85

On-line Data Compression
In aLog-structured File System

Michael Burrows, Charles Jerian, Butler Lampson,
Timothy Mann

April 15, 1992

Systems Resear ch Center

DEC's business and technology objectives require a strong research program.
The Systems Research Center (SRC) and three other research laboratories are
committed to filling that need.

SRC began recruiting itsfirst research scientistsin 1984—their charter, to advance
the state of knowledge in all aspects of computer systems research. Our current
work includes exploring high-performance personal computing, distributed com-
puting, programming environments, system modelling techniques, specification
technology, and tightly-coupled multiprocessors.

Our approach to both hardware and software research is to create and use real
systems so that we can investigate their properties fully. Complex systems cannot
be evaluated solely in the abstract. Based on this belief, our strategy is to demon-
strate the technical and practical feasibility of our ideas by building prototypes and
using them as daily tools. The experience we gain is useful in the short term in
enabling us to refine our designs, and invaluable in the long term in helping usto
advance the state of knowledge about those systems. Most of the major advances
in information systems have come through this strategy, including time-sharing,
the ArpaNet, and distributed personal computing.

SRC &l so performs work of a more mathematical flavor which complements our
systemsresearch. Some of thiswork isin established fields of theoretical computer
science, such as the analysis of algorithms, computational geometry, and logics of
programming. The rest of thiswork explores new ground motivated by problems
that arise in our systems research.

DEC hasastrong commitment to communi cating the resul ts and experience gained
through pursuing these activities. The Company values the improved understand-
ing that comes with exposing and testing our ideas within the research community.
SRC will therefore report results in conferences, in professiona journas, and in
our research report series. We will seek users for our prototype systems among
those with whom we have common research interests, and we will encourage
collaboration with university researchers.

Robert W. Taylor, Director

On-line Data Compression
in aLog-structured File System

Michael Burrows
Charles Jerian
Butler Lampson
Timothy Mann

April 15, 1992

This report appeared in the proceedings of the Fifth International Conference
on Architechural Support for Programming Languages and Operating Systems
(ASPLOS-V), 12-15 October, 1992, published by ACM Press.

©Digital Equipment Cor poration 1992

Thiswork may not be copied or reproduced in wholeor in part for any commercial
purpose. Permission to copy in part without payment of feeisgranted for nonprofit
educational and research purposes provided that all such whole or partial copies
include the following: a notice that such copying is by permission of the Systems
Research Center of Digital Equipment Corporation in Palo Alto, California; an
acknowledgment of the authors and individual contributors to the work; and all
applicable portions of the copyright notice. Copying, reproducing, or republishing
for any other purpose shall require a license with payment of fee to the Systems
Research Center. All rights reserved.

Abstract

We have incorporated on-line data compression into the low levels of
a log-structured file system (Rosenblum’s Sprite LFS). Each block of data
or meta-data is compressed as it is written to the disk and decompressed
asitisread. The log-structuring overcomes the problems of alocation and
fragmentation for variable-sized blocks. We observe compression factors
ranging from 1.6 to 2.2, using agorithms running from 1.7 to 0.4 MBytes
per second in software on a DECstation 5000/200. System performance is
degraded by afew percent for normal activities(such as compiling or editing),
and as much as a factor of 1.6 for file system intensive operations (such as
copying multi-megabytefiles).

Hardware compression devices mesh well with this design. Chips are
already available that operate at speeds exceeding disk transfer rates, which
indicatesthat hardware compression would not only remove the performance
degradation we observed, but might well increase the effective disk transfer
rate beyond that obtainable from a system without compression.

Contents
1 Introduction
2 SpriteLFS

3 Adding compression toLFS
3.1 Logica and physical diskspace
3.2 Readingalogical block
33 Writingtothelog
34 CrasnrecoveElyo v v it i e e
35 Compressionblocksize
36 Freespace e
3.7 Filespecificcompression,

7

8

Compression algorithms

LFSand compression hardware

51 Systemchanges
52 Compressionhardware

Performance of prototype
Comparison with other work

Summary

Acknowledgements

References

Vi

10

12
12
13

14

16

18

18

20

1 Introduction

Building a file system that compresses the data it stores on disk is clearly an
attractive idea. First, more data would fit on the disk. Also, if a fast hardware
data compressor could be put into the data path to disk, it would increase the
effective disk transfer rate by the compression factor, thus speeding up the system.
Yet on-line data compression is seldom used in conventiona file systems, for two
reasons.

First, compression algorithms do not provide uniform compression on al data.
When afile block is overwritten, the new data may be compressed by a different
amount from the data it supersedes. Therefore the file system cannot simply
overwrite the original blocks—if the new data is larger than the old, it must be
written to a place where there is more room; if it is smaller, the file system must
either find some use for the freed space or see it go to waste. In either case, disk
space tends to become fragmented, which reduces the effective compression.

input block size compression ratio

(bytes) (output size/input size)
1K 68%

2K 63%

4K 59%

8K 55%

16K 53%

32K 51%

Thefile progcfromthe Calgary Compression Corpus[3] was compressed using various
block sizes. Thefilecontains 39611 bytesof C source. The entirefile was compressed,
one block at atime. The compression algorithm is described below in Section 4 as
Algorithm 2.

Table 1: An example of improved compression with increased block size.

