
84

Graphical Fisheye Views of Graphs

Manojit Sarkar and Marc H. Brown

March 17, 1992



Systems Research Center

DEC’s business and technology objectives require a strong research program.
The Systems Research Center (SRC) and three other research laboratories are
committed to filling that need.

SRC began recruiting its first research scientists in l984—their charter, to advance
the state of knowledge in all aspects of computer systems research. Our current
work includes exploring high-performance personal computing, distributed com-
puting, programming environments, system modelling techniques, specification
technology, and tightly-coupled multiprocessors.

Our approach to both hardware and software research is to create and use real
systems so that we can investigate their properties fully. Complex systems cannot
be evaluated solely in the abstract. Based on this belief, our strategy is to demon-
strate the technical and practical feasibility of our ideas by building prototypes and
using them as daily tools. The experience we gain is useful in the short term in
enabling us to refine our designs, and invaluable in the long term in helping us to
advance the state of knowledge about those systems. Most of the major advances
in information systems have come through this strategy, including time-sharing,
the ArpaNet, and distributed personal computing.

SRC also performs work of a more mathematical flavor which complements our
systems research. Some of this work is in established fields of theoretical computer
science, such as the analysis of algorithms, computational geometry, and logics of
programming. The rest of this work explores new ground motivated by problems
that arise in our systems research.

DEC has a strong commitment to communicating the results and experience gained
through pursuing these activities. The Company values the improved understand-
ing that comes with exposing and testing our ideas within the research community.
SRC will therefore report results in conferences, in professional journals, and in
our research report series. We will seek users for our prototype systems among
those with whom we have common research interests, and we will encourage
collaboration with university researchers.

Robert W. Taylor, Director



Graphical Fisheye Views of Graphs
Manojit Sarkar and Marc H. Brown

March 17, 1992



Publication History

A preliminary version of this report will appear in the Proceedings of the ACM
SIGCHI ’92 Conference on Human Factors in Computing Systems, May 1992.

Author Affiliation

Manojit Sarkar is currently a Ph.D. candidate at Brown University. The bulk of
the work described here was performed while he was supported by a research
internship from SRC during the summer of 1991. Subsequent work has been
supported in part by ONR Contract N00014–91–J–4052, ARPA Order 8225.

Copyright and Reprint Permissions

c
Digital Equipment Corporation 1992

This work may not be copied or reproduced in whole or in part for any commercial
purpose. Permission to copy in whole or in part without payment of fee is granted
for nonprofit educational and research purposes provided that all such whole or
partial copies include the following: a notice that such copying is by permission
of the Systems Research Center of Digital Equipment Corporation in Palo Alto,
California; an acknowledgment of the authors and individual contributors to the
work; and all applicable portions of the copyright notice. Copying, reproducing,
or republishing for any other purpose shall require a license with payment of fee
to the Systems Research Center. All rights reserved.



Abstract

A fisheye camera lens is a very wide angle lens that magnifies nearby objects while
shrinking distant objects. It is a valuable tool for seeing both “local detail” and
“global context” simultaneously. This paper describes a system for viewing and
browsing graphs using a software analog of a fisheye lens. We first show how to
implement such a view using solely geometric transformations. We then describe
a more general transformation that allows hierarchical or structured information
about the graph to affect the view. Our general transformation is a fundamental
extension to previous research in fisheye views.



Contents

1 Introduction 1

2 Terminology 3

3 A Formal Model 6

4 An Implementation Strategy 7
4.1 Computing Position : : : : : : : : : : : : : : : : : : : : : : : : 7
4.2 Computing Size : : : : : : : : : : : : : : : : : : : : : : : : : : 10
4.3 Computing Detail : : : : : : : : : : : : : : : : : : : : : : : : : 10
4.4 Computing Visual Worth : : : : : : : : : : : : : : : : : : : : : : 11
4.5 Mapping Edges : : : : : : : : : : : : : : : : : : : : : : : : : : 11

5 Another Implementation Strategy 12

6 The Prototype System 15
6.1 Implementation : : : : : : : : : : : : : : : : : : : : : : : : : : 16
6.2 Response Time : : : : : : : : : : : : : : : : : : : : : : : : : : : 17
6.3 System Notes : : : : : : : : : : : : : : : : : : : : : : : : : : : 17

