/I bF/

This concludes our example of refinement for feedback.

End of example

Recall that every finite network can be represented by an expression that is built by our
forms of composition. The theorems show that a network can be refined by defining
representation specifications for the channels and by refining all its components. This
provides a modular method of refinement for networks.

6 Recursively defined Specifications

Often the behavior of interactive components is specified by recursion. Given a function

− : S P ECn
m ! S P ECn

m

a recursive declaration of a component specification Q is given by a declaration based
on − :

letrec Q: f D − [Q]: f

Recursive specifications are restricted in the following to functions − that exhibit certain
properties.

6.1 Semantics of Recursively Defined Specifications

A function − where
− : S P Fn

m ! S P F j
k

is monotonic with respect to implication, if:

.Q) bQ/) .− [Q] ) − [bQ]/

A set fQi : i 2 INg of specifications is called a chain, if for all i 2 IN and for all
functions f 2 S P Fn

m :
QiC1. f /) Qi . f /
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A function − is continuous with respect to implication, if for every chain fQi : i 2 INg
and all for functions f 2 S P Fn

m :

− [Q]: f D 8i 2 IN : − [Qi ]: f where Q: f D 8i 2 IN : Qi . f /

Note, the set of all specifications forms a complete lattice.

Definition 8 (Predicate transformer) A predicate transformer is a function

− : S P ECn
m ! S P EC j

k

that is monotonic and continuous with respect to implication (refinement).

Note, if − is defined by − [X] D Net .X/ where Net .X/ is a finite network composed
of basic component specifications by our forms of composition, then − is a predicate
transformer.

A recursive declaration of a component specification Q is given by a defining equation
(often called the fixed point equation) based on a predicate transformer − :

letrec Q D − [Q]

A predicate Q is called a fixed point of − if:

Q D − [Q]

In general, for a function − there exist several predicates Q that are fixed points of − .
In fixed point theory a partial order on the domain of − is established such that every
monotonic function − has a least fixed point. This fixed point is associated with the
identifier f by a recursive declaration of the form f D −: f . For defining the semantics
of programming languages the choice of the ordering, which determines the notion of
the least fixed point, has to take into account operational considerations. There the
ordering used in the fixed point construction has to reflect the stepwise approximation
of a result by the execution. For specifications such operational constraints are less
significant.

Therefore we choose a very liberal interpretation for recursive declarations of specifi-
cations in the following. For doing so we define the concept of an upper closure of a
specification. The upper closure is again a predicate transformer:

4 : S P ECn
m ! S P ECn

m

It is defined by the following equation:

4[Q]: f D 9g : Q:g ^ g v f

Notice that 4 is a classical closure operator, since it has the following characteristic
properties:

..bQ) Q/) .4[bQ]) 4[Q]/
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Q) 4[Q]

4[Q] D 4[4[Q]]

A predicate Q is called upward closed, if Q D 4[Q]. Note, by 4 the least element �
is mapped onto the specification Ł that is fulfilled by every function, that is 4[�] D Ł.
From a methodological point of view it is sufficient to restrict our attention to specifica-
tions that are upward closed4. This methodological consideration and the considerable
simplification of the formal interpretation of recursive declarations are the reasons for
considering only upward closed solutions of recursive equations.

A predicate transformer − is called upward closed, if for all predicates Q we have:

− [Q] D 4[− [Q]]

By the recursive declaration
letrec Q D − [Q]

we associate with Q the predicate that fulfills the following equation:

Q: f D 8i 2 IN : Qi : f

where the predicates Qi are specified by:

Q0 D Ł

QiC1 D 4[− [Qi ]]

According to this definition we associate with a recursive declaration the logically
weakest5 predicate Q such that

Q D 4[− [Q]]

The predicate Q is then denoted by f ix :− .