Second, the best compression algorithms are adaptive—they use patterns dis-
covered in one part of a block to do a better job of compressing information in
other parts [3]. Thesealgorithmswork better on large blocks of datathan on small
blocks. Table 1 shows the variation in compression ratio with block size for a
simple adaptive compression algorithm. The details vary for different compres-
sion algorithms and different data, but the overall trend is the same—larger blocks
make for better compression.

TTANTa

— unused space

N

file block inode block inode map block

Figure 1: Smplified view of LFS's |og.

However, it is difficult to arrange for sufficiently large blocks of data to be
compressed all at once. Most file systems use block sizes that are too small for
good compression, and increasing the block size would waste disk space in frag-
mentation. Compressing multipleblocks at atime seems difficult to do efficiently,
since adjacent blocks are often not written at the same time. Compressing whole
fileswould aso belessthanidea, sincein many systems most files are only afew
kilobytes[2].

In alog-structured file system, the main data structure on disk isa sequentially
written log. All new data, including modifications to existing files, is written to
the end of the log. This technique has been demonstrated by Rosenblum and
Ousterhout in asystem called Sprite LFS[9]. Themaingoal of LFSwasto provide
improved performance by eliminating disk seeks on writes. In addition, LFS is
ideally suited for adding compression—we simply compressthelog asit iswritten
todisk. No blocksare overwritten, so we do not haveto make special arrangements
when new data does not compress as well as existing data. Because blocks are
written sequentialy, the compressed bl ocks can be packed tightly together on disk,
eliminating fragmentation. Better still, we can choose to compress blocks of any
size we like, and if many related small files are created at the same time, they
will be compressed together, so any similaritiesbetween thefileswill lead to better
compression. We do, however, need additional bookkeeping to keep track of where
compressed blocks fall on the disk.

The remainder of this paper describes the relevant features of Sprite LFS,
the changes needed to introduce compression, and the performance of our modi-
fied system using simple software compression routines. We argue that suitable
hardware compression devices can be readily obtained or constructed.

2 SpriteLFS

Sprite LFS places al file data and amost al meta-data (for example, directory
information) in a sequentially written log. The file system data structures allow
any block of an existing file to be located quickly in thelog. For afull description
see Rosenblum and Ousterhout’s paper [9].

Thelogisstoredinachain of fixed-size segments, each of which isacontiguous
array of disk sectors. The system keeps track of the current segment, which isthe
segment containing the current end of the log. When the current segment becomes
full, the system picks an unused segment, links it onto the end of the chain, and
makesiit the current segment.

Asfilesare deleted and rewritten, some of the datain thelog becomes obsol ete.
The space occupied by this data is reclaimed by the segment cleaner, which is
analogous to a copying garbage collector in a programming language run-time
system. The cleaner chooses segments and scans them to determine which blocks
are still in use, appending them to the log in the usua manner. The cleaned
segments are then unlinked from the log and made available for reuse.

Some of the blocks written to the log contain file data, while others contain
meta-data of various kinds, and the segment cleaner must be able to tell whichis
which. To do this, it uses summary blocks, which aso appear in the log. These
blocks contain a small amount of identifying information for each item written to
thelog. At least one summary block is written for each segment, and additional
blocksare used if thefirst isnot large enough to describe all the data being written.
The summary blocksin asegment are linked together to form alist.

Inodes are an important type of meta-data. Like a UNIX?! inode, a Sprite
LFSinode containsinformation about its associated file, including pointersto data
blocks contained in the file. Whenever afile is modified, an updated copy of its
inode is placed in the log. To avoid fragmentation, LFS places severa inodes
together in one block when it can. LFS maintains an inode map, which allows the
current copy of any inode to be found quickly. The inode map is also written to
thelog.

When LFS writesdatato thelog, it first buildsalist of elements. Each element
represents a number of disk blocks, and the order of the elements gives the order
in which the blocks will appear on disk. Each element isalogica unit, such asa
summary block, ablock of inodes, or filedata. Itisonly when an element is added
tothelist that the system can tell wherethe datain the element will fall on the disk.

Periodically, LFS writes a checkpoint, by flushing the current state of in-

LUNIX isaregistered trademark of UNIX System Laboratories, Inc.

memory data structures to the log and writing a pointer to the end of thelogin a
fixed location on disk. When recovering from crashes, LFS restoresthefile system
state as of the last checkpoint, and then rollsforward by following the chain of log
segments written subsequently.

3 Adding compressionto LFS

3.1 Logical and physical disk space

As with the original Sprite LFS, our modified system divides the physica disk
into fixed-sized segments chained together to form a log. However, because of
compression, each segment can contain more user datathan its physical size might
suggest. Accordingly, we allocate space within the segment in two ways: logical
and physical. The physical space represents real disk blocks, while the logica
space represents the space that would have been occupied by the dataif it were not
compressed.

Aseach kilobyte of dataisadded to a segment, it occupiesakilobyteof logical
space, but may occupy less physical space. A segment is declared full when either
its physical or itslogica space is exhausted. (If logica space becomes full first,
some physical space is wasted. So logical space should be larger than physical
space by afactor greater than the maximum compression expected.)

