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Systems Research Center

DEC’s business and technology objectives require a strong research program. The
Systems Research Center (SRC) and three other research laboratories are commit-
ted to filling that need.

SRC began recruiting its first research scientists in l984—their charter, to advance
the state of knowledge in all aspects of computer systems research. Our current
work includes exploring high-performance personal computing, distributed com-
puting, programming environments, system modelling techniques, specification tech-
nology, and tightly-coupled multiprocessors.

Our approach to both hardware and software research is to create and use real sys-
tems so that we can investigate their properties fully. Complex systems cannot be
evaluated solely in the abstract. Based on this belief, our strategy is to demonstrate
the technical and practical feasibility of our ideas by building prototypes and using
them as daily tools. The experience we gain is useful in the short term in enabling
us to refine our designs, and invaluable in the long term in helping us to advance the
state of knowledge about those systems. Most of the major advances in information
systems have come through this strategy, including time-sharing, the ArpaNet, and
distributed personal computing.

SRC also performs work of a more mathematical flavor which complements our
systems research. Some of this work is in established fields of theoretical computer
science, such as the analysis of algorithms, computational geometry, and logics of
programming. The rest of this work explores new ground motivated by problems
that arise in our systems research.

DEC has a strong commitment to communicating the results and experience gained
through pursuing these activities. The Company values the improved understand-
ing that comes with exposing and testing our ideas within the research community.
SRC will therefore report results in conferences, in professional journals, and in our
research report series. We will seek users for our prototype systems among those
with whom we have common research interests, and we will encourage collabora-
tion with university researchers.

Robert W. Taylor, Director
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Abstract

Geometric algorithms and data structures are often easiest to understand visually,
in terms of the geometric objects they manipulate. Indeed, most papers in compu-
tational geometry rely on diagrams to communicate the intuition behind the results.
Algorithm animation uses dynamic visual images to explain algorithms. Thus it is
natural to present geometric algorithms, which are inherently dynamic, via algo-
rithm animation.

The accompanying videotape presents a video review of geometric animations;
the review was premiered at the 1992 ACM Symposium on Computational Geome-
try. The video review includes single-algorithm animations and sample graphic dis-
plays from “workbench” systems for implementing multiple geometric algorithms.
This report contains short descriptions of each video segment.
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Preface

This booklet and the accompanying videotape contain animations of a variety of
computational geometry algorithms. Computational geometry has existed as a field
for almost two decades, and interactive systems for producing algorithm animations
have been available for nearly a decade. A collection like this one is overdue.

The ten segments in this tape cover a wide range of algorithms and represent a
wide range of software systems. There are animations of fundamental algorithms,
such as convex hulls, triangulations, and Voronoi diagrams; there are algorithms
that helped shape the field in the early and mid-80’s, such as topological sweep
and optimal line-segment intersection; and there are recently developed algorithms,
such as minimax triangulations. There are single-algorithm animations, general pur-
pose algorithm animation systems, and geometric workbenches. There are sequen-
tial algorithms and parallel algorithms. And there is some humor.

We received eighteen submissions from fourteen different institutions. We thank
the members of the Video Program Committee for their help in evaluating the en-
tries. Besides the editors, the members of the committee were Marshall Bern (Xerox
PARC), Leo Guibas (DEC SRC), Jack Snoeyink (University of British Columbia),
and Seth Teller (UC Berkeley).

The ten video segments are independent of each other. We suggest that you use
the timings and sequence numbers in the table of contents to view segments of par-
ticular interest to you. For example, teachers of introductory computational geome-
try courses might find the fundamental algorithms illustrated in segments 2 and 8
particularly helpful. Seminars and individual researchers might be more interested
in getting an intuitive look at more recent algorithms in segments such as 1 , 3 ,

and 6 .
We believe that algorithm animation has a powerful role to play in communicat-

ing the ideas of geometric algorithms; the accompanying videotape illustrates some
of this power. We hope this video review will inspire others to implement and ani-
mate their own algorithms, so that animation will become increasingly common in
computational geometry. Most of all, we hope you will enjoy the material as much
as we enjoyed putting it together.

Marc H. Brown
John Hershberger
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Real-Time Closest Pairs of Moving Points

Simon Kahan

Max-Planck Institut für Informatik
Saarbrücken, Germany

1

Tracking moving objects is a fundamental component of many real-time systems ap-
plications. This videotape illustrates an algorithm that solves the special case in
which the number of objects is so large that continual tracking of all objects is im-
practical, and an algorithm that computes the closest-pair of point objects.

Overview

Input to the static closest pairs problem is given by the positions of N points in d-
space, and output is a list of pairs of points whose distance is minimal over all pairs.
In the on-line closest pairs problem, the number of points changes with arbitrary
insertion and deletion operations that, along with closest pair queries, form an input
sequence of requests that must be satisfied upon arrival, with no look-ahead.

