
86

A Logical View of Composition

Mart��n Abadi and Gordon D. Plotkin

May 1, 1992

Systems Research Center

DEC's business and technology objectives require a strong research program.

The Systems Research Center (SRC) and three other research laboratories

are committed to �lling that need.

SRC began recruiting its �rst research scientists in l984|their charter, to

advance the state of knowledge in all aspects of computer systems research.

Our current work includes exploring high-performance personal computing,

distributed computing, programming environments, system modelling tech-

niques, speci�cation technology, and tightly-coupled multiprocessors.

Our approach to both hardware and software research is to create and use

real systems so that we can investigate their properties fully. Complex

systems cannot be evaluated solely in the abstract. Based on this belief,

our strategy is to demonstrate the technical and practical feasibility of our

ideas by building prototypes and using them as daily tools. The experience

we gain is useful in the short term in enabling us to re�ne our designs, and

invaluable in the long term in helping us to advance the state of knowledge

about those systems. Most of the major advances in information systems

have come through this strategy, including time-sharing, the ArpaNet, and

distributed personal computing.

SRC also performs work of a more mathematical
avor which complements

our systems research. Some of this work is in established �elds of theoretical

computer science, such as the analysis of algorithms, computational geome-

try, and logics of programming. The rest of this work explores new ground

motivated by problems that arise in our systems research.

DEC has a strong commitment to communicating the results and experience

gained through pursuing these activities. The Company values the improved

understanding that comes with exposing and testing our ideas within the

research community. SRC will therefore report results in conferences, in

professional journals, and in our research report series. We will seek users

for our prototype systems among those with whom we have common research

interests, and we will encourage collaboration with university researchers.

Robert W. Taylor, Director

iii

A Logical View of Composition

Mart��n Abadi and Gordon D. Plotkin

May 1, 1992

iv

Gordon D. Plotkin is at the Department of Computer Science of the Uni-

versity of Edinburgh.

A preliminary version of this material appeared in \A Logical View of Com-

position and Re�nement," in the proceedings of the Eighteenth Annual ACM

Symposium on Principles of Programming Languages (1991).

c
Digital Equipment Corporation 1992

This work may not be copied or reproduced in whole or in part for any com-

mercial purpose. Permission to copy in whole or in part without payment

of fee is granted for nonpro�t educational and research purposes provided

that all such whole or partial copies include the following: a notice that

such copying is by permission of the Systems Research Center of Digital

Equipment Corporation in Palo Alto, California; an acknowledgment of the

authors and individual contributors to the work; and all applicable portions

of the copyright notice. Copying, reproducing, or republishing for any other

purpose shall require a license with payment of fee to the Systems Research

Center. All rights reserved.

v

Authors' Abstract

We de�ne two logics of safety speci�cations for reactive systems. The logics

provide a setting for the study of composition rules. The two logics arise

naturally from extant speci�cation approaches; one of the logics is intuition-

istic, while the other one is linear.

vi

Contents

1 Introduction 1

2 Overview 3

2.1 A calculus of sets of behaviors : : : : : : : : : : : : : : : : : : 3

2.2 A calculus of sets of processes : : : : : : : : : : : : : : : : : : 5

2.3 Testing : 7

3 Intuitionistic Logic 8

3.1 Composition : 9

3.2 Stuttering : 12

4 Intuitionistic Linear Logic 14

5 Classical Linear Logic 21

6 Comparisons 28

Acknowledgements 33

References 35

vii

1 Introduction

Modular, hierarchical methods for specifying reactive systems [13] include

rules for composing and re�ning speci�cations (e.g., [9]). The form of the

rules suggests a possible speci�cation logic. In it, the propositions would

be system speci�cations; the notations for combining speci�cations would

become logical connectives; and the rules for composition and re�nement

would be formulated as sound inference rules. The logic would thereby

provide a setting for the study of composition and re�nement rules. It

should also provide a framework for writing speci�cations and for verifying

them using these rules.

In this paper, we de�ne and develop such a logic for composition. We intend

to treat re�nement in a second paper, and thereby complete a framework for

the use of the modular speci�cation methods that composition and re�ne-

ment rules underpin. At that point it will be natural and useful to consider

a formal logic; in this paper we prefer to work at the semantical level. (The

treatment of re�nement and the formal logic were sketched in a preliminary

version of this paper [2].)

In fact two logics of composition arise naturally. One of the logics is an

intuitionistic logic, while the other one is linear [12]. In the intuitionistic

logic, a speci�cation is a set of allowed behaviors, as in [19, 6]. In the linear

logic, a speci�cation is a set of allowed processes, much as in the sense of

Abrahamson [3].

Composition rules rules typically apply to safety properties, and also, some-

times with signi�cant complication, to certain liveness properties. Here we

treat only safety properties. With this restriction, the logics provide a new

understanding of some current speci�cation methods, and suggest exten-

sions. They are intended as a basis for Lamport's transition-axiom method

for reactive systems [21].

A reactive system can be expected to operate correctly only when its envi-

ronment operates correctly. For example, a concurrent program module can

be expected to exhibit desirable behavior only when its inputs are of the

proper types. But the environment cannot be required to operate correctly,

and the system's obligations are void when the environment operates incor-

rectly. An assumption-guarantee speci�cation states that a reactive system

satis�es a speci�cation M if it operates in an environment that satis�es an

assumption E; this speci�cation is sometimes written E)M .

1

A Composition Principle gives a way of combining assumption-guarantee

speci�cations while discharging their assumptions [23, 24, 26, 1]. A simple

version of the principle, applied to two reactive systems p1 and p2, says:

If p1 satis�es M2)M1

and p2 satis�es M1)M2,

then when they are run in parallel

p1 satis�es M1 and p2 satis�es M2.

As stated, the Composition Principle is not sound in general. The underlying

propositional reasoning is obviously (and intriguingly) circular.

However, the principle is sound when M1 and M2 are safety properties, and

under some additional hypotheses. For instance, consider two processes p1
and p2 that communicate by the distributed integer variables x1 and x2; it

is assumed that only p1 writes x1 and that only p2 writes x2. LetM1 be \x1
never decreases" andM2 be the corresponding assertion for x2, and suppose

that p1 and p2 satisfy M2) M1 and M1) M2, respectively. Then it is

sound to conclude that M1 and M2 both hold, that is, that neither x1 nor

x2 ever decreases.

An important test for a logic of speci�cations is whether it can be used to

express and to illuminate the Composition Principle. Both of our logics are

designed to satisfy this criterion. For example, the intuitionistic formulation

of the principle just given is:

(M2 !M1)^ (M1 !M2) `M1 ^M2

with a proviso to guarantee that M1 and M2 are speci�cations of separate

processes. The logics can express also other variants of the Composition

Principle; they serve in comparing these variants and, occasionally, in dis-

covering new ones.

As we consider only safety properties, which are closed sets, we obtain an

intuitionistic logic. In this we follow Hennessy and Plotkin [16] and, less

directly, Abramsky with his proposal of a general logic of open sets [4]. Par-

allel composition can be represented by conjunction, as in works of Lamport

and Pnueli. Both Dam [7] and Abramsky [27] pointed out that in general

parallelism will give extra, quantalic structure. This indeed happens when

we take speci�cations to be sets of processes, and then the logic of speci-

�cations is linear. Our work may yield some evidence for the relevance of

2

linear logic to concurrency. Other evidence can be found in work on Petri

Nets (e.g., [22]) and testing equivalence [5].

We introduce our logics in Section 2. In Section 3 we develop the intuitionis-

tic logic of safety properties of behaviors, treating also invariance under stut-

tering. In Section 4 we develop the intuitionistic linear logic of safety prop-

erties of processes. As well as the natural logical structure, a new connective

is needed to formulate a Composition Principle in this setting. In Section 5

we consider notions of testing for processes. We begin with an external no-

tion, somewhat after the manner of De Nicola and Hennessy [10, 14], where

the tests are not themselves processes in the model; then we obtain an in-

ternal notion where they are. If we equate processes indistinguishable under

testing we obtain a model of classical linear logic; this can also be obtained

from the intuitionistic one as the collection of facts for a choice of ? re-

lated to testing, following another suggestion of Abramsky [27]. Finally, in

Section 6 we relate the intuitionistic logic with the intuitionistic linear logic

showing how the latter can be regarded as an abstraction of the former. The

reader may wish to consult [8, 17, 25] for information on partial orders, cpos

(complete partial orders), complete Heyting algebras, and quantales.

2 Overview

We review the basic propositional intuitionistic and linear calculi. We de-

scribe the usual connectives, and motivate the addition of new constructs,

which are needed in order to support the assumption-guarantee speci�cation

style.