Logica space is subdivided into compression blocks, which are the units of
compression and decompression. A logical disk address consists of a segment
number, a compression block number within the segment, and a sector number
within the compression block. We chose a physical segment size of 512 KBytes
and a maximum compression factor of four, so our logical segment size was 2
MBytes. Our compression blocks are 16 KBytes, and our sector sizeis 512 bytes.
Thus, our logical disk addressesfit easily in a 32-bit word:

| segment (20 bits) | compression block (7 bits) | sector (5 bits) |

3.2 Reading alogical block

Most of the modified file system deals exclusively in logical disk addresses. For
example, the disk addresses used by thefile system cache arelogical, and so are the
disk addresses placed ininodes. Physical addresses are needed only by modules at
the lowest level of thefile system.

16 KByte compression block

L 2 MByte logical segment |

\ unused logical space
_>

II /// /,/ ,/,/
] / A logical block map

/ 7 7
1 / / -, |

unused physical space l
_>

512 KByte physical segment

Figure 2: Logica and physical views of a segment.

The module that reads a disk block given its logical address needs a way to
find the physical address of the compressed bytes. We keep a logical block map
for each segment, whichissimply an array indexed by compression block number,
whose entries are the physical byte addresses of the blocks relative to the start of
the segment. The block map is constructed in memory as the segment is being
compressed, and written to the end of the segment when the segment isfull. The
mapsare needed for al filereads, so they are cached in memory whenever possible.
Because our logical segments contain 128 compression blocks and our physical
segments are 512 KBytes, our block maps each contain 128 four-byte entries,
which exactly fills one 512-byte disk sector. (The entries could be reduced to two
bytes each by restricting compression blocks to begin on eight byte boundaries
within the segment, but we did not implement this optimization in our prototype.)
The procedure for finding the compressed data associated with alogical addressis
asfollows:

1. Extract the segment number from the logical address. Use it to find the
logical block map for the segment.

2. Extract the compression block number from the address. Useit to index the
logical block map. This yields the physical byte offset of the compressed
data within the segment.

3. Examine the next entry in the map, to find the start of the next block. This
determines how much data should be read from the disk.

4. Read the compressed data from the disk and decompressit.

5. Extract the sector number from the logical address. Use it to identify the
desired sector within the decompressed block.

Unfortunately, thisprocedure reads and decompressesafull compression block
even if the caller wanted only some smaller unit, such as a file system block or
a physical sector. We dleviate this problem by caching the entire decompressed
block in memory, rather than just caching the requested sectors. The data could
be placed in the file system buffer cache, but for simplicity in our prototype, we
cached the last decompressed block within the read routine. Sprite LFS reads files
sequentially in 4 KByte units, so this simple caching strategy typically achieves
three hitsfor each 16 KByte compression block when reading large files.

When the file system is reading non-sequentially, the additional timeto read a
full compression block cannot be hidden by caching. Fortunately, thistimeissmall
compared to the rotational latency. The time needed to decompress the full block
in software is several milliseconds; it would be much smaller if decompression
were implemented in hardware.

3.3 Writingtothelog

Conceptudly, itissimpletowrite compressed datato thelog. AsLFS constructsits
element list, it can compressthe datainto a buffer, one compression block at atime.
When there isno more data to add to thelist, or when logical or physical segment
space is exhausted, it writes the buffer to disk and updates the logical block map
for the segment. In practice, however, the design was more complicated.

In Sprite LFS, the contents of certain kinds of element, such as inode blocks,
are alowed to change even after they are added to the element list; we will call
these variable elements. For example, when LFS putsthefirst inode in a segment,
it allocates an empty inode block and places it on the element list. When more
inodes are added to the segment, they are placed in thisinode block. Eventually,
it may become full, at which point another block is alocated for inodes. Thus,
an inode block may have inodes added to it long after it has been placed on the
element list. A similar strategy isused for summary blocks—thistechnique allows
LFSto make better use of disk space when alocating small data structures.

In an unmodified LFS, these variable elements present no difficulty; the con-
tents of elements can be changed freely until the segment iswrittento disk, aslong

as their size does not change. However, in our system, the data for each element
must be known before the element can be compressed, and compression must take
place early enough to decide which elementsfit into the current segment. We know
of two ways to accommodate variable elements in a compressed LFS.

One techniqueis to delay compressing variable e ements until just before the
segment is written to disk. Enough physical space must be reserved to hold the
variable e ements, assuming theworst-case compressionratio (i.e. that they cannot
be compressed at all). With this approach, there islittle benefit in compressing the
variable elements, since the space saved cannot easily be used.

A second technique is to delay compressing all elements as long as possible,
allowing variable elements to be changed freely until they are compressed, but
not afterwards. We do not compress elements as they are added; instead, we
reserve enough physical space for each element to accommodate the worst-case
compression ratio, until we can no longer be sure the next element will fit into
the physical segment. Then we compress al the elements, correct the amount of
physical space remaining to reflect the actual compression achieved, and mark the
elements as no longer variable. When an inode block is compressed, for example,
it can be marked as full so that no further inodes will be added to it. A new block
will automatically be allocated if needed.

Thefollowing pseudo-codeillustratesthe action taken for each element el em
containing si ze(el en) bytes. Thewor st _case function returns the largest
number of bytesthat may be needed to represent the data when compressed.

if (size(elem > logical_space_left) {
goto segnent _full
}

if (worst_case(elem > phys_space_left) {
compress all elements not yet compressed
increase phys_space_| ef t by bytessaved
mark inode blocks full
if (worst_case(elenm > phys_space_left) {
goto segment _full
}
}
add el emto element list, without compression
reducel ogi cal _space_l eft bysi ze(el em

This approach is less general than the first, since it works only if the code
that modifies variable elements can be told to stop doing so at an arbitrary point;
however, it does allow variable e ementsto be compressed.

