82

A GuidetoLP, TheLarch
Prover

Stephen J. Garland and John V. Guttag

December 31, 1991

Systems Research Center

DEC's business and technology objectives require a strong research program. The Systems Research
Center (SRC) and three other research laboratories are committed to filling that need.

SRC began recruiting itsfirst research scientistsin 1984—their charter, to advance the state of knowledge
in al aspects of computer systems research. Our current work includes exploring high-performance
personal computing, distributed computing, programming environments, system modelling techniques,
specification technology, and tightly-coupled multiprocessors.

Our approach to both hardware and software research isto create and use real systems so that we can
investigate their propertiesfully. Complex systems cannot be evaluated solely in the abstract. Based on
thisbelief, our strategy isto demonstrate the technical and practical feasibility of our ideas by building
prototypesand using them as daily tools. The experience we gain is useful in the short term in enabling
usto refine our designs, and invaluablein the long term in hel ping us to advance the state of knowledge
about those systems. Most of the maj or advances ininformati on systems have come throughthisstrategy,
including time-sharing, the ArpaNet, and distributed personal computing.

SRC aso performswork of a more mathematical flavor which complements our systems research. Some
of thiswork isin established fields of theoretical computer science, such as the analysis of agorithms,
computational geometry, and logics of programming. The rest of this work explores new ground
motivated by problemsthat arise in our systems research.

DEC has a strong commitment to communicating the results and experience gained through pursuing
these activities. The Company values the improved understanding that comes with exposing and testing
our ideaswithintheresearch community. SRC will thereforereport resultsin conferences, in professional
journals, and in our research report series. We will seek users for our prototype systems among those
with whom we have common research interests, and we will encourage collaboration with university
researchers.

Robert W. Taylor, Director

A Guideto LP, The Larch Prover

Stephen J. Garland and John V. Guttag

December 31, 1991

John V. Guttag and Stephen J. Garland are at the MIT Laboratory for Computer Science, 545 Technology
Square, Cambridge, MA 02139.

E-mail: garland@lcs.mit.edu, guttag@l cs.mit.edu

The authors were supported in part by the Advanced Research Projects Agency of the Department of
Defense, monitored by the Office of Naval Research under contract NO0014-89-3-1988, by the National
Science Foundation under grant CCR-8910848, and by the Digital Equipment Corporation.

©Stephen J. Garland and John V. Guttag 1991. Reprinted by permission of the authors. All
rightsreserved.

Abstract

This guide provides an introduction to LP (the Larch Prover), Release 2.2. It describes how LP can be
used to axiomatize theories in a subset of multisorted first-order logic and to provide assistance in proving
theorems. It also containsatutorial overview of the equational term-rewriting technology that provides, along
with induction rules and other user-supplied nonequational rules of inference, part of LP's inference engine.

Contents

1 Introduction

2 Theproof lifecycle

3 Getting started

31
3.2
3.3
34
35
36

Typesettingconventions e
Onlinehelp. e
Enteringcommands
Naming and displayingobjects.
Recording Sessions e e
SEingS e e

4 Defining theories

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

Declarationsand identifiers
TEMS . . e
Equations e
Rewriterules
Operatortheories. e e
Inductionrules
Deductionrules e
Built-inoperatorsandaxioms
Orienting equationsintorewriterules
491 Registeredorderings.
49.2 Polynomid orderings e
49.3 Bruteforceorderings
494 Interactingwiththeorderingprocedures

5 Forward inferencein LP

51
52
53
54
55
56

Normalization
Applicationof deductionrules
Critica-pairequations e e
Completion. e e
Instantiation
Activityandimmunity

Vi

N N o o b~ B~ Db

10
1
12
14
15
16
17
18
19
20
21
21

6 BackwardinferenceinLP 29

6.1 Proofsby normalization 30
6.2 Proofsbycases. 31
6.3 Proofsbyinduction 32
6.4 Proofsby contradiction 34
6.5 Proofsof implications 34
6.6 Proofsof conditionals 35
6.7 Proofsof conjunctions e 35
6.8 Proofsby explicitcommands. 35
6.9 Defaultproof methods 35
6.10 Proofsof deductionrules. 36
6.11 Proofsof inductionrules 36
7 Featuresof LP 37
7.1 Commandsforuserinteraction. 37
711 Savingandrestoringstate 38

7.1.2 Displayinginformation 38

7.13 Ddetinginformationandsavingspace. 39

7.2 Commandsfor axiomatizingtheories 39

Vii

7.3

74
7.5

Commandsfor provingtheorems.

731 Proofmethods
732 Boxchecking
Commands for ordering equationsintorewriterules
SEtingS e e
751 Settingsthat affectoutput L
752 Settingsthat affect rewriting Lo

8 HintsonusingLP

8.1
8.2
8.3
8.4
8.5
8.6
8.7

Preparing input and recordingwork Lo
Formalizingaxiomsand conjectures
Ordering equationsintorewriterules.
Managing proofs e
Making proofsgofaster
Overcoming ingtdlationproblems,
Reportingbugs. e

9 Current development

10 Acknowledgements

Appendices

A Equational term-rewriting tutorial

Al
A2
A3
A4
A5
A.6

Equational theories.
Term-rewriting Systems e
Unification e
Critical pairs e e
Completion. e
Provingtermination
A.6.1 Simplificationorderingso
A.6.2 Registeredorderings. e

B Sample proof

References

viii

47
47
47
48
49
50
50
50

52

53

54
54
55
55
56
57
58
59
59

61

66

1 Introduction

LPisatheorem prover for a subset of multisorted first-order logic. It is designed to work efficiently on
large problems and to be used by relatively naive users. It has been used to analyze formal specifications
writtenin Larch [14, 15, 12], to reason about a gorithmsinvolving concurrency [10, 30], and to establish
the correctness of hardware designs[10, 28].

LP isintended primarily as an interactive proof assistant or proof debugger, not as a fully automatic
theorem prover. Itsdesign is based on the assumption that initial attempts to state conjectures correctly,
andthen to provethem, usualy fail. Asaresult, LPisdesignedto carry out routine(and possibly lengthy)
stepsin a proof automatically and to provide useful information about why proofsfail, if and when they
do. To ensure that users will not be surprised by its behavior, LP does not employ complicated heuristics
for finding proofs automatically. It does make it easy for users to employ standard techniques such as
proofs by cases, induction, or contradiction.

Section 2 provides a context for the technical details of LP (Release 2.2) by discussing the style of use
that LP is intended to support. Section 3 tells how to get started using LP. Section 4 describes how
theories are axiomatized in LP. Sections 5 and 6 describe LP's proof techniques. Section 7 summarizes
the features of LP, and Section 8 provides some hintsfor using LP. Appendix A contains a tutoria on
the theory and implementation of equationa term-rewriting. Appendix B contains a complete record of
asample proof carried out using LP.

Readerswith access to LP will find it helpful to experiment with LP whilereading thisguide. LP hasan
extensive online help facility that contains most of the information in Sections 3 through 7.

2 Theproof life cycle

Provingissimilar to programming: proofsare designed, coded, and debugged. Thefirst step indesigning
a proof is to formalize the objects being reasoned about. The next is to formalize a conjecture to be
proved, for example, aproperty implied by aspecification, or aninvariant to be maintained by aconcurrent
algorithm. The last step in the design isto outline a structure for the proof, including key lemmas and
methods of proof.

Formalization is straightforward for Larch Shared Language [15] specifications and has been automated
[12]. At present it is less automatic for concurrent algorithms and for circuits, athough efforts are
underway to automate some of these trandlations[30, 21]. For large applications, formalization usually
involves identifying subtheories that are analogous to data abstractions. Generaly, the most difficult
design step, and the one requiring the most insight, is determining the structure of the proof.

Designs for proofs trandate into sequences of LP commands, much as program designs trandate into
codein aprogramming language. Details of thistrandation are discussed later in thisguide.

Once part of aproof has been coded, LP can be used to debug it. Proofs of interesting conjectures hardly
ever succeed thefirst time. Sometimes the conjectureiswrong. Sometimesthe formalizationisincorrect
or incomplete. Sometimes the proof strategy is flawed or not detailed enough. When an attempted proof
doesfail, avariety of LP facilities (e.g., case analysis) can be used to understand the problem. Because
most proof attempts do fail, LP is designed to fail relatively quickly and to provide useful information
when it does.

LPisnot designed to find difficult proofs automatically. Unlike the Boyer-Moore prover [3, 4], it does
not use heuristics to formulate additional conjectures that might be useful in a proof. Unlike LCF [24]
and Isabelle [25], it does not encourage users to define their own proof tactics; rather, it provides a
set of standard tactics and simple mechanisms for controlling the application of these tactics. Strategic
decisions, such astrying induction on a particular variable, must appear as explicit LP commands (either
entered by the user or generated by an application-specific front-end to LP). But LP is more than a proof
checker, since it does not require proofs to be described in minute detail. Hence it is best described as a
proof debugger.

In line with LP's emphasis on debugging proofs, it is generally advisable to use axiomatizations that
simplify terms rather than axiomatizations that produce unique (but possibly larger) normal forms. Such
axiomatizations are often incomplete, and thereby increase the need for the kinds of auxiliary proof
mechanisms described in Sections 5 and 6.

When debugging proofs, users frequently reformul ate axioms and conjectures. When verifying a circuit,
for example, users may discover that some important property does not follow from the description of
the circuit (after all, discovering such things is the whole point of the process). When changing an
axiomatization, users should recheck not only the conjecture whose proof uncovered a problem, but also
any conjecture proved with the old axiomatization. LP has facilities that support such regression testing.

LP will, upon request, record a session in a script file that can be replayed using the execute command.
In addition to recording user input, LP indents script files to reveal their proof structure, and it annotates
proofsin script files with information that indicates when subgoals are introduced (e.g., for a proof by
induction) and when subgoals or theorems are proved. On request, as LP executes an annotated (and
possibly edited) proof, it halts execution and prints an error message if the annotations do not match
the execution. These checks are useful when changes in an axiomatization cause some step in a proof
to succeed with less user guidance than expected or to require more guidance. Without the check, LP

set name nat
declare sort Nat
declarevariablesi, j, k: Nat
declare operators

0: — Nat

s: Nat — Nat

+: Nat, Nat — Nat

<: Nat, Nat — Bool

assert Nat generated by O, s
assert ac +
assert
i+0==i
i+s(j)==s(+])
not(i < 0)
0 < s(i)
s(i) <s(j)==1i <]

set name lemma
provei < j =i < (j + k) by inductionon j
<> 2 subgoalsfor proof by inductionon*j’
[] basis subgoal
resume by induction on i
<> 2 subgoalsfor proof by inductionon ‘i’
[] basis subgoal
[] induction subgoal
[] induction subgoal
[] conjecture
ged

Figure 1: Sample LP-annotated script file

might, for example, apply atactic that the user intended for the basis step of an induction to the proof
of theinduction step. This checking helps prevent proofs from getting “out of sync” with their author’s
conception of how they should proceed.

Figure 1 displays an LP-annotated script for a simple proof (see Section 3.1 for an explanation of the
typesetting conventions). The declare commands introduce variables and operators (the .. terminates
a multiline command), the assert commands axiomatize properties of the operators (e.g., that + is
associative and commutative), and the prove command initiatesa proof by induction. The next two lines
contain annotations supplied by LP. The diamond (<>) indicates that LP has introduced two subgoas
for the proof by induction. The box ([]) indicates that the basis case of the induction succeeded without
further interaction. The resume command starts a subsidiary induction, and the subsequent L P-supplied
diamonds and boxes indicatethat L P finished the remaining stepsin the proof without further interaction.
The ged command on the last line asks LP to confirm that there are no outstanding conjectures. Details
about the commands in this script, and about their execution, are given in the following sections.

3 Getting started

This section describes how to use elementary LP features for entering commands and displaying
information.

3.1 Typesetting conventions

Thisguide has been typeset using LaTeX [20]. Most of the examples of LP input and output in thisguide
have been preprocessed so that they are typeset using the following conventions.

e LP command names and other keywords are printed in boldface (e.g., assert, display, generated by,
induction, set).

o |dentifiers (see Section 4.1) are printed initalics (e.g., Bool, false, x, x1), except for numerals (e.g., O,
1).

e Names of facts and conjectures (see Section 3.4) are printed in italics (e.g., nat.1, lemmaCaseHyp.2).
o Names of files (see Sections 3.3 and 3.5) are printed initalics.

o The following multicharacter symbols are printed using special non-ASCII characters.

Symbol Printed as

\in

\ uni on

\ subset eq
<=

>=

wiAInNca ¢ J |

If you prepareinput for LP based on the examples in thisguide, you must enter the special symbolsinthe
right column of the table using the ASCII formsin the left column. While- >, =>, and <=> are built-in
symbolsof LP (see Sections 4.1 and 4.8), the infix operator symbols\ i n,\ uni on,\ subset eq, and
<= must be declared before use (see Section 4.1). The symbol >= has abuilt-in meaning to the register
height command (see Section 4.9.1), but is not predeclared as an infix operator. Both it and the symbol
<= must be declared before use (see Section 4.1) and have no built-in semantics.

3.2 Onlinehelp

Much of the information in this guide is also available from LP's online help facility.: The command
help Ip providesan overview of thisfacility. In general, users can type help followed by alist of topics
for which they desire help. The command help ? providesalist of al topicsfor which help isavailable.

11 LP does not seem to be behaving as described in this guide, consult the help facility. You may be using a different release
of LR

In most cases when LP expects input, users can type a question mark to obtain a summary of the legal
responses. For example, the command ? produces alist of al LP commands, and the command assert ?
providesa summary of the kinds of axiomsthat can be asserted.

3.3 Entering commands

LP generaly prompts users to enter commands interactively from the keyboard. Users can aso create
files containing sequences of commands and instruct LP to execute these command files; for example,
the command execute nat causes LP to execute the commands in the file nat.Ip. (By convention, LP
command files have names ending with .Ip, and L P supplies .Ip as adefault suffix when no suffix appears
in the execute command.) Command files may themselves contain execute commands; however, to
guard against infinite loops, LP treats execution of a file that is already being executed as an error.
Execution of a command file continues until the file is exhausted, until execution is interrupted by the
user, until an error occurs, or until a quit or stop command is executed.

When run under Unix, LP can aso be invoked with the names of one or more command files given as
optiona arguments. For example, the Unix shell command Ip nat causes LP to start by executing the
commands in the file nat.Ip, and then to prompt the user for input when that file is exhausted.

All LP commands begin with akeyword (e.g., display or critical-pairs), which can be abbreviated to any
unambiguous prefix (e.g., disor crit). Some LP commands contain further keywords or phrases, which
can also be abbreviated. For example, set automatic-ordering off can be shortened to set auto-ord off.
Commands can be entered in upper, lower, or mixed case.

When an LP command requires more arguments than a user supplies, LP will prompt the user for the
missing arguments. Users who need help can type a question mark followed by a carriage return to see
what L P expects next; typing a carriage return alone aborts the command. If amissing argument islikely
to be lengthy, LP prompts the user to enter it on subsequent lines and to terminate the input with a line
consisting of two periods(..), which can be preceded by white space. The declare and assert commands
in Figure 1 use this convention.

