
88

Factors in the Performance of
the AN1 Computer Network

Susan S. Owicki and Anna R. Karlin

June 15, 1992



Systems Research Center
DEC’s business and technology objectives require a strong research program. The
Systems Research Center (SRC) and three other research laboratories are committed to
filling that need.

SRC began recruiting its first research scientists in l984—their charter, to advance
the state of knowledge in all aspects of computer systems research. Our current
work includes exploring high-performance personal computing, distributed computing,
programming environments, system modelling techniques, specification technology,
and tightly-coupled multiprocessors.

Our approach to both hardware and software research is to create and use real systems
so that we can investigate their properties fully. Complex systems cannot be evaluated
solely in the abstract. Based on this belief, our strategy is to demonstrate the technical
and practical feasibility of our ideas by building prototypes and using them as daily
tools. The experience we gain is useful in the short term in enabling us to refine our
designs, and invaluable in the long term in helping us to advance the state of knowledge
about those systems. Most of the major advances in information systems have come
through this strategy, including time-sharing, the ArpaNet, and distributed personal
computing.

SRC also performs work of a more mathematical flavor which complements our systems
research. Some of this work is in established fields of theoretical computer science, such
as the analysis of algorithms, computational geometry, and logics of programming. The
rest of this work explores new ground motivated by problems that arise in our systems
research.

DEC has a strong commitment to communicating the results and experience gained
through pursuing these activities. The Company values the improved understanding
that comes with exposing and testing our ideas within the research community. SRC
will therefore report results in conferences, in professional journals, and in our research
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have common research interests, and we will encourage collaboration with university
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Abstract

AN1 (formerly known as Autonet) is a local area network composedof crossbar
switches interconnected by 100Mbit/second, full-duplex links. In this paper, we
evaluate the performance impact of certain choices in the AN1 design. These
include the use of FIFO input buffering in the crossbar switch, the deadlock-
avoidance mechanism, cut-through routing, back-pressure for flow control, and
multi-path routing. AN1’s performance goals were to provide low latency and
high bandwidth in a lightly loaded network. In this it is successful. Under
heavy load, the most serious impediment to good performance is the use of FIFO
input buffers. The deadlock-avoidance technique has an adverse effect on the
performance of some topologies, but it seems to be the best alternative, given the
goals and constraints of the AN1 design. Cut-through switching performs well
relative to store-and-forward switching, even under heavy load. Back-pressure
deals adequately with congestion in a lightly-loaded network; under moderate
load, performance is acceptable when coupled with end-to-end flow control for
bursts. Multi-path routing successfully exploits redundant paths between hosts to
improve performance in the face of congestion.
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1 Introduction

AN1 (formerly known as Autonet)[SB90] is a local area network composed of crossbar
switches interconnected by 100 Mbit/second, full-duplex links. Switch ports can be
cabled to one another and to hosts in an arbitrary topology. Software in the switches
automatically builds routing tables and rebuilds them whenever switches or links fail
or recover. AN1 has been in operation at Digital’s Systems Research Center (SRC)
since January, 1990.

The purpose of this paper is to evaluate the performance impact of certain choices in
the AN1 design. These include the use of input buffering in the crossbar switch, the
deadlock-avoidance mechanism, cut-through routing, back-pressure for flow control,
and multi-path routing. The performance metrics include network capacity, packet
latency, and burst-transmission time.

The performance goals in the AN1 design were to provide low latency and high
bandwidth in a lightly loaded network. In this the design is quite successful. However,
some choices in the design lead to problems as the load increases. We examine
each choice across a range of loads to determine how well the decisions scale. We
also consider a number of topologies, since AN1 performance is strongly influenced
by topology. Since most of the interesting performance questions are analytically
intractable, we rely primarily on simulation.

Let us consider questions that arise concerning the design choices mentioned above. A
synchronous switch with FIFO input buffers is well known to saturate at an output link
utilization of 58% under a uniform workload. In fact, the situation with an asynchronous
switch like AN1’s is even worse: the link utilization saturates at 50% under uniform
workload. FIFO input buffers are the most serious drawback to using AN1 in conditions
of high load.

The AN1 deadlock-avoidance technique is known as up*/down* (pronounced up-star
down-star) routing. It prevents deadlocks by restricting the set of paths that a packet
can follow from source to destination. We show that the impact on performance is
highly topology-dependent. Some common topologies, like the torus and hypercube,
fare badly under up*/down* routing; other topologies suffer no loss in performance.
We briefly examine other methods for dealing with deadlock and conclude that none of
them are well suited to the constraints of the AN1 design.

AN1 uses cut-through routing, in which a packet can be transmitted from a switch as
soon as its header has been received and the destination address extracted. We compare
cut-through to store-and-forward routing, in which the entire packet must be received
before any bytes can be transmitted. As expected, cut-through gives much lower packet
latency when there is no contention for the outgoing link. It might be suspected that
the advantage would be less in a congested network, where it is likely, even with cut-
through, that a packet will have completely arrived before it can be transmitted on a
congested link. However, simulation shows that the advantage of cut-through actually
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increases with load.

AN1 uses back-pressure by means of explicit start and stop signals to prevent buffer
overflow at a receiving link. When a host sends too much traffic into a congested
part of the network, back-pressure eventually propagates to the host and slows its
transmission rate. We examine back-pressure as a means of dealing with congestion,
and conclude it is inadequate by itself. When combined with an end-to-end flow control
mechanism like windows, back-pressure can provide a tolerable degree of congestion
control. However, more sophisticated congestion-avoidance techniques would give
better performance under heavy load.