Both the summary blocks and inode blocks of Sprite LFS could be handled
using either technique. As a matter of expediency, we used the first technique for

7

summary blocks and the second for inode blocks, and we chose not to compress
summary blocks. These choices worked out fairly well: there are few summary
blocksper segment, solittlecompressionislost, and crash recovery isnot adversely
affected (see Section 3.4). Inode blocks tend to be less full than in unmodified
LFS—two or three blocks might be allocated per segment where only one would
have been used before—but little physical space is wasted because a partialy-
empty block compresses exceedingly well. However, programs that read many
inodes (such as the file tree walker find) do not perform as well; see Section 6
below for details.

A third technique for dealing with variable elementsis to eliminate them. We
could have modified Sprite L FStofill summary blocksandinodeblockscompletely
before adding them to the element list. Thiswould have been difficult, however,
because the logical disk address of a data block is not known until it is added to
the element list, and the current LFS implementation needs to know the addresses
of summary blocks and inode blocks asiit fillsthem in, for use as pointersin other
data structures. Also, LFS needs to know that the summary block it isfilling will
fit into the current segment, not be spilled over into the next one. Therefore we
chose not to take this approach in our prototype.

34 Crashrecovery

Our changes introduce a new problem in crash recovery. The system could crash
after a segment has been written, but before the logical block map has been
committed to disk. One might view this as an argument for writing the logical
block map first, at the start of the segment. However, LFS often fills a segment
using a small number of partial writes—these are used when it is necessary to
commit datato disk, but the data does not fill an entire segment. So, on successive
partia writes the segment’s block map would be updated in place, and could
therefore be lost in a crash. Alternatively, we could allocate a new block map for
each partial segment written, but this would consume additional disk space and
complicate the process of reading and parsing the maps.

Fortunately, this problem is easy to solve. We maintain the invariant that all
segments on the disk have avalid logical block map on disk, except possibly the
current segment. When the file system examinesthe disk after acrash, it must first
read the current segment, decompress it from the beginning, and reconstruct the
logical block map. Thisactionis similar to rolling forward from a checkpoint.

We do not compress the checkpoint areas or the summary blocks. Together,
these blocks contain enough information for LFS to find the end of thelog during
recovery: we modified the segment cleaner to read segments without using the

block map in order to exercise this algorithm.

3.5 Compression block size

We would like to compress datain large blocks, but there are reasons for choosing
smaller blocks.

First, when reading bytes from the disk, decompression must start from the
beginning of a compressed block. Thus, the mean latency for reading a randomly
chosen byte on the disk is increased by the time to read the block from the disk
and decompressit. A 16 KByte block seems to be a reasonable choice, sinceit is
large enough to allow the compression algorithm to obtain most of the compression
available, but small enoughthat it addsonly afew millisecondsto thetransfer time.
In software on a DECstation 5000/200, the decompression time is 9 ms for the
fastest algorithm we tried; in hardware, decompression would be faster than the
disk transfer, and could be overlapped with it more easily.

A second issue is that applications often commit small amounts of data to
disk, resulting in poor compression. The obviousway to overcomethis problemis
to employ a small amount of non-volatile memory to postpone compression until
moredataisavailable. Alternatively, one canignorethe problem and writethe data
immediately, because the segment cleaner will later combinethe datafrom adjacent
writes to form a full-sized compression block. Thisis similar to the strategy used
in unmodified L FSto recover unused space left in inode and summary blocks after
small amounts of data have been committed.

The cleaner saves space in other minor ways too. In our system, when two
compression blocks are written together, no gap need be left between them. But
when two blocks are forced to disk independently, the second must start on a sector
boundary to avoid the danger of damaging previously written data. This causes
fragmentation that is removed later by the segment cleaner.

3.6 Free space

One problem with using compressionin afile systemisthat it leavesthe naive user
open to surprises. For onething, it is no longer obvious how to report the amount
of space remaining on the disk! It seems best to report the amount of data that
could be put on the disk assuming worst-case compression (i.e. no compression at
all), so that the user is more likely to be agreeably surprised than upset.

A more worrying problem is that actions that do not consume disk space in
conventional file systems may do so when compression isused. For example, if a

2DECstation is atrademark of Digital Equipment Corporation

block in afile is overwritten, the new data may not compress as much as the old
data. When compression isused, such operations cannot be allowed when the disk
isfull.

3.7 File-specific compression

Different compression agorithms are better suited to different data, and so one
might like to choose the agorithm to be used for each file. One way to do thisin
our system would beto place some additional hintsin each inode. The LFS module
that placesfile datablocksinto the element list could use the hintsto mark elements
for compression by different algorithms. One possibleuse of such aschemewould
be to indicate that certain files should not be compressed at all; this would free
those files from the restriction noted in the previous subsection.

Whilefile-specific compression could easily be applied to our current software
implementation, it would certainly complicate the hardware design described in
Section 5. Moreover, only large files would benefit from this approach, since only
one compression agorithm would be used for each 16 KBytes of data.

4 Compression algorithms

A wide variety of compression agorithms could be used for this application,
but fast, simple algorithms are clearly preferable. One suitable agorithm was
introduced by David Wheeler in hisred and exp programs[13]; similar agorithms
were also described by Raita and Teuhola[8]. Williams has devel oped agorithms
that are particularly fast for decompression [15, 16].