A comment starting with a % can occur at the end of any line of input or on aline by itself. LPignores
comments.

Thefollowing editing capabilities are available for use when typing input to LP.

Editing character | Action

rubout Delete last character typed

control-U Delete current line of input

control-R Redisplay current line

control-L Clear screen and redisplay current line
control -\ Continueline

Typing acontrol-G causes L P to interrupt execution of the current command.? The quit command causes
LPto terminate.

20n some Unix systems, users must type control-\ instead of control-G. To make control-G work, users can put stty quit
control-G in their .login scripts.

I nduction rules:
nat.1: Nat generated by 0, s

Qperator theories:
nat.2: ac +

Rewrite rules:
lemma. 1: (i <j) => (i < (j +k)) ->true

nat . 3: 0O +i ->i

nat . 4: s(j) +i ->s(i +j)
nat.5.1: i <0 -> false

nat. 6: 0 < s(i) ->true
nat. 7: s(i) <s(j) ->1i <j

Figure 2: Output generated by display command

3.4 Naming and displaying objects

The set name command provides users with control over the names assigned to facts (i.e., to axioms,
hypotheses, and theorems) and to conjectures. For example, the command set name nat in Figure 1
causes LP to assign the names nat.1, ..., nat.8 to the eight subsequently asserted axioms, and the
command set name lemma causes LP to assign the name lemma.1 to the conjecture.

The display command enables users to view a set of objects. For example, if the display command is
executed after the script in Figure 1 terminates, LP produces the output shown in Figure 2. Differences
between what the user typed in Figure 1 and what LP displayed in Figure 2 reflect inferences performed
by LB, as described in thisand the next sections.

Optiona arguments to the display command can be used to restrict the display to objects of specified
types and with specified names. For example, if Figure 2 had been produced by the command display
rewrite-rules nat (or display r nat, for short), it would have contained only the rewrite rules nat.3 to
nat.7.

In general, names begin with an identifier that consists of a sequence of letters, digits, and special
characters such as underscores. LPisnot sensitiveto the case of lettersin aname. Thus, Nat.1 and nat.1
refer to the same item. When displaying aname, LP usesthe capitaizationit foundin thefirst occurrence
of that name.

LP assigns new names of the form prefix.number (where prefix is“user” unless changed by the set name
command, and where number increases each time a new name is required) to axioms introduced by
the assert command, to critical-pair equations deduced in response to the critical-pairs and complete
commands (see Sections 5.3 and 5.4), and to conjectures introduced by the prove command. LP assigns
names of the form prefixCaseHyp.number, prefixinductHyp.number, etc., to case, induction, and other
hypothesesit introduces during the proof of a conjecture. It assigns subnames of the form name.number
to subgoals in a proof of a conjecture named name and to consequences deduced by instantiating (see
Section 5.5) afact named name or by applying a deduction rule (see Section 4.7).

When used as arguments to commands, names such as nat.5 encompass the item with that name as well
as dl items with subnames of that name (e.g., nat.5.1). Subnames can be excluded by appending an
exclamation mark to a name (e.g., nat.5!). Ranges of names can be specified by appending a colon
followed by a number or the word last to a numbered name (e.g., nat.3:6 or nat.5:1ast).

Asterisks in name prefixes supplied as arguments to commands serve as patterns that match arbitrary
sequences of characters in the prefix. For example, the command display «Hyp causes LP to display all
facts whose name prefix ends with the letters Hyp.

Figure 14 in Section 7 provides detail s concerning these naming conventions.

3.5 Recording sessions

The command set log fileName causes LP to record al subsequent input and output in a file named
fileName.Iplog (unless fileName contains a period, in which case LP does not supply the suffix .Iplog).
Logging isended by the unset log and quit commands.

The command set script fileName causes LP to record all subsegquent user input in a file named
fileName.Ipscr (unlessfileName contains a period, in which case LP does not supply the suffix .Ipscr). LP
annotates such a script file by commenting out illegal commands, by substituting the text of the executed
file for an execute command, by marking the creation of subgoas and the completion of proofs, and
by indenting the script file to reveal its proof structure. Scripting is ended by the unset script and quit
commands.

Script files can be replayed using the execute command, and they can be edited before being replayed.
Although ascript file can be replayed directly using the command execute fileName.lpscr, it isgenerally
advisableto rename the script file to fileName.lp and then replay it using the command execute fileName
(lest aset script command cause LP to overwrite the command file being executed).

3.6 Settings

The set command can be used to control many aspects of LP's behavior. Typing set aone causes LP to
display alist of its current settings. Typing set followed by the name of a setting causes LP to display
that setting and to prompt the user for a new value; responding with a carriage return leaves the setting
unchanged. Typing set followed by the name of a setting and a value changes that setting. This section
describes some elementary settings; Section 7.5 summarizes the others.

All settings have default values. The unset command can be used to reset a setting to its default value.
The unset all command returnsall settingsto their default values.

set directory string

The directory is the name of the directory in which LP creates script (.Ipscr), log (.Iplog), and other
output files. By default, directory isthe name of the working directory from which LP was invoked.

set Ip-path string

Thelp-path isalist of names of directoriesthat LP searches when looking for command or other input
files. By default, Ip-pathis“. = ~I p/axi ons "1 p”. A period (.) inthevalue of Ip-path refersto
the current directory. A tilde (") refers to the user’s home directory. The characters ™ | p refer to the
directory in which the help files and examples for LP are installed. The actua location of this directory

can be determined by typing the command version; it can be changed by invoking LP with the shell
command |p —d directoryName.

set page-mode { on | off }

When page-modeisoff (thedefault setting), L P displaysoutput continuoudly. Whenitison, LPdisplays
output a screenful a atime. At the end of each screenful, LP promptsthe user with - - Mor e- - to type
acharacter indicating what to do next. The optionsare as follows:

| Response | Action |
<space> | display next screenful
<return> | display next line

<digit> | display next <digit> lines

d display next half screenful

u display continuoudly until next user interaction
q display nothing until next user interaction

? display this menu

set prompt string

The prompt is the string that LP uses when prompting users to enter commands. The set prompt
command alows users to change this prompt. If the new prompt begins or ends with a space, it should
be enclosed within‘ * marks, asinset prompt * >> .

LPreplaces thefirst exclamation mark (!) inthe prompt, if any, by the number of the next command. LP
numbers commands entered from the terminal by consecutive integers. It numbers commands obtained
during execution of a command file by appending a period followed by consecutive integers to the
command number for the execute command; thus command 5.2.3 is the third command in the file
executed in response to the second command in the file executed in response to the fifth command typed
by the user.

By default, prompt is‘ LP! : , which causes LPtoissue promptsof theform“LP1: ", “LP2: 7,

set trace-level number

The trace-level controls how much information LP prints as it executes commands. At trace level O,
whichistheleast verbose, L P printsnothing other than user interactionsand thefina resultsof commands.
Attraceleve 1, whichisthedefault, LP reports major actionstaken in the course of asession. At higher
trace levels, it provides more detailed information, as described by the online help facility.

4 Defining theories

The basis for proofsin LPisalogica system consisting of a set of declared operators, the properties
of which are axiomatized by equations, rewrite rules, operator theories, induction rules, and deduction
rules (all expressed in a subset of multisorted first-order logic). Each kind of axiom has two semantics,
adefinitional semanticsin first-order logic and an operationa semanticsthat is sound with respect to the
definitional semantics but not necessarily complete.

Sections 5 and 6 describe how axioms interact with LP's proof techniques. Appendix B illustrates how
they are used in a compl ete proof.

41 Declarationsand identifiers

Identifiers for sorts, operators, and variables must be declared prior to use. Declarations (such as those
in Figures 1 and 3) assign sorts to variables and signatures to operators. The symbol — (typed as - >)
separates the declaration for the domain of an operator (which isalist of sorts) from that of its range
(whichisasingle sort). Constants (e.g., 0 and empty) are special cases of operators.

L P predefines the sort Bool, as well as the built-in operators true, false, if, not, =, & (and), | (or), =
(implies, typed as=>), and < (if and only if, typed as<=>). It can also generate new variables, constants,
and operators during the course of asession. The name of an LP-generated variable consists of the first
letter of its sort, possibly followed by a number (e.g., n, n1 for sort Nat). The names of LP-generated
congtants end with the letter ¢, possibly followed by a number (e.g., xc or xc1). Users are not prevented
from declaring such identifiers themselves, but may find it confusing to do so (or even unsound, if they
mistakenly believe that they are declaring new constants).

Identifiers for sorts, variables, constants, and prefix operators are sequences of letters, digits, and
special characters such as underscores (_) and apostrophes (*). ldentifiers for infix operators are
sequences of characters drawn from an implementation-defined set of infix characters (eg., “! #$&* +-

. <=>@" | ~"); thesymbols==and — (i.e., - >) cannot beused for infix operatorsbecause L P reserves
them for other uses. Identifiersfor infix operatorsmay a so consist of abacksash (\) followed by a prefix
identifier (e.g., \i n, whichisprinted inthisguideas € by the conventionsdescribed in Section 3.1). The
command help operator providesa precise description of LP'slexicographical conventions.

LP automatically overloadsthe built-in operators = and if, once for each declared sort S, with signatures
=:S, S—»Bool andif:Bodl, S, S—S. Userscan aso overload identifiers. For example, the declarations
and axiomsin Figure 3 can be used together with thosein Figure 1 when reasoning about both natural
numbers and sets. LP uses context to distinguish the variable s (of sort Set) from the operator s (with
signature Nat— Nat). Users can overload other operatorsas well. For example, the commands

declare operators
U: Set, Elem — Set
U: Elem, Set — Set

assert

sUe==insert(e,s)
eUs==insert(e s

further overload the operator U in Figure 3 to invent shorthandsfor adding an element to a set. The only

set name set
declare sorts Elem, Set
declarevariablese, €: Elem, s, X, Yy, . Set
declare operators

empty: — Sat

insert: Elem, Set — Set

singleton: Elem — Set

U Set, Set > Set

€: Elem, Set — Bool
C: S, Set — Bool

assert Set generated by empty, insert
assert Set partitioned by €

assert
singleton(e) == insert (e, empty)
not (e € empty)
ecinsert(¢,s)==e=¢€|ecs
ee(xUy)==eex|ecy
empty C s

insert(e,Xx) Cy==ecy&xcy

Figure 3: Sample axiomatization for finite sets

restrictionson overloading identifiersisthat users do not overload the built-inidentifiersand that they do
not declare an identifier both as avariable and as a constant of the same sort. The next section describes
how to specify, when necessary, one of severa possibly ambiguous overloadings of an operator.

The command display symbolscauses LP to print alist of al declared identifiers.

4.2 Terms

A term in multisorted first-order logic consists of either a variable or of an operator and a sequence
of terms, known as its arguments. The number and sorts of the arguments in a term must agree with
the declaration for (some overloading of) the operator. The number of argumentsiis called the arity of
the operator. An operator with arity O is caled a constant. Infix operators are written between their
arguments (eg., i + j), constants are written with no arguments (e.g, 0 or empty), and prefix operators
with nonzero arity are followed by a parenthesized list of arguments (e.g, s(i) or insert (e, x)).

LP uses a limited amount of precedence when parsing terms, but generaly requires users to supply
parentheses to specify the associativity of operatorsin termswith multipleinfix operators. User-declared
operators bind more tightly than the equality operator, which binds more tightly than the built-in boolean
operators. Thus, LP parsestheterm (a < b& b =c+ d) = a < (c + d) inthe same way that it parses
(@<b)y& (b= (c+d))) = (a< (c+d)). Unparenthesized sequences of infix operators a the same
precedence level are permitted only interms such ast; +t, +t3 +t4, which consist of asequence of terms
separated by asingleoperator with signature S, S — Sfor somesort S2 Thus, LPalowsp& q&r and

31t is considered good practice to write terms such as this only when the operator is associative. When the operator is not

10

a+b+cbutnotp&qglrora+b—c.

In some cases, users must append qualificationsto terms to clarify which of severa overloadings of an
identifier is meant. For example, given the declarations

declare operatorsa, b: — Nat, —: Nat, Nat — Nat
declare operatorsa, b: — Set, —: Set, Set — Set

it is ambiguous whether the term a — b denotes the difference of two numbers or the difference of two
sets. To distinguish which of thesetwo interpretationsthey intend, users must write either a:Nat — b:Nat
ora:Set — b:Sat.

4.3 Equations
LP is based on a subset of first-order logic in which equations play a prominent role. Figure 4, for

example, contains LP commands that enter the usual first-order axioms for groups. Variables appearing
in the axioms are implicitly universally quantified.

declaresort G
declarevariablesx, y, z. G
declare operatorse: — G,i: G — G, *x: G,G —> G

assert
XxYy)*xZ==Xx(Y*2)
e==1i(X) *xX
X ==ex*xX

Figure 4: LP axiomatization of group theory

LP uses the logical symbol == for equality in an equation. This symbol isimplicit in axioms such as
0 < s(i) inFigure 1, which are shorthands for equationswith right side true. LP binds == less tightly
than the (overloaded) equality operator =, so that, for example, e € insert(¢,s) == e=¢€ | ee sin
Figure 3 can be written without more parentheses. It is parsed as

(ecinsert(€,s) == ((e=¢€) | (e€s)

The connective == can appear only once in an equation, whereas = can appear many times. The
definitional semantics makes no distinction between == and =.

Equations can also be entered using the connective — instead of ==. This constrains the way in which
LPwill orient them into rewrite rules (see Section 4.4), but does not alter their definitional semantics.

LP treats as inconsistent the equation true == false and all equations of the form x ==t or
not(x = t) == true, where x isavariableand t is aterm not containing x. Thus, LP isdesigned for
reasoning about models in which every sort has at least two elements.® Inconsistencies can be used to

associative, the term is parsed from left to right, for example, as ((t1 + t2) + t3) +ta.)

“Release 2.2 of LP requires both a and b in these terms to be qualified, even though the sort of one determines the sort of
the other. For terms such asi/j, wherei and j are unambiguous, but / is not, users can write (i /j):Rational or (i/j):Nat to
disambiguate the term. Later releases of LP will do a better job of typeinference.

5In practice, axioms that constrain a sort to be empty or to have a single element are almost always either intentionally
inconsistent or result from mistaken formalizations. Hence LP choosesto treat them asinconsistent to protect users from mistakes,
and to make some proofs go faster, rather than to provide a more general (and elaborate) logical framework.

1

establish subgoals in proofs of implications and in proofs by cases and contradiction. If they arise in
other situations, they indicate flaws in the current logical system.

Anequational theoryisatheory (i.e., aset of facts) axiomatized by aset of equations. Equational theories
can be characterized syntactically, as follows. The set of terms constructed from a set of variables and
operators is called a free word algebra or term algebra. A set E of eguations defines a congruence
relation on aterm algebra, thisrelation being the smallest one that containsthe equationsin E and that is
closed under reflexivity, symmetry, transitivity, instantiation of free variables, and substitution of equals
for equals. An equationt; == t; isinthe equational theory of E, or isan equational consequence of E,
if t; iscongruent to ts.