7 Generalized Fisheye Views 18

8 Related Work 19

9 Summary 22

Acknowledgments 22

References 23

About the Title Page 24



List of Figures

1 A graph with 134 vertices and 338 edges : : : : : : : : : : : : : 2
2 A fisheye view of Fig. 1 : : : : : : : : : : : : : : : : : : : : : : 3
3 A fisheye view of Fig. 1 : : : : : : : : : : : : : : : : : : : : : : 4
4 A fisheye view of Fig. 1 : : : : : : : : : : : : : : : : : : : : : : 4
5 A fisheye view of Fig. 1 : : : : : : : : : : : : : : : : : : : : : : 5
6 A fisheye view of Fig. 1 : : : : : : : : : : : : : : : : : : : : : : 5
7 An undistorted nearly-symmetric graph : : : : : : : : : : : : : : 7
8 Cartesian fisheye views of the nearly-symmetric graph in Fig. 7 : : 9
9 An outline of the United States : : : : : : : : : : : : : : : : : : : 12
10 A cartesian fisheye view of the USA map in Fig. 9 : : : : : : : : : 13
11 A polar fisheye view of the USA map in Fig. 9 : : : : : : : : : : 13
12 Polar fisheye views of the nearly-symmetric graph in Fig. 7 : : : : 14
13 The control panel of our prototype system. : : : : : : : : : : : : : 15
14 A graph with 100 vertices and 124 edges : : : : : : : : : : : : : 20
15 A graphical fisheye view of Fig. 14 : : : : : : : : : : : : : : : : 21
16 A generalized fisheye view of Fig. 14 : : : : : : : : : : : : : : : 21



1 Introduction

Graphs with hundreds of vertices and edges are common in many areas of computer
science, such as network topology, VLSI circuits, and graph theory. There are
literally hundreds of algorithms for positioning nodes to produce an aesthetic and
informative display [1]. However, once a layout is chosen, what is an effective
way to view and browse the graph on a workstation?

Displaying all the information associated with the vertices and edges (assuming
it can even fit on a screen) shows the global structure of the graph, but has the
drawback that details are typically too small to be seen. Alternatively, zooming
into a part of the graph and panning to other parts does show local details but loses
the overall structure of the graph. Researchers have found that browsing a large
layout by scrolling and arc traversing tends to obscure the global structure of the
graph [6]. Using two or more views — one view of the entire graph and the other
of a zoomed portion — has the advantage of seeing both local detail and overall
structure, but has the drawbacks of requiring extra screen space and of forcing the
viewer to mentally integrate the views. The multiple view approach also has the
drawback that parts of the graph adjacent to the enlarged area are not visible at all
in the enlarged view(s).

This paper explores a fisheye lens approach to viewing and browsing graphs.
A fisheye view of a graph shows an area of interest quite large and with detail, and
shows the remainder of the graph successively smaller and in less detail. Thus,
a fisheye lens seems to have all the advantages of the other approaches without
suffering from any of the drawbacks.

A typical graph is displayed in Figure 1, and fisheye versions of it appear in
Figures 2–6. In the fisheye view, the vertex with the thick border is the current
point of interest to the viewer. We call this point the focus. In our prototype
system, a viewer selects the focus by clicking with a mouse. As the mouse is
dragged, the focus changes and the display updates in real time. The size and
detail of a vertex in the fisheye view depend on the distance of the vertex from the
focus, a preassigned importance associated with the vertex, and the values of some
user-controlled parameters. All figures in this paper are screen dumps of views
generated by our prototype system.

Our work extends Furnas’s pioneering work on fisheye views [4, 5] by providing
a graphical interpretation to fisheye views. We introduce layout considerations
into the fisheye formalism, so that the position, size, and level of detail of objects
displayed are computed based on client-specified functions of an object’s distance

1



Figure 1: A graph with 134 vertices and 338 edges. The vertices represent major cities
in the United States, and the edges represent paths between neighboring cities. (Typically,
the edges would be annotated with the distance and driving time between the cities.) The
a priori importance value assigned to each vertex is proportional to the population of the
corresponding city. Fisheye views of this graph appear in Figures 2–6

from the focus and the object’s preassigned importance in the global structure. In
Furnas’s original formulation of the fisheye view, a component is either present in
full detail or is completely absent from the view, and there is no explicit control
over the graphical layout.