The simplest form of Wheeler’s a gorithm (which we will call Algorithm 1) is
asfollows. A hash tablet, whose entries are bytes, isinitialized to a known state,
such as all zeroes. For each input byte ¢, the compressor constructs a hash value
h based on the preceding three bytes. The value found in table entry ¢[A] is called
the predicted character. If t[4] = ¢, the compressor outputs a token indicating
acorrect prediction. If ¢[h] # ¢, the compressor sets the entry ¢[4] to be ¢, and
outputs atoken indicating that prediction failed and that the input character was c.
If this a gorithm expands the block, the compressor outputs a token indicating that
no compression has occurred, followed by a copy of the original data.

The decompressor maintains a similar hash table ¢. For each token read from
the compressor, the decompressor constructs a hash value /. based on the | ast three
byteswrittentoitsoutput. Thehashfunctionandinitial setting of ¢ must beidentical
in compressor and decompressor. |If the token indicates a successful prediction,

10

the decompressor reads and outputs the byte ¢[A]. If it indicates prediction failure
with theinput character ¢, the decompressor setsthe entry ¢[4] to ¢ and outputs c.

In our tests, using Sprite system binaries and an operating system source tree,
this algorithm predicts around 50% of the bytesin atypica 16 KByte block and
compresses it down to 10 KBytes. We used a modest hash table size (» = 4096
entries) and asimple hash function (h = (256¢3 & 16¢2 & ¢1) mod n, where ¢; is
the ¢th character preceding the current character ¢, and & is bitwise exclusive-or),
and we chose to encode a correct prediction with one bit and a missed prediction
with nine hits.

Animproved version of the algorithm (which we will call Algorithm 2) addsa
second hash table hol ding an alternative prediction, and atoken toindicate acorrect
prediction in the second table. In addition, it applies Huffman coding to the stream
of predictions and misses, instead of using a fixed-length code for misses. Our
implementation uses a static Huffman code computed from frequencies of bytes
seen on atypica UNIX disk.

Besides the agorithms based on Whedler’s ideas, we tried the LZRW1-A and
LZRW3-A dgorithmsdueto Williams. A full description and implementation are
available elsewhere [15, 16], so we omit the details here.

Compressor | Compression speed | Decompression Speed | compression
KBytes/s KBytes/s ratio
Algorithm 1 1700 2200 61%
Algorithm 2 590 670 51%
LZRW1-A 910 2400 52%
LZRW3-A 360 1500 48%
compress 250 410 50%
200 -h 45 390 36%

This table shows the performance of six compression agorithms on 240 MBytes of
data from a log-structured file system containing Sprite operating system source and
binaries. The figures give the compression speed, decompression speed, and the ratio
of output size to input size (compression ratio). Compression was performed on 16
KByte blocks. Compression speed is in kilobytes of uncompressed data processed
per second of CPU time, given to two significant figures. Times were measured on a
DECstation 5000/200.

Table 2: Comparison of compression algorithms.

Table 2 illustrates the performance of these algorithms on data typica for a
UNIX program development environment. For comparison, we includefiguresfor

11

the popular compress utility, which uses the LZC agorithm, and the zoo archiver,
which usesthe LZSS agorithm. The table shows that the a gorithmswe chose are
quite fast, but better compression could be obtained by sacrificing speed.

Bell, Witten, and Cleary give a more thorough comparison of compression
algorithmsand their effectiveness on different sorts of data[3]. They aso describe
the LZC and LZSS agorithms.

5 LFSand compression hardware

We have arranged our system so that the compression agorithm can be changed
easily. An obvious improvement would be to replace the compression routine
with a piece of hardware. As noted in the introduction, this would reduce the
performance penalty exacted by software compression, and would increase the
effective disk transfer rate. We have not yet integrated compression hardware into
our prototype, but in this section we discuss how it might best be done.

5.1 System changes

The simplest way to add hardware compression to our design would be to build a
DMA devicethat reads uncompressed data from one buffer and writes compressed
datato another (and vice versa), and useit as adirect replacement for our software
compression module.

Consider adisk with atransfer rate of ¢ MBytes per second, and a compressor
that achieves compression ratio r at a rate of ¢ MBytes per second. Without
compression, the time to transfer n MBytes is n/d seconds. With a separate
hardware compressor, this becomes n/¢ 4+ nr/d seconds. (Seek and rotational
delays are unaffected. We assume that DM A setup times are negligible for blocks
of more than a few kilobytes) We would like to reduce the total time, which
impliesthat ¢ > d/(1—r). For example, whenr = 0.5, d = 2 MBytes per second,
¢ must exceed 4 M Bytes per second to improve the speed of disk writes.

A drawback of this approach is that data traverses the bus three times on its
way to disk—once uncompressed, and twice compressed. Also, compression and
decompression are serialized with disk transfer, not overlapped. These problems
suggest that the compressor should be placed in the disk controller, but doing so
reguires more changes to LFS, and quite specialized hardware.

As previously noted, LFS often needs to place the logical address of one disk
block into another disk block that is being written in the same disk transfer. (For
example, it needs to put the locations of file blocks into inodes.) But it is not

12

possible to tell whether a particular disk block will fit in the current segment until
compression has taken place, so we cannot determine what data should be written
until the data has been transferred to the controller for compression.