Finally, AN1 allows multiple paths to be used for routing packets between hosts. The
particular path followed by a packet is determined by decisions made as it passes
through each switch. These decisions are made in a way that is intended to route traffic
away from congestion. We consider how successful the AN1 routing mechanism is in
circumventing congested parts of the network, finding that it does quite well in some
cases and less well in others. The AN1 strategy is compared to static routing and to
some slightly more sophisticated forms of dynamic routing. The results are ambiguous.
In some situations sophistication pays off well. However, over a range of topologies
and a uniform client-server workload, the routing policy did not have much effect on
average packet latency.

The rest of the paper is organized as follows. Section 2 gives background information
on AN1 and on the workloads and topologies used in simulation. Section 3 examines
each of the design decisions, identifying its effect on performance and comparing it to
other alternatives. Section 4 presents our conclusions.

Note that this paper only considers performance during normal operation, i.e. when
components are not failing or recovering. The performance of techniques for network
reconfiguration are reported by Rodeheffer and Schroeder[RS91].

2 Background

2.1 AN1 Overview

AN1 consists of a number of switches and host controllers connected by point-to-point
100 Mbit/sec full-duplex links. A packet generated by a source host travels through
one or more switches to reach a destination host. Switches contain logic to forward
packets from an input port to one or more output ports, as directed by the destination
field in the packet header. A crossbar connects the input and output ports.

Switches can be interconnected in an arbitrary topology. The topology can change with
time, as new switches and links are added to the network, or as switches and links fail.
A processor in each switch monitors the state of the network. Whenever the topology
changes, all switch processors execute a distributed reconfiguration algorithm. This
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algorithm determines the new topology and loads the forwarding tables of each switch
to route packets using all currently operational switches and links.

There is a 4 Kbyte FIFO buffer at each switch input port. A start/stop flow control
mechanism is used to ensure that these buffers do not overflow. When the receiving
FIFO is more than half full, a stop signal tells the transmitter to stop sending data; when
the FIFO is half empty, a start signal causes transmission to resume. Limited buffering
implies that a switch must be able to start forwarding a packet without having the entire
packet in the local buffer. Consequently, switches forward packets using a cut-through
technique that minimizes latency.

Switches in AN1 can be interconnected arbitrarily, so the network can assume any topol-
ogy. The network can simultaneously handle multiple packets along different routes.
This fact together with the unconstrained topology allow a great deal of flexibility in
establishing routes that avoid broken components.

Since AN1 uses flow controlled FIFOs for buffering, assumes an arbitrary topology and
does not discard packets in normal operation, deadlock is possible if packets are routed
along arbitrary paths. In AN1, deadlock is avoided by restricting the paths to a set of
deadlock-free routes, based on a loop-free assignment of direction to the operational
links. Consider the graph whose vertices are switches and hosts, and whose edges are
operational links between them. A breadth-first spanning tree is constructed, from a
specified root. Each link is assigned a direction based on this spanning tree, with “up”
meaning “toward the root”. Ties are broken by comparing switch UIDs. With this
assignment, the directed links do not form loops. A legal route is then defined to be one
that never uses a link in the “up” direction after it has used one in the “down” direction.
This up*/down* routing guarantees the absence of deadlocks. AN1 can route a packet
along any of the shortest up*/down* paths between its source and destination. The path
is determined dynamically as the packet passes from switch to switch.

2.2 Methods

Most of the analyses presented here are based on simulation, since many of the interest-
ing features of AN1 are not analytically tractable. We used an event-driven simulator
coded in Modula2+.

Simulations were typically run until 1 million messages were received (6 million for
bursty workloads). For most of the runs, the standard error of the mean was less than
2%. In some high load cases, where the network was approaching saturation, the error
of the mean was as large as 7%. We did not perform longer runs to reduce this error,
because this is not an interesting range for network operation.

Much of what we want to study is sensitive to topology and workload. Each section of
the paper studies a different aspect of the design. Often we construct a topology and
workload specifically to illustrate the impact of that design choice. This is followed
with more generic topologies and workloads to assess the impact in more realistic
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situations.

The topologies used will be described in the next section. In most of our simulations
we used a client/server workload. A small number of hosts in the network are servers;
the rest are clients. All traffic is between clients and servers.

We considered three types of traffic.

ž Fixed length : all messages 1000 bytes.

ž Bimodal : 80% of the packets are 100 bytes long; 20% are 1500 bytes long.

ž Bursty : 80% of the packets are 100 bytes long; 20% are 1500 bytes long and
occur in 100 Kbyte bursts.

The packet frequencies in bimodal and bursty workloads are based on observations
of ethernet traffic at SRC; these apply to AN1 since it currently carries encapsulated
ethernet packets. In the bursty workload, short packets represent RPC, while bursts
represent activities like file transfer. In each simulation we use the simplest workload
that suits the relevant phenomenon. For example, the capacities of different topologies
can be compared with fixed-length messages, while congestion can best be studied with
bursty traffic.

The bursty workload uses end-to-end flow control on the long messages, via a window
of unacknowledged packets. A packet from a long message is generated at the source
host when the appropriate acknowledgment is received. Window size is varied in the
simulations when it has an impact on performance.