2.1 A calculus of sets of behaviors

The intuitionistic logic is inspired by the work of Lamport, Pnueli, and

others, where the speci�cation of a system is a set of allowed behaviors.

In turn, a behavior is a sequence of state transitions, and a state is an

assignment of values to state components, or variables. Each state transition

is attributed to an agent, the environment process or system process that

caused the state change. Thus, a behavior is a sequence

s0
a1�! s1

a2�! s2
a3�! : : :

3

where each si is a state and each ai is an agent, and the sequence is either

in�nite or else ends in a state sm for some m � 0.

The use of agents is motivated by the obvious need to distinguish between

actions performed by the environment and those performed by the system.

In any particular speci�cation, it su�ces to consider two agents: the envi-

ronment and the system. However, it is preferable to allow arbitrary sets

of agents, in order to ease the composition of speci�cations. Agents are

taken as a primitive notion below, but this can be avoided, for example as

in Pnueli's work [24].

Since we are concerned only with safety properties, we restrict attention to

�nite behaviors. A safety property is then a pre�x-closed set of behaviors. In

the logic, the propositions denote safety properties, and ` simply stands for

�. The collection of safety properties forms a complete Heyting algebra [17]

and so the intuitionistic logical operations ^, _, and ! are available. The

�rst two are intersection and union.

Conjunction serves its usual logical role: a process p satis�esM1^M2 if and

only if it satis�es both M1 and M2. Conjunction represents also parallel

composition: if p1 satis�es M1 and p2 satis�esM2 then p1 and p2 in parallel

satisfy M1 ^ M2. For instance, suppose that only p1 writes the variable

x1, and it guarantees that x1 never decreases, and similarly for p2 and

x2; then the parallel composition of p1 and p2 guarantees that x1 never

decreases and that x2 never decreases. Further, disjunction corresponds to

nondeterministic choice: if p1 satis�esM1 and p2 satis�esM2 then a process

that acts like either p1 or p2 satis�es M1 _M2.

Implication turns out to be a familiar and handy operation: E ! M is

the set of all behaviors that satisfy M for as long as they satisfy E, or

longer. The connective ! has arisen in works on the Composition Principle

(in [1], and implicitly in [23] and [24]). Under reasonable hypotheses, the

speci�cations E) M and E ! M have the same implementations, and

hence) can be replaced with !. The fact that the logical formulation

naturally yields this connective is encouraging, as it suggests that the logic

might be sensible and useful.

The speci�cation of a system cannot require the environment to work prop-

erly, and so any environment action should be allowed. More precisely, if a

property M is intended to specify the process represented by an agent (or

set of agents) �, then any pre�x-minimal behavior not in M should end with

a � state change. When this condition holds, we say that M constrains at

4

most �, and write M / �.

With this notation, the Composition Principle reads: for any M1 and M2,

(M2 !M1)^ (M1 !M2) `M1 ^M2

provided M1 / �1, M2 / �2, and the sets �1 and �2 are disjoint. The proviso

expresses the requirement thatM1 andM2 describe di�erent processes. (The

principle is not sound otherwise, for example if M1 and M2 are the same.)

Note how the logical approach obviates the need for explicit reference either

to processes (as in [23, 24]) or to the realizable parts of properties (as in [1]).

Many variants of the Composition Principle can be treated in this frame-

work; for example, we easily obtain:

E ^M2 ` E1 E ^M1 ` E2

(E1 !M1)^ (E2 !M2) ` (E !M1 ^M2)

whereM1/�1 andM2/�2. Some of these variants are well known, while oth-

ers seem to be new. All of them can be proved equivalent using propositional

reasoning and a few rules about the constrains relation.

2.2 A calculus of sets of processes

In the linear calculus, a proposition denotes a set of processes. We take a

process to be a set of sequences of state pairs. Intuitively, a process that

contains (s1; t1) (s2; t2) (s3; t3) : : : can change the state from s1 to t1, and

later from s2 to t2, and later yet from s3 to t3, : : : .

In the study of safety, it su�ces to consider �nite sequences of state pairs.

We require also that processes be pre�x-closed. It turns out that the set of

safety properties is isomorphic to the set of processes; thus, we may identify

safety properties and processes.

The logical operations ^, _, and! are still meaningful. They arise as before

from the complete Heyting algebra structure of the partial order of safety

properties.

The property M1 ^M2 allows the processes that are allowed by both M1

and M2; conjunction does not have any particular relation with concur-

rency. Disjunction corresponds to nondeterministic choice, as before. Fi-

nally, M1 !M2 includes the processes that behave like a process in M2 for

as long as they behave like a process in M1 (or longer).

5

Intuitionistic linear logic arises when we consider the parallel composition

of two processes. The parallel composition of p1 and p2 is the set of shu�es

of p1 sequences with p2 sequences. At the level of speci�cations, this gives

rise to a new logical operation,
, which is the multiplicative conjunction in

linear logic. A process satis�es M1
M2 if it is the parallel composition of

an M1 process with an M2 process. Thus, if p1 satis�es M1 and p2 satis�es

M2 then the parallel composition of p1 and p2 satis�es M1
M2.

Associated with the connective
 is a linear implication operation, ��. The

property M1 ��M2 is the largest N such that M1
 N is a subset of M2.

Thus, p 2 M1 ��M2 if and only if the parallel composition of p with any

q 2M1 satis�es M2.

Conjunction and disjunction are then the additive connectives of linear logic.

The exponential operator ! is trivial, but a nontrivial (�)� construct can be

added to represent the parallel composition of a number of like processes. In

the next subsection, we propose an interpretation of the classical constructs.

The standard intuitionistic linear connectives do not su�ce as a basis for

assumption-guarantee speci�cations. In particular, p 2 E��M is not equiv-

alent to the desired \p satis�es M in any environment that satis�es E."

The assertion p 2 E��M means only that the composition of p with any E

process q is anM process. It is possible that q is not the whole environment

of p|there could be a third process running in parallel; it is also possible

that p does not satisfy M in this environment|the parallel composition of

p and q does.

To remedy this de�ciency, we introduce a connective ��. The property

M1 ��M2 consists of the processes that, when run in parallel with an M1

process (and with nothing else), behave like M2 processes. The special case

of M1 �� M2 where M1 contains only the null process 1 is of particular

interest; f1g ��M is the set of all processes that behave like a process in

M when run by themselves, with no interference from the environment. We

denote this property by M�.

Now the Composition Principle goes:

(M2 ��M1)
 (M1 ��M2) ` (M1
M2)
�

This formula is valid in our model, without any additional proviso. As in

the intuitionistic case, a number of variants of the Composition Principle

6

are available, and for example we have also the more general:

E
M2 ` E1 E
M1 ` E2

(E1 ��M1)
 (E2 ��M2) ` (E ��M1
M2)

2.3 Testing

The linear logic described so far is an intuitionistic one. It does not include

a constant ? that resembles falsehood, or a negation-like involution (�)?.

The notion of testing suggests useful ? and (�)? constructs, and gives rise

to a di�erent account of assumption-guarantee speci�cations. We can view

the environment of a process as a tester for the process. Tests start from

a distinguished state �; and another distinguished state � represents the

result of successful tests. A process p passes the test of q if p and q may

yield the state � when they run in parallel, starting from �, and q fails p

otherwise. A process succeeds if it may yield � when it runs in isolation,

starting from �, and it fails otherwise. Thus, p passes the test of q if the

parallel composition of p and q succeeds.

Failure is a safety property, and we write ? for the set of all processes

that fail. A sort of negation can also be de�ned: M? is the set of all

processes that fail M processes. Naturally, we are particularly interested in

the propositions M such that M = (M?)?, which are called facts. These

are the speci�cations that have sound and complete testers; they can be

characterized explicitly with a simple set of closure conditions.

Certain expressions in this classical linear logic are reminiscent of assump-

tion-guarantee speci�cations. In particular, (E^M?)? is the set of processes

that fail all of the tests that M processes fail, provided these tests are from

E. In other words, (E ^ M?)? includes all of the processes that cannot

be distinguished from M processes in E environments (by E tests). It

is analogous to the assumption-guarantee speci�cation E) M , but the

obvious analogues of the Composition Principle do not hold.

A small correction solves this problem. Let

E+ = E [fu(s; �) j u 2 E; s a stateg

The processes in E+ behave like processes in E, except that they may pass

the testee at any point. If E and M are facts, then

E ��M = (E+ \M?)?

and the expected Composition Principle follows.

7

3 Intuitionistic Logic

The model that underlies the intuitionistic logic is a small variant of that

used by Abadi and Lamport in [1]; we refer the reader to this and previous

works for additional motivation.

We assume a nonempty set of states, S, and a nonempty set of agents, A.