Figure 5 shows a sample informal proof that i (€) == eisan equational consequence of the axioms for
groupsin Figure4.

Step | Equation Justification
L | Xxy)xZ==Xx*(Y*2) Axiom
2. | e==i(X) *X Axiom
3| X===exX Axiom
4. | (i(y)y*y)*z==1i(y) x(y*x2) | Replacex byi(y)inl
5.l exz==1i(y) *(y*2) Apply 2to 4 (with y for x)
6. | z==i(y) x(y*2) Apply 3to5 (with z for x)
7. | z==1i((2) *(i(2) *2) Replacey by i(z) in6
8. | z==i@(2) *xe Apply 2to 7 (with z for x)
9. | (i(i(e) xe) xi(e) == Replace x by i(i(e)), y by e,
i(i(e) *(exi(e) zbyi(e)inl
10. | exi(e) ==i(i(e)) = (exi(e)) | Apply 8to9 (withefor 2)
11. | i(e) == i(i(e) xi(e) Apply 3to 10 (with e for x)
12. | i(e) == e Apply 2to 11 (withi(e) for x)

Figure 5: Sample derivation from group axioms

44 Rewriterules

Some of LP'sinference mechanismswork directly with equations. Most, however, require that equations
be oriented into rewrite rules. Rewrite rules have the same logical meaning as equations, but behave
differently operationaly. A rewriteruleisan ordered pair (I, r) of terms, usualy written| — r, such
that | isnot avariable and every variablethat occursinr also occursinl.® A termrrewriting system, or a
rewriting system for short, isaset of rewriterules.

LP orients equationsinto rewrite rules and uses these rewrite rules to reduce terms to normal forms. For
example, LP orientsthe equations asserted in Figure 1 into the rewriterules displayed in Figure 2. The
additional commands

declare operator 1: — Nat

assert 1 == s(0)

provel <1+1

cause LP to orient the equation into the rewrite rule 1 — s(0), after which it can prove the conjecture

6As explained below, pairs that violate these restrictions have unpleasant operational consequences.

12

1 <1+ 1byreducingittotrue, asfollows.

Term Derivation

1<1+4+1 Conjecture

s(0) < s(0) + s(0) | Apply 1 — s(0) threetimes
s(0) < s(0+s(0)) | Apply nat.4

0 <0+ s(0) Apply nat.7
0 < s(0) Apply nat.3
true Apply nat.6

Note that rewrite rules nat.3 and nat.7 can be applied in either order.

To describethisprocess more preci sely, we define asubstitutiono to be amapping fromvariablesto terms
such that o (v) isidentical to v for al but afinite number of variables. The domain of a substitutionis
extended totermsintheusua way: o (f (1, ..., t,)) isdefinedtobe f (o (t1), ..., o(ty)). A substitution
o matchesatermt; toatermt, if o (t1) isidentical to to.

Each rewriting system R defines a binary relation ~+ (rewrites or reduces directly to) on the set of al
terms. Operationaly’, t ~+g u if there is some rewrite rulel — r in R and some substitution o that
matches| to a subterm of t such that u isthe result of replacing that subterm by o (r).

The relation ~+7; (reduces or rewrites to) is the reflexive transitive closure of ~»r. Thust ~% u if and

only if there aretermsty, ..., t, suchthatt = t; ~r ... ~grt, = u. The relation«»; isthe transitive

irreflexive closure of ~r. When Ris clear from context, we write~ for ~g, ~* for ~%, and ~ for
+

’\f)R_

It is usualy essentiad that R be terminating, in other words, that there be no infinite sequence
ty ~Rr t2 ~R t3... Of reductions. In genera, it is undecidable whether a set of rewrite rules is
terminating. However, as discussed below, LP provides several mechanisms that automatically orient
many sets of equations into terminating rewriting systems. For example, LP automatically orients the
equationsfor groupsin Figure 4 into the rewriterules

XxY)*xZ— Xx(Y*2)

iX)*X —> e

exX — X
It automatically reverses the left and right sides of the second and third equations, thus preventing
nonterminating reduction sequences such ase ~ i(e) x e ~ i(e) xi(e) x e~ ... and e ~ ex e ~»
exexe~...8 LPsfadlitiesfor orienting equationsinto rewrite rules are discussed in Section 4.9.

A termt issaid to beirreducibleif thereisnoterm u such that t ~ u. If t ~* u and u isirreducible,
then u isaterminal or normal formof t. A term can have many different termina forms. For example,
bothex zandi(y) x (y * z) are normal formsof (i (y) x y) * z with respect to the rewrite rulesfor group
theory above.

Unless directed otherwise, LP keeps al rewrite rules and equationsin normal form. If arewriterule or
equation reduces to an identity, that is, to one in which the right and left sides have the same normal
form, it is discarded.

If aterm has only one normal form, that is called the canonical formof theterm. A terminating rewriting

“Another characterization of ~+ is asthe smallest binary relation suchthat o () ~+r o (r) for every rewriterulel — r in R
and every substitution o, and such that f (ty, ..., ti,..., th) ~r f(tg,..., u,..., tn) whenevert; ~+r u.

8These examples show why arewrite rulel — r must obey the restrictionsthat | cannot be avariable and that all variablesin r
must also beinl.

13

system in which all terms have a canonical form is said to be convergent (cf. Appendix A).

If a rewriting system is convergent, its rewriting theory (that is, the equations that can be proved by
reducing them to identities) isidentical to itsequational theory (that is, the equationsthat follow logically
from the rewrite rules considered as equations). Unfortunately, most rewriting systems that arise in
practice are not convergent. In these systems, the rewriting theory is a proper subset of the equational
theory. For example, the equation i(e) == eisin the equational theory of the rewrite rules for group
theory above, as proved in Figure 5, but it is not in the rewriting theory (because it isirreducible and yet
isnot an identity).

The proof mechanisms discussed in Sections 5 and 6 compensate for the incompleteness that results
when a system’s rewriting theory does not include all of its equational theory.

45 Operator theories

LP provides specia mechanisms for handling some equations that cannot be oriented into terminating
rewrite rules. The LP command assert ac + in Figure 1 says that + is associative and commutative.
Logicaly, thisassertion is merely an abbreviation for two equations:
X+y+2 == X+y+z
X+y == y-+X

Operationaly, it causes LP to use equational term-rewriting to match and unify terms (see Section 5.3)
modul o associativity and commutativity. In equationa term-rewriting, a substitution o matchest; tot;
modulo aset E of equationsif o (1) == t, isinthe equationa theory of E. For example, if 4 isac, the
rewriterulea + b — c will reducetheterma+ c+ btoc+c.

Equationa term-rewriting not only increases the number of theories that LP can reason about, but aso
reduces the number of axioms required to describe various theories, the number of reductions necessary
to derive identities, and the need for certain kinds of user interaction, for example, case anaysis. The
main drawback is that equational term-rewriting can be much slower than conventiona term-rewriting;
associ ative-commutative matching, for example, is NP-hard, whereas conventiona matching islinear.

LP recognizes two nonempty operator theories: the associative-commutative theory (assert ac)
and the commutative theory (assert commutative). The commutative theory is important because
commutative axioms, such as x + y == y + X, cannot be oriented into terminating rewrite rules.
The associative-commutative theory is important because an equation describing associativity, such as
X+ Y) +z== x+ (y+ 2), cannot be oriented into aterminating rule if commutative matching is used
for the associative operator.

To facilitate matching terms involving ac or commutative operators, LP flattens the internal
representation of terms by arranging the arguments to associative-commutative and commutative
operators in a canonical order.’ The visible impact of this is that, when LP prints terms, the order
in which arguments appear may be affected. For example, when + is associative-commutativeand = is
commutative, LPwill recognize (a + b) + ¢ =d and d = b+ (c + a) as having the same meaning, and
itwill print bothasa+ b+ ¢ = d. Flattening a so explainswhy the display of nat.3and nat.4 in Figure 2
differsfrom the original form of those equationsin Figure 1.

SWhen an assertion that an operator is commutative or ac is deleted, terms involving that operator are unflattened, perhapsto
different formsthan they originally had.

14

4.6 Inductionrules

LP alows users to axiomatize theories using induction rules, which are logically equivaent to infinite
sets of first-order formulas. Induction rules increase the number of theories that can be axiomatized by
finite sets of assertions. For example, none of the infinitely many facts not (i = s(i)), not (i = s(s(i))),

. isan equational consequence of the equationsin Figure 1.1° But thisinfinite set of facts does follow
when the equations are supplemented by the axiom

assert Nat generated by O, s

The intuitive content of this axiom is that each element of sort Nat is either 0 or s"(0), wheren is a
positiveinteger. Thisaxiom is equivalent to theinfinite set of first-order formulas™

(E[0] A (Vi:Nat)(E[i] = E[s()])) = (Vj:Nat)E[]j]
where E isan arbitrary equation.*?

As described in Section 6.3, LP uses induction rules to generate subgoal s to be proved for the basis and
induction stepsin proofs by induction. The command

prove not (i = s(i)) by induction
directs LP to begin a proof of the conjecture not(i = s(i)) by induction, in other words, to prove
not (0 = s(0)) as the basis subgoal, and then to prove not (s(ic) = s(s(ic))) as the induction subgoal
using theinduction hypothesisnot (ic = s(ic)), whereic isanew constant introduced by L P to formulate
the induction hypothesisand subgoal .

Similary, the assertion Set generated by empty, insert in Figure 3 provides an induction rule for the sort
Set that is equivalent to the infinite set of axioms

(E[empty] A (Ve:Elem, s:Set)(E[s] = E[insert(e, s)])) = (Vs:Set)E[s]
Users can specify multiple induction rules for a single sort. For example, given the declarations in
Figure 3, the LP commands

set name setl nduction2
assert Set generated by empty, singleton, U

change the current name prefix and then assert that al objects of sort Set can be generated by taking
unions of singleton and empty sets. Users can choose either induction rule when attempting to prove an
equation by induction; for example,

prove X C x by induction using setlnduction2

As described in Section 6.11, users may use one induction rule to prove another. For example, a user
might choose to prove rather than assert the rule setinduction?2.

10For each n, thereis amodel of the equationsthat contains the natural numbers plus an additional n elementsthat form acycle
under s and in which therelation a < b is alwaysfalse when a and b are among these n elements.

1 Becausel Pinterpretsinductionaxiomsby setsof first-order formulas, these axiomsdo not rule out the existence of nonstandard
models, that is, of modelsthat contain elements not of the form 0 or s"(0), but with the samefirst-order propertiesasthese elements.
Interpreting induction axioms by single second-order sentences would rule out nonstandard models, but would not necessarily
increase the number of theoremsthat can be proved (because complete systems of inference do not exist for second-order logic).

2gince the set of first-order formulas corresponding to an induction axiom in LP involves arbitrary equations E, this set can
becomelarger when new operators are declared.

15

4.7 Deductionrules

L P uses deduction rulesto deduce new equationsfrom existing equationsand rewriterules. For example,
the LP command

assert wheni + j ==i + kyidd j ==
specifies a cancellation law for addition.® Logically, this deduction rule has the same meaning as the
equationi +j =i +k = j = k == true, but thereisan important operationa difference: LP can apply
the deduction ruledirectly to the equation f (x) + ¢ == g(x) + ¢ to deduce the equation f (x) == g(x).

Section 8 contains a discussion of the pragmatic ramifications of the differences between expressing
axioms as deduction rules and expressing them as implications.

More powerful deduction rules alow explicit universal quantification of variables in their hypotheses.
For example, the LP command

assert when (forall e ee x==ecyyiddx==y
defines a deduction rule equivalent to the universal-existential formula
(VX, y:Set) [((Ve:Elem)(ee x & ec y)) = X =]

of set extensionality. This deduction rule, which can aso be asserted by the LP command assert S
partitioned by €, as was done in Figure 3, enables LP to deduce equations such as X == X U X
automatically from equationssuch ase € x == e € (X U x). (Section 5.5 shows another way to obtain
this conclusion using the deduction rule.)

Deduction rules can have multiple hypotheses and/or multiple conclusions. For example, the transitivity
of < can be formulated as a deduction rule with two hypotheses:

wheni < j,j <kyiddi <k

An example of adeduction rulewith two conclusionsisthe &-splitting law:
when p & qyied p, q

where p and q have been declared as variables of sort Bool.

A deduction rule can be applied to an eguation or a rewrite rule. An application succeeds if there is
a subgtitution that matches the deduction rule' s first hypothesis to the equation or rewrite rule and that
maps the variables in the forall clause to distinct variables'* not appearing e sewhere'® in the matched
equation or rewriterule.

Theresult of applying adeduction rulewith one hypothesisisthe set of equationsobtained by instantiating
each of its conclusions by the substitution(s) that matched its hypothesis. LP substitutes fresh variables
for variables that occur in the range of the matching substitution, but not in the hypothesis. For example,
applying the deduction rule when P(x) yield Q(x, y) to P(f (y)) produces the result Q(f (y), y1) and
not the weaker result Q(f (y), y).

The result of applying a deduction rule with more than one hypothesis is the set of deduction rules
obtained by deleting the first hypothesis and instantiating the remainder of the deduction rule by the
substitution(s) that matched it. For example, applyingthedeductionrulewhen x <y, y < zyiddx < z

1335uch cancellation laws generalize those used by Stickel [31] in reasoning about rings.

141t the matched variableswere not required to be distinct, then, for example, the deductionrulewhen (forall X, y) x«z==yxz
yield z == 0 would apply to the equation w * 1 == w * 1 and yield the erroneousresult 1 == 0.

15The matched variables must not appear elsewhere lest, for example, the deduction rule for set extensionality apply to the
equatione € insert(e, X) == e € insert(e, y) toyield the erroneousresult insert (e, x) == insert(e, y).

16

tothe equation a < b yieldsthe deduction rulewhen b < zyielda < z

Deduction rules serve to increase LP' s logical power, to improveits performance, and to reduce the need
for user interaction. Examples of deduction rules that serve the latter two purposes are the & -splitting
law and the cancellation law for addition. The & -splittinglaw isso useful thatitisbuiltinto LPto further
improve performance.

LP automatically applies deduction rules to equations and rewrite rules whenever they are normalized.
The sample proof in Appendix B illustrates the logical power of deduction rules, as well as the benefits
of applying them automatically to additional hypotheses introduced in the course of a proof.

Likeother factsin L P, deduction rulesmay be asserted as axioms or proved astheorems(cf. Section 6.10).

4.8 Built-in operatorsand axioms

LP provides built-in rewrite rules (see Figure 6) to simplify terms involving the Boolean operators not,
&, |, =, and <, the overloaded equality operators =, and the overloaded conditional operatorsif.

p&true— p p | true — true
p& false — false p| false— p
P& p—p Plp—p

p& not(p) — false

X =X — true
p=true— p
p = false — not(p)
p=not(p) — false

not (true) — false
not (false) — true
not(not(p)) — p

true=p—p
false = p — true

p = true — true

p = false — not(p)
p= p— true

p = not(p) — not(p)
not(p) = p— p

p | not(p) — true

p<& p—true
p<true— p
p & false — not(p)
p < not(p) — false

if(true, p,q)— p
if(false, p,q) — @
if(not(p), x,y) — if(p,y,x)
if(p.true,q) > plq

if(p, false,q) — not(p) & g
if(p,g,true) - p=g¢
if(p,q, false) > p& ¢
if(p,Xx,x) — X

Notes:

p, g, andr are variables of sort Bool.
x and y are variables of an arbitrary sort.