The first step to solving this problem is to modify LFS so that each write
contains no forward references to disk blocks. For example, in any particular
write, inode blocks would aways follow the file data blocks they point to, and
inode map blocks would follow the inode blocks they point to. Once forward
references are eliminated, our problem can be solved by placing a large buffer in
the disk controller to hold the compressed data. The file system can monitor the
status of the buffer as it writes more data, and commit the data to disk only after
compression has taken place.

We can save the cost of the buffer and overlap the compression with the disk
transfer by noticing that, in the abbsence of forward references, any prefix of awrite
isvalid. Thus, the file system can prepare alarger amount of data for writing than
will actually fit in the current segment, and can instruct the controller to truncate
the write if it occupies more than the amount of physical space available. If a
writeistruncated, the file system may have to recal cul ate the contents of theinode
blocks and inode map blocks before writing them, but none of the blocksthat were
actually written need be changed.

To achieve complete overlap between the compression and the disk transfer,
the compressed data stream must be at least as fast as the disk, or the disk will be
starved of data. That is, ¢r > d. This could be done by artificialy padding the
compressed data whenever the datais compressed too well. In this case, the time
to transfer n» MBytes of data becomes maz(nr/d,n/c). Thus, for a sufficiently
fast compressor, the transfer time isimproved by the compression ratio.

Finally, a disk controller containing a compressor must inform the software
where each compressed block fell on the disk. Ideally, it would & so construct the
logical block map and append it to the data being written, in order to avoid an extra
disk transfer to place the map at the end of the segment.

5.2 Compression hardware

Our Algorithms 1 and 2 (described in Section 4 above) can beredlized quite easily
in hardware at speeds over 10 M Bytes per second. The hash function requires one
fixed-distance shift and one exclusive-or per byte. Adequate hash tables can be
implemented by RAMs arranged to provide 16K words of 16 bits each. RAMs
with a block erase capability are commercialy available; these allow the tables to
be reset to zero in afew cycles at the start of each block. Both hash table lookups
needed for Algorithm 2 can be implemented with a single memory read, and the

13

Huffman table lookup can be done in paralel, so only one memory read and one
memory write are required per byte of data processed. In Algorithm 2, a barrel
shifter is needed to pack the variable length codes into bytes.

We have described thisimplementation toillustrate that simple, low-cost hard-
ware can provide adequate compression at high speed. More complex, slower
algorithms are already availablein chips running at 10 MBytes per second [1, 4].

6 Performance of prototype

Performance was measured on a DECstation 5000/200, an 18 SPECmark machine
based on a 25 MHz MIPS R3000 CPU. The disk was an RZ55, a SCSI disk with
a maximum transfer rate of 1.25 MBytes per second, rotating at 3600 rpm, with
a 16ms average seek time. During the timed tests, the disk was never more than
25% full, so the LFS cleaner did not run.

System Time for phase (seconds) Tota
MakeDir | Copy | ScanDir | ReadAll | Make
unmodified LFS | 1+1 441 441 441 |58+£2|71+£2
Nno compression O+1 |5+£1| 4+£1 4+1 |(64+£2|78+£1
Algorithm 1 1+£1 5£1| 3+£1 541 |63+2|77+2
Algorithm 2 1+£1 61| 4+£1 541 |67+2|83+2
LZRW1-A 1+£1 5£1| 3+£1 541 |65+2|79+1
LZRW3-A 0+1 541 3+1 541 |66+1|80+1
This table shows the time in seconds for the Andrew file system benchmark running
on six LFS configurations: unmodified LFS, and our modified LFS with five different

compression algorithms. The values given are the mean of threeruns, each on anewly
rebooted and otherwise idle DECstation 5000/200 using an RZ55 disk.

Table 3: Running time of Andrew benchmark.

Table 3 shows how our software compression affects the performance of the
system when executing the Andrew file system benchmark [7]. It shows times
for the unmodified LFS system, and for our modified system using five different
compression agorithms. One of the compression agorithmsisthe null algorithm,
implemented by a memory-to-memory copy.

The performance of the modified system with no compressionisworsethan that
of the unmodified system because of two short-cuts that we took in implementing
our prototype. First, wechosetowritethelogical block mapto disk asaseparatel/O

14

operation, rather than appending it to the write that was completing the segment.
We aso introduced an extra copy operation for al data written to simplify the
compressor implementation. Both of these short-cuts could be eliminated with
some additional effort.

The table shows that Algorithm 2 has the most impact on performance; it adds
6% to thetotal timeto execute the benchmark (taking our modified system with no
compression as the basis for comparison). Here, compression is generaly asyn-
chronous due to write-behind in the file block cache. Since only afew megabytes
of files are used in the Andrew benchmark, the files are decompressed only once
(in the Copy phase) and residein the file system’s buffer cache thereafter.

Timefor test (seconds)
System Copy file Tree wak
Elapsed | CPU Elapsed CPU
unmodified LFS | 1054+ 1| 154+ 1| 25+£01| 0.5+ 0.1
nocompression | 128+ 1 | 17+1 | 42+ 01| 0.7+ 0.1
Algorithm 1 147+1|43+2 | 424+£01]16+0.1
Algorithm 2 206+£2|80+4|58+£02]31+£01
LZRW1-A 154+2|35+4(39+01|14+01
LZRW3-A 191+1|48+7 | 46+£01]19+0.1
This table shows elapsed time and kernel CPU time in seconds for two tests, running
on the same six LFS configurationsused in Table 3. In the first test, a 32 MBytefile
was copied and flushed to disk—both source and destination were on the file system
under test. In the second, find was used to walk a directory tree of 400 files. The
values given are the mean of three runs, each on a newly rebooted and otherwiseidle
DECstation 5000/200 using an RZ55 disk.