These sets are disjoint. A behavior is an alternating �nite sequence of states

and agents that both begins and ends with a state. It can be pictured as:

s0
a1�! s1

a2�! s2
a3�! : : :sn�1

an
�! sn

where each si is a state and each ai is an agent. We identify states with the

corresponding one-element sequences. If � is a sequence, a an agent, and s a

state, then �
a
�! s denotes the concatenation �as. The set of all behaviors

is denoted by B.

A safety property is a set of behaviors closed under pre�xes. The set of

all safety properties is denoted by Sb, and ordered by subset. It will be

convenient to use the turnstile symbol ` to denote the subset ordering.

Safety properties, as we have de�ned them, are isomorphic to the safety

properties of [1], for example, with the caveat that we have not yet treated

invariance under stuttering. It is quite natural, and desirable, to add a

straightforward condition of invariance under stuttering to our de�nitions,

as �rst advocated by Lamport [20]. For simplicity, we do not do so at this

point, but do give a full discussion below.

The length j�j of a behavior � is the number of agents that occur in �.

If 0 � m � j�j then �jm is the pre�x of � of length m; if m > j�j, then

�jm = �.

Proposition 1 Sb is a complete Heyting algebra, where ^ is \,
W
is
S
, and

the associated implication is

M1 !M2 = f� j 8n � 0: if �jn 2M1 then �jn 2M2g

Proof As Sb is closed under �nite intersections and arbitrary unions, the

set-theoretic operations are the lattice-theoretic ones. For implication, note

that

M1 !M2 = f� j 8n � 0: �jn 2 (BnM1) [M2g

and so it is the greatest safety property contained in the Boolean implica-

tion.

8

Hence, the algebra of safety properties is a model for intuitionistic logic.

The next subsection discusses composition in this intuitionistic setting, and

the following one adds the treatment of stuttering.

3.1 Composition

We say that the safety property M constrains at most the set of agents �,

and write M / �, if both:

1. if s 2 S then s 2M ; and

2. if � 2M , s 2 S, and a 2 ��, then �
a
�! s 2M .

Note that if M / � then (N ! M) / � for every N , and that if � � � and

M /� thenM /�. The collection of safety properties that constrain at most

� is closed under non-empty joins and �nite meets.

Further, let M� be the smallest superset of M that constrains at most �.

The de�nition of \constrains at most," in the form of a monotone closure

condition, guarantees that such an M� exists. In fact, a behavior in M� is

either a behavior inM extended with arbitrary �� steps, or simply a behavior

that consists exclusively of �� steps. So (�)� is a monotone closure operation.

It commutes with arbitrary non-empty joins, and also with �nite meets.

We are now in a position to formulate a version of the Composition Principle

of [1] specialized to safety properties. If I is a set of states, we write Î for the

safety property f� j � begins with an element of Ig; such a safety property

is an initial condition.

Theorem 1 (Composition Principle) For n > 0 and i = 1; n let �i be

sets of agents, let Ii and I be sets of states, and let Mi / �i and Ei / ��i.

Suppose that I �
T
i Ii and, for i = 1; n, E ^

V
jMj ^ Îi ` Ei. Then

^

i

(Îi ^Ei !Mi) ` Î ^E !
^

i

Mi (1)

Proof We show by induction on the length of � that, for i = 1; n, if � is in

the set on the left-hand side and is also in Î ^E then it is in Mi. So pick �

and an i between 1 and n. In case � has length zero, the result is immediate

as Mi /�i. Otherwise, � has the form �0
a
�! s. By induction hypothesis, �0

is in Mj , for j = 1; n. So if a 62 �i, we get � 2Mi as Mi / �i.

9

We are left with the case where a 2 �i. As � 2 Î^E we get �0 2 E^ Îi. But

now, as �0 2
V
j Mj by the induction hypothesis, we get �0 2 Ei (since, by

assumption, E ^
V
j Mj ^ Îi ` Ei) and so � 2 Ei (as Ei / ��i). So, �nally, as

we now have � 2 Îi^Ei !Mi and � 2 Îi ^Ei, we get � 2Mi as required.

The Composition Principle corresponds to that of [1] restricted to safety

properties once stuttering is taken into account (but with somewhat weaker

hypotheses). The principle is designed to be of direct use in applications.

As such, it is rather complex, and we turn to �nding simpler but equivalent

versions. An immediate simpli�cation is obtained by removing the initial

conditions to obtain that if Mi / �i, Ei / ��i, and E ^
V
iMi `

V
iEi, then

^

i

(Ei !Mi) ` E !
^

i

Mi (2)

This is evidently a special case of the principle. It also implies the principle,

as follows. Let us assume the hypotheses given in the statement of the

Composition Principle. The remarks above on the / relation yield (Îi !

Ei) / ��i, and so we can substitute Îi ! Ei for Ei in (2), obtaining:

^

i

((Îi ! Ei)!Mi) ` E !
^

i

Mi (3)

But now, (1) follows from (3) and Î `
V
i Îi by propositional reasoning. (By

that we mean that if we treat (1), (3), and Î `
V
i Îi as sequents in a suitable

intuitionistic calculus, regarding the E, Ei, Mi, Î, Îi as propositional sym-

bols, and ^ and ! as logical connectives, then (1) can be derived from (3)

and Î `
V
i Îi.)

It is instructive to consider the case n = 1 which amounts to the fact that

if E ^M1 ` E1 then (E1 ! M1) ` (E ! M1). By propositional reasoning

this is equivalent to the case where E = (M1 ! E1), which can be written

as:

(E1 !M1) ^ (M1 ! E1) `M1 (M1 / �; E1 / ��) (4)

It turns out that the whole Composition Principle can be reduced to this

case just using propositional reasoning. To show this, let us assume (4) and

demonstrate the special case of the Composition Principle not involving

initial conditions. We proceed by induction on n, with the base case having

already been considered. For n > 1, assume that E ^
V
iMi `

V
iEi. Then

10

for any j (where 1 � j � n) we have:

V
i(Ei !Mi) ^E ` (Ej !Mj) ^

V
i6=j(Ei !Mi) ^ E

` (Ej !Mj) ^ (E ^Mj !
V
i6=j Mi) ^ E

(by induction hypothesis, since

E ^Mj ^
V
i6=j Mi `

V
i6=j Ei)

` (Ej !Mj) ^ (E ^Mj ! Ej) ^E

(since by assumption E ^Mj ^
V
i6=j Mi ` Ej)

` (Ej !Mj) ^ (Mj ! Ej)

`Mj

(by (4))

In short, we get
V
i(Ei ! Mi) ^ E ` Mj (for j = 1; n), and hence alsoV

i(Ei !Mi) ` E !
V
iMi as desired.

If we allow the (�)� operator in our statements, (4) can be further reduced

to:

(M�� !M) `M (M / �) (5)

This formula follows by propositional reasoning from (4) (taking M1 = M

and E1 =M��) and the fact that M `M��. But (5) also implies (4), once we

add to our propositional reasoning a fact about the (�)� operator given by

Lemma 1:

Lemma 1 If M and E are safety properties and � is a set of agents, then

M ! E `M� ! E� .

Proof The proof is a simple chain of implications:

(M ! E)^M� ` (M ! E)� ^M�

` ((M ! E)^M)� (as (�)� preserves intersections)

` E� (as (�)� is monotone)

Now to see that (4) follows from (5), suppose thatM/�, E/��, and calculate:

(E !M) ^ (M ! E) ` (E !M) ^ (M�� ! E��) (by Lemma 1)

`M�� ! M (since E / ��)

`M (by (5))

11

3.2 Stuttering

Two behaviors are stuttering equivalent if they di�er only as regards the

presence or absence of steps of the form s
a
�! s. Formally, de�ne stuttering

equivalence as the least equivalence relation ' on behaviors such that:

usasv ' usv (6)

Orienting this equation from left to right we obtain a strongly normalizing

Church-Rosser reduction system. The normal forms are the behaviors con-

taining no stuttering steps. Write \� for the normal form of �; it is the

shortest behavior stuttering equivalent to �.

Following [1] we concern ourselves with properties closed under '. Let Stb
be the collection of safety properties closed under stuttering, and order it

by inclusion. It turns out that Stb is again a complete Heyting algebra with

�nite meets and arbitrary joins given set theoretically and the associated

implication is the restriction of that for Sb. The �rst part of these assertions

is obvious; for the second we need to examine the relationship between the

pre�x ordering � on behaviors and stuttering equivalence.

Lemma 2 Suppose that �0 � � ' � . Then there exists a � 0 such that

�0 ' � 0 � � .