Figure 6: Rewriterules builtinto LP

These rewrite rules are sufficient to prove many, but not al, identities involving these operators.
Unfortunately, the sets of rewrite rules for propositiona logic that are known to be complete (i.e.,

17

to be convergent and to yield al propositional identities) require exponential time and space [18, 32].
Furthermore, they can expand, rather than simplify, conjecturesthat do not reducetoidentities. These are
serious drawbacks, because when we are debugging specifications we often attempt to prove conjectures
that are not true. So a complete set of rewrite rules for propositional logic is not built into LP. Instead,
LP provides proof mechanisms that can be used to overcome incompletenessin a rewriting system, and
it allows usersto add any of the complete sets (which subsume the built-in rewrite rules) when they wish
to use them.

LP aso provides a built-in metarule for rewriting terms containing the conditional operator if. This
metarule has the form

i f (1, tz[t]_], t3[t1]) —if (1, tz[trUE], t3[fal se])

and can be applied when t; occurs as a subterm of t, or t3. For example, LP uses thismetarule to reduce
thetermif(p, p& q, p|r)toif(p,q,r).

LPtreats &, |, and < as ac operators, and it treats =, in all overloadings, as a commutative operator.
Finally, LP providesthe built-in deduction rules shown in Figure 7.16

Ip_not_is true: when not (p) yield p== false

Ip_not_is false: when not (p) == falseyidd p

Ip_.and_is true: when p& g yield p, q

Ip_or_is false: when p| g == false yidd p== false,q== false
Ip.iffistrue when p < yiedd p==q

Ip_equalsistrues whenx =y yiddx ==y

Figure 7: Deduction rulesbuilt into LP

4.9 Orienting equationsintorewriterules

Ordinarily, LP automatically orients equations into rewrite rules without users having to enter explicit
ordering commands. However, the set automatic-ordering off command causes LP to refrain from
orienting equations until it receives an explicit order command.

LP providesthreetypes of ordering mechanisms for orienting equationsinto rewriterules. The command
set ordering method can be used to select any of these mechanisms.

e Two registered orderings (the dsmpos and noeq-dsmpos orderings), based on LP-suggested partia
orderings of operators[6, 8], that guarantee termination of sets of rewrite rules when no commutative
Or associ ative-commutative operators are present.

e A polynomial ordering, based on user-supplied polynomia interpretations of operators [1], that
guarantees termination even when commutative or associative-commutative operators are present.
Unfortunately, this powerful mechanism is difficult to use.

e Three “brute-force” ordering procedures, which give users complete control over whether equations
are oriented from left to right or from right to left. These provide no guarantees about termination.

16|p_and_is_true and Ip_or_is_false could both be written with single conclusions, because & and | are commutative.

18

Most users rely on LP sregistered orderingsto order all equations; noeg-dsmposisthe default ordering.
In striking contrast to the brute-force methods, they hardly ever cause difficulties by producing a
nonterminating set of rewrite rules.

49.1 Registered orderings

LP sregistered orderings use information in aregistry to orient equations. When no ac or commutative
operators are involved, these orderings guarantee that the resulting rewrite rules terminate. There are
two kinds of information in aregistry: height information and statusinformation.

Height information relates pairs of operators. If an operator f has greater height than another operator
g, LP will attempt to orient equations containing f and g into rewrite rules that replace an occurrence
of f by one or more occurrences of g. For example, g(g(x)) == f (x) will be oriented into the rewrite
rule f (x) — g(g(x)).

Satusinformation assigns rel ative weights to the arguments of operatorswith arity greater than one. If
an operator h hasleft-to-right (right-to-left) status, more weight is assigned to h’sleftmost (rightmost)
arguments. For example, if h has left-to-right status, h(f(x), x) == h(x, f(x)) will be oriented
into the rule h(f(x), x) — h(x, f(x)), whereas if h has right-to-left status it will be oriented into
h(x, f(x)) — h(f(x), x). If an operator has multiset status, its arguments are given equa weight. If h
has multiset status, theequation h(f (x), X) == h(x, f(x)) cannot beoriented. LP automatically assigns
multiset status to ac and commutative operators.

Figure 8 shows how theregister command can be used to place information in theregistry and how that
information constrains the way in which egquations are oriented. As discussed in Section 8, theregister
command can a so be used to enhance performance.

| Command | Effect on ordering |
register height f > g rewrite f to g
register height f =g give f and g equal height
register height f > g ruleout g > f
register bottom f rewrite any non-bottom operator to f
register top f rewrite f to any non-top operator

register statusright-to-left f | assign moreweight to f'sright arguments
register statusleft-to-right f | assign moreweight to f’sleft arguments
register statusmultiset f assign equal weight to al arguments of f

Figure8: LP commands for supplying ordering constraints

Information about the relative height of operators can be combined in a single command such as
register height = > (&,[) > true = false

which suggeststhat = be rewritten to either & or |, and that each of these be rewritten to true or false,
which have the same height. The partia ordering on operatorsistransitively closed (so that = > true
is a consequence of this command). LP reects register commands that do not represent a consi stent
addition to the registry, for example, commands that imply both f > gandg > f.

When the current registry does not contain enough information to orient an equation, LP will generate
minimal setsof extensionsto theregistry, called suggestions, that woul d permit the equationto be oriented.
It will not generate suggestionsthat would cause an equation entered by the user with — instead of ==

19

to be oriented from right to left. Furthermore, the noeg-dsmpos ordering does not generate suggestions
assigning equal heightsto two operators; as aresult, it is faster, but less powerful than dsmpos.

Ordinarily, LP adds suggestions automatically to the registry when needed. These actions can be
overridden by the command set automatic-registry off, which directs LP to ask the user to choose a
suggestion to be added to the registry. For example, when asked to orient f (a, b) == f (b, a) with
an empty registry, LP presents the user with the following suggestions for adding height and status
information to the registry. Section 4.9.4 discusses how to respond to such suggestions.

Direction Suggesti ons

PR
N
'

o

—h

—~

ey

Had the equation been entered as f(a,b) — f(b, a), LP would have presented only the first two
suggestions.

In addition to registering height and status information, a user may register operators as top or bottom
operators. Thisdoes notimmediately extend the height relation. When LP attemptsto orient an equation
that cannot be oriented with the current registry, but can be oriented by adding height rel ations that make
non-top operators less than top operators, or non-bottom operators greater than bottom operators, LP
will automatically extend the registry by adding such height relations, even if automatic-registry is off.
Furthermore, registering an operator as bottom prevents LP from automatically extending the registry
by making that operator greater than a non-bottom operator, and registering an operator as top prevents
LP from automatically making that operator 1ess than anon-top operator. However, unlessit contradicts
the current height relation, users may explicitly introducerel ationsin which bottom operatorsare greater
than non-bottom ones and top operators are less than non-top ones.

Theunregister command allowsusersto del etetheentireregistry, or to remove operatorsfromthebottom
or top of theregistry, but not to remove height or status information in the registry (see Section 7.4).

4.9.2 Polynomial orderings

The polynomial ordering requires considerable user input. It isgenerally used only to experiment with
termination proofs of small sets of rewrite rules, not to orient large sets of equationsinto rewriterules.

The polynomial ordering is based on user-supplied interpretations of operators by sequences of
polynomias [1]. The ordering extends these interpretations to terms by interpreting a variable by a
sequence of identity polynomialsand a compound term by the interpretation of its root operator applied
to the interpretations of its arguments. One term is less than another in the polynomia ordering if its
interpretationis lexicographically less than that of the second term (one polynomial isless than another
if itsvalueislessthan that of the other for al sufficiently large values of its variables).

The command set ordering polynomial length setsthe current ordering to a polynomia ordering based
on sequences containing length polynomials; if no length is specified, it is assumed to be 1.

Thecommand register polynomial f polynomial sassignsthe sequence of polynomial sasthe polynomial
interpretation of f. The polynomials are entered like standard L P terms separated by spaces, using the
binary operators+, x,”~ (for exponentiation), variables, and positiveinteger coefficients. LPunderstands
operator precedence for terms representing polynomials, so these terms need not be fully parenthesi zed.

20

If the sequence of polynomials associated with an operator is longer than the length of the current
polynomia ordering, the extra polynomiasare ignored. If it is shorter, it is extended by replicating its
last element.

The commands in Figure 9, if issued before asserting the axioms in Figure 1, cause LP to use the
polynomia ordering to prove that set of rewrite rules shown in Figure 2 terminates. For example,
they cause LP to orient s(i) + j == s(i + j) from left to right, because the polynomial interpretation
(i +2) * j of theleft side dominatesthe interpretationi = j + 2 of the right sde when j is sufficiently
large, for example, when j > 1. The noeq-dsmpos ordering produces the same set of rewrite rules as
this polynomia ordering, but does not guarantee that they terminate, because + isac.

set ordering polynomial
register polynomial 0 2

register polynomial s x+2
register polynomial + XxxYy
register polynomial < XxYy

Figure 9: Sample polynomial interpretation

49.3 Bruteforceorderings

These orderings provide no guarantee about termination.

The manual ordering causes LP to ask the user how to orient each equation. The user is allowed to
choose either orientation, provided it resultsin avalid rewrite rule, that is, provided that the |eft side of
theresulting rewriterule does not consist of avariable and that theright side does not introduceavariable
not present in the left side.

Theleft-to-right ordering causes LPto orient equationsinto rewriterulesfrom left to right, provided the
results are valid rewrite rules. The either-way ordering behaves like the left-to-right ordering, except
that it orientsan eguation into arewrite rule fromright to left if that is possible and left to right is not.

4.9.4 Interacting with the ordering procedures

When automatic-ordering is off, users must issue explicit order commands to cause LP to orient
equations into rewrite rules. When automatic-registry is off, LP will prompt users to confirm any
extensionsto the registry when a registered ordering isin use, or to select an action for an equation LP
isunableto orient. When presented with a prompt like

The followi ng sets of suggestions will allow the equation to be
or der ed:

Direction Suggesti ons

What do you want to do with the equation?
users can type ? to see amenu such as

21

Enter one of the followi ng, or type <ret> to exit.

accept[1..2] kill post pone
di vi de left-to-right right-to-left
interrupt ordering suggesti ons

of possible responses, which have the following effects.

e accept (or anumber intheindicated range): confirmsthefirst (or the sel ected) extensiontotheregistry.
If this action is missing from the menu, no extension to the registry will orient the equation.

e divide: causes LP to add two new equations that imply the original equation. This action is useful
when an equation such as x/x == y/y cannot be oriented because each side contains a variable not
in the other side. If the user eects to divide thisequation, LP will ask the user to supply a name for
a new operator, for example, e; it will then declare the operator and assert two equations, x/X == e
and y/y == e, both of which can be oriented (by making / higher than €) and which normalize the
origina equation to an identity.

e interrupt: interruptsthe ordering process and returns LP to command level.

e kill: deletesthe problematic equation from the system. This should be used with caution, since it may
change the theory associated with the current logical system.

o |€eft-to-right: orientsthe equation from|eft-to-right without extending theregistry. Doing thisremoves
any guarantee of termination.

e ordering: displaysthe current registry (as does display ordering at the command level) and prompts
the user for another response.

e postpone: defers the attempt to orient this equation. Whenever another eguation is successfully
oriented, all postponed equations are re-examined, since they may have been normalized into
something more tractable.

e right-to-left: orientsthe equation from right-to-1eft without extending theregistry. Doing thisremoves
any guarantee of termination.

e suggestions: redisplaysthe LP-generated suggestionsfor extending the registry and prompts the user
for another response.

22

5 Forwardinferencein LP

LP provides mechanisms for proving theorems using both forward and backward inference. Forward
inferences (discussed in this section) produce consequences from alogical system. Backward inferences
(discussed in the next) produce a set of subgoas whose proof will suffice to establish a conjecture.
Appendix B illustratesthe use of both kinds of inference in a sample proof.

LP provides four methods of forward inference, each of which usesthe axiomsin LP'slogica systemto
deduce new facts.

5.1 Normalization

Whenever anew rewriteruleis added to itslogica system, LP automatically renormalizes all equations,
rewriterules, and deductionrules.!” If an equation or rewriterulenormalizesto anidentity, it isdiscarded.
If al hypothesesof adeduction rulenormaizetoidentities, the deductionruleisreplaced by the equations
in its conclusions. If al conclusions of a deduction rule normalize to identities, the deduction rule is
discarded.

5.2 Application of deduction rules

Whenever a new deduction rule is added to itslogical system, LP automatically applies that deduction
ruleto al equations and rewrite rulesin its system. Likewise, whenever an eguation or rewriterulein
its system is normalized, LP automatically applies all deduction rulesin its system to the new normal
form.'® Asdescribed in Section 4.7, these actions can produce equations (in the case of single-hypothesis
deduction rules) or deduction rules (in the case of multiple-hypothesisdeduction rules). To increase the
likelihoodthat the hypothesi s of adeduction rulewill match an equation (or arewriterule), LP normalizes
both the deduction rule and the equation (or the rewrite rule) before attempting to apply the deduction
rule.

5.3 Critical-pair equations

A common problem arises when a set E of equationsis oriented into arewriting system R, namely, ~»gr
is not convergent, and hence reduction to normal form does not provide a decision procedure for the
equational theory of E. Consider, for example, the rewrite rules

group.l: (Xxy)*xzZ— X * (Y*2)
group.2: i(X) x X — e
group.3: ex X — X

produced by orienting the axiomsfor groupsgiven in Figure 4. These rewriterules can be used to reduce
the term (i(y) = y) * zto atermina form in either of two ways. Applying rule group.1 produces the
terminal form i(y) = (y x z). Applying rule group.2 produces e x z, which rule group.3 reduces to the
terminal form z. These two termina forms, i(y) * (y * z) and z, are equivalent under the equational
theory of the group axioms, but the rewrite rules group.1:3 do not reduce them to a common terminal

17Ways of preventing automatic renormalization are discussed in Section 5.6.
1BWays of preventing deduction rules from being applied automatically are discussed in Section 5.6.

23

form. Likewise, as shown in Figure 5, i(e) == e is an equational consequence of these three axioms;
yeti(e) and e are distinct terminal forms.

Nonconvergent rewriting systems can cause L P to exhibit even stranger behaviors. For example, LP may
fail to reduce two terms u and v to the same normal form even though u ~ v. Worse yet, the behavior
of LP may be nonmonotonic; in other words, it may reduce u and v to the same normal form using the
rewriting system R but not using the system RU {l — r}.