The performance metrics of interest are packet latency and burst transmission time.
Packet latency is the time between generation of a packet at a source host and arrival of
the first bit at the destination. Burst transmission time is the time between generation
of the first packet at the source host and arrival of the last packet at the destination host.

Offered load is the percentage of link capacity that a host attempts to send. For the large
topologies, we generally refer to the offered load at a server. For smaller topologies we
indicate the offered load at each link.

2.3 Topologies

AN1 is designed to function correctly regardless of how switches and hosts are linked
together, so long as there is a path between every pair of hosts. However, the perfor-
mance of the network depends on the connection topology. In this section we describe
the six topologies used in this study. We used a range of topologies both to explore
the impact of topology on overall performance and to assess the significance of design
alternatives in the context of possible installations. Of course, we make no claim to
have spanned the range of possible topologies.
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Figure 1: The Corefringe Topology

Table 1 gives the number of switches and hosts in each topology. The topologies are
comparable in size to the network installed at SRC. The cost of an AN1 installation
is proportional to the number of switches, so the host to switch ratio is included as an
indicator of cost.

Hosts/
Topology Switches Hosts Servers Switch
Torus 20 80 8 4
Hypercube 32 96 9 3
Corefringe 28 80 8 2.9
Mstage 24 88 8 3.7
Floors 24 80 8 3.3
Floors+ 24 80 8 3.3

Table 1: Topologies

All the topologies contain redundant connections to give a degree of fault tolerance.
In each case, failure of a single switch cannot partition the network. Hosts have two
connections to the network, but use only one of them at any time. For simplicity, we
show only one connection per host. However we have dimensioned the topologies
with enough switches to allow for redundant host connections. Each switch can have
at most 12 connections.

The first two topologies are standard ones: the torus and hypercube. Torus is a 5 by 4
rectangular array of switches, with four hosts at each switch. Switches are connected

5



S S S S S S S S

arbi t rary  fanout  s t ructure

Level 0

Level 1

Level 2

c c c c c c c c c c

Figure 2: A Multi-Stage Topology

to their neighbors to the north, south, east and west, with wraparound at the edges of
the rectangle. Hypercube is a 5-dimensional hypercube with 32 D 25 nodes. A node
with binary representation x is connected to the 5 nodes whose binary representation
differs from x in exactly one bit.

Experiments with these topologies show that they are badly affected by up*/down*
routing, as discussed in Section 3.2. We next consider two topologies, Corefringe1 and
Mstage, that are more suited to up*/down* routing. Both have the property that all
shortest paths are up*/down* paths. They also give good performance in the face of
switch failures, although those results will not be presented here.

Corefringe (Figure 1) has the best performance under all workloads considered. It
consists of two levels of switches, 8 in the core and 20 in the fringe, plus a single root.
All hosts are attached to fringe switches, four per switch. Each fringe is connected
to four core switches. The connections are such that every pair of fringe switches is
connected to one or two common core switches. Most messages flow from a source
host, to a fringe switch, to the core, back to a different fringe switch, and finally to
the destination host. (If source and destination are attached to the same fringe switch,
the path does not go to the core.) The connections between core and fringe switches
can be described precisely as follows. The fringe switches are divided into 8 groups.
Group 2i, 0 � i � 3, has size 2, and group 2i C 1, 0 � i � 3, has size 3. Each fringe
switch in group i has links to core switches i � 1; i; i C 1 and i C 4 (all taken mod

1Designed by Jim Saxe
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8). Additional links (not shown in the figure) provide fault-tolerance; they are not used
in normal operation. An additional switch (not shown) is designated as the root of the
spanning tree. The root is connected to all core switches. No traffic goes through the
root; it is merely a device to establish the desired up*/down* routing.

Multi-Stage (Figure 2) is a family of topologies designed for a client-server workload.
In general, a multi-stage topology consists of levels (stages) of switches, where all links
between switches connect switches on adjacent levels. All servers are connected to
the switches in the lowest level, denoted level 0, and all clients are connected to the
switches in the highest level. Between level 0 and level 1 there is a complete bipartite
graph. From level 1 to the highest level there can be any sort of fanout structure. The
multi-stage topology we call MStage has 3 levels, with 4 switches in level 0, 4 switches
in level 1, and 16 switches in level 2. There are two servers connected to each level 0
switch and 5 clients connected to each level 2 switch. Switches at level 1 are connected
to 8 switches at level 2 in such a way that each level 2 switch has links to 2 different
level 1 switches.

Finally, since some of the above topologies might be hard to wire, we consider a
topology whose structure could easily map to a multi-floor installation. In Floors, most
connections are between switches and hosts on a single floor. The structure on each
floor (Figure 3) consists of a star with 2 center switches and 4 arm switches. Each of
the arms has 5 hosts connected to it. There is one server host on each of two arms; the
rest of the hosts are clients. This structure is replicated 4 times. In addition, the center
switches are connected in the pattern shown in Figure 4.

The Floors+ topology is like Floors except for four additional links between center
switches on each floor (shown in dotted lines in Figure 4). The significance of these
extra connections is discussed in Section 4.2.

Figure 5 shows packet latency under a fixed-length workload for the six topologies.
There is a wide range in the load at which the topologies saturate, running from
roughly 40% to 70%, and in latency, under moderate to heavy load. Note that Floors
performs substantially worse than Floors+, even though they are nearly identical. This
illustrates the not surprising fact that the interconnection pattern has a substantial effect
on performance, and the more surprising fact that what appear to be small differences
in topology can lead to large performance differences. Factors in the performance of
the topologies will be discussed where appropriate in later sections.