Proof Since � ' �; � can be obtained from � by a sequence of steps of the

form (6) or the converse. We prove the result for the case of one such step;

an evident inductive argument then completes the proof. So �rst suppose

that �; � have the forms usasv and usv. Since �0 � � = usasv either �0 � us

or us < �0. In the �rst case we have �0 � � and so we can take � 0 = �0. In

the second case �0 must have the form usasv0 where v0 � v and we can take

� 0 = usv0. It remains to consider the situation where �; � have the forms

usv and usasv. Since �0 � usv we have either that �0 � u (when we can

take � 0 = �0) or that �0 has the form usv0 with v0 � v (when we can take

�0 = usasv0).

We can now check that ifM1 andM2 are in Stb then so is M1 !M2 (where

! is as de�ned above). It follows that ! is the intuitionistic implication

in Stb. For this, suppose that � ' � 2 M1 ! M2. Suppose further that

� jn2 M1 for some n � 0. Then, by the Lemma, for some � 0 � � , � jn' � 0.

We now have successively that: � 0 2 M1 (as M1 is '-closed), � 0 2 M2 (as

12

� 2 M1 ! M2), and � jn2 M2 (as M2 is also '-closed). Hence, � 2 M1 !

M2.

The relation between Sb and Stb is best explained by the map ' : Sb ! Sb
where '(M) is de�ned to be the least safety property that contains M and

is closed under stuttering.

Proposition 2 1. '(M) = f� j 9� 2M:� ' �g.

2. ' is a monotone closure operation preserving all joins;

Stb is its partial order of �xed-points.

Proof

1. It su�ces to show that the right-hand side is a safety property and

this is immediate from Lemma 2.

2. Obvious.

As the lattice-theoretic operations in Stb are the set-theoretic ones, the

collection of stuttering-closed safety properties that constrain at most � is

closed under non-empty joins and �nite meets; and we also know that if M

is such a property then so is N ! M , for any N in Stb. For M in Stb, let

M� be the least superset of M in Stb which constrains at most �.

Proposition 3 1. M� = '(M�).

2. (�)� is a monotone closure operation that preserves non-empty joins

and �nite meets.

Proof

1. It su�ces to show that '(M�) constrains at most �. First we have

that S � M� � '(M�). Second, suppose that � 2 '(M�); a =2 �, and

s 2 S. Then � ' some � in M�. So �
a
�! s ' �

a
�! s 2 M� and we

have that �
a
�! s 2 '(M�).

13

2. Evidently (�)� is a monotone closure operation. It preserves non-empty

joins as both ' and (�)� do. All closure operations preserve the top

element. For binary meets, we just prove the inclusion

'(M�) \ '(N�) � '((M \N)�)

the other direction being a trivial consequence of monotonicity. So

suppose that � ' � in M� and � '
 in N�. It is straightforward to

show, for any M in Stb, that if � 2M� then \� 2M�. So we get that

� ' \� 2 (M� \N�), as \� = \� = \
. But (M� \N�) = (M \N)� as

(�)� preserves binary intersections, and so we have � 2 '((M \N)�),

as required.

The Composition Principle goes through with stuttering-invariance exactly

as it did before. We need only note that Î is in Stb, and that meet, join, and

implication for Stb are the restrictions of the corresponding Sb operations.

All the reductions of the principle to simpler ones also go through exactly

as before, as they are either propositional or use the expected corresponding

facts for (�)�, that M ` M� and M ! E ` M� ! E�|the proof of the

latter being perfectly analogous to that of Lemma 1.

4 Intuitionistic Linear Logic

In this section we develop the intuitionistic linear logic proposed in the

overview. The study of classical linear logic is postponed to the next section.

We assume given only a set of states S; there is no notion of agent in this

calculus. A transition is a pair of states. A process is a pre�x-closed set

of sequences of transitions. (Note that the empty sequence " is allowed.)

The set of all processes is denoted by P . It is partially ordered by � and

as such it is a complete semilattice, which is to say that it has least upper

bounds of all subsets. For two given complete semilattices L and M , we

write f : L !l M , and say that f is linear, meaning that f preserves all

least upper bounds, that is f(
W
X) =

W
x2X f(x) for all subsets X of L.

The set L !l M of linear functions from L to M itself forms a complete

semilattice under the so-called pointwise ordering: f � g i� f(x) � g(x) for

all x in X .1

1It is possible to view P also as the solution to a domain equation, by choosing a cate-

14

Complete semilattices L can be viewed as cpos (partial orders with a least

element and least upper bounds (lubs) of directed sets) endowed with a

continuous semilattice operation, +, such that x � x + y. (Note that x+ y

must be x _ y, the least upper bound in the partial order.) In the work of

Hennessy and Plotkin [15], this kind of algebra was found to be appropriate

to the study of lower powerdomains, which are just free algebras of that kind.

Following ideas in [16], we now de�ne a safety property on such a structure

as a non-empty Scott-closed subset closed under the semilattice operation.

Intuitively, a safety property asserts that nothing ever goes wrong, and

\going wrong" has the following three qualities:

1. nothing can go wrong with ?, the least element, as ? corresponds to

nothing happening;

2. if nothing can go wrong with each element of a directed set X then

nothing can go wrong with
W
X either, as \going wrong" is continuous;

3. if nothing can go wrong with x or y then nothing can go wrong with

x+ y, as all that can happen with x+ y is whatever happens with x

or whatever happens with y.

This intuition can be formalized by taking as a way of going wrong a linear

map f : L!l I where I is the two-point complete semilattice, f?;>g, with

?� >. The collection of elements of L where f does not \go wrong" is

f�1(?) and this yields an isomorphism

S(L) �= (L!l I)
op

where we order the collection of safety properties S(L) by subset. Consider-

ing again our desire to work with elementary means, note that every safety

property X � L has a largest element, namely m(X) =def

W
X .

gory of domains tailored to nondeterminism, in the fashion of [15]. Speci�cally, working in

the category of complete semilattices, we �nd that P is the initial solution to the equation:

P
�= (}(S)!l }(S)
P)?

where the lifting operator (�)? adds a new least element, and the tensor product is de�ned

by a universal property: there is a universal bilinear map L � M

�! L
 M . Thus

P can be obtained by the methods available in domain theory, and as such it provides

a kind of resumption useful for the semantics of nonterminating processes. Its simple

representation as the pre�x-closed sets of transition sequences allows us to work with it

using very elementary mathematical means.

15

Proposition 4 The function m : S(L) ! L is an isomorphism of partial

orders.

Proof The function is clearly monotone. Its inverse ism�1(x) = fy j y � xg

which is also monotone.

This isomorphism, together with the remarks above, yields an isomorphism

Lop �= (L!l I) which is part of the well-known self-duality of the category

of complete semilattices [17]. We say the process p satis�es a safety property

X , and write p j= X , if and only if p 2 X . Under the isomorphism this is

the case i� p � m(X).

We will work with P rather than the more complex S(P). First, P is again

a complete Heyting algebra with the lattice-theoretic operations being the

set-theoretic ones and the associated implication being

M1 !M2 = fu j 8n � 0: if ujn 2M1 then ujn 2M2g

where the pre�x ujn is de�ned as usual for sequences. The empty set (false-

hood) is written 0, and the set of all transition sequences (truth) is written

>.

If p1 and p2 are two processes, their parallel composition is p1 jjp2, where jj is

the language shu�e operator. Conjunction is no longer the logical correlate

of parallelism, however. If p j= X and q j= Y it is not true in general that

p k q j= X ^ Y . Rather, in order to treat parallelism, we de�ne a new

operator on safety properties by:

X
 Y = fp k q j p j= X; q j= Y gs

where (A)s is the least safety property containing A.

Proposition 5 m(X
 Y) = m(X) km(Y).

Proof If p j= X and q j= Y then p � m(X); q � m(Y), and so X
 Y =

fr j r � m(X) km(Y)g.

Working with P in place of S(P) we take
 on P to be k. Now,
 commutes

with arbitrary joins in P and gives a commutative monoid, with unit the

null process, 1 = f"g. In other words, we have:

16

Proposition 6 (P ;
S
; 1;
) is a commutative quantale, where 1 = f"g.

The associated quantalic implication is then given by

M1 ��M2 = fu j (fug jjM1) �M2g

It follows immediately that the algebra of safety speci�cations provides a

model of intuitionistic linear logic [28, 25]. Parallel composition is the mul-

tiplicative conjunction operation, while ^ and _ are the additives.

The exponential operator ! is uniquely, but trivially, determined. If 1 � M

then 1 �!M , and in addition !M � 1, by the general properties of !, so we

get !M = 1. On the other hand, if 1�M is false, the only possibility is

M = 0, and !M = 0, as in every model !M �M .