The next section defines the terminology and conventions used in the remainder
of this paper. In Section 3 we present a formal model for generating graphical
fisheye views. Section 4 describes the strategy we used to implement the formal
model, and Section 5 describes a second implementation strategy that we explored.
Section 6 describes our prototype system. In Section 7, we describe generalized
fisheye views (of the sort that Furnas described), and show how an implementation
of our formal model can be used for creating generalized fisheye views. In the
remaining sections, we review related efforts, and offer some thoughts on future
directions.

2



Figure 2: A fisheye view of the graph in Figure 1. The focus is on St. Louis. (The values
of the fisheye parameters are d = 5; c = 0; e = 0; VWcutoff = 0; the meanings of these
parameters are explained in Sections 4 and 6.)

2 Terminology

A graph consists of vertices and edges. The initial layout of the graph is called
the normal view of the graph, and its coordinates are called normal coordinates.
Vertices are graphically represented by shapes whose bounding boxes are square
(chosen arbitrarily). Each vertex has a position, specified by its normal coordinates,
and a size which is the length of a side of the bounding box of the vertex. Each
vertex is also assigned a number to represent its relative importance in the global
structure. This number is called the a priori importance, or the API, of the vertex.

An edge is represented by either a straight line from one vertex to another, or
by a set of straight line segments to simulate curved edges. An edge consisting of
multiple straight line segments is specified by a set of intermediate bend points,
the extreme points being the coordinates of its corresponding vertices.

The coordinates of the graph in the fisheye view are called the fisheye coordi-
nates. The viewer’s point of interest is called the focus; it is a point in the normal
coordinates. Each vertex in the fisheye view is defined by its position, size, and the

3



Figure 3: A fisheye view of the graph in Figure 1, with less distortion than in Figure 2. The
values of the fisheye parameters are d = 2; c = 0:5; e = 0:5; VWcutoff = 0.

Figure 4: A fisheye view of the graph in Figure 1, with the focus on Salt Lake City. The
level of distortion is the same as in Figure 3; only the location of the focus has changed.
The values of the fisheye parameters are d = 2; c = 0:5; e = 0:5; VWcutoff = 0.

4



Figure 5: A fisheye view of the graph in Figure 1. Compare this to Figure 3, with
the same distortion and the same focus. Here, the important vertices are larger than in
Figure 3, but the unimportant ones are smaller. The values of the fisheye parameters are
d = 2; c = 0:75; e = 0:75; VWcutoff = 0.

Figure 6: A fisheye view of the graph in Figure 1, with unimportant vertices eliminated.
Compare this to Figure 3, with the same values of the fisheye parameters, except for the
value at which unimportant vertices are eliminated. The values of the fisheye parameters
are d = 2; c = 0:5; e = 0:5; VWcutoff = 0:2.

5



amount of detail to display. Finally, each vertex in fisheye view is assigned a visual
worth, or VW, computed based on its distance to the focus (in normal coordinates)
and its a priori importance.

3 A Formal Model

Generating a fisheye view involves magnifying the vertices of greater interest
and correspondingly demagnifying the vertices of lower interest. In addition, the
positions of all vertices and bend points must also be recomputed in order to allocate
more space for the magnified portion so that the entire view still occupies the same
amount of screen space.

Intuitively, the position of a vertex in the fisheye view depends on its position
in the normal view and its distance from the focus. The size of a vertex in the
fisheye view depends on its distance from the focus, its size in the normal view,
and its API. The amount of detail displayed in a vertex in turn depends on its size
in the fisheye view. We now formalize these concepts.

The position of vertex v in the fisheye view is a function of its position in
normal coordinates and the position of the focus f :

Pfeye(v; f) = F1(Pnorm(v); Pnorm(f)) (1)

The size of a vertex in the fisheye view is a function of its size and position in
normal coordinates, the position of the focus, and its API:

Sfeye(v; f) = F2(Snorm(v); Pnorm(v); Pnorm(f); API(v)) (2)

The amount of detail to be shown for a vertex depends on the vertex’s size in the
fisheye view and the maximum detail that can be displayed:

DTLfeye(v; f) = F3(Sfeye(v; f); DTLmax(v)) (3)

Finally, the visual worth of a vertex depends on the distance between the vertex and
the focus in normal coordinates (found by examining the positions of the vertex
and the focus in normal coordinates) and on the vertex’s API:

VW(v; f) = F4(Pnorm(v); Pnorm(f); API(v)) (4)

One has to choose the functionsF1,F2,F3,F4 appropriately to generate useful
fisheye views. Readers familiar with Furnas’s work will note that our fundamental
contributions are the existence of arbitrary functions F1, F2, and F3. In the next
section, we present the set of functions we used in our prototype system.