3 Design Decisions

3.1 FIFO Input Buffering

An AN1 switch consists of n input links connected to n output links by a complete
crossbar. A FIFO queue is provided at each input port. There, packets wait until they can
be transmitted to the desired output port. There is a well-known performance problem
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Figure 5: Effect of Topology on Packet Latency

associated with input queueing, known as head-of-line blocking (HOL blocking). HOL
blocking occurs when a blocked message at the head of an input queue prevents a
message behind it from being transmitted over an idle output link.

This problem has been extensively studied. Baskett and Smith [BS76] and Karol et al.
[KHM87] showed that for an n by n synchronous switch with fixed-size messages and
uniformly distributed destinations, the limiting saturation throughput of a switch with
input queueing is 58%. Performance degrades further if the traffic is unbalanced, as
shown in [LL89, Li90].

For asynchronous n by n switches with exponentially distributed message lengths and
uniformly distributed destinations, the saturation throughput is n=.2n � 1/. The links
of a saturated switch can be modeled as n servers in a closed queuing network with
n customers. After completing service, a customer branches with equal probability to
any server. The solution of this queueing system gives the stated result. As n tends to
infinity the saturation throughput tends to 0.5.

This limitation on the throughput of an input queueing switch is a serious impediment
to good performance under heavy load in AN1. The effect of HOL blocking can be
mitigated by topology; for example by having multiple connections between a pair
of switches. However, in all the topologies considered here, the bottleneck under
client/server workloads is a switch, not a link. In switches without HOL blocking,
the bottleneck, if any, is a link. It would be possible to design AN1 topologies which
performed better at high load, at the cost of using more switches. The alternative is to
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use a switch that has no HOL blocking.

There are several ways to avoid HOL blocking with a crossbar switch. They include
random access input buffers, a faster switch fabric with output buffers, input smoothing,
and shared output buffering. The performance of various alternatives are studied by
Hluchyj and Karol [HK88], Iliadis and Denzel[ID90], Chen and Stern [C90], and
Pattavina [Pa90, Pa91]. All of these alternatives to simple FIFO input queueing entail
greater hardware complexity and hence greater cost.

It would also have been possible to base the switch on a shared bus rather than a
crossbar, thus avoiding the HOL problem. This option was not pursued because AN1
is a prototype for a gigabit network, and a shared bus is not feasible at gigabit speeds.

3.2 Up*/Down* Routing

Deadlock is avoided in AN1 by restricting the paths of packets to a set of deadlock-free
routes. As described in section 2, one direction of each link is denoted “up”, and the
other “down”. All routes are restricted to be of type up*/down*.

This scheme has a number of obvious advantages. It is simple, in that the deadlock-free
routes can be set up very efficiently, and universal, in that it works for any topology and
buffer size. There are also problems, however. Up*/down* may reduce the number of
links available for traffic between certain source-destination pairs, and it may cause the
lengths of the paths between hosts to exceed the shortest path length. Most seriously,
it can introduce severe bottlenecks.

We illustrate the bottleneck problem with two examples, the hypercube and the torus.
Consider a hypercube with 2d D n switches. Suppose that each switch has a single
host connected to it, and that each host sends a single message to a random host in the
network. It can be shown that the expected number of messages that must go through
the root switch in this case is nlog2.3=2/: Therefore, the average latency is �.n0:58/

using up*/down*, whereas there are routing schemes for which this traffic pattern has
latency O.log n/[VB81]. This discrepancy remains the same even under a client/server
workload, where each client sends a message to a random server.

For an n by n torus, the situation is not much better. Indeed, a random permutation can
be routed on a torus with average (and maximum) latency O.n/[Le92], whereas with
up*/down* routing, the bottleneck at the root of the underlying spanning tree results in
an average latency �.n2/.

Simulation was used to compare up*/down* routing to arbitrary shortest paths, under a
client/server workload. To avoid deadlock with arbitrary shortest paths, infinite buffers
were assumed.

Figure 6 presents the results of these simulations for Torus, Floors, and Hypercube.
All three topologies suffered reduced performance when routes were restricted to
up*/down*. For the hypercube, the latency at an offered load of 75% jumped from
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Figure 6: Up*/down* (u/d) vs. arbitrary shortest paths (arb)

roughly 200 usec using arbitrary shortest path routes to 700 usec using up*/down*
routes. Note that the hypercube performance using arbitrary shortest paths is similar to
that of CoreFringe.

Figure 6 illustrates that up*/down*routinghurts performance for some standard topolo-
gies. However, it is possible to design topologies whose performance is unaffected
by up*/down* routing; in Mstage, CoreFringe, and Floors+ all shortest paths are
up*/down*.

Perhaps the most disturbing aspect of up*/down* routing is that apparently minor
changes in a topology can have a substantial effect on performance. This can be
illustrated with Floors and Floors+. After Floors was designed, it was discovered that
up*/down* routing prevents any traffic from passing through the center switch on the
same floor as the root. Thus the root becomes a bottleneck, since all traffic to and from
hosts on that floor must pass through it. Adding links between the center switches,
as in Floors+, changes the level assignment in the spanning tree and eliminates the
bottleneck. Latency and network capacity improve dramatically, as shown in Figure 5.
Note that no traffic actually flows through the added links, since they are not on any
shortest paths. The improvement in performance caused by this change is certainly
non-intuitive.