In this presentation, we address a real-time closest pair problem. More specifi-
cally, our problem falls into the class of Data in Motion problems introduced in [22]
and further developed in [23] and [14]. The input is given byN points, just as in the
static problem, but these points are forever changing with time and correspond to
positions of objects external to the physical computational device. Consequently,
current positions are not readily available within the computer: instead, each posi-
tion is acquired via an explicit update operation per object. Each update is executed
as part of the real-time program. An update operation may be viewed as a call to
an oracle or sensor that extracts the desired position from the world in which the
objects are moving. In effect, the program chooses its input as a subset of the con-
tinuously changing positional data.

1



Companion to video 1 2

Because updates require an excursion from nominal processing, we assume they
consume a significant amount of real time; certainly far more than that required by
a single RAM operation. An important effect is that all real positions are constantly
changing, so those acquired via previous update operations and stored in memory
soon become inaccurate, or stale. In order for the problem to be meaningful, we as-
sume that a bound on the maximum rate of positional change is known; thus, stale
positions approximate true positions. In fact, a point must reside within a ball hav-
ing radius equal to the product of the rate bound and the time since the point’s last
update, and centered about the stale position; the ball is known as the point’s free-
range. More general assumptions on positional uncertainty and update costs are
described in [21].

The desired output of our real-time closest pair problem is the continual iden-
tification of a true closest pair. The output is viewed not as a single discrete entity
as in the static problem, nor as a series of separate query responses as in the on-
line problem, but instead as a discrete-valued function of real-time. Real-time is
discretized into frames, each having constant duration.

The goal is to output a function that matches the identity of the true closest pair
in as many frames as possible. A major constraint is that updates consume real time,
so only a few can be issued per frame. A strategy is needed that chooses these up-
dates based on stale data so as to identify the closest pair with as much confidence
as possible. No matter what update strategy is chosen, errors are inevitable in the
worst case of all positions nearly coinciding.

The theory of data in motion provides a method for evaluating update strategies
in a framework similar to that just described. Instead of computing the percent-
age of errors committed, which may depend on specifics of the object motion, the
method compares (1) the number of updates performed by the strategy before the
closest pair can be correctly deduced from stored data and rate bounds, to (2) the
minimal number required in order to prove the answer is correct. Although com-
parison by difference is a possibility, the ratio of these two quantities turns out to
be a more convenient performance measure for the closest pairs problem. A strat-
egy’s worst case ratio – defined as the maximum over all possible memory config-
urations and current positions – is proposed as a good indicator of the strategy’s
performance, and is called the strategy’s lucky ratio. This is analogous to the com-
petitive ratio in on-line algorithms theory. The smaller the lucky ratio, the better the
strategy. Or so the theory goes . . .

The accompanying video illustrates three strategies for the closest pair problem:
LRU, Greedy, and Pairs. The LRU strategy is to update the least recently updated
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position. This is sensible in that it guarantees a minimal upper bound on how stale
the stored positions can become. However, the theory predicts that the LRU strat-
egy will perform poorly: its lucky ratio is N , the highest the ratio can ever be.

The Greedy strategy makes use of the known rate bound. It identifies a pair
of free-ranges whose boundaries are closest over all pairs, and then updates either
of the corresponding positions. Since the free-ranges are spheres whose centers are
just the stale positions stored in memory and whose radii are easily computed, iden-
tifying the closest pair of free-ranges amounts to the problem of locating the closest
pair of spheres. The free-range of the updated position collapses to a point. The
process is repeated until the stored positions are sufficient to determine the clos-
est pair with certainty. The Pairs strategy is very similar to the Greedy strategy:
it differs only in that it updates both positions corresponding to the closest pair of
free-ranges. The lucky ratio of the Greedy strategy turns out to be N , just as for the
LRU strategy, while the Pairs strategy has a lucky ratio of 2, which is optimal [23].

Besides contradicting our intuition, as explained in the video, there are several
respects in which the Data in Motion abstraction is an imperfect model of our real-
time closest points problem: Lucky ratios are a worst-case measure, and worst-case
situations may occur infrequently in practice. Therefore, a strategy having a smaller
lucky ratio might in fact be less efficient in empirical tests. In addition, the ratio is
based on the relative number of updates per query, not the relative number of errors
committed. Also, the abstraction deals with a single isolated instance of a closest
pair query, whereas in the real-time problem the closest pair is to be maintained
at all times: what happens when there is not time to do all the necessary updates?
What if the closest pair is obvious with no updates? The former issue may result in
errors; the latter is a matter of implementation: the Greedy and Pairs implementa-
tions perform updates in LRU fashion when the closest pair is already determined
based on stale data.