Instead, a nontrivial (�)� operation is available: M� is de�ned as
W
i�0M

i,

whereM i is the i-fold parallel composition ofM with itself, and it represents

an arbitrary number of M processes running in parallel.

Composition

A chained transition sequence (from s to t) is one of the form

(s1; s2) (s2; s3) : : : (sn�2; sn�1) (sn�1; sn)

(where s1 = s and sn = t). In particular, the sequences " and (s1; s2)

are chained. Intuitively, chained transition sequences correspond to runs of

a system by itself, with no interference from the environment. We write

u ^I v if u and v have a chained shu�e, beginning with an element of I .

Assumption-guarantee speci�cations are made possible by a new ternary

connective ��. We �rst set:

(M)
y
I = fu j 9v 2M: u ^I vg

and then de�ne

M1 ��I M2 = (M1)
y
I !M2

The de�nition says that if a pre�x u of a sequence inM1��IM2 has a chained

shu�e beginning in I with a sequence in M1, then u is in M2. Hence, the

sequences in M1 ��I M2 cannot be distinguished from sequences in M2 by

an M1 environment as regards computations beginning in I .

17

It seems rather unfortunate to have to introduce a ternary connective where,

furthermore, one of the arguments comes from a set of propositions di�erent

from the other two. We are missing a principled explanation of this connec-

tive arising from the nature of processes. In Section 5 we give one account

of it, relating it to the work using intuitionistic logic.

We can now formulate a version of the Composition Principle in intuitionistic

linear logic.

Theorem 2 (Composition Principle) For n > 0 and i = 1; n, suppose

that Mi; Ei 2 P, and let Ii and I be sets of states. Set M 0
i =

N
j 6=iMj.

Suppose that I �
T
Ii and E
M 0

i `Mi ��Ii Ei. Then

O

i

(Ei ��Ii Mi) ` E ��I
O

i

Mi

Rather than prove the soundness of this rule directly, we will progressively

reduce it to simpler principles, and prove the simplest. First, since ��I is

antimonotone in I the principle is equivalent to the case where Ii = I , for

i = 1; n. We now keep I �xed and often omit it, and write, for example,

E ��M .

It is straightforward to reduce the principle to the binary case. The unary

case follows from the binary case by taking M2 = 1, E2 = E
M1, and

using the fact that N ` M ��N , for all M , N . For n � 2 we proceed by

induction. The base case is given, so suppose n � 3 and E
M 0
i `Mi��Ei

for i = 1; n. So for i = 2; n we have (E
M1)

N

j�2;j 6=iMj `Mi��Ei and,

by induction hypothesis, we get that
N

i�2(Ei��Mi) ` E
M1��
N

i�2Mi.

In order to prove
N

i(Ei ��Mi) ` (E ��
N

iMi) it is now enough to prove

(E1��M1)
(E
M1��M
0
1) ` E��M1
M

0
1. But this follows from the binary

case, taking M2 to be M 0
1 and E2 to be E
M1, since E
M 0

1 `M1 ��E1

and N `M ��N , for all M , N .

More surprisingly, the general case reduces further to the unary case, which

is:
E `M1 ��E1

(E1 ��M1) ` (E ��M1)

Note that this is equivalent simply to:

(E1 ��M1) ` (M1 ��E1)��M1 (7)

using the antimonotonicity of M ��N in its �rst argument.

18

The proof that the binary case reduces to the unary case has two parts. The

�rst part applies not only to the binary case but also to the general case; it

consists in reducing the general case to its instance where Ei = E
M 0
i :

O

i

(E
M 0
i ��Mi) ` E ��

O

i

Mi

In the second part, this instance is derived from the unary case for n = 2:

(E
M2 ��M1)
 (E
M1 ��M2) ` E �� (M1
M2)

For the �rst part of the proof, assume that E
 M 0
i ` Mi �� Ei. The

antimonotonicity of �� then gives:

O

i

((Mi ��Ei)��Mi) ` E ��
O

i

Mi

and (7) gives: O

i

(Ei ��Mi) `
O

i

((Mi ��Ei)��Mi)

The general principle follows by transitivity.

We need �rst a little more about the logic of �� for the second part of the

proof:

Lemma 3 Let A;B;E 2 P. Then

A
 (A
E ��I B) ` E ��I A
B

Proof It is enough to take w in A
 (A
 E ��I B) and x in E such that

w ^I x and show that w is in A
B. So taking such a w and x, we get �rst

that w is a shu�e of an element u of A with an element v of A
 E �� B.

Next, u and x must have a shu�e, y, say, such that v ^I y. But then y is

in A
 E and so as v is in A
E ��I B, we get that v is in B. So as w is a

shu�e of u (in A) with v (in B) we get w in A
 B as required.

We may now calculate that:

(E
M2 ��M1)
 (E
M1 ��M2)

` (E
M2 ��M1)
 ((M2 ��E
M1)��M2)

19

(by the unary case)

` (E
M2 ��M1)
 (((E
M2 ��M1)
 E)��M2)

(as (E
M2 ��M1)
 E `M2 ��E
M1 by Proposition 3)

` E �� ((E
M2 ��M1)
M2)

(by Proposition 3)

` E �� (E ��M1
M2)

(by Proposition 3)

` E ��M1
M2

We are left with the task of proving the unary case. The proof requires an

induction on the length of transition sequences and it is noteworthy that no

other truth of the logic we have so far shown (such as Proposition 3) has

done so. Thus all the induction is, as it were, concentrated into this one

case.

Proof We have to show that (E ��I M) ` (M ��I E) ��I M for any E

and M in P . In case M = 0 the result follows immediately as 0��I E = >.

Otherwise it is enough to show that if u is in (E��IM) and v is in (M��IE)

and u ^I v then u is in M ; we show this by induction on j u j + j v j. If

this is 0 then u = " 2M . Otherwise let w be a complete shu�e of u and v

beginning in I .

There are two cases. In the �rst, w = w1(s; t), v = v1(s; t), and w1 is a

complete shu�e of u and v1. As j u j + j v1 j<j u j + j v j, we then get u inM

by the induction hypothesis. In the second case, w = w1(s; t), u = u1(s; t),

and w1 is a complete shu�e of u1 and v. As j u1 j + j v j<j u j + j v j we get

u1 in M , by induction hypothesis. But as v is in (M ��I E) and u1 ^I v,

we get v in E. But then as u is in (E ��I M) and u ^I v, we get u in M .

It also seems possible to obtain variants of the principle that apply to the

composition of an arbitrary number of like processes that depend on one

another, in an environment E. For example, we can show:

(E
M� ��I M)�

E ��I M�

To see this is true, in Theorem 2 takeMi =M , Ii = I , and Ei = E
Mn�1,

obtaining that:

(E
Mn�1 ��I M)n ` E ��I M
n

20

for n > 0. But then, since Mn�1 `M�, we get:

(E
M� ��I M)n ` E ��I M
n

for n > 0, and so, as 1 ` M ��I 1 and (M ��I �) distributes over arbitrary

non-empty joins (as is easily veri�ed), the required result follows.

There does not seem to be an analogous rule in the intuitionistic framework

of the previous section.

5 Classical Linear Logic

Once we have a quantale, there is a well-known and straightforward way to

interpret classical linear logic; we choose an element ? and, setting x? =

x�� ?, we work with the (�)??-closed elements [25]. Here we show that by

an appropriate choice of ? we can also �nd a Composition Principle within

the framework of classical linear logic. Abramsky [27] has suggested that

the choice of ? could depend on a notion of testing, and could be taken to

be the set of processes that, when run by themselves, can be seen as failing

(that is, as not passing the test). In this way we would have an internalized

notion of testing where processes represent tests: a process p would pass a

test q i� (p jj q) =2?.

Here we will make this suggestion concrete for safety properties; every test q

will yield a safety property q�� ? so that p does not pass q i� p is in q�� ?.

We may think of the safety property yielded by q�� ? as being the failure

to pass q. Once we restrict attention to the (�)??-closed subsets, all safety

properties will be of this kind as then M =M?�� ? holds.

It is instructive to begin with an external approach to testing and for this we

provide a semantical analogue to some of the testing ideas of De Nicola and

Hennessy [10, 14], adapted to the present context of processes and safety

speci�cations. Let �; � be two distinct entities not in S, and put S0 =

S[f�; �g. We may think of � and � as being starting and stopping states

for an external test scenario. Let P 0 be the processes over S0; these will be

the tests. Clearly notions and results applying to S and P extend to S0 and

P 0. For p in P and r in P 0, we say that p passes r i� there are u in p and v

in r such that u _ v, meaning that some pre�x u0 of u and some pre�x v0

of v have a chained shu�e starting in � and ending in �. Note the element

of possibility here: only the existence of such a pair u; v is required; p will

not pass r i� there is no such possibility.