The critical-pairs command provides a method of extending the rewriting theory of a system to more
nearly approximate its equationa theory. The command

crititical-pairsgroup.1 with group.2

causes L Pto compute (inamanner morefully described bel ow) thecritical-pair equationi (y)x (yxz) ==
e x z (whose left and right sides are the results of reducing (i (y) * y) * z by rules group.1 and group.2,
respectively), which is then reduced by rule group.3 and oriented to give a new rewrite rule, group.4:
i(y) x(Yx2) — z

Thecritical -pair computationinvolvesunification, which generalizes matching. Recall that a substitution
o matchesatermt; toatermt, if o (t7) isidentica tot,. It unifiest; and t, (or isaunifier of t; and tp) if
o(ty) isidentical too (tp). If E isaset of equations, o unifiest; and t, modulo E (or isan E-unifier of t;
andty) if o (t1) == o (t2) isinthe equationa theory of E.

There may be no subgtitutions, or many substitutions, that unify a pair of terms. For example, the terms
X * y and i(x) cannot be unified, and theterms x * y and i (w) * w are unified by the substitution

o={i(w) for x, w for y}
and also by the subgtitution
o' ={ie forx, efory, efor w}

whichisaninstance of o, sincecs’ = {e for w} o 0. Herethe composition o o t of two substitutionso
and 7 isthe subgtitution defined by (o o 7)(t) = o (z(1)).

For ordinary unification (i.e., unification modulo an empty set of equations), if two terms can be unified,
they always have a unique (up to variable renaming) most general unifier. That is, any unifiable terms
s and t have a unifier ¢ such that, for each unifier 6 of s and t, there exists a subgtitution ¢ such
that 6 = t o o. For many equational theories, there is not always a most general E-unifier. For the
commutative and associ ative-commutative theories, there are instead finite sets of minimal unifiers, that
is, unifiersthat are not substitution instances (except for variable renaming) of other unifiers.

LP uses unification to compute critical-pair equations, as follows. Letl; — r; and 1, — r» be rewrite
rules such that |, can be unified with a nonvariable subterm t; of 1,.1° When such a substitution exists,
we say that |; and |, overlap at t;. Let o be the most general unifier (or one of the minimal unifiers,
in the case of E-unification) of |, and t;. The critical-pair equation associated with this overlap is
o(I1[ty < r2]) == o(r1). (The notationt[t; < s] standsfor t with the subterm t; replaced by s.) One
way to think of this critical-pair equation is as the result of reducing o (11) by each of the two rewrite
rules.

Each critical-pair equation captures away in which a pair of rewrite rules (or two different applications
of the same rewrite rule) might be used to reduce a singleterm in two different ways. For example, the
substitution {i(y) for x, y for w} unifiesi(w) * w with a nonvariable subterm of (X x y) * z, so that
ex z==1(y) * (Y * 2) isacritical-pair equation between (X x y) x z — X x (Y * 2) and i (w) * w — €

19For simplicity, we assume that the rewrite rules have no variablesin common. If they do, the variables are renamed.

24

When associative-commutative operators are present, it is necessary to generdize the critical-pair
computation to capture further ways in which a single term can be reduced. See Appendix A.4 for
adiscussion of how thisis done.

The command
critical-pairs namesl with names2

causes LP to compute al critical-pair equations between the rewrite rules named by namesl and those
named by names2. Critical-pair equations that reduce to identities are discarded; the others are added to
LP'slogica systemand processed asif they had been asserted by the user. For example, starting fromthe
rewriterulesfor group theory, the command critical-pairs* with * causes LP to deduce the critica -pair
equationex z ==i(y) * (Y *), which reducesto z == i (y) * (Y * 2). These equations appear on lines
5and 6 in Figure 5. Repeating this command causes L P to deduce the critical-pair equation online 8 in
Figure5, and repeating it athird time causes LP to deduce to the critical-pair equation on line 10, which
reduces to the equation i(e) == e. Thus, three applications of the critical-pairs command suffice to
enable LP to deduce the equation i () == e from the axioms for group theory.

54 Completion

The complete command causes LP to compute critical-pair equations, and to orient them into rewrite
rules, until there are no nontrivial critical-pair equations between any pair of rewriterulesin the system.?°
If the computation finishes with an empty set of equations and a terminating set of rewrite rules, then
that set of rewrite rules provides a decision procedure (using reduction to normal form) for its equational
theory. For example, the completion procedure produces the rewrite rules shown in Figure 10 from the
axiomsfor groups given in Figure 4; these rewrite rules are sufficient to reduce any equation that istrue
about all groupsto an identity.

X*xY)*Z—> X*x(Y*2) i(e) > e

iX)*X —> e ii(2) — z

ex X —> X Z*xi(z) > e

i(Y) *(Yy*x2) > 2z X*x((X)%*2) — z
Zxe— z i(yx2) — i(2) xi(y)

Figure 10: A complete set of rewrite rulesfor group theory

Appendix A provides more details concerning the computation of critical-pair equations and the
compl etion procedure.

When using LP, we rarely complete our rewriting systems, because a complete set of rewrite rules with
the same equational theory may not exist, may be too expensive to obtain, may be too expensive to
use, or may lead to canonical forms that are hard to read. However, we often make selective use of
critical-pair equations to derive useful consequences. We also use the completion procedure to look for
inconsistencies, and we interrupt it if none are found after a few iterations. During proofs, both the
critical-pairs and the complete commands stop computing critical-pair equations when they produce a

YRelease 2.2 of LP does not compute critical-pair equations between the built-in rewrite rules and the other rewrite rules in
the system. As aresult, the completion procedure may not discover some “obvious’ consequences of facts that contain built-in
operators. Users can overcome this deficiency by explicitly asserting or proving an appropriate set of immune (see Section 5.6)
rewrite rules for the booleans, but even then the completion procedure may not discover some “obvious’ consequences because
the built-in rewrite rules do not axiomatize all properties (e.g., distributivity) of the boolean operators.

25

consequence that resultsin normalizing the current conjectureto an identity. Thismakesthese commands
convenient for finishing up proofs.

55 Instantiation

Explicit instantiation of variables in equations, rewrite rules, and deduction rules is the final method of
forward inference in LP. The command

instantiatevariableby term, .. ., variable by term in names

causes L P to substitute (simultaneoudly) the specified terms for variablesin the named eguations, rewrite
rules, and deduction rules.

A common use of the instantiate command is in connection with deduction rules. For example, given a
logical system that contains the deduction rule

when (foralle) ece x ==ec yyiddx ==y

andtherewriterulee e (XUy) — e € X | e € y, instantiating y by x U x in the deduction rule produces
the conclusion x == X U X.

Sometimesit is helpful to instantiate an equation to obtain an instance that is orientable even though the

origina equationisnot. For example, theequationinsert (e, insert (¢, X)) == insert (€, insert (e, X))
cannot be oriented into a terminating rewrite rule, but specific instances, such as the equation
insert (0, insert (s(0), X)) == insert (s(0), insert (0, X)), can be oriented.

Instantiation can sometimes be used as an aternative to computing critical-pair equations For example,
giventherewriterules

group.l: (Xxy) *xzZ— X *x (Y*2)
group.2: i(X) x X — e
group.3: ex X — X

for groups, the command
instantiate x by i (y) in group.1

causes LP to generate the equation (i (y) * Yy) * Z == i(y) * (Y * z), which LP reduces (using rules
group.2:3) and orients into the rewrite rule group.1.1, i (y) * (y * z) — z. Whenever arewriteruleis
instantiated, the initial form of the instantiation can be reduced to an identity by a single application of
theoriginal rewriterule. To avoid thistrivia reduction, L P attemptsto reduce theinstantiationfirst using
the other rewrite rules in the system. Often such a reduction produces an equation that can no longer
be reduced by the original rewrite rule, and which LP therefore retains. At other times, the instantiation
may be rewritten to an identity by the original rewrite rule even after it has been reduced by some other
rule, or because no other rewriterule could be applied. If itisuseful to retain instantiationssuch as these,
LP'sancestor immunity facility (see Section 5.6) provides a means of doing so.

An advantage of the critical-pairs command is that, in effect, it finds potentially useful instantiations
automatically: the command

crititical-pairs* with x

produces the same rewrite rule as the instantiation (although with the name group.4). Furthermore, the
critical-pairs command can produce severa potentialy useful consequences from a pair of equations,
wheress the instantiate command produces but a single consequence.

26

5.6 Activity and immunity

Ordinarily, al rewrite rules and deduction rules are “active” in that LP will apply them automatically
to normalize other facts and to deduce consequences from these facts. Likewise, al facts are ordinarily
subject to normalization and deduction. LP provides features, however, for restraining such automatic
inferences.

Userscan “deactivate’ rewriterulesand deduction rulesto prevent them from being applied automatically.
The command make passive names deactivates the facts named by names. When arule is known to
be inapplicable or expensive to apply, it can be deactivated to prevent LP from spending time trying to
apply it. The display command indicates passive facts by printing the letter P in parentheses following
their names. The command make active names reactivates the facts named by names.

Users can aso “immunize’ equations, rewrite rules, and deduction rulesto protect them from automatic
normalization or deduction, either to enhance the performance of LP or to aid in proofs. The command
make immune names immunizes the facts named by names. When facts are known to be irreducible,
they can be immunized to prevent LP from wasting time trying to reduce them. For example, when
reasoning about alarge set of axioms that contains axioms for the integers, one might want to immunize
all axioms that deal only with the integers. Immunization can aso preserve facts for later use (e.g.,
instantiation) when they might otherwise reduce to identities and disappear. |mmunity does not prevent
facts from being flattened or equations from being oriented. The display command indicates immune
facts by printing the letter | in parentheses following their names. The command make nonimmune
names dei mmunizes the facts named by names.

In addition to the make command, which enables users to change the activity or immunity of existing
facts, LP providestwo settings that determine the activity and immunity of newly entered or generated
facts. These settings can be changed by the set activity and set immunity commands. By default,
activity ison and immunity is off.

Facts can a so be given an intermediate degree of immunity. The commands set immunity ancestor and
make ancestor-immune names prevent facts from being reduced or subjected to deduction by rulesthat
are ancestors of the fact. One fact is an ancestor of another if its name is a prefix of the other’s. For
example, a rewrite or deduction rule named a.1 is an ancestor of a rewrite rule named a.1.2 obtained
from it by instantiation, and LP will not apply it automaticaly to a.1.2 if a.1.2 is ancestor-immune.
Thus, ancestor immunity provides away to preserve instantiationsof rewriterules. The command make
ancestor-immune names causes any named facts that were fully immune to become only ancestor-
immune. The display command indicates ancestor-immune facts by printing the letter i in parentheses
following their names.

27

LP maintains the following invariants. All termsin nonimmune equations, rewrite rules, and deduction
rules are normalized with respect to all active rewrite rules. All terms in ancestor-immune facts are
normalized with respect to all active rewrite rules other than their ancestors. All active deduction rules
have been applied to all nonimmune eguations and rewrite rules and to al ancestor-immune equations
and rewriterulesthat do not have that deduction rule as an ancestor.

LP orients inactive and/or immune equations into inactive and/or immune rewrite rules, which remain
that way until explicitly activated or delmmunized.

Rewriterules(passive or not) can be applied explicitly to sel ected facts (immune or not) by the commands
normalize factNames with ruleNames and rewrite factNames with ruleNames. The first normalizes
each of the named facts using the named rewrite rules; the second rewrites if possible some subterm
in each of the named facts using one of the named rewrite rules, if possible. (Rewrite rules named by
both factNames and ruleNames are not normalized or rewritten, because they would reduce themselves
toidentities.) If with ruleNames is omitted, al rewrite rules in the system are used. These commands
can be used to control when definitions are expanded, or when nonsimplifying rewrite rules (such
as distributivity) are applied. The commands normalize conjecture with ruleNames and rewrite
conjecture with ruleNames apply the named rules to the current conjecture.

Similarly, deduction rules (passive or not) can be applied explicitly to selected equationsand rewriterules
(immune or not). The command apply ruleNames to factNames applies each of the named deduction
rules once to each of the named equationsand rewrite rules.

When executing therewrite, normalize, and apply commands, L P beginsby making listsof theexisting
facts named by ruleNames and factNames. New facts produced during execution of these commands are
not added to these lists, even if their names happen to fall within ruleNames or factNames. However,
re-execution of the commands will take these new facts into account.

28

6 Backward inferencein LP

The prove command causes LPto initiatea proof of a conjecture by backward inference. The arguments
to this command consist of the conjecture and, optionally, the proof method to be used. If no method is
supplied, LP uses one from the current list of automatic proof methods (see Section 6.9).

LP maintains a stack of conjectures and subgoals whose proofs are not yet complete. It responds to
the prove command by pushing the new conjecture on this stack and, depending on the proof method
being used, by generating a set of subgoals to be proved and pushing them on the stack as well. These
subgoa sare lemmas that together are sufficient to imply the conjecture. LP may al so generate additional
hypotheses that can be used to prove particular subgoals, for example, an induction hypothesisin the
induction step of a proof by induction.

Thedisplay proof-statuscommand (or disp for short) displaysthe status of all pending proofs. It shows
the inference methods and additional hypotheses being used in these proofs, as well as the progress that
has been made.

The conjecture on top of LP's proof stack isknown as the current conjecture. LP tries to make as much
progressasit can on the current conjecture before requesting moreinput from the user. Whenever a proof
gets stuck, LP prompts the user to supply additional commands. The user can use the prove command
toinitiatea proof of alemma that might be useful in the suspended proof, cancel the proof attempt with
the cancel command, or resume the proof of the current conjecture with the resume command. When
the user cancels the proof of a subgoal for a conjecture, LP aso cancels the proofs of any other subgoals
introduced at the same time, and it resets the proof method for the parent conjecture. The cancel all
command cancels all proof attempts. Like the prove command, the resume command takes a proof
method as an optiona argument.

Whenever a proof terminates or is canceled, LP pops the stack of conjectures and restores its logical
system to its state before work on the conjecture began (thereby discarding any lemmas proved while
working on the conjecture). If the conjecture was proved, LP adds it to itslogica system and resumes
work on the conjecture now on top of the stack.?* As soon asit can establish the current conjecture, LP
terminates any forward inference mechanisms (such as internormalization of the rewriting system or the
computation of critical-pair equations) that may be in progress.

LP printsaline beginning with <> number whenever it creates number subgoalsin aproof, and it prints
aline beginning with [] whenever it finishes the proof of a conjecture or subgoal. After a successful
proof, the number of []'s equals the number of prove commands plus the number of subgoalsthat were
created by LP. LP aso annotates script fileswith ['sand <>'s. If a command file is executed with
box-checking set on (see Section 7.3.2), LP will check that proofs are proceeding in accordance with
these annotations. Whenever LP generates <> number or [], it checks that the next nonblank linein the
file being executed begins with a confirming <> or []. If it does not, LP prints an error message and
halts execution of thefile; LP also treats the occurrence of an unexpected <> or [] asan efror.

The ged command can also be used to confirm that a proof is proceeding as expected. LP treats the
occurrence of ged as an error if any conjectures still remain to be proved.