6.2 Refinement of Recursively Specified Components

A uniform representation specification R with abstraction A is called adequate for the
predicate transformer − , if for all predicates X :

.XI RI A) X/) .− [X]I RI A) − [X]/

4Taking the upper closure for a specification may change its safety properties. However, only safety
properties for those behaviors may be changed where the further output, independent of further input, is
empty. A system with such a behavior does not produce a specific message on an output channel, even, if we
increase the streams of the messages on the input channels. Then what output is produced on that channel
obviously is not relevant at all.

5True is considered weaker than false.



6 RECURSIVELY DEFINED SPECIFICATIONS 31

Adequacy implies that specifications for which R is adequate are mapped by − onto
specifications by for which R is adequate again.

Uniform interaction refinement is compositional for recursive definitions based on pred-
icate transformers for which the refinement is adequate. Again definite representations
are always adequate.

Theorem 8 (Compositionality of refinement for recursion) Let representation spec-
ifications R and R be given, where R is uniform with abstraction A and adequate for
the predicate transformer

− : S P ECn
m ! S P ECn

m

For a predicate transformer

b− : S P ECbnbm ! S P ECbnbm
where

RI Ł) ŁI R

and for all predicates X;bX:

.RI bX ) XI R/) .RIb− [bX]) − [X]I R/

we have
RI f ix :½ X :b− [XI AI R]) f ix :− I R

Proof: Without loss of generality assume that the predicate transformers − and b− are
upward closed. Define

Q0 D Ł

QiC1 D − [Qi ]bQ0 D ŁbQiC1 D b− [bQi I AI R]

We prove:
Qi I RI A) Qi

This proposition is obtained by a straightforward induction proof on i. For i D 0 we
have to show:

ŁI RI A) Ł

which is trivially true, since Ł holds for all functions. The induction step reads as
follows: from

Qi I RI A) Qi
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we conclude by the adequacy of − :

QiC1I RI A D fdefinition of QiC1g
− [Qi ]I RI A) fadequacy of − and induction hypothesisg
− [Qi ] D fdefinition of QiC1g
QiC1

We prove by induction on i:
RI bQi ) Qi I R

For i D 0, we have to prove:
RIŁ) ŁI R

This is part of our premises. Now assume the induction hypothesis holds for i; trivially

RI bQi I AI R) RI bQi I AI R

Therefore, with X D RI bQi I A and bX D bQi I AI R by our premise we have:

RIb−[bQi I AI R]) − [RI bQi I A]I R

By the induction hypothesis and by the fact Qi I RI A) Qi we obtain RI bQi I A) Qi

as can be seen by the derivation

RI bQi I A )
Qi I RI A )
Qi

We obtain:

RI bQiC1 ) fdefinition of bQiC1g
RIb−[bQi I AI R]) fpremise for − ,b− with X D RI bQi I A, bX D bQi I AI R g
− [RI bQi I A]I R) funiformity of R, see aboveg
− [Qi ]I R) fdefinition of QiC1g
QiC1I R

2

Note, for definite representations R the premise

RIŁ) ŁI R

is always valid as the following straightforward derivation shows:

RIŁ) fdefinition of Łg
RI AIŁI R) fsince RI A D Ig
ŁI R

We immediately obtain the following theorem as corollary. It can be useful for simpli-
fying the refinement of recursion.
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Theorem 9 Given the premisses of the theorem above and in addition

I ) AI R

we have
RI f ix :b− ) f ix :− I R

Proof: The theorem is proved by a straightforward deduction:

RI f ix :b− ) fpremiseg
RI f ix :½ X : b− [XI AI R]) ftheorem 8g
f ix :− I R

2

Note, even if I is not a refinement of AI R, that is even if I ) AI R does not hold,
other refinements of AI R may be used to simplify the term AI R in the specification.

f ix :½ X :b− [XI AI R]

Example 8 Compositionality of Refinement for Recursion

Of course, instead of giving a feedback loop as in example 7 above we may also define
an infinite network recursively by6:

letrec Q D − [Q]

where
− [X] D 7I .IkX/I F

Again we obtain (as a straightforward proof along the lines of the proof above for
¼F D C shows):

Q D C

It is also a straightforward proof to show that

.RI bX ) XI R/) .RIb− [bX]) − [X]I R/

where b− [bX] D 7I .Ik.bXI AI R//I bF
Therefore we have

RI bQ D QI R

where
letrec bQ Db− [bQ]

by our compositionality results. Again AI R can be replaced by its refinement as shown
above.