6



Figure 7: An undistorted nearly-symmetric graph. This graph will be a useful basis for
understanding the fisheye transformations in Sections 4 and 5.

4 An Implementation Strategy

Generating fisheye views is a two step process. First we apply a geometric trans-
formation to the normal view in order to reposition vertices and magnify and
demagnify areas close to and far away from the focus respectively. Second, we
use the API of vertices to obtain their final size, detail, and visual worth.

4.1 Computing Position

Transforming a pointPnorm from normal coordinates to fisheye coordinates, using
focus positionPfocus, requires us to implement the function F1 in Equation 1. We
map the x and y coordinates independently as follows:

Pfeye =
D
G

�
Dnormx

Dmaxx

�
Dmaxx

+ Pfocus
x
;

G

 
Dnormy

Dmaxy

!
Dmaxy

+ Pfocus
y

E
(5)

where

G(x) =
(d+ 1)x
dx+ 1

(6)

7



Here, Dmaxx
is the horizontal distance between the boundary of the screen and

the focus in normal coordinates, and Dnormx
is the horizontal distance between

the point being transformed and the focus, also in normal coordinates. We divide
Dnormx

by Dmaxx
so that the argument to G is normalized to be between 0 and

1. Multiplying the results of G by Dmaxx
unnormalizes the “fisheye distance,”

so that adding the position of the focus (which is the same in normal and fisheye
coordinates) yields the fisheye coordinates. The meanings of Dmaxy

and Dnormy

are similar, in the vertical dimension.
The constant d in function G is called the distortion factor. The function G(x)

is monotonically increasing and continuous for 0 � x � 1 with G(0) = 0, and
G(1) = 1. The derivative of G(x) is

G0(x) =
d+ 1

(dx+ 1)2 (7)

This indicates that for large values of d the slope of the plot of x versus G(x) near
x = 0 is very large. This results in high magnification. The plot has a very small
slope near x = 1 which causes high demagnification. A graph of G(x) for d = 0
and d = 5 is as follows:

G(x)
G(x)

x x

d = 0 d = 5

0
0

0

1

0
1

1

1

magnification demagnification

When d = 0, the normal and the fisheye coordinates of every point are the same. In
our prototype system, the user can interactively modify the value of d. The effect
of altering d on the fisheye view can be seen by comparing Figure 2 to Figure 3,
and Figure 7 to the columns of images in Figure 8.

We call the mapping in Equation 6 the cartesian transformation. Later, we
show a slightly different transformation called the polar transformation.

8



Figure 8: Fisheye views of the nearly-symmetric graph from Figure 7 using a cartesian
mapping. The left column uses a focus in the northwest, and the right column uses a focus
in the southeast. The distortion increases from top to bottom: In the top row d = 1:46, in
the middle row d = 2:92, and in the bottom row d = 4:38. Note that the thickness of each
edge varies with the sizes of the vertices it joins.

9



4.2 Computing Size

While computing size, the square shape of the bounding boxes of the vertices is
preserved. The size mapping function F2 in Equation 2 is implemented in two
steps. The first step uses the geometric transformation just found in order to
compute the geometric size Sgeom(v; f) by ignoring v’s API. This mapping has
the special property that if no two vertices in the normal view overlapped, no two
vertices in the transformed view overlap. The second step then uses Sgeom(v; f)
and v’s API to complete the implementation of F2. However, the vertices may
overlap after the second step.

The geometric size of a vertex is found by comparing the fisheye coordinates
of the vertex with a point that is on the perimeter of the vertex’s bounding box. To
be precise, let’s call the length of a side of the bounds box of the undistorted vertex
Snorm, and introduce another parameter s, called the vertex-size scale factor, that
the user will be able to control in our prototype system. We take a point that is
s � Snorm=2 away from the center of the vertex in the direction away from the
focus, and transform it to Qfeye using F1 in Equation 5. (Because magnification
decreases as we move away from the focus, taking a point farther away from the
focus rather than closer to the focus is conservative. It ensures that vertices that do
not overlap in the normal view do not overlap in the fisheye view either.)