Conjecturesare assigned thedefault activity and immunity when they are created by the prove command,;
their activity and immunity can be changed by the make command. Immune conjectures are not immune
during an attempt to provethem, but are added to the system asimmunefactsin their origina form when

2More flexible systems of proof management in future releases of LP will enable users to work on any unproved conjecture,
not just the one on top of the stack, and to prove lemmas in any context.

29

proved. Immunizing a conjecture provides away to prevent it from disappearing once proved (because
it normalizes to an identity). Inactive conjectures remain that way when proved.

There are six methods of backward inference for proving equations in LP. In addition, LP provides
automatic methods of backward inference for proving deduction rules and induction rules.

6.1 Proofsby normalization

LP uses active rewrite rules to normalize conjectures. If a conjecture normalizes to an identity, it is a
theorem. Otherwise the normalized conjecture becomes the current subgoal to be proved. For example,
LP succeeds in proving the conjecture singleton(e) C insert(e, s) by using the axiomsin Figure 3to
reduce it to an identity. But the conjecture x C x isirreducible, and so becomes the current subgoal to
be proved by some other proof method.

30

Passive rewrite rules can be applied explicitly to a conjecture by the commands nor malize conjecture
with names and rewrite conjecture with names. The first normalizes the current conjecture using
the named rewrite rules. The second rewrites the conjecture at most once; if the conjecture contains a
subterm that can be rewritten using one of the named rewriterules, one such subtermisrewritten. If with
namesisomitted, al rewrite rulesin the system are used. These commands can be used to control when
definitions are expanded, or when nonsimplifying rewrite rules (such as distributivity) are applied.

6.2 Proofsby cases

Conjectures can often be simplified by dividing a proof into cases. When a conjecture reduces to an
identity in all cases, it isatheorem. Case analysis has two primary uses. If a conjecture is a theorem,
a proof by cases may circumvent a lack of completeness in the rewrite rules. If a conjecture is not a
theorem, an attempted proof by cases may simplify the conjecture and make it easier to understand why
the proof is not succeeding.

The command prove e by casesty, ..., t,, wherety, ..., t, are boolean terms, directs LP to prove an
equation e by divisioninto casesty, ..., t, (or into two cases, t; and not (1), if n = 1). LP'sactionsin
response to this command are simplest when the terms t; contain no variables. For example, given the
axioms

order.1: not(x < X)

order2: X <y&y<z=>x<2z

order.3: 0 <x|0=x

orderd: x < f(x)

and the command
prove0 < f(c) bycasec =0

(where c isaconstant), LP responds first by adding ¢ = 0 as a case hypothesis and proving the subgoal
0 < f(c) (by normalizing it to an identity using the case hypothesis and order.4). LP then adds
not (¢ = 0) asacase hypothesis, and attemptsto establish the same subgoal. The user can finish the proof
by entering the complete command, which causes LP to generate a sequence of critical-pair equations:
0 < ¢ between the case hypothesis (which LP has oriented into the rewriterulec = 0 — false) and
order.3, ¢ < z = 0 < z between the new equation and order.2, and finaly true = 0 < f(c) between
the newest equation and order.4. The command

prove 0 < f(c) bycase f(c) =0
can aso be used to prove the same result. The complete command can be used to show that the case
f (c) = Oisimpossible(by establishingc < 0, whichleadstoacontradiction). Inthecasenot (f (c) = 0),
the complete command, or the command critical-pairs x*CaseHyp with x, causes LP to establish the
subgoa immediately using order.3.

When one of thetermst; containsvariables, LP must proceed more cautiously, because introducing case
hypotheses that contain variables can lead to unsound reasoning. For example, if LP responded to the
command

prove f(x) == 0bycasex =0

by generating the case hypotheses x = 0 and not(x = 0), then it would erroneoudy establish the
conjecture by showing both cases to be impossible. Asdiscussed in Section 4.3, both of these equations
are inconsistent. The problem is that the variable x in the case hypothesis x = 0 is not meant to be

31

quantified universally, but to represent the same element as the variable x in the conjecture f (x) ==
To achieve this effect, and thereby preserve soundness, LP generates a new constant for each variable
that occurs in the case hypotheses. It then substitutes these constants for the corresponding variablesin
both the case hypotheses and in the conjecture. For example, LP responds to the command

prove 0 < f(x) bycasex =0

by replacing x by a new constant xc and attempting to prove the subgoa 0 < f (xc) from each of the
case hypotheses xc = 0 and not (xc = 0). The proofs of the subgoals proceed exactly as above, with xc
replacing c. Oncethe suboal shave been established for thearbitrarily chosen (but fixed) val ue represented
by xc (i.e., without using any properties of xc other than those expressed by the case hypotheses), LP
soundly concludes that the conjecture itself holds for arbitrary values of x. Note that the conjecture
0 < f(x) isstronger than the conjecture 0 < f(c), because the former asserts that 0 is less than f (x)
for any value of the variable x, whereas the | atter asserts only that 0 islessthan f (c) for the single value
of the constant c.

In summary, LP responds as followsto the command prove e by casest;, ..., t,. Whenn > 1, thefirst
subgoal isto provet; | ... | t,. Whenn = 1, LP generates a default second case of not (t1), but does not
generatethisfirst subgoal. Then, for each caset;, LP generates asubgoal € and ahypothesist/. Theseare
formed fromt; and e by substitutingnew constantsfor thevariablesthat occur int;. Section 4.1 describes
the conventionsused to name these constants. |f an inconsistency resultsfrom adding acase hypothesist/,
that caseisimpossible, and € isvacuously true. Otherwise, the subgoal € must be shown to follow from
the axioms supplemented by the case hypothesis. LP assigns names of the form prefixCaseHyp.number
to the hypothesesin proofs by cases.

Proofsby cases are often used to simplify implications, termsinvolvingif, and terms involving repeated
boolean subexpressions. For example, given the axiom if (divides(x, 2), even(x), odd(x)), the
command

prove even(x) | odd(x) by case divides(x, 2)

first addsdivides(xc, 2) — true (where xc isanew constant) as acase hypothesisto be used in proving
the subgoa even(xc) | odd(xc). The command critical-pairs «CaseHyp with user can then be used
to cause LP to compute the critical-pair equation i f (true, even(xc), odd(xc)) == true between the
case hypothesisand the axiom. LP normalizes this equation (using the built-in rewrite rulesfor i f) and
orients it into the rewrite rule even(xc) — true, which LP then uses to normalize the subgoa in the
first casetotrue. LP next addsdivides(xc, 2) — false asa case hypothesisand attemptsto prove the
same subgoal. This subgoal can aso be established by computing critical pairs, thereby completing the
proof of the conjecture.

When a case hypothesis contains new constants, it is often useful to compute critical-pair equations
between the hypothesis and other rewrite rules.

6.3 Proofsby induction

Proofs by induction are based on the induction rules described in Section 4.6.

The command prove e by induction on x using | R directs LP to prove the equation e by induction on
the variable x using the induction rule named | R. The names of the variable and/or the induction rule
can be omitted if they can be inferred (e.g., because induction is possible on only one variable in e and
thereisonly oneinduction rulefor the sort of that variable).

32

LP generates subgoals for the basis and induction steps in a proof by induction, as follows. The basis
subgoalsinvolve proving the equations that result from substituting the basis generators of | R for x in
e. (Basis generators are those with no arguments of the sort of x; fresh variables are used for arguments
of other sorts, asin singleton(e).) LP introduces additional hypotheses for the induction subgoals by
substituting one or more new constantsfor x ine. (Asdiscussedin Section 3.4, these constantshave names
likexc, xcl,) Each induction subgoa involves proving an equation that results from substituting a
nonbasis generator of | R (applied to these constants) for x in e (e.g., insert (e, Xxc) or xc U xcl). Asin
proofsby cases (see Section 6.2), LP substitutesnew constantsfor variableswhen it generates hypotheses
to be used in proving a subgoal, and it assigns names of the form prefixl nductHyp.number to induction
hypotheses.

Figures 11 and 12 show the output produced by LP as it initiates proofs by induction using the
axiomatizationsin Figures 1 and 3. Asin a proof by cases, it is often useful to compute critical-pair
equations between induction hypotheses and other rewrite rules.

LP101: provei < j =i < (j + k) by induction on |
Conjecture lemma.1: Subgoalsfor proof by inductionon‘j’
Basis subgoal:

lemma.l.l: (i <0) = (i < (0+Kk)) ==true
Induction congtant: jc
Induction hypothesis:

lemmalnductHyp.1: (i < jc) = (i < (je+k)) ==true
Induction subgoal:

lemma.1.2: (i <s(jc)) = (i < (s(jc) + k)) == true

Figure 11: Subgoalsfor a proof by induction over the sort Nat

LP101: set name setinduction2

LP102: assert Set generated by empty, singleton, U

LP103: set namelemma

LP104: prove x C x by induction using setl nduction?2
Conjecturelemma.l: Subgoalsfor proof by inductionon ‘x’

Basis subgoals:
lemma.1.1: empty C empty == true
lemma.1.2: singleton(e) C singleton(e) == true

Induction constants: xc, xc1
Induction hypotheses:

lemmal nductHyp.3: xc € xc == true

lemmal nductHyp.4: xcl1 C xcl == true
Induction subgoal :

lemma.1.3: (xc1 U xc) € (XclU xc) == true

Figure 12: Subgoasfor a proof by induction over the sort Set

33

LP also allows multilevel induction. Such inductions are useful, for example, when proving facts about
the Fibonacci numbers. The command

prove e by induction on x depth nusing I R

directsLPto provee by n-level induction using theinductionrule | R. If | Ristheinductionrulefor Nat
in Figure 1, then LP would attempt to prove an equation e by 2-level induction by proving the subgoals
e(0) and e(s(0)) in the basis step of the induction, and then by proving the subgoa e(s(s(c))) in the
induction step using e(c) and e(s(c)) as induction hypotheses.

6.4 Proofsby contradiction

Proofsby contradiction provide an indirect method of proof. If an inconsistency followsfrom adding the
negation of a conjectureto alogical system, then the conjectureis atheorem of that system.

When LP attempts to prove an equation t; == t, by contradiction, it first generates a hypothesis
not(t; = t;) by substituting new constants for the variables in not(t; = t). (This hypothesis is
logically equiva ent to the negation of the conjecture because introducing the new constantsis equival ent
to replacing the universally quantified variables in the conjecture by existentially quantified ones. See
Section 6.2.) LP assignsaname of theform prefixContraHyp.number tothishypothesis. It then generates
the single subgoal true == false.

Figure13 showstheoutput produced by L P asit initiatesaproof by contradictionusing the axiomati zation
in Figure 1. The proof can be finished by computing critical pairs between lemmaContraHyp and other
rules. One way to do thisisfor the user to type complete.

LP101: provenot (0 = s(i)) by contradiction
Conjecture lemma.1: Subgoa for proof by contradiction
New constant: ic

Hypothesis:

lemmaContraHyp.1: not (0 = s(ic)) == false
Subgoal:

lemma.2.1: true == false

Figure 13: Subgoalsfor proof by contradiction

6.5 Proofsof implications

Proofsof implications can be carried out using asimplified proof by cases. The command provet; = t;
by = directs LP to prove the subgod t; using the hypothesist; == true, wheret; and t; are obtained as
inaproof by cases. (This suffices because the implicationis vacuously truewhent; isfase) LP assigns
aname of the form prefixl mpliesHyp.number to the hypothesisin such a proof.

For example, given theaxiomsa = b — trueand b = ¢ — true, the command provea = c by =
usesthe hypothesisa — trueto normalize the axioms and to reduce the conjecture to an identity.

The command resume by = directs LP to resume the proof of the current conjecture using the by =
proof method; this command is applicable only when the current conjecture has been reduced to an
implication.

34

Users should beware of using the by = proof method prematurely. When using this method in a proof
of t1 = tp, LP replaces all variables in t, that also occur in t; by fresh constants, thereby making it
impossiblefor the user to continue the proof by induction on those variables.??

6.6 Proofsof conditionals

Proofs of equationsinvolving the conditional operator if can also be carried out using a simplified proof
by cases. The command prove if (11, tp, t3) == t4 by if-method directs LP to prove an equation by
division into two cases, t; and not(t;). Asin a proof by cases, LP substitutes new constants for the
variablesof t; inal termst; to obtain termst/. In thefirst case, LP assumest; — true as an additional
hypothesisand attempts to prove the subgoal t; == t,. In the second casg, it assumest; — false asan
additional hypothesisand attempts to provet; == t,. LP assigns names of the form prefixl fHyp.number
to the hypothesesin such a proof.

The command resume by if-method directs LP to resume the proof of the current conjecture using the
if-method; thiscommand is applicable only when the current conjecture has been reduced to an equation
of theformi f (1, to, t3) == t4, wheret, does not begin with if.

6.7 Proofsof conjunctions

Proofs of conjunctions can be slow because & is associative and commutative, and ac-matching is
inherently low. The command provet; & ... & t, by & provides a way to reduce this expense by
directing LP to prove each of the conjunctsty, ..., t, asa separate subgoal .

The command resume by & directs LP to resume the proof of the current conjecture using the by
& proof method; this command is applicable only when the current conjecture has been reduced to a
conjunction.

Users should beware that employing this method too early in a proof can result in an increased need for
user interaction and even in increased computation later in the proof, for example, when the same lemma
is needed to prove more than one conjunct.

6.8 Proofsby explicit commands

The specia proof-method explicit-commandsdirects LP not to apply any method of backward inference
automatically to a conjecture, but to wait for an explicit method to be given with a subsequent resume
command. Thisisused most frequently to prevent L P from attempting to normalize a conjecture when it
would be time-consuming and unfruitful to do so. For example, if a conjecture includes many conjuncts,
it may be appropriate to first compute some critical pairs, then apply the & method, and finally normalize
the individual subgoals.

6.9 Default proof methods

LP alows users to determine which methods of backward inference for proving eguations are applied
automatically and in what order. The LP command

2Fyture versions of LP will provide mechanismsthat circumvent this problem.

35

set proof-methodsmy, ..., m,

directs LP to use thefirst of the methods my, ..., m, that appliesto the current conjecture. LP does this
repeatedly (as it introduces new subgoals) until none of the methods in the list applies to the current
conjecture. The command

set proof-methods explicit-commands

prevents LP from applying any method automatically. The default proof method list is normalization
aone.

6.10 Proofsof deduction rules

LP permits users to prove deduction rules as well as to assert them. For example, the command
provewhen (forall 2y zC x==zCyyiddx ==y

directs LP to initiate a proof of a deduction rule about set inclusion. In response to this command, LP
introduces new constants xc and yc of sort Set, adds z € xc == z C yc as a hypothesisto itslogica
system (with aname of the form prefixWhenHyp.number) and attemptsto prove xc == yc as asubgoal.
User guidance is required to finish this proof, for example, by entering the complete command, which
causes L P to draw the necessary inferences from the additional hypothesis.

In generd, LP respondsto the command
provewhen (forall x1,...,Xm) h1, ..., hyyiddecy, ..., c

by replacing all variables other than xq, ..., X, in the hypotheses hy, ..., h, of the deduction rule by
new constants (see Sections 4.1 and 6.2) to form hypotheses hy, . .., h;, and subgoasc, ..., ¢ for the
proof of the deduction rule. When thereisnoforall clauseinthededuction rule, LP replaces all variables
in the hypotheses by new constants.