The software used to produce the simulations in the video is true to the real-
time paradigm. Yet the main result – that the Pairs strategy is optimal – jibes with
experiment: in all simulations performed thus far, under a variety of kinds of mo-
tion, the most accurate strategy is consistently the Pairs strategy. This corroboration
suggests that the Data in Motion theory is worth consideration when faced with real-
time motion problems.
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Production Information

The video simulation was created by a C program built upon the Simple Raster
Graphics Package (SRGP) available from Brown University and ran on a SUN SPARC-
station. The spaghetti source code is available from the author upon request. Film-
ing was off the screen via an ordinary camcorder in a dark room. Attempts to di-
rectly record the image electronically did not substantially improve the clarity.

Acknowledgments

Thanks to Joan Lawry for help with the frustrating, on-location filming.



The XYZ GeoBench:
Animation of Geometric Algorithms

Peter Schorn Adrian Brüngger Michele De Lorenzi

Institut für Theoretische Informatik
ETH, CH-8092 Zürich

2

This videotape shows the XYZ GeoBench (eXperimental geometrY Zürich) [26, 29,
30], a workbench for geometric computation. XYZ GeoBench provides an interac-
tive front-end on the Macintosh computer to the XYZ Program Library that contains
many standard algorithms for 2-d problems and some for higher dimensional prob-
lems. The execution of all algorithms can be animated.

Contents of the video

The video shows some animations of standard algorithms and a brief demonstration
of the experimental use of the workbench. In particular we show the computation of
the convex hull, finding a closest pair, and computing all-nearest-neighbors-to-the-
left. (An animation of traveling salesman heuristics, alluded to in the video, was
omitted for reasons of length.)

Convex hulls: The first animation shows Graham’s incremental algorithm [17]
while the second animation shows Preparata and Hong’s divide and conquer method [27].

Proximity problems: We present a plane sweep for computing the closest-pair [19]
and a plane-sweep for computing for each given point a nearest neighbor-to-the-
left [20].

Experimenting with the XYZ GeoBench: The final demonstration shows how
the GeoBench can be used interactively to approximate the Voronoi-diagram of a

5



Companion to video 2 6

scene of convex objects. The objects (line segments, circles, a hexagon) are entered
using the mouse, then they are covered with evenly spaced points and the Voronoi-
diagram of this point set is computed using Fortune’s sweep [13]. The result gives
a good impression of how the Voronoi-diagram of the more complex objects would
look like.

Algorithm animation in the XYZ GeoBench

Algorithm animation is used for demonstrating and debugging. We have chosen a
simple, yet powerful, approach to animation. There is only one version of an imple-
mentation into which code pertaining to the animation is included via conditional
compilation. This code checks whether animation for this particular algorithm is
turned on. If yes, it directly updates the currently visible state of the algorithm and
waits for the user to let it proceed. Finding a graphical representation of a geometri-
cal algorithm’s state is usually simple, since geometric objects have standard graph-
ical representations. The GeoBench supports the drawing, highlighting and flashing
of all geometric objects in a uniform way which lets the implementor easily create
animations. Animation code has the following general structure:

. . .
fGeometric algorithm changing internal state.g
{$IFC myAlgAnim }
fConditional compilation: animation code can be removed easily for higher efficiency.g

if animationFlag[myAlgAnim] then fcheck whether animation is turned ong
fUpdate graphical state information, usually draw some objects.g
waitForClick(animationFlag[myAlgAnim]); fdisplay dialog boxg
fUpdate graphical state information, usually erase some objects.g

end;
{$ENDC }
. . .

The procedure waitForClick provides the only interface between the user and
the algorithm currently animated. It supports single step mode and a movie mode
with user selectable speed (see the “Animation” dialog box in the screen dump be-
low. Updating the visualization of the internal state is facilitated by the convention
that all drawing on the screen is done using XOR graphics which has the benefit
that erasing is the same as drawing. Animating an algorithm consists of choosing
a representation of the internal state (e.g. position of the sweep line, objects in the
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y-table, deactivated objects, etc.) and determining appropriate locations in the pro-
gram where this information needs to be updated. Algorithm animation is imple-
mented for all nontrivial geometric algorithms.

The following screen dump shows the XYZ GeoBench while animating the com-
putation of a Voronoi diagram using Fortune’s sweep [13]:

Production of the video

The video signal of a Macintosh IIfx was fed into a scan converter which was con-
nected to a BetaCam video recorder. The titles were created using MacroMind Di-
rector on the Macintosh. Production time was about three man-days.

System Availability

The XYZ GeoBench system, including documentation, is available via anonymous
ftp from neptune.inf.ethz.ch (129.132.101.33) in directory XYZ.