21

Now we have a natural testing preorder on processes in P :

p �P q i� 8r 2 P 0:(p passes r � q passes r)

In order to characterize this preorder some de�nitions are needed. Let w be

the least preorder on transition sequences over S such that:

uv w u

u(r; s)(s; t)v w u(r; t)v

uv w u(s; s)v

and, if n � 0 and u = (s1; t1) : : :(sn; tn) is a transition sequence over S, set

u# = (�; s1)(t1; s2) : : :(tn�1; sn)(tn; �), and set "# = (�; �).

Proposition 7 1. u _ u#.

2. Suppose v w u _ w. Then v _ w.

3. Suppose v _ u#. Then v w u.

Proof Parts 1 and 2 are easy to prove and we just consider part 3. If

u = " then (trivially) v w u. Otherwise u has the form (s1; t1) : : :(sn; tn)

with n > 0 and since v _ u#, v must have the form v1 : : :vnv
0 where, for

i = 1; n, either vi = " and si = ti or vi is a chained transition sequence

beginning in si and ending in ti. In either case vi w (si; ti) and so v w u.

Theorem 3 p �P q i� 8u 2 p:9v 2 q:u v v.

Proof First suppose that p �P q and u 2 p. Let r = fw j w � u#g 2 P 0.

Then as u _ u#, the Proposition 7, we get that p passes r, and since

p �P q so does q. Hence v _ w for some v in q and some w � u#. But

then v _ u# and so v w u, by the Proposition. Conversely, suppose that

8u 2 p:9v 2 q:u v v and that p passes r. Then u _ w for some u 2 p; w 2 r;

taking a v 2 q such that u v v, we get v _ w by the Proposition, and so q

passes r.

Note that it follows from the last part of the Proposition that the largest

process �P -equivalent to a given process p is fu j 9v 2 p:u v vg.

22

To internalize, we simply work with P 0 rather than with P and extend the

notions above. As before, if u and v are transition sequences over S0, u _ v

means that there are pre�xes u0; v0 of u; v which have a chained shu�e from

� to �. We write p passes r also for p in P 0, and correspondingly extend the

testing preorder|the extension is written �P 0 . To pass to classical linear

logic, we take ? to be the safety property of those processes that do not

contain a chained transition sequence from � to � and so indeed we have

that:

p does not pass r i� (p jj r) �?

Under the isomorphism of processes and safety properties, ? becomes

fw j no pre�x of w is a chained transition sequence from � to �g

and we get for any safety property (under the isomorphism):

M? = fu j 8v 2M::(u _ v)g

Note that p does not pass r i� r jj p `? i� r ` p?, so p? is the largest test

p does not pass. The internal and external views are linked up as follows:

Proposition 8 1. For any p; q in P 0, p �P 0 q i� q? ` p?.

2. The largest process �P 0-equivalent to p is p??.

Proof

1. Suppose p �P 0 q. Then as q does not pass q?, neither does p and so

p jj q? `?. Therefore, q? ` p?. Conversely, suppose q? ` p? and q

does not pass r, so q jj r `?. Then r ` q? ` p? and so p jj r `?.

2. By the �rst part, p is �P 0-equivalent to q i� p? = q?. But then p

and p?? are equivalent (as we always have, for any choice of ?, that

p? = p???), and if p and q are �P 0-equivalent then q � q?? = p??

(with q � q?? true for any choice of ?).

The next task is to extend the characterization of the testing preorder to

the whole of P 0. We extend w to a relation w0 which is the least preorder

on S0-transition sequences such that:

uv w0 u

23

u(r; s)(s; t)v w0 u(r; t)v

uv w0 u(s; s)v

(�; �)u w0 u

u(s; �) w0 u(s; t)v

and (�)# is de�ned exactly as before. Note that u## = (�; �)u(�; �) �0 u

(where we take �0 to be the equivalence relation induced by w0).

The analogue of Proposition 7 holds, with w0 replacing w:

Proof As before, parts 1 and 2 are easy and we concentrate on part 3.

So suppose that v _ u#. The case u = " is trivial and so we can take

u to have the form (s1; t1)(s2; t2) : : :(sn; tn) (with n > 0). Then u# is

(�; s1)(t1; s2); (t2; s3) : : :(tn�1; sn)(tn; �). Some pre�xes v0; w of v; u# have

a chained transition sequence from � to �; we take w and then v0 to be as

short as possible. Then � is either the last state in w or the last state in v0.

In the �rst case (when � is the last state in w), either w = u# or w =

(�; s1)(t1; s2) : : :(tm; sm+1) with 0 � m < n and sm+1 = �. In the �rst of

these cases v0 has the form v0v1 : : : vn where v0 is " or is a chained tran-

sition sequence from � to �, and for i = 1; n each vi is " and si = ti or

vi is a chained transition sequence from si to ti. But then we obtain v w0

v0 w0 (�; �)(s1; t1) : : :(sn; tn) w
0 u. In the second of these cases v0 has the

form v0v1 : : : vm with v0 and v1; : : : ; vm as before. Then we obtain v w0 v0 w0

(�; �)(s1; t1) : : :(sm; tm) w
0 (s1; t1) : : :(sm; tm) w

0 (s1; t1) : : :(sm; tm)(�; �) w
0

(s1; t1) : : :(sm; tm)(�; tm+1) : : :(sn; tn) = u.

In the second case (when � is the last state in v0), since we chose �rst w and

then v0 as short as possible, w has the form (�; s1)(t1; s2) : : :(tn; sn+1) with

0 � m < n and v0 has the form v0v1 : : :vmvm+1 with v0 and the vi as before

(for i = 1; m) and with vm+1 a chained transition sequence from sm+1 to �.

But then v w0 (�; �)(s1; t1) : : :(sm; tm)(sm+1; �) w
0 u.

The symmetry of testers and testees in the _ relation enables a pleasing

reformulation of the �rst three parts of the analogue of Proposition 7:

Proposition 9 v _ u i� v w0 u#.

Proof If v _ u then as u## �0 u we get by part 2 of the analogue

of Proposition 7, and the symmetry of _ that v _ u##. So by part 3,

v w0 u#.

24

Conversely if v w0 u# then as u _ u# by part 1, we get u# _ u by

symmetry and then v _ u by part 2.

The analogue of Theorem 3 holds, with the analogous proof:

p �P 0 q i� 8u 2 p:9v 2 q:u v0 v

and so the facts, being the maximal�P 0-equivalence classes by Proposition 8,

are exactly thev0-downwards closed sets. It follows that the lattice-theoretic

operations are the set-theoretic ones. We can rewrite the formula above for

M? (when M is a fact) using Proposition 9:

Proposition 10 M? = fu j u# =2Mg.

Proof Taking negations we see that 9v 2 M:u _ v i� 9v 2 M:v w0 u# i�

u# 2M (as M is a fact).

The preorder w0 and the map (�)# interact in a natural way:

u## �0 u

u w0 v i� v# w0 u#

(For the last, note that if u w0 v then u _ v# and so v# w0 u#, by

Proposition 9). We call any such map on a preorder an involution. The case

where the preorder is a set, say U , is well known to the relevance logicians

who instead of quantales considered quasi-�elds of subsets of U closed under

the quasi-complement operation:

:X = Ung(X)

If we divide out by the equivalence relation �0 we obtain a quasi-�eld of sets

(g([u]�0) = [u#]�0) over U = f[u]�0g isomorphic to our lattice of facts. The

sets in the quasi-�eld are the subsets of U downwards closed in the partial

order v0 =�0.

We have already noted that the facts are closed under the set-theoretic op-

erations and so the additives ^;_;>; 0 retain their set theoretic de�nitions.

However
 and 1 must be rede�ned, andM
N is now (M k N)?? and 1 is

f"g??. At the level of transition-sequences we can make a further connec-

tion to relevance logic, this time considering R-frames ([11] p.47). Taking

25

U to be the collection of equivalence classes as above we obtain a structure

(U;R; ["]; g) where R([u]; [v]; [w]) i� there are u0 v0 u; v0 v0 v, and a shu�e,

x, of u0 and v0 such that w v0 x. This satis�es all the requirements to be an

R-frame, except for (the undesired) idempotence. Given any such structure

(U;R; 0; g) we obtain a quantale (Q;
; 1) for classical linear logic where Q

is the collection of �-downwards closed subsets of U . We take u � v i�

R(1; v; u) and A
 B = fz j 9x 2 A; y 2 R:R(x; y; z)g, 1 = fx j x � 0g, and

?= fx j x � g(0)g. Starting from the (U;R; ["]; g) as above we obtain the

quantale for classical linear logic considered in this paper.