End of example

Using recursion we may define even infinite nets. The theorem above shows that a
6The predicate transformer − is obtained by the unfold rule for feedback
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refinement of an infinite net that is described by a recursive equation is obtained by
refinement of the components of the net.

7 Predicate Transformers as Refinements

So far we have considered the refinement of components by refining on one hand their
tuples of input and on the other hand their tuples of output streams. A more general
notion of refinement is obtained by considering predicate transformers themselves as
refinements.

Definition 9 (Refining context) A predicate transformer

R : S P ECn
m ! S P ECi

k

is called a refining context, if there exists a mapping

A : S P ECi
k ! S P ECn

m

called abstracting context such that for all predicates X we have:

A:R:X ) X

Refining contexts can be used to define a quite general notion of refinement.

Definition 10 (Refinement by refining contexts) LetR be a refining context with ab-
stracting context A. A specification bQ is then called a refinement for the abstracting
contextA of the specification Q, if:

A:bQ) Q

Note,R:Q is a refinement of the specification Q for the abstracting context A.

Refining contexts may be defined by the compositional forms introduced in the previous
sections.

Example 9 Refining Contexts

For component specifications Y with one input channel and two output channels we
define a predicate transformer

A : S P EC1
2 ! S P EC1

1

by the equation:
A:Y D ¼..Pk†/I Y /I .†k I /
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Figure 7: Graphical representation of A:Y

where the component P specifies functions

p : D! ð f?;pg! ! D!

A graphical representation of A:Y is given in Figure 7. Let P be specified by:

P:p � 8x 2 D!; y 2 f?;pg! : p.m_x; ?_y/ D m_ p.m_x; y/
^ p.m_x;

p
_ y/ D p.x; y/

For a component specification X with one input channel and one output channel we
define a predicate transformer:

R : S P EC1
1 ! S P EC1

2

where
R:X D QI .IkX/

where the component Q specifies functions

q : D!! f?;pg! ð D!

Let Q be specified by:

Q:q � 8x 2 D! : 9k 2 IN : 8i 2 IN : i � k )
q.mi / D [?iC1; hi]

^ q..mkC1/_x/ D [.?kC1/_
p
;m]_q:x

Let mk stand for the finite stream of length k containing just copies of the message m.
To show that A and R define a refining context we show that:

A:R:X D X

which is equivalent to showing that for all specifications X :

¼..Pk†/I QI . IkX//I .†k I / D X
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This is equivalent to:
¼..Pk†/I Q/I .†k I / D I

which is equivalent to the formula:

8p; q; x : P:p ^ Q:q ) x D .¼..Ik†/I pI q/I .†k I //:x

which can be shown by a proof based on the specifications of P and Q. Let . stand
for .I2k†/ and & stand for the function .†k I1/. For functions p and q with P:p and
Q:q there exists k 2 IN such that 8i 2 IN with i � k:

& : f ix :½ y; z : q:p:. .m_x; .?i /_y; z/ D
& : f ix :½ y; z : q..mi /_ p.m_x; y// D
& : f ix :½ y; z : [?iC1; hi]_q:p.m_x; y/ D
& : f ix :½ y; z : q:p:. .m_x; .?iC1/_y; z/

This can be shown by a straightforward proof of induction on i. By this we obtain for
i D k C 1:

& : f ix :½ y; z : q:p:. .m_x; y; z/ D
& : f ix :½ y; z : q:p:. .m_x; .?kC1/_y; z/

Furthermore:

& : f ix :½ y; z : q:p:. .m_x; .?kC1/_y; z/ D
& : f ix :½ y; z : q..mkC1/_ p.m_x; y// D
& : f ix :½ y; z : [.?kC1/_

p
;m]_q:p.m_x; y/ D

& : f ix :½ y; z : q:p.m_x; .?kC1/_
p
_y/ D

& : f ix :½ y; z : [.?kC1/_
p
;m]_q:p.m_x; y/ D

m_ & : f ix :½ y; z : q:p.m_x; y/ D
m_ & : f ix :½ y; z : q:p:. .m_x; y; z/

We obtain
.¼..I pI q/I&/.m_x/ D
& : f ix :½ y; z : q:p:. .m_x; y; z/ D
m_ & : f ix :½ y; z : q:p:. .m_x; y; z/

By induction on the length on x and the continuity of the involved functions the
proposition above is proved.

End of example

Context refinement is indeed a generalization of interaction refinement. Given two
pairs of definite representation and abstraction specifications R; A and R; A by

A:Y D RI Y I A

R:X D AI XI R
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Figure 8: Graphical representation of the master/slave system

a refining context and an abstracting context is defined, since

A:R:X D
A:.AI XI R/ D

RI .AI XI R/I A)
X

Refining contexts lead to a more general notion of refinement than interaction re-
finement. There are specifications Q and bQ such that there do not exist consistent
specifications R and A where

RI bQI A) Q

but there may exist refining contextsR and A such that

A:bQ) Q

Refining contexts may support the usage of sophisticated feedback loops between
the refined system and the refining context. This way a dependency between the
representation of the input history and the output history can be achieved.

A very general form of a refining context is obtained by a special operator for forming
networks called master/slave systems. For notational convenience we introduce a
special notation for master/slave systems. A graphical representation of master/slave
systems is given in Figure 8. A master/slave system is denoted by QbHe. It consists of
two components Q and H called the master Q 2 S P ECiCm

kCn and the slave H 2 S P ECn
m .

Then QbHe 2 S P ECi
k . All the input of the slave is comes via the master and all the

output of the slave goes to the master. The master/slave system is defined as follows:

QbHe D ¼..Qk†k /I .IkkH/I k m
� /I .†mk Ik/

or in a more readable notation:

.QbHe/: f D 9q; h : Q:q ^ H:h ^ f D qbhe
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where 8x; y; zI
.qbhe/:x D z where .z; y/ D f ix :½ z; y : q.x; h:y/

We can define a refining context and an abstracting context based on the master/slave
system concept: we look for predicate transformers

R : S P ECn
m ! S P ECi

k

with abstracting context
A : S P ECi

k ! S P ECn
m

and for specifications V 2 S P ECiCm
kCn and W 2 S P ECnCk

mCi where the refining context
and the abstracting context are specified as follows:

R:X D VbXe
A:Y D WbY e

and the following requirement is fulfilled:

WbVbXee ) X

We give an analysis of this requirement based on a further form of composition called

a cooperator. The cooperator is denoted by
n
*)

m where m; n 2 IN . For specifications

Q 2 S P ECnCk
mCk

; Q 2 S P ECnCk
mCk the cooperator is defined as follows:

.Q
k
*)

k Q/ 2 S P ECnCn
mCm

.Q
k
*)

k Q/: f D 9q; q : Q:q ^ Q:q ^ f D .q
k
*)

k q/

where

.q
k
*)

k q/:.x; x/ D .z; z/ where .z; y; y; z/ D f ix :½ z; y; y; z : .q.x; y/; q.y; x//

A graphical presentation of the cooperator is given in Figure 9.

A straightforward rewriting shows that the cooperator is indeed a generalization of the
master/slave. For H 2 S P ECk

k :

Q
k
*)

k H D QbHe
In particular we obtain:

WbVbXee D W
i
*)

k .V
n
*)

m X/ D .W
i
*)

k V /bXe



7 PREDICATE TRANSFORMERS AS REFINEMENTS 39

Qx
-

y
-

z
-

�
�

�

�

Qy
-

x
-

z
-

�
��

�

Q
k
*)

k Q

Figure 9: Graphical representation of the cooperator

and therefore the condition:
WbVbXee ) X

reads as follows:

.W
i
*)

k V /bXe ) X

The following theorem gives an analysis for the component W
i
*)

k V .