Optimal Two-Dimensional Triangulations

Herbert Edelsbrunner Roman Waupotitsch

Department of Computer Science
University of Illinois at Urbana-Champaign
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This video illustrates the MINMAXer system. MINMAXer implements various ver-
sions of the edge-insertion paradigm for computing optimal two-dimensional trian-
gulations. It also includes code for the edge-flip heuristics that can be used to ob-
tain locally optimal triangulations. MINMAXer was originally designed for educa-
tional purposes and to study the efficiency of algorithms based on the edge-insertion
paradigm. It can also be used for a comparative study of the quality achieved by
various other triangulations introduced in the literature.

Overview

The visual interface offers two main options. First, it allows the user to follow the
progress by showing insertions and deletions of edges in the wire-frame represen-
tation. A second option colors the triangles according to their respective measure.
With this option one can get a global impression how and how fast the quality of
the triangulation improves during the iteration.

We briefly review the edge-insertion paradigm. The purpose of the method is
to find the triangulation that minimizes the maximum measure over all possible tri-
angulations of a given point set. Such measures are for example the largest angle
or the slope of a triangle. The algorithm starts with an arbitrary triangulation T and
iterates until no improvement is possible. A single iteration adds a new edge to the
triangulation. All edges that intersect this new edge must of course be deleted. The
resulting polygons are now retriangulated. Delicate details of this scheme can be
found in [2, 12].

8
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The implementation supports the case where the original triangulation contains
constraining edges. Furthermore, it lexicographically optimizes the entire vector
of measures, not just the worst one. Because of this property it usually computes a
unique optimum.

For the implementation we use integer arithmetic with ad hoc tie-breaking rules.
The triangulations are stored using so the called quadedge data structure. The visual
interface uses the GL graphics library on a Personal Iris Workstation.

Acknowledgments

We thank Ping Fu, Karl Hess, Susan Goode, and Robin Bargar at NCSA for their
help in producing this video. The second author thanks Ernst Mücke for his help and
advice concerning the graphics interface. At this point we also like to mention Tiow
Seng Tan’s contribution who was the first to see that the edge-insertion paradigm
can indeed compute optimal triangulations.

Funding for this research was provided in part by the National Science Foun-
dation under grant CCR 89-21421.



Boolean Formulae for Simple Polygons

John Hershberger Marc H. Brown

DEC Systems Research Center
130 Lytton Avenue

Palo Alto, CA 94301

4

An animation of an algorithm in action is a powerful tool for exploring the algo-
rithm’s behavior. It has proven to be helpful in teaching computer science courses,
designing and analyzing algorithms, producing technical drawings, tuning perfor-
mance, and documenting programs. As systems for animating algorithms are be-
coming more powerful and easier for programmers to use, it is becoming increas-
ingly important to identify the techniques that an algorithm animator must use This
video illustrates many of the techniques for algorithm animation reported in the lit-
erature thus far [4, 5], especially recent results related to the use of color.

Contents of the video

The algorithm in the videotape finds a representation of a simple polygon’s interior
as a monotone Boolean combination of the halfplanes determined by its edges [9].
A simple polygon is a closed polygonal path, free of self-intersections; a monotone
Boolean combination is a Boolean formula containing only unions (“+”) and inter-
sections (“*”)—no negations are allowed.

The rest of this note itemizes some of the important algorithm animation tech-
niques to note while watching the videotape.

Multiple views. It is more effective to illustrate an algorithm with several different
views than with a single monolithic view. A monolithic view concentrates all the

10
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Figure 1

information about an algorithm into one dynamic image. However, to depict a com-
plicated algorithm in detail, or multiple aspects of even a simple algorithm, a single
monolithic view must encode so much information that it quickly becomes difficult
for the user to pick out the details of interest from the wealth of information in the
view. Conversely, when each view displays a small number of aspects of the algo-
rithm, each view is easy to comprehend in isolation, and the composition of several
views is more informative than the sum of their individual contributions. The views
in the figures display the polygon itself, the Boolean formula and its development,
and the parse tree corresponding to the formula.

Static history. Especially when animation is used to explain an unfamiliar algo-
rithm, it is helpful to present a static view of the history of the algorithm and its
data structures. Such a view is similar to the way an example might be presented
in a textbook; it allows the user to become familiar with the behavior of the algo-
rithm at his own speed, and to focus on the crucial events where significant changes
happen, without paying too much attention to repetitive events.

In Figure 1, the Formula view shows the development of a Boolean formula
over time, as parentheses and operators are added. The CSG Parse Tree view on
the left also embodies a static history: it displays the planar region corresponding
to every subformula ever constructed during the algorithm. The Parse Tree view in
Figure 2 is a compact version of the same tree that omits the displayed regions.