We have seen that up*/down* can reduce the number of available paths and introduce
bottlenecks. It is reassuring that there are topologies that yield good performance with
up*/down* routing, but it does not seem desirable to use a scheme in which minor
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changes in topology can degrade performance in such a major way.

It is natural to ask whether there are more effective deadlock avoidance schemes. Many
deadlock-free routing algorithms have been developed, primarily for store-and-forward
networks [MS80]. These algorithms are based on structured buffer pools. Buffers are
partitioned into classes, and the assignment of buffers to messages is restricted in a way
that prevents cycles. Unfortunately, structured buffer pool approaches require enough
buffer capacity at each link to store multiple packets. A buffer-pool scheme would
require considerably more buffer space than the current 4K bytes/link, even with a
maximum packet size smaller than AN1’s 64 Kbytes. (Note that, with cut-through,
allowing packets bigger than the buffer cause no problems.)

A more relevant comparison is to the deadlock avoidance scheme of Dally and Seitz
[DS87], which was designed to work with cut-through and requires less buffer space.
The Dally and Seitz scheme (DS) restricts routes in order to break deadlock. Physical
channels are split into virtual channels, and routes are defined with respect to the virtual
channels in such a way that no cycles can result.

There are several problems with this approach in the context of AN1. Constructing
deadlock-free routes for an arbitrary network would be a time-consuming addition to
reconfiguration. (Note that the scheme was proposed in the context of fixed regular
topologies.) In addition, the switch needed to implement this scheme would be more
complex. It would require separate buffers for each virtual channel, some means of
connecting each virtual channel to the crossbar, and separate back-pressure for each
virtual channel. Most seriously, the number of virtual channels per physical channel
cannot be bounded a priori. For example, with the shuffle-exchange topology, DS
introduces log.n/ virtual circuits per link, where n is the number of switches in the
network.

The main advantage of DS, is that it tends to avoid the bottleneck problems
of up*/down*. Therefore, for many standard networks (k-ary n-cubes, cube-
connected-cycles and shuffle-exchange graphs), performance should be better than
with up*/down*.

In conclusion, up*/down* is well suited to efficient automatic reconfiguration in the
presence of failures. It prevents deadlock for any topology and with minimal buffer
capacity. However, the performance penalty can be substantial unless the topology
is chosen carefully. There doesn’t seem to be any way to do better with arbitrary
topologies and small buffers. If the problems of up*/down* are unacceptable, then one
of these constraints should be relaxed.

3.3 Cut-through Routing

AN1 uses cut-through routing. This means that instead of receiving the entire packet
before beginning transmission to the next switch, the head of a packet can be advanced
directly from incoming link to outgoing link.
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As soon as the switch logic examines the header of a message, it selects a next link
on the route (provided that an idle outbound link is available) and begins forwarding
the packet down that link. As the packet is forwarded at each switch, its bits can
simultaneously occupy all of the links between the source and the destination. If a
packet arrives at a switch when there is no idle outgoing link, the bits of the packet are
buffered until a link becomes available. At that point the packet can begin transmission,
whether or not all of its bits have been received.

Consider two networks, identical except that one uses cut-through (CT) and one uses
store-and-forward (SF). If identical messages arrive when the networks are idle, the
difference in latency is precisely h ð tb, where h is the hopcount between source and
destination, and tb is the time to transmit the message body. It is not obvious, however,
what happens when there is conflicting traffic in the network. Suppose each network is
offered the same load. How do packet latencies differ between the two networks?

These question have been studied to a limited extent. Kermani and Kleinrock [KK79,
KK80] compare the delay performance of circuit switching (CS), store and forward
message switching (SFMS) and virtual cut-through switching (VCTS), where traffic
is traveling in a tandem path with no cross traffic. Under VCTS, a message arriving
in an incoming link is permitted to utilize an idle outgoing link as soon as its header
has been received. If, however, the outgoing channel is busy, the message must be
received completely before being sent out toward the destination node. Kleinrock and
Kermani present analytic delay models for each of these switching mechanisms, using
the Kleinrock independence assumption [Kl64]. They found that VCTS out-performed
SFMS at low loads, but that the advantage disappeared at higher loads. Abo-Taleb and
Mouftah [AM87] obtain similar results for another variant of cut-through, which is also
different from the form used in AN1.

An exact analysis for the average packet delay in a store and forward network (a tan-
dem array of switches, with a Poisson source of messages of exponentially distributed
length) is not known. Approximations have been obtained using the Kleinrock in-
dependence assumption. Such an approximation is quite inaccurate since interarrival
times are strongly correlated with packet lengths. (The independence assumption is a
good approximation when several packet streams merge, so that some independence is
restored. This is not the case for a tandem array with a single source.) Rubin presents
a more accurate approximation [Ru76], and gives an exact solution for the case where
packets have fixed lengths [Ru75].