Now, the geometric size is simply

Sgeom = 2 min(
��Qfeye

x
� Pfeye

x

�� ; ���Qfeye
y
� Pfeye

y

���):
The minimum function keeps the bounding box square. The factor of 2 converts
back into the length of a side.

Finally, the function F2 in Equation 2 is implemented by

Sfeye = Sgeom(c �API)
e (8)

where the coefficient c and exponent e are constants. In our prototype system, the
user can interactively control the values of c, e, and also s. Figures 3 and 5 show
the effects of varying these parameters.

4.3 Computing Detail

We implemented function F3 as follows:

DTLfeye(v; f) = min(DTLmax(v); �Sfeye(v; f)) (9)

where � is a constant.

10



4.4 Computing Visual Worth

We implemented function F4 as follows:

VW(v; f) = �Sfeye(v; f) + 
 (10)

where � and 
 are constants.
Although our prototype system does not let the user control the values of �, �,

and 
, the user can control the minimum level of visual worth that is necessary in
order for a vertex to be displayed. Compare Figure 5 with Figure 6.

4.5 Mapping Edges

Straight line edges of the normal view are mapped to straight line edges in the
fisheye view automatically when vertices at their end points get mapped. The edges
with intermediate bend points are mapped by mapping each bend point separately.
Figure 8 demonstrates the effect of cartesian transformations on a symmetric graph.
Note in particular that parallelism between lines is not preserved, except for vertical
and horizontal lines.

Unfortunately, mapping just the end points of edges may lead to edges that
intersect in the fisheye view but not in the normal view. This artifact is quite
noticeable in the border between Washington and Idaho in Figure 11. Fortunately,
this problem is easily circumvented by mapping a large number of intermediate
points on each straight line segment individually. Mapping many points on each
edge would result in curved lines with the property that if the edges did not intersect
in the normal view, the edges will not intersect in the fisheye view. However,
mapping a very large a number of points may not be computationally feasible for
real time response.

As we noted, our mapping has the property that all the vertical and horizontal
lines remain vertical and horizontal after the transformation. Because of this
property, our transformations are well-suited for graphs with edges consisting of
mostly horizontal and vertical line segments, for example VLSI circuits.

11



5 Another Implementation Strategy

Early users of our prototype system commented that transformations seemed some-
what unnatural, especially when applied to familiar objects, such as maps. Our
framework allows us to address this complaint by using domain-specific transfor-
mations.

Consider for instance, the non-fisheye view of a map of the United States shown
in Figure 9 and a corresponding fisheye view in Figure 10. A more natural fisheye
view of such a map might be to distort the map onto a hemisphere, as is done in
Figure 11. To do so, we developed a transformation based on the polar coordinate
system with the origin at the focus. In this transformation, a point with normal
coordinates (rnorm; �) is mapped to the fisheye coordinates (rfeye; �) where

rfeye = rmax

(d+ 1) rnorm
rmax

d rnorm
rmax

+ 1
(11)

Here, rmax is the maximum possible value of r in the same direction as �.
Note that � remains unchanged by this mapping. Figure 12 shows the polar
transformations on the nearly-symmetric graph from Figure 7. It is instructive to
compare these mappings with the cartesian transformations of the same nearly-
symmetric graph in Figure 8.

Figure 9: An outline of the United States

12



Figure 10: A cartesian transformation of Figure 9. The focus is at the point where Missouri,
Kentucky, and Tennessee meet.

Figure 11: A polar transformation of Figure 9. As in Figure 10, the focus is at the point
where Missouri, Kentucky, and Tennessee meet. Notice the infelicity in northern Idaho.
The crossing lines result from the fact that the database represents the western edge of
Idaho as a single segment along the state of Washington; the eastern edge comprises many
small segments. This problem would go away if our system mapped every point in each
edge, or had the database represented the western edge of Idaho by multiple small (and
colinear) segments. See Section 4.5 for more details.