Amount of input data. It is instructive to introduce an animation on a small prob-
lem instance, preferably with textual annotation, to relate the visual displays to the
user’s previous understanding. With small amounts of data, items can be explic-
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Figure 2

itly labeled, and the user can easily understand the connections between the views
(see Figure 1). Once these connections are established, it is appropriate to introduce
larger, more interesting data sets in which the dynamic capabilities of the animation
are more fully utilized (see Figure 2). Of course, information such as labels must
be hidden when displaying these large problem instances, since they would clutter
the view unnecessarily.

Pathological input data. It is often instructive to choose pathological data to push
an algorithm to extreme behavior. For example, in the video the algorithm is run
using both perfectly convex polygons and tight spirals as input. Each input pro-
duced a characteristic parse tree (balanced or skewed). When the algorithm is run
on less contrived data, we can easily pick out the unbalanced subtrees of the parse
tree corresponding to the spirals of the input polygon.

Color unites multiple views. When multiple views show different aspects of the
same data structure, or different representations of logically related objects, an ap-
plication can create a smoother, more harmonious picture by painting correspond-
ing features with the same colors in all the views. The polygon decomposition an-
imation uses the colors blue, red, and black to denote objects that have been, are
being, or have not yet been processed, respectively. This idea is applied uniformly;
combined with the visual prominence of the color red, this makes it easy to see the
connection between the active edges of the polygon and the corresponding active
sites in the formula and parse tree views.

Color reveals an algorithm’s state. As mentioned, red, blue, and black are used
to indicate the state of a vertex. In general, as an indicator of algorithm state, color
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enhances and complements other techniques in at least three ways. First, it gives
an extra dimension for state display—one can encode information in the color of
objects, as well as in their shape, size, texture, etc. Second, it allows denser pre-
sentation of information: fewer pixels are needed to make a color change visible
than to make a change in the shape of an object visible. Third, color is good for
displaying global patterns. For example, if a group of small black dots changes to a
mixture of red and blue dots, it will be much easier to perceive global patterns than
if, say, the circular dots changed to a mixture of black triangles and squares.

Color highlights areas of interest. By temporarily painting a small region with a
transparent, contrasting color, an algorithm can focus attention on the painted area.
Because the highlight color is transparent, it does not interact visually with the data
elements on the screen, but simply draws the eye to them. A second use of high-
lighting is to display transient computations without permanently altering the on-
screen state. For example, in Figure 2 (but not in the video), a brown highlight
shows a convex hull that is an essential part of the algorithm, but which changes
too rapidly to belong to the relatively stable state displayed in the rest of the view.

Color emphasizes patterns. In Figure 2, each deep subtree in the right view grows
downward at the same time as the highlighted vertex runs inward along one of the
spirals in the left view. The colors of the subtrees and the spirals also change in con-
cert. The kinetic connection between the two views underlines the linkage between
spirals and deep parse tree subtrees.



SHASTRA:
A Distributed and Collaborative Design

Environment

Chandrajit L. Bajaj

Department of Computer Science
Purdue University

West Lafayette, IN 47907

5

State of the art in Computer Aided Geometric Design (CAGD) is still a single user,
single workstation, monolithic environment. At Purdue we are developing a re-
search prototype software environment called SHASTRA where multiple users (say,
a collaborative engineering design team) create, share, manipulate, simulate, and
visualize complex geometric designs over a distributed network of workstations and
supercomputers.

System Overview

SHASTRA is a highly extensible, collaborative, distributed geometric design and
manipulation environment. At its core is a powerful collaboration substrate to sup-
port multi-user applications, and a distribution substrate which emphasizes distributed
problem solving.

Under the umbrella of Project SHASTRA, we have developed software toolkits
GANITH, SHILP and VAIDAK. The GANITH algebraic geometry toolkit manip-
ulates polynomial (i.e. algebraic) equations in any number of variables. The SHILP
modeling and display toolkit manipulates curved solid objects with algebraic sur-
face boundaries. The VAIDAK medical imaging and model reconstruction toolkit
manipulates medical image volume data.

14
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Figure 3

Though these toolkits run as independent processes with separate user inter-
faces, they share a common infrastructure of numeric, symbolic, and graphics al-
gorithms. The toolkit processes link to each other and communicate data structures
(images, polynomials, solids, etc.) via inter-process communication facilities using
an XDR-based protocol.

SHASTRA provides these systems with connection management and data com-
munication facilities enabling component systems to use facilities and operations
provided by sibling systems, effectively integrating them into a large scientific ma-
nipulation system. It also provides them with a collaboration substrate to support
cooperative and collaborative design.