Theorem 10 The implication

.W
i
*)

k V /bXe ) X

implies

.W
i
*)

k V / Dn m
�

Recall,
n m
� just swaps its input streams.

Proof: By the definition of cooperation we may conclude that for every function �
and every function ¹ such that W:� and V:¹ and for every f where X: f there exists a
function ef where X:ef such that:

9z : .z; z/ D .�
i
*)

k ¹/.x; f:z/, z D ef :x
Since this formula is true for all specifications X and therefore also for definite specifi-
cations, the formula holds for all functions f where in addition f D ef . We obtain for
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the constant function f with z D f:x for all x and for all z:

9z : .z; z/ D .�
i
*)

k ¹/.x; z/, z D z

The equation above therefore simplifies to

9z : . f:z; z/ D .�
i
*)

k ¹/.x; f:z/, f:z D f:x

Now we prove that from this formula we can conclude:

. f:z; x/ D .�
i
*)

k ¹/.x; f:z/

We do the proof by contradiction. Assume there exists x such that:

. f:z; z/ D .�
i
*)

k ¹/.x; f:z/

and x 6D z. Then we can choose a function f such that f:x 6D f:z . This concludes the
proof of the theorem.

2

By the concept of refining contexts we then may consider the refined system

QbWbV bHeee
The refinement of this refined network can then be continued by refining VbHe and
leaving its environment QbWb:::ee as it is.

There is a remarkable relationship between master/slave systems and the system struc-
tures studied in rely/guarantee specification techniques as advocated among others in
[Abadi, Lamport 90]. The master can be seen as the environment and the slave as the
system. This indicates that the master/slave situation models a very general form of
composition. Every net with a subnet H can be understood as a master/slave system
QbHe where Q denotes the surrounding net, the environment, of H. This form of
networks is generalized by the cooperator as a composing form, where in contrast to
master/slave systems the situation is fully symmetric.

The cooperating components Q and Q in Q
k
*)

k Q can be seen as their mutual en-
vironments. The concept of cooperation is the most general notion of a composing
form for components. All composing forms considered so far are just special cases of
cooperation; for Q 2 S P ECn

m; P 2 S P ECi
k we obtain:

QI P D Q
m
*)

0 P if m D i

QkP D Q
0
*)

0 P

¼Q D .QI7/
m
*)

m I if n ½ m
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Let a net N be given with the set 0 of components. Every partition of 0 into two
disjoint sets of components leads to a partition of the net into two disjoint subnets say

Q and Q such that the net is equal to Q
k
*)

k Q where k denotes the number of channels
in N leading from Q to Q and k denotes the number of channels leading from Q to Q.
Then both subnets can be further refined independently.

8 Conclusion

The notion of compositional refinement depends on the operators, the composing forms,
considered for composing a system. Compositionality is not a goal per se. It is helpful
for performing global refinements by local refinements. Refining contexts, master slave
systems and the cooperator are of additional help for structuring and restructuring a
system for allowing local refinements.

The previous sections have demonstrated that using functional techniques a composi-
tional notion of interaction refinement is achieved. The refinement of the components
of a large net can be mechanically transformed into a refinement of the entire net.