13



Figure 12: Fisheye views of the nearly-symmetric graph from Figure 7 using a polar
mapping. As in Figure 8, the left column uses a focus in the northwest, and the right
column uses a focus in the southeast. The distortion increases from top to bottom: In the
top row d = 1:46, in the middle row d = 2:92, and in the bottom row d = 4:38. The
thickness of each edge varies with the sizes of the vertices it joins.

14



Another factor contributing to the perceived unnaturalness of the fisheye view
is that the shapes of vertices remain undistorted and edges remain straight lines
(ignoring bend points). We could remedy this by mapping many points on the
outline of the vertex, and mapping a large number of intermediate points for the
edges, thus allowing the vertices and edges to become curved. However, in our
prototype system, we chose not to do so, in order to achieve real time performance.

6 The Prototype System

Our system displays a fisheye view of a user-specified graph, and updates the
display in real time as the user moves the focus by dragging with the mouse.
The graph is displayed in one top-level window and the control panel, shown in
Figure 13, is displayed in another top-level window. The control panel has sliders
and numeric typein boxes that allow the user to control of the value of the distortion
factor d in Equation 6, the coefficient c, exponent e, and vertex scaling factor s
in Equation 8, and a cutoff point at which vertices and their incident edges should
no longer be displayed. The coefficient c, the exponent e, and the vertex scaling
factor s control the effect of the API of the vertices on the non-geometric part
of the transformation, while d affects the geometric part of the transformation.
The combined effect of these parameters on the graph in Figure 1 is illustrated in
Figures 2– 6.

Figure 13: The control panel of our prototype system.

15



6.1 Implementation

The prototype is implemented in an event-driven style. Each time the user moves
the mouse while the button is held down, the function GetFocus returns the position
of the mouse:

loop
f := GetFocus()
if f 6= fold then

foreach v � V

eval Pfeye(v; f); Sfeye(v; f); DTLfeye(v; f)
endfor
foreach e � E

if not straightLine(e) then
foreach bp � bendPoints(e)

mapPoint(bp; f)
endfor

endif
endfor
foreach v � V

eval VW(v; f)
endfor
foreach e � E

if VW(e:v1) � VWcutoff and
VW(e:v2) � VWcutoff then

repaint edge between e:v1 and e:v2

endif
endfor
sort V in order of VW
foreach v � V in nondecreasing order of VW

if VW(v) � VWcutoff then
repaint vertex v

endif
endfor
fold := f

endif
endloop

16



The system normally ensures that the location of the focus is the same in both
normal and fisheye coordinates. However, when the cursor is within the boundary
of a vertex, the vertex becomes the focus vertex and the view is not updated until
the cursor exits the vertex. Since the size of the focus vertex is usually large,
exiting the focus vertex causes a relatively large shrinkage in the size of the focus
vertex and also a relatively large variation in the fisheye view. In particular, since
the entry and exit events happen at two different distances from the center of the
focus vertex, without careful coding an exit event causes the most recent focus
vertex to shift away by a large distance from the cursor in a jerky motion. One
approach to solving this problem is to force the cursor to be positioned just outside
the boundary of the most recent focus vertex on each exit event.

Sorting the vertices in order of their visual worth produces a very useful order.
First, if the position of two vertices are in conflict, their VW can be used to resolve
the conflict in favor of displaying the vertex with higher VW. Second, the order
can be used to maintain the real time response of the system, as we shall discuss
below.

6.2 Response Time

Our prototype system is able to maintain real time response on a DECstation 5000
for graphs of up to about 100 vertices and about 100 horizontal or vertical edges.
Computing fisheye views takes an insignificant amount of time compared to the
time required for painting. Real time response cannot be maintained for graphs
with significantly larger number of vertices and edges. Performance also suffers
when the percentage of edges that are neither horizontal nor vertical is increased.

An alternative “inner loop” is to display “approximate” fisheye views by paint-
ing only a fixed number of vertices and edges, irrespective of the size of the graph.
Each time there is a new focus, quickly compute the new fisheye view for all
vertices, but repaint only those nodes and edges which will give the best approx-
imation to the perfect fisheye view. Nodes with highest change in their VW and
nodes with highest current VW are good candidates. One can take a suitable mix of
these two types of nodes, as well as all the associated edges. Each update operation
will then involve erasing and painting a fixed number of nodes and edges.