Video Demonstration

Figure 3 depicts a smooth, three dimensional model of a human head which was in-
teractively reconstructed by a team of three, working collaboratively on networked
SHASTRA applications. The designers first collaborate on reconstructing a single
polyhedral approximation of the head from given MRI image date using communi-
cating VAIDAK applications. The polyhedral model is then communicated to and
shared by three instances of SHILP, one per user. Users work on disjoint portions of
the head and interactively smooth the polyhedral approximation by replacing them
with piecewise algebraic surface patches via simultaneous remote calls to multi-
ple GANITH instances which support interpolation and least-squares approxima-
tion operations. The polyhedral smoothing operation has been implemented as a
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fully distributed algorithm so that a SHILP user can simultaneously instantiate a
GANITH process and a remote call, separately for independent faces of the poly-
hedral surface. Substantial speedup is obtained for complex designs via this dis-
tributed parallelism.

The video shows an animation of the above computation sequence. Note in par-
ticular the integration of SHILP, GANITH and VAIDAK.

Implementation Notes

All geometric computations and animation were performed in the SHASTRA dis-
tributed and collaborative geometric design environment. The distributed toolkits
of SHASTRA run on any UNIX workstation which support X-11. The animation
on the video tape was done using a network of SPARCstations and Personal Irises.
Scan conversion from RGB to NTSC and recording on S-VHS tape was achieved
by an in-house Panasonic video editing system.

Contributors

The major contributors in the development of the various applications under the
SHASTRA umbrella are:

Graduate Students: Vinod Anupam, Steve Cutchin, Jindon Chen, Tamal Dey
(Ph.D. August 1991), Insung Ihm (Ph.D. August 1991), Kunihiko Okamura, An-
drew Royappa.

Undergraduate Students: Brian Bailey, Andrew Burnett, Daniel Schikore.
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Funding for this project was provided in part by NSF grants CCR 90-00028, DMS
91-01424, AFOSR contract 91-0276, and funds from AT&T and from NSC.



Tetrahedral Break-Up

Leonidas Palios Mark Phillips

The Geometry Center
University of Minnesota

1300 South Second Street
Minneapolis, MN 55454

6

The accompanying videotape contains an animation of an algorithm by Chazelle
and Palios to tetrahedralize a nonconvex polyhedron, that is, partition it into tetra-
hedra [8].

The Algorithm

The algorithm works in two phases. The goal in the first phase is to reduce the size
of the polyhedron to be proportional to the number of its reflex edges. To achieve
this, we identify vertices whose incident edges all exhibit interior dihedral angles
that do not exceed �, and remove cone-shaped pieces of the polyhedron with those
vertices as the apexes. As the operation looks very much like pulling a ski hat off
someone’s head, this phase is called pull-off phase. In the second phase, the fence-
off phase, vertical fences are erected through each edge of the polyhedron partition-
ing it into cylindrical pieces. Each piece can be defined by (i) specifying a horizon-
tal base polygon, (ii) lifting it vertically into an infinite cylinder, and (iii) clipping
the cylinder between two planes (which do not intersect inside the cylinder). The
triangulation of the base polygons of these pieces and the addition of the vertical
fences of the new edges leads to a refined partition into cylindrical pieces whose
bases are triangles; each such piece can then be easily decomposed into at most three
tetrahedra.

17
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The algorithm partitions a polyhedron of n vertices, r reflex edges and zero
genus into O(n+ r

2) tetrahedra, which is asymptotically optimal in the worst case
(see [6]). It runs in O((n + r

2) log r) time, and requires O(n + r
2) space. In the

process, O(r2) Steiner points are introduced. (Note that the problem of deciding
whether a polyhedron can be partitioned into tetrahedra when no Steiner points are
allowed is NP-complete [28].) The computed partition into tetrahedra is not a cell
complex; the algorithm can, however, be slightly modified to produce a cell com-
plex without altering the stated time complexity and size of the partition.

The Animation

The key tool in the production of the animation is Geomview, a general-purpose 3D
viewing program developed at the Geometry Center. Geomview can display geo-
metric objects that change under the control of an external program, while allowing
the user to control the viewpoint and other aspects of the display.

The first step in the animation was to use an existing C program which im-
plements the described algorithm to decompose the example polyhedron. We then
wrote a C program to choreograph the data; this program generated geometric and
motion description statements which were passed to Geomview via a Unix pipe.
The camera location remained under interactive user control which allowed us to
focus on the area of interest without having to program camera motions in advance.

Production Information

The animation was recorded in real time on a Silicon Graphics VGX workstation
with a Sierra Video Systems RGB to SVHS transcoder to generate video output.