Throughout this paper only notions of refinement have been treated that can be ex-
pressed by continuous representation and abstraction functions. This is very much
along the lines of [CIP 84] and [Broy et al. 86] where it is considered as an important
methodological simplification, if the abstraction and representation functions can be
used at the level of specified functions. There are interesting examples of refinement,
however, where the representation functions are not monotonic (see the representation
functions obtained by the introductionof time in [Broy 90]). A compositional treatment
of the refinement of feedback loops in these cases remains as an open problem.
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A Appendix: Full Abstraction

Looking at functional specifications one may realize that sometimes they specify more
properties than one might be interested in and that one may observe under the considered
compositional forms. Basically we are interested in two observations for a given
specification Q for a function f with Q: f and input streams x . The first one is
straightforward: we are interested in the output streams y where

y D f:x

But, in addition, for controlling the behavior of components especially within feedback
loops we are interested in causality. Given just a finite prefix. ex of the considered
input streams x , causality of input with respect to output determines how much output
(which by monotonicity of f is a prefix of y) is guaranteed by f .

More technically, we may represent the behavior of a system component by all ob-
servations about the system represented by pairs of chains of input and corresponding
output streams.

A set fxi 2 .M!/n : i 2 INg is called a chain, if for all i 2 IN we have xi v xiC1.
Given a specification Q 2 S P ECn

m , a pair of chains

.fxi 2 .M!/n : i 2 INg; fyi 2 .M!/m : i 2 INg/
is called an observation about Q, if there exists a function f with Q: f such that for all
i 2 IN :

yi v f:xi

and
tfyi : i 2 INg D tf f:xi : i 2 INg

The behavior of a system component specified by Q then can be represented by all
observations about Q. Unfortunately, there exist functional specifications which show
the same set of observations, but, nevertheless, characterize different sets of functions.
For an example we refer to [Broy 90].

Fortunately such functional specifications can be mapped easily onto functional speci-
fications where the set of specified functions is exactly the one characterized by its set
of observations. For this reason we introduce a predicate transformer

1 : S P ECn
m ! S P ECn

m

that maps a specification on its abstract counterpart. This predicate transformer basically
constructs for a given predicate Q a predicate 1:Q that is fulfilled exactly for those
continuous functions that can be obtained by a combination of the graphs of functions
from the set of functions specified by Q. We define

.1:Q/: f � 8x : 9bf : Q:bf ^ f vx bf ^ bf :x D f:x
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where
f vx bf � .8z : z v x ) f:z v bf :z/

By this definition we obtain immediately the monotonicity and the closure property of
the predicate transformer 1.

Theorem 11 (Closure property of the predicate transformer 1)

.Q) bQ/) .1:Q ) 1:bQ/
Q) 1Q

1:Q D 1:1:Q

Proof: Straightforward, since Q: f occurs positively in the definition of 1:Q, f vx f
and

8x : 9bf : .1:Q/: bf ^ f vx bf ^ bf :x D f:x � .1:Q/: f

2

A specification Q is called fully abstract, if

Q D 1:Q
We may redefine our compositional forms such that the operators deliver always fully
abstract specifications:

QeIP � 1.QI P/
QekP � 1.QkP/e¼ Q � 1.¼ Q/

All the results obtained so far carry over to the abstract view by the monotonicity of1,
and by the fact that we have

1.Q I P/ � 1.1:QI1:P/
1.Q kP/ � 1.1:Qk1:P/
1.¼Q/ � 1.¼ 1:Q/

Furthermore, given an upward closed predicate transformer − we have: if Q is the least
solution of

Q D − [Q]

then Q D 1:Q is the least solution of

Q D 1:− [Q]

The proof is straightforward. Note, by this concept of abstraction we may obtain

I ) AeIR
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in cases where I ) AI R does not hold. This allows additional simplifications of
network refinements.

Note, full abstraction is a relative notion. It is determined by the basic concept of
observability and the composing forms. In the presence of refinement it is unclear
whether full abstraction as defined above is appropriate. We have:

.bQ) Q/) .1:bQ ) 1:Q/

However, if a component Q is used twice in a network − [Q], then we do not have, in
general, that for (determined) refinements eQ of 1:Q there exist (determined) refine-
ments bQ of Q such that:

.− [eQ]) − [bQ]/

Therefore, when using more sophisticated forms of refinement our notion of full ab-
straction might not always be adequate.
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