Table 4: Timefor file copy and tree walk.

Table 4 shows the elapsed time and kernel CPU time for copying a 32 MByte
file, and for walking a directory tree with the UNIX find utility, examining every
inode. The effect of compression on performance is more noticeable, because
thesetestsinvolveno user computation. Here, file cache misses cause synchronous
compression and decompression operations. The slowest compression agorithm
adds 60% to the time taken to copy alarge file, and about 40% to the time for the
treewalk.3

3The elapsedtime for the tree walk isless for LZRW1-A than for the null compression algorithm.
We are still investigating the cause.

15

As a check on the compression figures of Table 2, we measured the num-
ber of physical segments consumed by storing a subtree of files containing 186
MBytes of operating system source and binaries. The results agree closely with
our expectations; see Table 5.

Segments consumed
System Absolute Relative to
unmodified LFS

unmodified LFS 380 100%

Nno compression 381 100%
Algorithm 1 222 58%
Algorithm 2 183 48%

LZRW1-A 190 50%
LZRW3-A 172 45%

Thistable showsthe number of 512 K Byte segments consumed by storing 186 M Bytes
of operating system source and binaries, again on the six LFS configurations used in
Table 3. The first column givesthe absol ute number of segments; the second givesthe
number relative to unmodified LFS.

Table 5: Compression obtained on prototype.

Besides measuring the performance of the system under artificial loads, wealso
used the system for simple program development to see whether the performance
decrease was perceptible. For Algorithm 1, the system seemed as responsive as
an unmodified system. However, with the slower agorithms we observed pauses
after file system activity. These pauses occurred when the system flushed large
amountsof dirty datato disk, at which point the compression code was invoked. It
appears that Algorithm 1 is fast enough to make these pauses unobtrusive during
norma work, but the other algorithms are not. It may be possible to eliminate
these pauses by forcing the compression task to yield the processor periodically.

7 Comparison with other work

The Stacker* system uses a conventional MS-DOS® file system format, but in-
tercepts reads and writes in the device driver and performs compression and de-
compression on 4 or 8 KByte clusters [14]. A defragmentation utility can be run

4Stacker is atrademark of Stac Electronics.
SMS-DOS is aregistered trademark of Microsoft Corporation.

16

periodically to improve the layout of the files on the disk if updates cause perfor-
mance to degrade. Stacker demonstrates that on-line compression can be applied
to aconventional file system with acceptabl e performance. But as we have shown,
compression fits more easily into a log-structured file system. Moreover, LFS
allows us to pack compressed blocks next to one another without any alignment
constraints, which improvesthe effective compression ratio. The cleaner automat-
ically reduces fragmentation, without any additional support. Even meta-data can
be compressed in LFS, without significant impact on the file system code.

The Iceberg® system aso compresses and decompresses as data is read and
written, thistimein devices that emulate IBM disk drives[6, 12]. Compressionis
performed in hardware, using avariant of the Lempel-Ziv agorithm [17]. Iceberg
uses a technique termed dynamic mapping to avoid problems with layout and
fragmentation. Asin LFS, new datadoes not overwrite old data, and a background
task is responsible for collecting free space on the disk. Unfortunately, details
about Iceberg are not publicly available.

Cate and Gross advocate a two-leve file system, in which files that have not
been accessed recently are compressed by a daemon process [5]. In their ATTIC
system, a compressed file is decompressed when it isfirst accessed. Subsequent
accesses use the decompressed file; the file is not compressed again until another
period of inactivity is detected. This approach has the advantage that only de-
compression is done on-line, and so only the decompression agorithm need be
fast; this alows the use of agorithms that can achieve more compression than
those used in our system. (See Table 2, for example.) In their prototype, afileis
compressed or decompressed as aunit, which may introduce uncomfortable delays
when accessing very large files. Our system avoids such delays by compressing
and decompressing in small blocks, yet avoids fragmentation by exploiting the
structure of thelog.

One can view our system as a specia case of the general scheme that Cate and
Gross describe; our cache of recently accessed files is the operating system’s file
block cache. This thought leads inevitably to the idea of a hierarchy of caches,
with different levels of compression.

Taunton describes a systemin which programs are decompressed automatically
by the operating system asthey are demand-paged into memory [10]. Compression
isinvoked explicitly by the user; each page is compressed separately by a simple
algorithm, and stored in as few disk blocks as possible. This works well in the
system described only because the page size far exceeds the file system block
size, which is not the case in most systems, however, Taunton aso explains

5l ceberg is atrademark of Storage Technology Corporation.

17

how his scheme can be adapted to more typica systems. The scheme benefits
from concentrating on executable files, which are read by few things besides the
operating system itself; no attempt is made to make the compression transparent
to other applications.

AutoDoubler’ [11] is a commercia system that uses a strategy similar to
Cate and Gross's proposal. It uses slow off-line compression and fast on-line
decompression to provide transparent access to compressed files.