System Availability

Geomview is available on the Internet via anonymous ftp from geom.umn.edu
(128.101.25.31). Email inquiries may be sent to software@geom.umn.edu.
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Compliant motion is a motion paradigm that’s particularly suited for robots with
limited sensing and control uncertainty. Under the simplest variant of the compli-
ant motion model, a robot following a commanded direction � travels through free
space in direction � until it encounters an obstacle. Then it slides along the obstacle
until either friction is too large, or � no longer points into the obstacle. In the for-
mer case, it stops; in the latter, it resumes travel through free space in direction �.
This type of motion enables the robot to “grope” its way towards the goal [10, 24].

The compliant motion planning problem is that of determining, for a given en-
vironment and a starting and goal position, all the commanded directions that can
take a robot from the starting position to the goal (the good directions), if any such
directions exist.

Overview

This video presents an animation of a compliant motion planning algorithm by Fried-
man, Hershberger, and Snoeyink [15]. Given a fixed environment and a goal vertex
in the environment, the algorithm analyzes the environment, breaking it up into re-
gions. The regions are formed in such a way that all the starting points in the same
region have similar good directions. This reduces the compliant motion planning
problem to the well-studied point location problem.

When the environment is a fixed simple polygon and the goal is a fixed vertex of
the environment, the good directions for any starting point form a single interval,

19
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bounded by a start direction and a stop direction. We produce two subdivisions
of the environment; we use the start subdivision to determine the start direction,
and the stop subdivision for the stop direction. The regions in each subdivision are
triangles and trapezoids.

In order to produce the regions, we work our way backwards from the goal and
follow the changes in the �-backprojection, which is a subset of the environment
containing all the starting points for which � is a good direction. As � rotates, the
�-backprojection gains and loses regions, and we accumulate these regions in the
appropriate subdivision. We compute the regions only for directions � at which the
�-backprojection undergoes major changes. Such directions are called events, and
can be attributed to either a vertex or an edge of the environment.

The Video

The video starts with the first phase of the algorithm on a simple polygonal room.
The goal is the bottom corner of the room. As the direction � (indicated by the blue
arrow in the center) rotates, the bottom copy of the room shows the corresponding
�-backprojections. Events are indicated by the flashing edge or vertex that caused
them, and for each event we generate new regions in the start subdivision (the green
subdivision in the top left copy of the room) or the stop subdivision (the red subdi-
vision in the top right copy).

When the direction � completes a full turn, the preprocessing is complete, and
the video concludes with three queries for the initial position of the robot. For every
query point, we consult the start and stop subdivisions for the corresponding bound
of the good direction interval, and then we highlight the path followed by a robot
commanded by the middle direction of the good interval to prove that the robot can
indeed reach the goal.

Production Information

We used a Silicon Graphics IRIS 240 GTX workstation to generate the video. The
animation program is approximately 6,500 lines of C (including an interactive envi-
ronment editor), and utilizes Silicon Graphics’ GLTM software. Because of the high
rendering speed of the IRIS GTX, we were able to record the video in real time.
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In this video we illustrate a few of the algorithms that have been developed using our
Workbench for Computational Geometry. The Workbench is not primarily an algo-
rithm animation system, but is designed as a general geometrical programming en-
vironment, providing tools for: creating, editing, and manipulating geometric ob-
jects; demonstrating and animating geometric algorithms; and most importantly,
for implementing and maintaining complex geometric algorithms.

Video Contents

The video first shows several triangulation algorithms. The importance of triangu-
lations for a variety of practical applications is well known. In addition to those
significant applications, triangulation has become an important tool for other prob-
lems in computational geometry. The triangulation algorithms demonstrated are:

� Triangulation via “ear removal”

� Triangulation of monotone polygons [16]

� Triangulation of simple polygons via monotone decomposition [16]

� Triangulation of simple polygons via efficient trapezoidation [33]

22
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� Randomized triangulation [31]

The second part of the video shows algorithms based on triangulation. A variety
of problems can be solved in linear time, once a triangulation is known. Among
these are shortest path problems:

� Point-to-Point Shortest Path [25]

� Shortest Path Tree from a given Point [18]

and link distance problems [32]:

� Construction of window tree

� Execution of a link query

Animation Facilities

In the Workbench, animation of an algorithm is the responsibility of the algorithm
implementor. Code to perform the animation is added, using a simple and well-
defined protocol, to the implementation. This approach considerably simplifies the
animation system, but has a cost in flexibility. In particular, the system does not
currently support different animations of the same algorithm or multiple views in
an animation. Animation is simplified considerably by its restriction to the domain
of computational geometry. The workbench is an object-oriented system, dealing
primarily with geometric objects that have a clear graphical representation. Many
animations can be represented by simple manipulations of the same objects used in
computation. This model can easily be extended to arbitrary abstract data types by
defining an appropriate visual representation, but to date our animations are purely
geometric.