We use simulation to study these questions in more detail. The first case we consider,
shown in Figure 7, is a tandem array of switches with two sources, s1 and s2, and all
traffic destined for host d. Most of the interesting phenomena we see in the comparison
between CT and SF arise in this simple situation. Table 2 gives the latencies at low
load (0.05) and at high load (0.9) for both CT and SF. The workloads considered are
fixed length messages and bimodal traffic. Because cut-through and store-and-forward
have somewhat different buffer requirements, unbounded input buffers were used in
this simulation.
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Figure 7: Topology for Comparison of Cut-through and Store-and-Forward

Message ct at ct at sf at sf at
Length 0.05 0.90 0.05 0.90
Fixed 13.4 530 413 912
Bimodal: short 13.7 1030 113 1740
Bimodal: long 13.7 1030 614 1720

Table 2: SF and CT Latencies for Tandem Switches

For fixed length messages, the difference between SF latency and CT latency is close
to h ð tb. (It is 4.99 ðtb at an offered load of 0.05, and 4:77ð tb at an offered load
of 0.9. In this case h D 5.) Note that the advantage of cut-through is consistent over
all loads, in contrast with Kermani and Kleinrock’s findings. This is entirely due to the
difference between cut-through and virtual cut-through, which is actually a hybrid of
cut-through and store-and-forward.

For bimodal messages, the difference between SF latency and CT latency remains at
least h ð tb. It is very close to this value for long messages. For short messages,
however, the difference in latency is even more pronounced (more than twice this value
at an offered load of 0.05, and more than 17 times this value at an offered load of
0.9). The following gives some intuition for this result. Suppose a short message
follows a long message across a link. With CT, the long message can be completely
transmitted before the short message arrives. With SF, only part of the long message
can be transmitted before the short message arrives. Thus the short message has to wait
for the long message to complete transmission before it can start.

With bursty traffic, new phenomena appear. Table 3 gives the burst transmission time
for CT and SF as a function of window size at an offered load of .05. As the window
size increases, the performance of SF improves. Packets in the burst fill up the pipeline,
so that there is parallelism in the transmission of burst packets. Improvement continues
until the window size reaches the hopcount plus one. For cut-through, on the other
hand, there is no pipeline to fill, since long packets tend to be strung out over all the
links. Increasing the window size beyond 2 does not improve burst transmission time.

Similar behavior is observed with full topologies. Figure 8 shows packet latency for
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Window Size CT SF
w=1 102 521
w=2 86 261
w=5 86 113

Table 3: Burst Transmission Time for CT and SF, in msec.

Mstage with the bimodal workload. For both short and long messages the difference in
latency exceeds h ð tb.
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Figure 8: CT vs. SF on Mstage Topology, Bimodal Traffic

3.4 Back-pressure and congestion

Congestion occurs when a link or switch receives packets more quickly than it can
transmit them. Congestion may be momentary or sustained. Sustained congestion can
delay packet transmission and sometimes reduce throughput. In some networks, though
not AN1, it causes packet loss. Congestion can arise even in a lightly-loaded network,
for example, if two bursts pass through the same link. AN1 uses back-pressure to deal
with congestion without packet loss.

Figure 9 shows a simple topology used to illustrate congestion handling in AN1.
Suppose sources s1 and s2 simultaneously send bursts to destinations d1 and d2,

15



9 10

d1

d2

1 3 5 7s1

2 4 6 8s2

A1 B1 C1 D1

A2 B2 C2 D2

9 10

d1

d2

1 3 5 7s1

2 4 6 8s2

A1 B1 C1 D1

A2 B2 C2 D2

Figure 9: Topology Used to Illustrate Back Pressure: parallel lines with cross traffic

respectively, with a large window size. Packets arrive at the bottleneck link (9, 10)
faster than they can be transmitted. As the buffers at switch 9 fill, stop signals are sent
to switches 7 and 8. Buffers at these switches fill as well, causing stop signals to be
sent to switches 5 and 6. Eventually stop signals propagate back to hosts s1 and s2.
Then the hosts can only send packets into the network at the rate at which they can
reach their destination.

How effective is this as a way of dealing with congestion? First, it allows the network to
continue operating in the presence of congestion. No packets are dropped in the network
(although, if congestion is bad enough, timeouts may cause higher-level protocols to
drop packets). Once back-pressure reaches the sources of the congestion, it limits their
ability to send traffic into the network.

However, there are several ways in which this approach is less than ideal. Consider
traffic from C1 to D1. Although this traffic does not pass through the bottleneck, it is
still slowed down by the back-pressure. Table 4 shows the average delay experienced
by cross traffic (from Ai to Bi, Bi to Ci, and Ci to Di) as it competes with bursts. For a
1-packet window, cross-traffic experiences no delays due to congestion. With a window
of 2, cross-traffic close to the bottleneck experiences some delay. As the window size
increases, cross-traffic further from the bottleneck encounters congestion.

The behavior with large window sizes illustrates that back-pressure does not work well
as the sole means of congestion control. The control it exerts is too little and too late:
too late, because it does not take effect until congestion is already a serious problem,
and too little, because the hosts are allowed to continue sending at a rate that keeps
the network congested. An additional problem is that back-pressure is unselective: it
applies to all traffic equally, whether or not it will pass through the bottleneck.

Jain[Ja90] has observed that back-pressure is well suited to dealing with short-lived
congestion, but not the sort of long-lived congestion in the example above. He recom-

16



window Ai - Bi Bi - Ci Ci - Di
size latency latency latency

1 36 36 36
2 35 36 44
3 35 36 246
4 36 204 399
5 94 422 400
6 296 463 400
7 401 466 400

Table 4: Cross Traffic Latencies

mends the combination of back-pressure with other mechanisms to slow transmissions
from the sources of congestion. A number of such mechanisms have been proposed
(e.g. [Ja88], [RJ90]) although none that we are aware of are designed to work in the
presence of multiple paths between hosts. Although AN1 does not include this sort
of congestion avoidance, it does reasonably well in an environment where bursts are
transmitted with small windows.