6.11 Proofsof induction rules

LP aso permits usersto prove induction rules. For example, the command
prove Set generated by empty, singleton, U

directs LP to initiate a proof of the induction rule setlnduction2 displayed in Section 4.6. In response
to this command, LP introduces a new operator isGenerated with signature Set — Bool, adds the
hypotheses?®

isGenerated (empty)
isGenerated(singleton(e))
(isGenerated(sl) & isGenerated(s)) = isGenerated (sl U s)

toitslogica system (with names of the form prefixGenHyp.number), and attempts to prove the subgoal
isGenerated(s). User guidanceisrequired to finish this proof, for example, by first proving the lemma
insert (e, s) == sUsingleton(e) (by instantiating the deduction rule corresponding to the assertion Set
partitioned by € and then issuing the commands resume by induction and complete).

2The hypotheses introduced by this proof method provide an adequate definitional semantics for isGener ated, but a rather
weak operational semantics. Future versions of LP may introduce additional hypotheseswith stronger operational semantics.

36

7 Featuresof LP

This section presents a summary of the commands available in LP, together with information about
commands not described earlier in thisguide. Details concerning all commands are availablefrom LP's
online help facility. The following notation is used to describe the command syntax.

| Notation | Meaning |
e akeyword
{e} e as a syntactic unit
ele githereor €
[€] an optional e
e ZEero or moree's
e zero or more €'s, separated by commas
€t zero or more €'s, optionally separated by commas
et oneor moree's
et one or more €'s, separated by commas
e, one or more €'s, optionally separated by commas
‘c the character(s) ¢

Many commandstake named setsof objectsasarguments. Figure 14 describesthe syntax for namesinLP.
Thekeywordsfor statement-types can be abbreviated using unambiguous prefixes (e.g., deduction-rules
can be abbreviated to d-r or to deduct). Asdescribed in Section 3.4, asterisks in name-patterns match

names = statement-typet, ; name-patternt, ;

statement-type = deduction-rules| equations| induction-rules |
operator-theories | rewrite-rules

name-pattern ’= name-character™ [extension] [‘! ']

name-character = identifier-character | ‘*’

identifier-character ::= letter | digit| ‘' | ‘"’

extension m= ‘.7 number [*. ' number]* [extension-range]

extension-range m= "7 {number | lagt }

number n= digitt

Figure 14: Syntax for names of sets of objects

any sequence of identifier-characters, and, when aname-pattern does not end with an exclamation mark,
any extension of a matched name is aso matched. With these conventions,

display d r arith.1:2 xHyp

causes LPtodisplay al deduction and rewriteruleswith namesarith.1 or arith.2, with subnames of these
names, or with name prefixes that end in Hyp.

7.1 Commandsfor user interaction

The commands in the following table are described in Sections 3.2, 3.3, and 3.4, as well as here in

Section 7.1.

37

User Interaction

clear

delete names

display [display-info] [names]
executefilename
execute-silently filename
forget [pairg]
freezefilename

help topict,

history [number |all]
quit

pop-settings
push-settings

set

set setting

set setting-and-value

Discard all information other than settings
Delete named facts

Display information about named objects
Execute commands from filename.lp

Same as execute, but suppressing all output
Discard information to save space

Save state of LPin filename.lpfrz

Print help about topics

Print recent command history

Exit from LP

Restore values of LP settings

Remember values of L P settings

Print current values of all LP settings

Print current value of setting, allow change
Changevalue of setting

show normal-form term
show unifiersterm, term
statistics [stat-options]
stop

thaw filename

unset {setting | all}

Display reduction of term to normal form
Display unifiers of two terms

Display statistics on runtime, storage, rule usage
Stop execution of command files

Restore frozen state from filename.lpfrz

Reset setting to its default value

version Display information about current version of LP
write filename [names] Write declarations, registry, named facts to filename.lp
% comment Record comment in log and/or script file

7.1.1 Savingand restoring state

The command freeze filename causes L P to create afile named filename.lpfrzand to saveits current state
(except for the statistics and file-system dependent settings (log-file, script-file, directory, and Ip-path
) inthat file. Thiscommand isuseful for checkpointing attempted proofs. The command thaw filename
causes L P to restoreits state to that frozen in thefile filename.l pfrz.

The command writefilename causes LPto create an ASCI| file named fil ename.l p, which can be executed
torecreate the current system. LPwritesdeclarationsfor all identifiersfollowed by commandsto recreate
thecurrent registry and to assert the current facts. Rewriterulesthat arewritten by thewrite command will
be read as equations. Unlikefreeze, write does not save information about the state of any uncompleted
proofs. But unlike thawing a frozen file, which replaces all of LP'slogica system, executing a written
file adds information to the current system. Hence it can be used to combine axiomatizations.

The commands push-settings and pop-settings use a stack to save and restore the values of all settings
(see Section 7.5) other thanlog and script files. Thewritecommand, for example, placesthese commands
in .Ip files so that named axioms can be loaded from files without affecting the current name, activity,
and immunity settings.

7.1.2 Displayinginformation

Thecommand display [display-info] [names] displaystherequested i nformation about the named objects.
If no names are specified, it displaysthe requested information for the entire logical system.

38

| display-info | Causes display of
conjectures the named conjectures
facts the named facts (the default)
ordering-constraints | theregistry for operatorsin the named facts
proof-status status of proofsinvolvingthe current conjecture
symbols all identifiersin the named facts

The display command annotates inactive facts by printing the letter P in parentheses following their
names. It annotates immune and ancestor-immune facts by printing the letters | and i in parentheses.

The command history [n], where n is a positive integer, causes LP to print a list of the n most recent
commands executed by LP. The command history all causes LP to print alist of all commands. The
command history with no arguments is treated by LP in the same fashion as the last history command
(or ashistory all if there were no previous history commands). Histories differ from scripts created by
the set script command in that, after athaw, the history shows the commands that produced the thawed
Ipfrzfile, whereas the script shows the commands that have been executed since starting the script.

The show command can be used to provide information about rewriting. The command show normal-
form termdisplaysthe normal form of term. When thetrace-level setting isnonzero, it also displaysthe
reduction sequence leading from the term to its normal form. The command show unifiers term, term
displaysacomplete set of minimal unifiersfor the two terms.

The command statistics [time | usage [names]] displays cumulative and recent (since the last display)
information about the resources consumed by LP, as well as about the usage of rewrite and deduction
rules. The default option is time, which displays information about the time spent by LP on various
activities. The usage option displays how many times L P successfully applied each of the named rewrite
and deduction rules, as well as how many non-identity critical pairs were computed from each rewrite
rule. Setting statistics-level to O (the default is 2) suppresses the collection of all but summary statistics.
Setting it to 1 suppresses the collection of usage statistics. Setting it to 3 causes LP to report the number
of attempts made to apply each rewriterule (but causes LP to run more slowly).

The version command displays information about how LP was installed (see Section 3.6).

7.1.3 Dedetinginformation and saving space

The clear command causes LP to discard al information other than the current settings.

The command delete names causes LP to delete the named facts from itslogical system. It can be used
to get rid of unhelpful facts (e.g., unorderable or unnecessary critical-pair equations) or facts that have
served their purpose and are no longer needed.

The forget pairs command causes LP to discard al information about which critical pairs have been
computed. It also prevents LP from accumulating further such information until the next complete
command is given. This command can save significant space when there are many rewrite rules. The
commands forget and forget pairsare equivalent in Release 2.2 of LP.

7.2 Commandsfor axiomatizing theories

The following table summarizes LP's features for defining theories. These features are described in
Sections 4-6.

39

Axioms and Facts

assert equation;, ;

assert deduction-rulet;, ;

assert sort generated by operator™,
assert sort partitioned by operator ™,
assert ac operator

assert commutative operator
declareoperators
op-declarationt;,

declare sortssort,
declarevariables

var-declaration, ;
mak e fact-status names

Assert equations as axioms

Assert deduction rules as axioms

Assert induction rule as an axiom

Assert deduction rule as an axiom (e.g., set extensionality)
Assert associative-commutative axioms

Assert commutative axiom

Declare operators

Declare sorts
Declare variables

Change activity, immunity of facts and conjectures, where fact-status
isone of active, inactive, passive,immune, nonimmune, or
ancestor-immune

The following two tables specify the syntax for declaring and using variables and operators in LP.
| dentifiers can be overloaded provided that identifiersfor the built-inlogica operatorsare not overloaded

by the user, and that the same identifier is not overloaded as a variable and a constant of the same sort.

Syntax for Variable Declarations |

identifier

variable

var-declaration =
variable-identifier =

identifier-character 1=

variable-identifier™, *:’
identifier

= identifier-character™
letter | digit| | *"°
= variable-identifier [*: ’ sort]

sort

| Syntax for Operator Declarations

op-declaration
operator-identifier
prefix-identifier
infix-identifier
infix-character

signature
domain
range
sort
operator

= prefix-identifier | infix-identifier

= identifier

= infix-character® | ‘\ * identifier

e USR]
<SS @ I

'= domain‘- >’ range

= sort¥

n= sort

= identifier

'= operator-identifier [*: * signature]

operator-identifier™, ‘: ’ signature

Thefollowingtwo tablesspecify the syntax for equationsand deductionrulesin LP. The sortsof subterms

inaterm, and of terms in an equation, must conform to the existing declarations for identifiers.

40

Syntax for Equationsand Terms

equation = term[equalsterm]
equals = ‘'==[->
term = equals-term {logical-infix-identifier equal s-termy*

equals-term = userOp-term[‘=" userOp-term]
userOp-term = subterm {infix-identifier subterm}*
subterm = atomic-term|[‘: ’ sort]
atomic-term = variable-identifier

| prefix-identifier [*(’ term™,) ']

| (" term?)”’
logical-infix-identifier = ‘& ||’ |'=>"|"'<=>’

| Syntax for Deduction Rules
deduction-rule 1= when [quantifier] equation™, ; yield equationt,
quantifier forall variable,

| ‘(" forall variable®,)’

41

7.3 Commandsfor proving theorems

Thefollowing table summarizes LP's inference mechanisms, as described in Sections 5-6.

Proofsand Inference Mechanisms

apply namesto names
cancel [all]
complete
critical-pairs

nameswith names
instantiate {variable

by term}*, in names
nor malize names

[with names]
normalize conjecture

[using names]
prove conjecture

[by proof-method]
ged
resume [by proof-method]
rewrite names

[with names]
rewrite conjecture

[using names]
<> number

[]

Apply named deduction rules to named facts

Cancel current conjecture [all conjectures]

Run completion procedure

Compute critical-pair equations between any rewrite rulesin the first named set

and any in the second
Instantiate variables by terms in named facts

Normalize named facts, immune or not, by all (or named) rewrite rules, active or

not
Normalize current conjecture by all (or named) rewrite rules, active or not

Attempt to prove conjecture (using proof-method)

Check that all conjectures have been proved
Resume work on current conjecture (using proof-method)
Rewrite each named fact, immune or not, by some (named) rewrite rule, active

or not
Rewrite the current conjecture by some (named) rewrite rule, active or not

Confirm introduction of number subgoalsin proof
Confirm conclusion of step in proof

42

7.3.1 Proof methods

As discussed in Section 6, conjectures can be equations, deduction rules, or operator theories. LP
recognizes the foll owing proof-methods for backward inferences involving equational conjectures.

| Proof Methods for the prove and resume Commands |
Applicabletot; & ... & t, == true

& -method

=-method Applicabletot; = t, ==true

casesty, ..., t, Divides proof into casesty, ..., t,

contradiction Initiates proof by contradiction

default Invokes method given by proof-methods setting
explicit-commands Suspends proof pending explicit resume command
if-method Applicabletoif (t3, tp, t3) ==14

induction [[on] variable] Initiates proof by induction
[depth number]
[[using] names]
normalization Initiates proof by reduction to normal form

7.3.2 Box checking

As discussed in Sections 2 and 6, LP generates <>'sand []'sin the history and in the script file. It
generates aline beginning with <> number whenever it creates number subgoasin aproof. It generates
aline beginning with [] whenever it finishes the proof of a subgoal or a conjecture. After a successful
proof, the number of []’sin the history and script file equals the number of prove commands plus the
number of subgoalsthat were created by LP.

LPignores <> and [] commands when it is not executing a command file or when the box-checking
setting is off. Otherwise, it checks these commands for errors, as follows. Whenever it generates <>
number or [], LP checks that the next nonblank line in the command file begins with <> number or
[1- The prompts <>?and []?indicate that LP expects a confirming <> or [] in the command file. LP
printsan error message if the confirming <> or [] ismissing, or if an unexpected <> or [] appearsin
the command file.

Regardless of whether box-checking is on or off, LP does not copy <> and [] lines from its input to
the history or to a script file. Instead, it puts into the history and script file the <> and [] lines that
it produces as it creates and discharges goals. Thus, the history and the script file will be annotated in
away that correctly reflects the actual progress of the proof. For thisreason, it is often useful to copy
fragments of script files back into command files.

7.4 Commandsfor ordering equationsintorewriterules

| Ordering Commands

order [names] Orient equationsinto rewrite rules
register constraints Constrain orientation of equations
unorder [names] Turn rewrite rules back into equations
unregister registry Discard al ordering constraints
unregister {bottom | top} operator®,; Discard indicated constraints

Asdiscussed in Section 4.9, LP automatically orients equations into rewrite rules when the automatic-

43

ordering settingison. When it is off, users must type explicit order commands to orient equationsinto
rewriterules. If no names are given with the order command, LP attempts to orient all equations into
rewriterules. If names are specified, LP attemptsto orient only the named equations (including any new
equationsthat L P generates during the ordering process, for example, as aresult of applying adeduction
ruleto anewly reduced fact).

L P uses the method specified by the or dering setting to orient equationsinto rewrite rules. The dsmpos
and noeg-dsmpos orderings use constraints provided by the register command, or suggested by LP, to
help orient equations. LP adds suggested constraints to the registry automatically when the automatic-
registry setting is on and upon user confirmation when it is off. The polynomial ordering aso uses
congtraints supplied by the register command. The following table describes the syntax for specifying
ordering constraints.

| Ordering Constraints |

constraints = {bottom | top } operator™,
| height operator-set { height operator-set }*
| polynomialsoperator polynomial i, ;
| status status operator, ;
operator-set = operator | ‘(’ operatorT,;‘)’
height n= e e
polynomial := polynomial-term{‘+" polynomial-term}*
polynomial-term ::= polynomial-factor {**" polynomial-factor }*
polynomial-factor = polynomial-primary[*~ " number]
polynomial-primary ::= variable| number | ‘(" polynomial ‘)’
status = left-to-right | multiset | right-to-left

7.5 Settings

The following three tables present a summary of the settings that govern the behavior of LP. Details
concerning the settingsare located in the indicated sections of thisguideand are also availablefromLP's
online help facility.