The code for animating an algorithm consists mainly of commands to add a
“frame” for a particular geometric object or set of objects. These frames are ren-
dered and stored as Macintosh PICTs, which improves speed and memory usage
for rendering.

Animating an algorithm usually affects its time and space requirements. This
must not be allowed to affect algorithms which are not being animated. The work-
bench accomplishes this by constructing blocks, unevaluated sections of code, which
are passed to the animation. If animation is not active, these are discarded with a
very small constant overhead. If animation is active, they are evaluated to produce



Companion to video 8 24

a frame. Thus the same code can be used for animated and non-animated versions
without modification or recompilation.

A separate process controls display of the animation, allowing animation to be
simultaneous with the computation. This process renders each frame as it is sent, as
well as storing it for later replay. The animation process is user-controllable, with
commands modeled after a tape recorder, such as play, record, cue, fast-forward,
and stop.

The animation system was designed to allow control of animation depth for al-
gorithms which make use of other algorithms as intermediate steps. This is done by
maintaining a hierarchy of animations. When one algorithm calls another, a sub-
animation is constructed, containing the animation of the called algorithm. In gen-
eral, the result of executing a complex algorithm defines an animation tree. The
depth of the animation tree defines the depth of the animation. The depth can be
controlled by the user during creation and play-back by using the deeper and shal-
lower commands. This allows a user to view execution of an algorithm at an ap-
propriate level of detail.

Some algorithms may require interaction with the user during algorithm exe-
cution. For example, a shortest path algorithm might ask the user for the source
and destination of the path. We would expect this request to be made during algo-
rithm execution but not during play-back of the animation. The animation system
supports such input/output interactions.

Production Information

This video was recorded using a Macintosh II equipped with a NuVista+ video card,
whose output was connected directly to a video recorder.
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This videotape shows the workings of a topological sweepline, as it visits the O(n2)
intersections in an arrangement of n lines in the plane.

Overview

An ordinary sweepline is a vertical line that visits the O(n2) intersections in an ar-
rangement of n lines in the plane by sweeping across the arrangement from left to
right. Such a sweepline uses only O(n) working storage, but, because it sorts the
intersections in x-order, it spendsO(n2 log n) time. In many cases the sorting is un-
necessary; it is enough just to visit all the intersections in any order. A topological
sweepline visits the intersections in optimal O(n2) time by sacrificing the straight-
ness of the ordinary sweepline, while retaining the O(n) space bound. [11].

In between visiting intersections, the topological sweepline crosses n edges of
the arrangement—an upper and a lower edge from each convex face it crosses. The
active edges—those crossed by the sweepline—are shown in red in the “Sweep
Line” view. The light blue edges have already been swept, and the thin black edges
remain to be swept. The black dots show intersections that the sweepline could visit
next. The sweepline can choose arbitrarily which black dot to advance over next,
or can even advance over all of them in parallel. The lower and upper “Horizon”
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views display the data structures that the algorithm uses to identify intersections that
it can visit next.

Implementation Notes

The animation was implemented in an in-house dialect of Modula-2 using the Zeus
algorithm animation system [3], and runs on a 5-processor Firefly workstation. De-
tails about the techniques used in developing this animation (e.g., the use of color
and the choice of input data) are available elsewhere [4].
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This videotape shows a line segment intersection algorithm in action and illustrates
its most important features. The algorithm, due to Chazelle and Edelsbrunner [7],
has an optimal running time of O(n log n+ k), where n is the number of line seg-
ments and k is the number of pairwise intersections.

Overview

As in the classical Bentley-Ottmann method [1], the Chazelle and Edelsbrunner [7]
algorithm operates in a sweepline fashion by scanning the segments from left to
right, and maintaining the vertical visibility map of the region swept along the way.
Two important differences are that (i) the schedule includes only the endpoints of
the segments and not the intersection points, and (ii) the cross section along the
sweepline is maintained in a lazy fashion, meaning that the nodes of the tree rep-
resenting the cross section might correspond to segments stranded behind past the
sweepline. Also, the loop invariant for the sweepline is not simply that the portion
of the map left of it should be maintained but also that the map associated with all
the segments intersecting the sweepline be available as well. Segments are cut up
into smaller pieces in preprocessing, so as to enforce a normalization condition re-
lated to the schedule of insertions.

27
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Production Notes

The animation comes from a system currently being developed at Princeton by Ayel-
let Tal and David Dobkin. This system is intended to ease the interface between
geometric code and the graphics device. It is built on top of Cheyenne, a device in-
dependent graphics library developed by David Dobkin and Eleftheros Koutsofios.
The program runs on Sun and Silicon Graphics IRIS workstation. Recording was
done at the Interactive Computer Graphics Lab at Princeton and editing was done
with the assistance of the Princeton Department of Media Services.
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