Composition

To be consistent with the testing idea of starting computations from �, we

�x the set I to be f�g, and write M ��N for M ��I N . As suggested in

subsection 2.2, let

E+ = E [fu(s; �) j u 2 E; s 2 S0g

Note that E+ is not a fact in general, even when E is a fact.

Lemma 4 Let E be a fact. Suppose w 2 E and v ^f�g w. Then v] 2 E+.

Proof First suppose that v = ". Then v] is (�; �) which is in E+ as " is

in E (since w is). Suppose now instead that w = ". Then v is a chained

transition sequence from � to some state t, and so v] has the form u(t; �),

where u is a sequence of stutters, that is transition pairs of the form (s; s).

But then: w w0 " w0 u and so u is in E, and v] is in E+.

We may now therefore suppose that neither v nor w are ". There are two

cases depending on whether the chained shu�e of v and w starts with a

transition from w, or one from v. In the �rst case there is a pre�x w0 of

w, states s0; : : : ; sn+1 (with s0 = �) and t0; : : : ; tn, and also v0; : : : ; vn and

w0; : : : ; wn such that v = v0 � � �vn, w
0 = w0 � � �wn, and for i = 0; n, vi is a

chained transition sequence from ti to si+1, and wi is a chained transition

sequence from si to ti. Now v] has the form (s0; t0)u0 � � � (sn; tn)un(sn+1; �)

where for i = 0; n, ui is a sequence of stutters. But then

w w0 w0 w0 (s0; t0)u0 � � �(sn; tn)un

as wi is a chained transition sequence from si to ti, and so v] is in E+.

26

The last case is similar. Here there is a pre�x w0 of w, states s0; : : : ; sn+1
(with s0 = �) and t0; : : : ; tn+1, and also transition sequences v0; : : : ; vn+1 and

w0; : : : ; wn such that v = v0 � � �vn+1, w
0 = w0 � � �wn, and for i = 0; n + 1,

vi is a chained transition sequence from si to ti, and for i = 0; n, wi is a

chained transition sequence from ti to si+1. Now v] has the form

(s0; s0)u0(t0; s1) � � �un(tn; sn+1)un+1(tn+1; �)

where for i = 0; n, ui is a sequence of stutters. But then

w w0 w0 w0 (s0; s0)u0(t0; s1) � � �un(tn; sn+1)un+1

as wi is a chained transition sequence from ti to si+1, and so v] is in E+,

concluding the proof.

We may now obtain:

Proposition 11 If E and M are facts then

E ��M = (E+ \M?)?

Proof It is fairly straightforward to show that E ��M � (E+ \M?)?,

directly from the de�nitions. Suppose that u 2 E �� M and that v 2

(E+\M?), to prove that it is not the case that u _ v. If u _ v then some

pre�x u0 of u has a chained shu�e from � to � with some pre�x v0 of v.

Choose such a u0 and v0 with u0 as short as possible.

Since v 2 E+, v0 2 E+ and so either v0 2 E or v0 = v00(t; �) for some

v00 2 E and some state t. In the �rst case, v0 2 E and so u0 2M , using the

assumption that u 2 E��M . But as we also have that u0 _ v and v 2M?,

this is a contradiction.

In the second case, u0 and v00 have a complete shu�e starting from �, by

the choice of u0 and v0. This again gives us that u0 2 M , and we have a

contradiction as before.

For the converse, assume that u 2 (E+ \M?)?, that v is a pre�x of u, and

that v ^f�g w for some w 2 E, to show that v 2M . Then v 2 (E+\M?)?

and by Lemma 4, v] 2 E+. Now assume for the sake of contradiction

that v 62 M . Then v] 2 M?, by Proposition 10. But now v _ v] is in

contradiction with v 2 (E+ \M?)?.

So it is not necessary to rede�ne �� in the classical logic. The direct analogue

of the Composition Principle for the intuitionistic case holds:

27

Theorem 4 (Composition Principle) For n > 0 and i = 1; n letMi and

Ei be facts. Set M 0
i =
N

j 6=iMj. Suppose that E
M 0
i `Mi ��Ei. Then

O

i

(Ei ��Mi) ` E ��
O

i

Mi

where we are taking the classical interpretation of the tensor products. This

version of the Composition Principle follows directly from the intuitionistic

one using Proposition 11 and propositional reasoning. Further, the propo-

sitional reasoning used in the discussion of the intuitionistic case remains

valid here, including the analogue of Proposition 3.

6 Comparisons

The intuitionistic logic and the linear logic are based on di�erent connec-

tives, and on di�erent semantic models, yet there is a fairly straightforward

translation between them. Speci�cally, we consider the relation between the

intuitionistic logic without stuttering and the intuitionistic linear logic. Let

� be a behavior

s0
a1�! s1

a2�! : : :sn�1
an�! sn

Let t�(�) be the subsequence of (s0; s1) : : :(sn�1; sn) such that the transition

(si�1; si) appears in t�(�) if and only if ai 2 �; in particular, t�(s) = ". The

runs of an element p of P with identity � are the behaviors � such that

t�(�) 2 p. This yields a map t�1� :P ! Sb. It has both a left adjoint 9� and

a right adjoint 8�, where:

9�(M) = fw j 9�:t�(�) = w ^ � 2Mg

and

8�(M) = fw j 8�:t�(�) = w � � 2Mg

These functions are also left inverses to t�1� , and further, the so-called Frobe-

nius equality holds:

9�(t
�1
� (N)^M) = N ^ 9�(M)

from which follow two other equalities

t�1� (N1 ! N2) = t�1� (N1)! t�1� (N2)

28

and

8�(M ! t�1� (N)) = 9�(M)! N

In fact these last three equalities are equivalent in a rather general context

where P and Sb are replaced by arbitrary complete Heyting algebras, and

t�1� is replaced by any morphism of complete Heyting algebras which has a

left adjoint|it will necessarily have a right adjoint. Joyal and Tierney [18]

discuss these points further.

The intuitionistic operations in P can now be shown to be de�ned in terms

of those on Sb:

M1 ^M2 = 9�(t
�1
� (M1) ^ t

�1
� (M2))

M1 _M2 = 9�(t
�1
� (M1) _ t

�1
� (M2))

M1 !M2 = 9�(t
�1
� (M1)! t�1� (M2))

and similarly for 0 and >. These equations follow from the facts that t�1�
preserves ^ and _, the discussion of the Frobenius equality, and the fact

that 9� is left-inverse to t�1� ; evidently the corresponding equations for 8

also hold.

The linear operations can also be de�ned in terms of those on Sb.

Proposition 12 Let M1;M2 2 P and suppose that �, � are nonempty,

disjoint sets of agents whose union is nontrivial (meaning that neither it

nor its complement is empty). Then

1. 1 = 9;(>)

2. M1
M2 = 9�[�(t
�1
� (M1) ^ t

�1
� (M2))

3. M1 ��M2 = 8�(t
�1
� (M1)! t�1�[�(M2))

Proof We omit the straightforward veri�cation of part 1.

For part 2, in one direction if w is in the right-hand side, then there is a �

such that t�[�(�) = w, t�(�) 2M1, and t�(�) 2M2. But then w is a shu�e

of t�(�) and t�(�), and so it is in M1
M2. In the other direction if w is a

shu�e of w1 in M1 and w2 in M2, then it is straightforward to construct a

� such that t�[�(�) = w, t�(�) = w1, and t�(�) = w2.

29

For part 3, let L be any element of P . Then:

L `M1 ��M2 i� L
M1 `M2

i� 9�[�(t
�1
� (L)^ t�1� (M1)) `M2

i� t�1� (L)^ t�1� (M1) ` t
�1
�[�(M2)

i� t�1� (L) ` t�1� (M1)! t�1�[�(M2)

i� L ` 8�(t
�1
� (M1)! t�1�[�(M2))

Now, substituting �rst M1 ��M2 and then 8�(t
�1
� (M1)! t�1�[�(M2)) for L,

the conclusion follows.

We will make use of the evident n-ary generalization below,

O

i<n

Mi = 9�(
^

i<n

t�1�i (Mi))

Finally we may consider the ternary connective ��.

Proposition 13 Let � be a nontrivial set of agents. Then:

1. My
I = 9�(Î ^ (t�1�� M))

2. M1 ��I M2 = 8�((Î ^ t
�1
�� (M1))! t�1� (M2))

Proof

1. In one direction, suppose that u 2M
y
I . It follows that there is a v inM

such that u and v have a complete shu�e w from a state in I . We can

then construct a � such that t�(�) = u, t��(�) = v, and t�[��(�) = w.