6.3 System Notes

The prototype is implemented using Modula-3 and Trestle, a portable X-toolkit [8].
This project was the first Trestle application to be written, beyond the handful of

17



small examples in the distribution package.1 A number of features that we needed
for real time animation (e.g., fast double buffering), and aesthetic drawings (e.g.,
curved lines) were not functional when the prototype system was developed during
the summer of 1991.

7 Generalized Fisheye Views

Our work follows from the generalized fisheye views by Furnas [4, 5]. Furnas
gave many compelling arguments describing the advantages of fisheye views, and
performed a number of experiments to validate his claims. The essence of Furnas’s
formalism is the “degree of interest” function for an “object” relative to the “focal
point” in some “structure.” Our notion of “visual worth” (see Equation 4) is nearly
identical to Furnas’s degree of interest. The difference is that we have (thus far)
described distance as the Euclidean distance separating two vertices in a graph,
whereas Furnas defined the distance function as an arbitrary function between two
objects in a structure. Our system supports generalized fisheye views by recoding
the distance function used explicitly in Equation 4 and implicitly by Equations 1–3.

For instance, consider the graph in Figure 14 and the graphical fisheye view
of it in Figure 15. The distance between vertices is their Euclidean distance. A
vertex is displayed only if its visual worth is above some threshold, and its position,
size, and level detail are computed using Equations 1, 2, and 3, respectively. A
“generalized” fisheye view of that same graph, with the same focus, is shown in
Figure 16. Here, the API is as before, but the distance function not geometrical;
it is the length of the shortest path between a vertex and the vertex defining the
focus, as proposed by Furnas [5]. Notice that in the generalized fisheye view, each
node is either displayed or omitted; there is no explicit way to vary size and level
of detail.

Furnas raised the question of multiple foci [5], but left it unanswered. Our
framework can be extended to multiple foci. For instance, a simplistic approach
would be to divide the screen-space among all the foci using some criteria, and
then apply the transformation independently on each portion of the screen.

1A Modula-2 version of Trestle that doesn’t use the X-toolkit has been operational for a number
of years at DEC SRC; it has many non-trivial clients.

18



8 Related Work

Furnas cites a delightful 1973 doctoral thesis by William Farrand [3] as one of
the earliest uses of fisheye views of information on a computer screen. The thesis
suggests transformations similar to our cartesian and polar transformations, but
provides few details.

At CHI ’91, Card, Mackinlay, and Robertson presented two views of structured
information that have fisheye properties. The perspective wall [7] maps a wide
2-dimensional layout into a 3-dimensional visualization. The center panel shows
detail, while the two side panels, receding in the distance, show the context.
The cone tree [9] displays a tree with each node the apex of a cone, and the
children of the node positioned around the rim of the cone. The fact that the tree
is beautifully rendered in 3D, including shadows and transparency, provides the
basic fisheye property of showing local information in detail (because when it is
close to the synthetic camera rendering the scene it is large), while also showing
the entire context (because of transparency and shadows). It would be interesting
to experimentally compare cone trees and generalized graphical fisheye views as
techniques for visualizing hierarchical information.

It may be fruitful to combine fisheye views with other techniques for viewing
extremely large data. For example, related nodes can be combined to form cluster
nodes, and the member nodes of a cluster node can be thought of as the detail of
the cluster node [2]. The amount of detail to be shown can then be computed using
the framework we have presented in this paper. In situations where the information
associated with the nodes is very large, one can use fisheye views as a navigation
tool while the actual information in nodes can be displayed in separate windows.

19



Figure 14: A graph with 100 vertices and 124 edges. All edges point downwards. The API
of each vertex is related to its display level (e.g., the root has the highest API of 8, node 33
has an API of 4, and node 86 has an API of 2).

20



Figure 15: A graphical fisheye view of Figure 14. The focus is the vertex labeled 48.

Figure 16: A generalized fisheye view of Figure 14. The focus is the vertex labeled 48.

21



9 Summary

The fisheye view is a promising technique for viewing and browsing structures. Our
major contribution is to introduce layout considerations into the fisheye formalism.
This includes the position of items, as well as the size and level of detail displayed,
as a function of an object’s distance from the focus and the object’s preassigned
importance in the global structure. A second contribution is the notion of a
normal coordinate system, thereby allowing layout to be viewed as distortions of
some normal structure. As we pointed out, our contributions apply to generalized
fisheye views of arbitrary structures (by changing the interpretation of “distance”),
in addition to graphs.