Figure 10 shows the impact of window size in the Mstage topology under the bursty
workload. In this graph, latency is the delay experienced by short packets from the
time they reach the head of the host queue until the time their first byte is delivered.
We deliberately exclude the time spent waiting behind other packets at the host because
this is artificially inflated for large window sizes by the early entry of burst packets into
the queue. By using latency from the time a packet reaches the head of its queue, we
focus on the way window size affects latency through network congestion. Even at a
reasonably light load, like 30%, a large window size results in latency more than four
times that of window size 1. Burst transmission time was not substantially affected by
window size because of cut-through. Thus small window sizes are preferable for AN1.

In summary, back-pressure combined with window-based flow control for bursts pro-
vides an acceptable level of congestion control at moderate loads. The operating points
achieved in this way are not likely to be optimal, since the window size is statically
determined. A more sophisticated scheme might give better performance.

3.5 Multi-path Routing

AN1 topologies typically contain redundant paths for fault tolerance. Given that
multiple paths exist, there must be some means of determining what path a particular
packet will follow. Other networks with multiple paths use strategies that include static
assignment of paths, dynamic updating of routing tables, and dynamic choice among
the entries in a static routing table. AN1 follows the latter strategy in choosing among
the set of shortest up*/down* paths. In this section we will assess the performance
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Figure 10: Effect of End-to-End Flow Control Window (window size = w).

of AN1 multi-path routing. After reviewing relevant literature, we describe the AN1
mechanisms. Their behavior is illustrated with some small examples. Finally, we
compare the performance of AN1 to static routing and to some mechanisms that offer
the possibility of better performance.

In the Arpanet, [MW80] routing tables are periodically recomputed based on informa-
tion about the load on links in the network. Such techniques would not work in the
current AN1 implementation, where the time to reload the routing table is very large
compared to the message switching time. It is not clear whether the switch design could
be altered to accommodate this sort of adaptive routing.

Reeves et al. [RGC] and Ke and Eager[KE] evaluate the performance of certain locally
adaptive routing strategies. The strategies evaluated are different from those we exam-
ine here, and in both cases the network design differs in a fundamental way from that
of AN1. Both papers found that adaptive routing policies outperformed static routing
strategies, particularly with increasing network size and increased nonuniformity in the
traffic patterns.

In AN1, when a packet arrives at the head of its input buffer, the switch’s routing table
is consulted to determine the possible outgoing links for the packet. If there is more
than one, the choice is determined as follows. First, if any of the links are idle, a
random idle link is selected.2 Second, if all of the links are busy, the packet enters a

2Although the original AN1 design called for random selection, it was eliminated in the implementation
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Figure 11: Adaptive Routing: Congestion at Decision Point
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Figure 12: Adaptive Routing: Congestion Downstream of Decision Point

queue of blocked packets. When an output link becomes free, the first eligible packet
in the queue is transmitted.

Both of these mechanisms exert an adaptive effect in that they tend to direct traffic
away from congested parts of the network. We can see how this occurs in the following
examples.

First, consider the topology in Figure 11. There are three sources, a1, a2 and b. Both a1
and a2 want to transmit 50% of a link bandwidth to A, and b wants to transmit 100% to
B. There is enough capacity in the network to transmit this load, if packets from b pass
through switch 3. However, if some of those packets follow the route through switch 2,
there will not be enough bandwidth on the (1, 2) link to handle the traffic for A. In this
example, AN1’s routing mechanism works extremely well. Simulation confirms that
packets from b almost always find link (1,2) busy and so use link (1,3). This allows
the entire offered load to be transmitted. Note that the AN1 strategy works well in this
case because the routing decision is made at the same switch where congestion arises.

In the next example, the routing decision is made upstream of the congestion point.
Figure 12 shows a slightly different topology; the offered load is the same as in the
previous example. Once again, the network has adequate capacity to handle the offered
load, but only if all traffic from b to B goes through switch 3. But in this case, AN1

because of space constraints. In the implementation, the lowest-numbered available link is taken. We have
chosen to evaluate multi-path routing using random selection because it increases the symmetry of topologies
and thus makes them easier to understand.
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is not able to use the available capacity. Random choice of outgoing links cause 1/2 of
the packets from b to be routed to switch 1. Contention there means that only 1/3 of
link (1,2)’s bandwidth can be used by traffic from b, so back-pressure is exerted on link
(0, 1). Typically, the back-pressure will stop transmission in the middle of a packet.
When the subsequent start signal is sent, and b finishes transmitting the stopped packet,
both outgoing links are once again free. Therefore, on all of b’s routing decisions, each
of the outlinks is chosen with equal probability. Link (0, 1) can only transmit at 1/3 of
the link bandwidth, and the load offered to (0, 3) can be no greater. Thus a load of 2/3
is transmitted from b to B. Sources a1 and a2 are limited to a load of 1/3 because of
contention for link (1, 2).