There are many other products similar in implementation to Stacker and
AutoDoubler, using both hardware and software compression. They include Ex-
panz! Plus®, DoubleDisk®, SuperStor'®, and XtraDrive'l.

8 Summary

We have demonstrated a factor of two reduction in disk space consumption by
adding on-line compression and decompression to a log-structured file system
used to store system binaries and an operating system source tree. Even using
software compression, the performance of our system isacceptableon aDECstation
5000/200. The design can be adapted to use hardware compression devices, either
combined with a disk controller or packaged separately. Compression chips are
availablethat run faster than most disk transfer rates[1, 4]. Thus, the performance
of the file system can actually be improved by adding specialized hardware, since
the effective disk transfer rate can be increased by as much as the compression
factor.

We believe that this represents a promising technique for combining data
compression with the file system. In addition to their other advantages, log-
structured file systems provide an environment in which compression can be used
without the complexities of fragmentation and alocation that complicate more
conventional approaches.

Acknowledgements

Fred Douglisindependently devel oped and pursued theidea of adding compression
to alog-structured file system, and has provided helpful feedback on this paper.

“AutoDoubler is atrademark of Salient Software, Inc.

8Expanz! Plusis atrademark of InfoChip Systems Inc.
DoubleDisk is atrademark of Vertisoft Systems Inc.

OgyperStor is atrademark of AddStor Inc.

BxtraDrive is atrademark of Integrated Information Technology Inc.

18

We would also like to thank Tom Anderson, Mary Baker, John Ousterhout,
Margo Seltzer, and especially John Hartman. They provided us with a copy of the
Sprite operating system and answered our many questions.

Wereceived useful commentson early versionsof this paper from many people,
including Lucille Glassman, Tom Rodeheffer, Michagl Sclafani, Chuck Thacker,
and various anonymous referees.

19

References

[1]

[2]

(3]

[4]

(3]

6]

[7]

(8]

[9]

[10]

[11]

AHA3210 Data Compression Coprocessor |C Product Brief. Advanced Hard-
ware Architectures, Inc. PO. Box 9669 Moscow, |daho 83843.

M.G. Baker, J.H. Hartman, M.D. Kupfer, K.W. Shirriff, and J.K. Ousterhout.
Measurements of a Distributed File System. Proceedings of the 13th ACM
Symposium on Operating SystemsPrinciples, Asilomar, 13—16 October 1991,
pp. 198-212.

T. Bell, I. H. Witten, and J.G. Cleary. Modeling for Text Compression. ACM
Computing Surveys, Vol. 21, No. 4, December 1989, pp. 557-589.

S. Bunton and G. Borriello. Practical Dictionary Management for Hardware
Data Compression. Communications of the ACM, Vol. 35, No. 1, January
1992, pp. 95-104.

V. Cate and T. Gross. Combining the Concepts of Compression and Caching
for aTwo-Level Filesystem. Proceedings of the 4th International Conference
on Architectural Support for Programming Languagesand Operating Systems
(ASPLOYS), Santa Clara, California. 8-11 April 1991, pp. 200-211.

T. Costlow. Compressed Data Makes Iceberg Hot. Electronic Engineering
Times, 3 February 1992, p. 14.

J. Howard et a. Scale and Performance in a Distributed File System. ACM
Transactions on Computer Systems, 6(1), 1988.

T. Raitaand J. Teuhola. Predictive Text Compression by Hashing. Proceedings
of the 10th Annual ACM SIGIR conference on Research and Devel opment
in Information Retrieval. New Orleans, 3-5 June 1987, pp. 223-233.

M. Rosenblum and J.K. Ousterhout. The Design and Implementation of a
Log-Structured File System, Proceedings of the 13th ACM Symposium on
Operating Systems Principles, Asilomar, 13—16 October 1991, pp. 1-15.

M. Taunton. Compressed Executables: An Exercisein Thinking Small, Pro-
ceedings of the Summer 1991 Usenix Conference, Nashville, 10-14 June,
1991, pp. 385-403.

Sdient Software, Inc. AutoDoubler User Manual. 1992. Sdient Software,
Inc. 124 University Avenue, Suite 300, Palo Alto, California 94301.

20

[12]

[13]

[14]

[15]

[16]

[17]

Storage Technol ogy Corporation. |ceberg News Release. January, 1992. Stor-
age Technology Corporation, 2270 South 88th Street Louisville, Colorado
80028-0001.

D.J. Wheder. University of Cambridge Computer Laboratory, Pembroke
Street, Cambridge, CB2 3QG, UK. Private Communication. Wheeler wrote
the initial implementations of red and exp while at Bell Laboratories in
November 1983.

D.L. Whitingand R.A. Monsour. Data Compression Breaks Through To Disk
Memory Technology. Computer Technology Review, Spring 1991. Reprints
also available from Stac Electronics, 5993 Avenida Encinas, Carlsbad, Cali-
fornia 92008.

R. Williams. An Extremely Fast Ziv-Lempel Data Compression Algorithm.
|EEE Data Compression Conference, Snowbird, Utah, 8-11 April 1991.

R. Williams. Data Compression Directory. Available via anonymousftp: sir-
ius.itd.adel aide.edu.au: pub/compression This directory contains descriptions
and source code for Williams' agorithms.

J. Zivand A. Lempe. A Universal Algorithm for Sequential Data Compres-
sion. IEEE Transactionson Information Theory. Vol. I T-23, No. 3, May 1977,
pp. 337-343.

21