It is important to realize that we do not claim that a fisheye view is the correct
way to display and explore a graph. Rather, it is one of the many ways that are
possible. Discovering and quantifying the strengths and weaknesses of fisheye
views are challenges for the future.

Acknowledgments

Jorge Stolfi helped with various ideas concerning geometric transformations. Steve
Glassman, Bill Kalsow, Mark Manasse, Eric Muller, and Greg Nelson extricated us
from numerous Modula-3 and Trestle entanglements. Mike Burrows and Lucille
Glassman helped to improve the clarity of this presentation. Finally, George
Furnas provided us with a wealth of information that improved many aspects of
our prototype system and also of this paper.

22



References

[1] Peter Eades and Roberto Tamassia. Algorithms for drawing graphs: An an-
notated bibliography. Technical Report CS–89–90, Department of Computer
Science, Brown University, Providence, RI, 1989.

[2] Kim M. Fairchild, Steven E. Poltrok, and George W. Furnas. SemNet: Three-
dimensional graphic representations of large knowledge bases. In Cognitive
Science and Its Applications for Human Computer Interaction, pages 201–
233, 1988.

[3] William Augustus Farrand. Information display in interactive design. Ph.D.
Thesis, Department of Engineering, UCLA, Los Angeles, CA, 1973.

[4] George W. Furnas. The fisheye view: A new look at structured files. Technical
Memorandum 82–11221–22, Bell Laboratories, 1982.

[5] George W. Furnas. Generalized fisheye views. In Proc. ACM SIGCHI ’86
Conf. on Human Factors in Computing Systems, pages 16–23, 1986.

[6] Tyson R. Henry and Scott E. Hudson. Interactive graph layout. In Proc. ACM
SIGGRAPH, SIGCHI Symposium on User Interface Software and Technology,
pages 55–65, 1991.

[7] Jock D. Mackinlay, George G. Robertson, and Stuart K. Card. The perspective
wall: Detail and context smoothly integrated. In Proc. ACM SIGCHI ’91 Conf.
on Human Factors in Computing Systems, pages 173–179, April 1991.

[8] Greg Nelson, Editor. Systems Programming with Modula-3. Prentice Hall,
Englewood Cliffs, NJ, 1991. Chapter 7 describes the Trestle window system.

[9] George G. Robertson, Jock D. Mackinlay, and Stuart K. Card. Cone Trees:
Animated 3D visualizations of hierarchical information. In Proc. ACM
SIGCHI ’91 Conf. on Human Factors in Computing Systems, pages 189–
194, April 1991.

23



About the Title Page

The images on the title page are views of a graph representing the Paris Metro
system. The vertices in the graph are the stations, and the edges are the routes
between stations. All images are screen dumps from the prototype system described
in this paper.

The upper-left image is a normal view of the Metro; the other images are
fisheye views of the Metro. In all graphs, the a priori importance (API) assigned
to each station is the number of connecting stations.

In the upper-right image, the sizes of vertices vary according to the API of each
station. The focus is the Montparnasse-Bienvenue station, displayed as a hollow
circle. The user selects a focus by clicking with the mouse.

In the lower-right image, the vertices that are close (using Euclidean distance)
to the focus station are magnified, and those far away are shrunk. In addition, the
locations of all vertices are changed slightly in order to give the larger vertices
more space.

In the lower-left image, the focus station is changed to be Republique, and
the representation of the vertices is changed to one that displays the name of the
station, space permitting.

Of course, a series of static snapshots cannot not do justice to an interactive
system: You need to use your imagination to visualize how the upper-right image
smoothly transformed into the lower-right image, as the user moved a slider con-
trolling the amount of “distortion” from 0 to 2. Visualize also how the lower-right
image smoothly transformed into the lower-left image, as the user dragged the
mouse from Montparnasse-Bienvenue to Republique.

Technical details (the meanings of which is explained in Section 4): In all images,
c = 0:3, e = 0:3, and VWcutoff = 0. In the upper images, d = 0. In the lower
images, d = 2. All transformations are polar.

24