Examining the reasons for this difficulty suggests two possible modifications to AN1.
The first is to have back-pressure take effect on packet boundaries. This can be
accomplished by using two kinds of stop signals.3 The first, a stop when ready signal,
is sent somewhat before the buffer is full. The link receiving the stop signal can
continue to transmit its current packet, but not a new one. An urgent stop is sent when
the buffer is nearly full, and its receipt causes transmission to stop at once. The signals
can be set up so that only very large packets require an urgent stop.

This modification improves AN1’s performance in the current example. When link (0,1)
is not exerting back-pressure, b’s traffic is still split equally among the two outlinks.
On the other hand, when link (0,1) is stopped on a packet boundary, source b is not
stopped and the next packet coming in will be routed on link (0,3). Therefore, b will
be able to transmit its entire load. However, 1/3 of b’s traffic goes through switch 1.
As a result, each of a1 and a2 will only get a third of link (1,2).

A final modification is to use more information in making the routing decision. Since
lines that have recently been stopped are likely to lead to congested parts of the network,
one option is to choose the output link that has been least recently stopped. In the current
example, this strategy leads to optimal performance. Once link (0,1) receives a stop
signal, b sends all of its traffic on link (0,3). Thus all hosts are able to send their full
offered load.

These examples suggest that applying back-pressure on packet boundaries, as well as
load-based decision making (such as least-recently-stopped) might be useful improve-
ments. However, it is not obvious that similar situations arise in real topologies.

To see that these situations do arise, consider the subgraph of the Mstage topology
shown in Figure 13. We focus on two clients transmitting to two servers. Here packets
from c1 to s1 can go through switch 3 or 4, and those from c2 to s2 can go through 4 or
5. If too many packets are sent to the shared switch 4, performance will be degraded.
Figure 14 presents the performance of alternative routing possibilities. Here single-
path routing (spr) refers to a static routing choice which assigns the same link to both
transmissions. (Any static routing strategy must do this for some such pairs.) Note that
least-recently-stopped routing (lrs routing) achieves latency as low as on a completely

3This technique was suggested by Jim Saxe.
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Figure 13: Subgraph of Mstage

uncongested path (no cong). AN1 routing is not quite as good, but it is substantially
better than single-path. Back-pressure on packet boundaries (on pb) does not provide
much of an improvement over AN1.

This example suggests that adding least-recently-stopped routing to AN1 could sub-
stantially improve performance in some cases. However, experiments over a range of
topologieswith bursty client-server workloads failed to show a substantial improvement
in average latency with this modification. Where an improvement was observed, it was
visible only as the networks came close to saturation. For these topology/workload
combinations, the AN1 strategy, or random selection of static paths at configuration,
worked as well as the more sophisticated techniques. It may be that a workload with
more pronounced hot spots would benefit more from the proposed modifications. Still,
present evidence suggests that they are not worth increasing the complexity of the
switch.

4 Conclusions

We have studied a number of the design decisions from AN1. Our findings are sum-
marized below.

The most significant impediment to good performance under medium to heavy load in
AN1 is the head-of-line blocking problem in the switch. In all experiments, across the
range of topologies, we found that the bottleneck to performance was in the switches,
and not in the links. The HOL blocking problem can be mitigated by designing
topologies specific to the desired workload, or by using extra switches so that each
carries a lower load.

Up*/down* has a substantial negative impact with some topologies, and is undesirable
because it makes topology design difficult. It is well suited, however, to the design
goals of AN1. These goals include the use of arbitrary topologies, fast reconfiguration,
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Figure 14: Performance of Adaptive Routing on a Subgraph of Mstage: comparison
of AN1, single-path routing (spr), back-pressure on packet boundaries (on pb), least-
recently stopped routing (lrs routing), and uncongested routing (no cong).
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accommodation of large packets, small buffers, no packet loss and no deadlock detection
delay. There does not seem to be any reasonable alternative to up*/down* that satisfies
these goals.

The performance of cut-throughswitching exceeded our expectations. It provides much
lower latency than store-and-forward switching not only at light loads, but also under
very heavy load.

Back-pressure works reasonably well in moderately loaded networks with end-to-end
flow control. It could profitably be supplemented with a congestion avoidance protocol,
although it is not clear how to integrate such a protocol with multi-path routing.

Adaptive routing was found to be useful in some situations. Perhaps surprisingly,
static routing performed nearly as well on the large topologies. Using static routing
would simplify the switch hardware, although choosing static paths might increase
the time required for reconfiguration. We did not find the more elaborate adaptive
routing schemes, (such as using the least-recently-stopped link) to have a substantial
performance impact for the workloads and topologies we considered, although larger
differences might show up under less uniform workloads.

The impact of topology on performance is striking. Many standard high-flux networks
(such as the hypercube) are adversely affected by up*/down* routing. To provide
good performance for a given workload, a topology must have two properties. First,
it must provide adequate link and switch bandwidth to carry the load. (HOL blocking
forces separate consideration of link and switch bandwidth). Second, it must not lose
capacity due to up*/down* routing. Unfortunately, the combination of HOL blocking,
up*/down*routing and adaptive multi-path routing make it hard to analyze the capacity
of a given topology, thus complicating topology design.

In summary, we have found that AN1 performs well at low loads, in the region for which
it was designed. To operate well at increased loads, the head-of-line blocking switch
should be replaced. Cut-through and adaptive routing work well. Back pressure with
small flow-control windows gives acceptable performance, but in a network where
substantial congestion is anticipated, back-pressure should be supplemented with a
more sophisticated congestion avoidance protocol.
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