This � witnesses that u 2 9�(Î ^ (t�1�� M)). Conversely, assuming that

u 2 9�(Î ^ (t�1�� M)), we obtain a � in Î such that t�(�) = u and

t��(�) 2 M . But then t�[��(�) is a complete shu�e of u with t��(�) in

M from a state in I , and so u 2M
y
I .

2. Since, by de�nition,

M1 ��I M2 =M
y
I !M2

part 2 follows from the second equivalent to the Frobenius condition

and part 1.

30

The connection between the two logics allows an alternative proof of the

linear Composition Principle by reduction to the intuitionistic one. To this

end we will need a (rather ad hoc) version of Lemma 3; we omit the proof.

Lemma 5 Suppose that s � 0. Suppose Nr for r = 1; s and N are in P

and that �r (r = 1; s) are mutually disjoint sets of agents. Set � =
S
r �r.

Then:

9�(
^

t�1�r (Nr)) ^ 9�(t
�1
�� (N)^ Î) = 9�(

^
t�1�r (Nr)^ t

�1
�� (N)^ Î)

Now for the alternative proof of Theorem 2, suppose n > 0, and we are

given Mi; Ei in P , and sets of states Ii (i = 1; n) and I . Set M 0
i =
N

j 6=iMj ,

and suppose that I �
T
Ii and E
M 0

i ` Mi ��Ii Ei. Let �i be n mutually

disjoint nontrivial sets of agents whose union, � =
S
i �i is also nontrivial.

To apply Theorem 1 we wish to show that for i = 1; n:

t�1� (E)^
^

j

t�1�j (Mj) ^ Îi ` t
�1
��i
(Ei)

But since,

E
M 0
i `Mi ��Ii Ei

it follows that,

9��i(t
�1
�� (E)^

^

j 6=i

t�1�j (Mj)) ` 9��i(t
�1
�i
(Mi)^ Îi)! Ei

and hence by Lemma 5

9��i(t
�1
�� (E)^

^

j

t�1�j (Mj) ^ Îi) ` Ei

and the desired conclusion follows as 9��i is left adjoint to t
�1
��i
.

Applying Theorem 1 we now obtain
^

i

(Îi ^ t
�1
��i
(Ei)! t�1�i (Mi)) ` Î ^ t

�1
�� (E)!

^

i

t�1�i (Mi)

But noting that

t�1�i (Ei ��Ii Mi) = (t�1�i (9�i(Îi ^ t
�1
��i
(Ei))))! t�1�i (Mi)

` (Îi ^ t
�1
��i
(Ei))! t�1�i (Mi)

31

(since t�1�i � 9�i � idSb) we get

^

i

(t�1�i (Ei ��Ii Mi)) ` Î ^ t
�1
�� (E)!

^

i

t�1�i (Mi)

and so by Lemma 5 and propositional reasoning

9�(
^

i

(t�1�i (Ei ��Ii Mi)) ` 9�(Î ^ t
�1
�� (E))! 9�(

^

i

t�1�i (Mi))

and hence O

i

(Ei ��Ii Mi) ` E ��
Î

O

i

Mi

as required.

The intuitionistic logic captures an external view of processes, via their

behaviors. The notation M / � makes it possible to express who is the

subject of a speci�cation. Linear logic speci�cations describe a process at

a time, and hence the notion of \constrains at most" is unnecessary. On

the other hand, it becomes more di�cult to express that one process is the

complete environment of another, and that the system that they form is

closed. Such closed systems are essential in the notion of testing, which

then helps in the analysis of assumption-guarantee speci�cations.

32

Acknowledgements

Luca Cardelli encouraged this work in its initial phase, and tried some of the

ideas in a CCS setting. David Israel suggested the connection with relevance

logic. We enjoyed discussions about testing with Rocco De Nicola. We

derived understanding and inspiration from Leslie Lamport and Vaughan

Pratt. Cynthia Hibbard provided editorial help.

33

34

References

[1] Mart��n Abadi and Leslie Lamport. Composing speci�cations. Research

Report 66, Digital Equipment Corporation Systems Research Center,

1990. A preliminary version appeared in [9].

[2] Mart��n Abadi and Gordon Plotkin. A logical view of composition and

re�nement. In Proceedings of the Eighteenth Annual ACM Symposium

on Principles of Programming Languages, pages 323{332, January 1991.

[3] K. Abrahamson. Modal logic of concurrent nondeterministic programs.

In International Symposium on Semantics of Concurrent Computation,

Evian-les-Baines, July 1979.

[4] Samson Abramsky. Domain theory in logical form. Annals of Pure and

Applied Logic, 1989.

[5] Samson Abramsky and Steve Vickers. Quantales, observational logic,

and process semantics. Technical report, Imperial College, January

1990.

[6] Howard Barringer, Ruurd Kuiper, and Amir Pnueli. Now you may

compose temporal logic speci�cations. In Sixteenth Annual ACM Sym-

posium on Theory of Computing, pages 51{63. ACM, April 1984.

[7] Mads Dam. Relevance logic and concurrent computation. In Proceed-

ings of the Third Symposium on Logic in Computer Science, pages 178{

185. IEEE, July 1988.

[8] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order.

Cambridge University Press, Cambridge, 1991.

[9] J. W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors. Step-

wise Re�nement of Distributed Systems: Models, Formalisms, Correct-

ness, volume 430 of Lecture Notes in Computer Science, Berlin, 1990.

Springer-Verlag.

[10] Rocco De Nicola and Matthew Hennessy. Testing equivalences for pro-

cesses. Theoretical Computer Science, 34:83{134, 1984.

[11] J. Michael Dunn. Relevance logic and entailment. In D. Gabbay and

F. Guenthner, editors, Handbook of Philosophical Logic, volume 3, pages

117{224. D. Reidel Publishing Co., 1986.

35

[12] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1{102,

1987.

[13] David Harel and Amir Pnueli. On the development of reactive systems.

In K. R. Apt, editor, Logics and models of concurrent systems, volume

F13 of NATO ASI Series, pages 477{498. Springer-Verlag, 1985.

[14] Matthew Hennessy. Algebraic Theory of Processes. MIT Press, Cam-

bridge, Massachusetts, 1988.

[15] Matthew Hennessy and Gordon Plotkin. Full abstraction for a simple

parallel programming language. In J. Becvar, editor, Proceedings of

8th Mathematical Foundations of Computer Science Conference, Olo-

mouc, Czechoslovakia, volume 74 of Lecture Notes in Computer Science,

Berlin, 1985. Springer-Verlag.

[16] Matthew Hennessy and Gordon Plotkin. Finite conjunctive nondeter-

minism. In K. Voss, H. J. Genrich, and G. Rozenberg, editors, Concur-

rency and Nets, pages 233{244, Berlin, 1987. Springer-Verlag.

[17] P. T. Johnstone. Stone Spaces. Cambridge University Press, Cam-

bridge, 1982.

[18] A. Joyal and M. Tierney. An extension of the Galois theory of

Grothendieck. American Mathematical Society Memoirs, 309, 1982.

[19] Leslie Lamport. Specifying concurrent program modules. ACM Trans-

actions on Programming Languages and Systems, 5(2):190{222, April

1983.

[20] Leslie Lamport. What good is temporal logic? In R. E. A. Mason,

editor, Information Processing 83: Proceedings of the IFIP 9th World

Congress, Paris, September 1983. IFIP, North Holland.

[21] Leslie Lamport. A simple approach to specifying concurrent systems.

Communications of the ACM, 32(1):32{45, January 1989.

[22] Narciso Mart��-Oliet and Jos�e Meseguer. From Petri nets to linear logic.

Technical Report SRI-CSL-89-4R2, SRI International, December 1989.

[23] Jayadev Misra and K. Mani Chandy. Proofs of networks of processes.

IEEE Transactions on Software Engineering, SE-7(4):417{426, July

1981.

36

[24] Amir Pnueli. In transition from global to modular temporal reasoning

about programs. In Krzysztof R. Apt, editor, Logics and Models of

Concurrent Systems, NATO ASI Series, pages 123{144, Berlin, October

1984. Springer-Verlag.

[25] K.I. Rosenthal. Quantales and their applications, volume 234 of Pitman

Research Notes in Mathematics. Longman, Harlow, 1990.

[26] Eugene W. Stark. A proof technique for rely/guarantee properties. In

S. N. Maheshwari, editor, Foundations of Software Technology and The-

oretical Computer Science, volume 206 of Lecture Notes in Computer

Science, pages 369{391, Berlin, 1985. Springer-Verlag.

[27] Steve Vickers. Samson Abramsky on linear process logics. Foundation

Workshop Notes, October-November 1988.

[28] David N. Yetter. Quantales and (noncommutative) linear logic. Journal

of Symbolic Logic, 55(1):41{64, March 1990.

37