Settings, Part |

activity on-off

Initial activity for axioms

Default: on [5.6]
automatic-ordering on-off ~ Automatic ordering of new equations

Default: on [4.9,7.4]
automatic-registry on-off ~ Automatic extensionsto registry

Default: on [4.9.4,7.4]
box-checking on-off Checking <>, [] annotations of proofsin script files

Default: off [7.3.2]
completion-mode mode Completion mode: big, expert, standard

Default: standard [7.5.2]
directory string Name of directory for output files

Default: ‘. [3.6]
display-mode Mode for displaying identifiers
qualify-mode Default: unqualified [7.5.1]
immunity immunity Initial immunity for axioms

Default: off [5.6]
log-file filename File filename.lplog for logging session

Default: none [3.5]
Ip-path string Search path for help, .Ip, .Ipfrzfiles

Default: *. = "l p/axions ~|p’ [3.6]
name-prefix identifier Name prefix for facts, conjectures

Default: user [3.4]
ordering-method Method for orienting equationsinto rewrite rules
ordering Default: dsmpos [4.9]
page-mode on-off Page mode for output

Default: off [3.6]
prompt string Prompt for commands

Default: * LP!: [3.6]
proof-methods Automatic proof methods for equational conjectures

proof-methodH;, ; Default: normalization [6.9, 7.3.1]

reduction-strategy mode Reduction order for terms: inside-out, outside-in

Default: outside-in [7.5.2]
rewriting-limit number Bound on rewrites per normalization

Default: 1000 [7.5.2]
script-file filename File filename.lpscr for recording input

Default: none [3.5]

Settings, Part 11

statistics-level number Kinds of statistics kept

Default: 2 [7.1.2]
trace-level number Kinds of details printed

Default: 1 [3.6]
write-mode qualify-mode ~ Mode for writing identifiers

Default: qualified [7.5.1]

Values for Settings

filename
immunity
on-off
ordering

qualify-mode
string

= dring
::= on-off | ancestor
= on|off

'= dsmpos| either-way | left-to-right | manual

| noeg-dsmpos | polynomial [number]

:= qualified | unqualified | overloaded | unambiguous

= character™ | ** ’ character* '’

45

75.1 Settingsthat affect output

Thedisplay-modeand write-mode settingscontrol the manner inwhichthedisplay and writecommands
print qualificationsin terms. These commands also qualify operators appearing outside of terms (e.g., in
induction rules) if the mode isqualified or if the operator is overloaded.

| Mode | Effect onterms |
qualified Qualify all subterms

unqualified Qualify nothing

overloaded Qualify subterms headed by overloaded identifiers
unambiguous | Qualify enough to enable reparsing

The default display-mode is unqualified, which takes less time and produces output that is easier to
read.

The default write-mode is qualified, which guarantees that the output can be reparsed even in the
presence of additional overloadingsfor identifiers. It is often desirable, however, to set the write-mode
to unambiguousto shorten and improve the readability of .Ip files. If aproblem arisesin executing a.lp
fileproduced in thisfashion (because it isbeing executed in a context that overloads one of itsoperators),
the problem can be solved by starting up a new copy of LP, executing the .Ip file, and writing it out again
in qualified mode.

7.5.2 Settingsthat affect rewriting

The command set rewriting-limit number sets an upper bound on the number of reductionsthat LP will
perform when normalizing a term with respect to a rewriting system that is not guaranteed to terminate.
The default value of number is1000.

If LP exceedstherewritinglimit when normalizing afact, it printsawarning message and immunizesthat
fact. If it exceeds the rewriting limit when normalizing a conjecture, the user can continue normalizing
the conjecture by typing resume (after raising the rewriting limit, if desired).

The set reduction-strategy command controls the strategy used by LP to reduce terms. The default is
outside-in, which causes LP to apply rewrite rules near the top of aterm before it appliesthem near the
bottom. In inside-out mode, LP till applies the built-in rewrite rules near the top of the term, but it
applies other rewrite rules near the bottom before it applies them near the top.

The set completion-mode command controlsthe order in which completion tasks are executed and how
much user interaction occurs. The default standard mode requires little user interaction, even when
automatic-registry is off. However, it accomplishes this at the cost of computing critical pairs before
extending the registry, which can be inefficient. For many completions, expert mode is better. It causes
LPto extend the registry, and thereby to orient more equations, beforeit beginsto compute critical pairs.
When automatic-registry is off, it gives users more explicit control over the completion process. The
big mode postpones the computation of critical pairs even farther, so that big equations are examined
before critical pairs are computed.

46

8 HintsonusingLP

This section contains a collection of hintsthat beginning users of LP may find helpful.

8.1 Preparinginput and recording work

Start by using an editor to prepare a command file. Put al the declarations you expect to need at the
beginning of the file. This allows LP to check your declarations before beginning any time consuming
tasks. Put subproofsin separate command files. Structurethe session asasequence of executecommands.
Freeze LP' s gtate often. Thismakes it easier to try different alternatives when looking for a proof.

Although proofsare usually constructed interactively, successful proofsshould be recorded in a cleaned-
up command file. Alwaysset scripting and logging on at thestart of an LP session. (If youredizethat you
are not recording a session, start logging and then execute a history all command to get LP to print the
commands aready executed.) After executing a step of a proof, enter a comment recording information
that may be helpful in cleaning up the LP-produced .Ipscr file. If, for example, acritical-pairscommand
produced no useful critical pairs, record that fact in acomment.

Keep in mind that LP automatically indents and annotates .Ipscr files. It is often useful to use an editor
to replace parts of human-generated .Ip files with materia extracted from .Ipscr files.

8.2 Formalizing axioms and conjectures

Be careful not to confuse variables and constants. If x is avariable and c¢ is a constant, then e(x) isa
stronger assertion than e(c). Thefirst means (Yx)e(x). Intheabsence of other assertionsinvolvingc, the
second means (3c)e(c). If you don’'t know whether an identifier isavariable or a constant, type display
symbolsto find out.

Be careful about quantification. The expression x = empty = X C y correctly (abeit awkwardly)
captures the fact that the empty set isa subset of any set. However, itsconverse, X C y = X = empty,
does not capture the fact that any set that is a subset of all sets is itsalf the empty set. That fact is
expressed in first-order logic by the formula (VX)[(YY) (X C y) = X = empty], which is equivaent to
(VX)@y)[x € y = x = empty], and which can be expressed in LP by the deduction rule

when (forall y) x C yyield x == empty
but not by any equation.
An axiom or conjecture of the form when A yield B has the same logical content as one of the form
A = B == true, but different operational content. Consider Figure 15. LP will automatically derive

thefact g(a) from f (a) by applying the deduction rule, but it will not derive h(a) from g(a) unlessitis
instructed to compute critical pairs.

A multiple-hypothesisdeduction rule of the form when A, B yield C has the same logica content as a
single-hypothesisrule of the form when A & B yield C. They differ operationally in that, if the user
asserts or proves two equationsthat are matched by A and B, LP will apply the multiple-hypothesisrule
but not the single-hypothesisrule.

47

declare variable x: Bool
declare operators

a: — Bool

f, g, h: Bool — Bool

assert when f (x) yield g(x)
assert

g(x) = h(x)

f(a)

e .

Figure 15: Deduction rulesvs. implications

8.3 Orderingequationsintorewriterules

If you put some well-selected ordering constraints in the registry, LP will orient equations more quickly
and with fewer surprises. Put the generators for a sort, such as 0 and s for Nat, at the bottom of the
registry. Enter definitions, such as P(x) == P1(x) & P2(x), with — rather than ==; otherwise they
are likely to be reversed, because the right side appears more complex than the left side.

When aproof failsunexpectedly, ook at therewriterulesto seeif any are ordered in surprising directions.
If so, there are severa potentialy useful thingsto try.

e Set automatic-registry off, instruct LP to order only the offending equation, and choose one of the
presented suggestionsthat order the equation as desired. Then add register commands corresponding
to that suggestion to your command file and try running the proof again.

o Alternatively, rerunthe proof at atracelevel (e.g., 2) that printsout extensionsto theregistry; then use
atext editor and the .Iplog file to locate extensions dealing with operators appearing in the offending
rewriterule. Thismay suggest a set of register commands that will force the equations to be ordered
as desired.

o Alternatively, rerun the proof with automatic-registry set off to find a set of suggestions that will
order things the way you want them. Then add register commands with the appropriate suggestions
to your command file, and execute it again with automatic-registry set on. Thislast stepisimportant
because proof scripts with automatic-registry off are not usualy robust.

Occasionaly, LP will fail to order a set of equations for which a terminating set of rewrite rules does
indeed exist. At this point you should consider changing the ordering to use a more powerful ordering
strategy (e.g., dsmpos rather than noeg-dsmpos) or an ordering strategy that makes no attempt to check
termination (e.g., left-to-right). It isalso worth keeping in mind that although LP will not automatically
give operators equa height when using noeg-dsmpos, the register command can be used to do so
explicitly.

48

8.4 Managing proofs

Prove as you would program. Design your proofs. Modularize them. Think about their computational
compl exity.

Be careful not to let variables disappear too quickly in a proof. Once they are gone, you cannot do a
proof by induction. Start your inductions before starting proofs by cases, =, or if.

Splitting a conjecture into separate conjuncts (using the & proof method) early in a proof often leads to
repeating work on multiple conjuncts, for example, doing the same case analysis several times.

To keep lemmas and theorems from disappearing (because they normalize to identities), make them
immune. Typing the commands

set immunity on

prove...by explicit-commands
set immunity off

resumeby ...

when you begin the proof of a conjecture immunizes that conjecture (i.e., causes it to beimmune once it
becomes a theorem), but nothing else. Similarly, the commands

set immunity ancestor
instantiate...in ...
set immunity off

help keep instantiationsfrom disappearing when they are specia cases of other facts.
When a proof gets stuck:

e Beskeptical. Don't be too sure your conjecture is atheorem.
o If the conjecture is a conditional, conjunction, or implication, try the corresponding proof method.

e Try computing critical pairs between hypotheses and other rewrite rules, for example, by typing
critical-pairs «Hyp with x.

e Useaproof by casestofind out what isgoing on. Case on repeated subterms of the conjecture, on the
antecedent of an implicationin arewriterule, or onthetestin anif in arewriterule.

o Display the hypotheses and check to seeif any that you expected to see are missing or are not ordered
in the way you expected.

e Look for a useful lemma to prove. See if replacing a repeated subterm in a subgoa by a variable
resultsin amore genera fact that you know to be true.

e Because LP automatically internormalizes facts, you may find that what you consider to be the
information content of some user-supplied assertion has been “spread out” over severa facts in the
current logical system in away that may not be easy to understand, particularly if the system contains
dozens or hundreds of facts. Similarly, you may sometimes noticethat LPisreducing (or has reduced)
some expression in someway that you don’t understand. The command show nor mal-form E, where
E is the expression being mysterioudy reduced, or where E is the origina form of one side of an
equation, will often be enlightening in such cases. Setting the trace level up to 6 will show which
rewriterules are applied in the normalization.

49

In the course of a proof, you may lose track of your place in the subgoal tree. This happens most
often if LP has just discharged severa subgoals in succession without user intervention and/or it has
automatically introduced subgoals. The display, resume, and history commands can be used to help
find your place.

e display xHyp is an easy way to find your place in nested case analyses.

e display proof-status displays the entire proof stack; display conjectures names, the named
conjectures.

e resume shows just the current conjecture (normalized, if the proof-methods setting includes
normalization).

e history 20 (or some other number) displays an indented history, including LP-generated box and
diamond lines.

8.5 Makingproofsgo faster

When LP seems too slow, use the statistics command to find out which activities are consuming alot of

time. If rewriting (particularly, unsuccessful rewriting) is costly, try one of the following.

e Immunize facts that you know to be irreducible. LP will not waste time trying to reduce them.

o Deactivate rewrite rulesthat are needed only occasionaly.

o Make definitions passive and apply them manually.

e Avoid big terms, especialy with ac operators. Seek different axiomatizations or proof strategies if
they occur.

If ordering is costly, put ordering constraints in the registry, particularly if you have declared many
operators. It may aso help to put ordering constraintsin the registry prior to aproof by cases to save the
cost of having LP rediscover these constraintsin each of the cases.

If unification or critical pairing is costly, try to use smaler rule lists as arguments to the critical-pair
commands. Also, try to avoid computing critical pairs between rewrite rulesthat contain subterms such
ast; & t, & ... & ts with multipleoccurrences of the same ac operator.

8.6 Overcominginstallation problems

LP ordinarily expects the file Ip.help, which contains messages for the help command, to reside in the
directory /usr/local/lib/Ip. If it residesin some other directory named dir, invoke LP using the command
linelp —d dir (or makelp andiasfor Ip —d dir).

8.7 Reporting bugs

There may till be a bug (or maybe even two) in LP. Please report any bugsthat you find (preferably by

e-mail). When reporting a bug, always include a sample command file that will provoke it and a .Iplog
filethat illustratesit. To produce the .Iplogfile:

50

1. Follow your procedure for producing the bug until shortly before the commands that trigger the bug.

2. Type the commands
set log bugreport
history
display
3. Enter the remaining commands necessary to exhibit thebug. Include comments where appropriate. If

the last command sends LP into an infinite loop or manages to crash LP without closing the log file,
precede it with an unset log command so that bugreport.Iplog will be closed.

51

9 Current development

LP 2.2 iswritten in CLU and runs under Unix. Native CLU compilers exist for DEC VAXes as well
as the 68000-based Sun and HP workstations. A portable CLU compiler trandates CLU into C and
enables LP to run on DEC, MIPS, and Sun RISC architectures. LP isavailable by anonymous ftp from
larch.lcs.mit.edu.

LP 1.0 [11] wasinrelatively heavy use a several sites for severa years. During that time LP changed
dramatically, primarily in response to the needs of itsusers. LP continuesto changein response to user
needs. Specialized front-endsare being devel oped, for example, to assist in checking Larch specifications
and in provingthe correctnessof circuits. Featuresfor proving and using moregeneral first-order formulas
are aso being developed, as are extensions of the notions of critical pairs and completion to encompass
deduction rules. Our primary concern isto preserve the basic style and efficiency of proofsin LP.

Although LP is much faster than its ancestor Reve [22], performance continues to be an issue. Each
increase in speed tempts LP's users to try larger examples. Freguently, these examples suggest other
desirable user amenities or further opportunities for improvements in performance. The sample proof
in Appendix B took three seconds on a DECstation 5000/200; more ambitious proofs, such as the
transparency of a cache memory subsystem, take scores of minutes. A major goal for LP isto reduce as
much as possible the costs of devel oping, executing, and maintaining such ambitious proofs.

52

10 Acknowledgements

L Pisdescended from the Reve term-rewriting program [22], which wasimplemented by Pierre L escanne,
Randy Forgaard, Kathy Yelick, and Dave Detlefs.

LP's users have contributed many useful criticisms and suggestions. We are particularly appreciative
of the feedback supplied by UrsulaMartin, Niels Mellergaard, Andres Modet, Jergen Staunstrup, Mark
Vandevoorde, and Frederic Voisin. Christine Choppy and Michel Bidoit read an earlier version of this
guide and made several useful suggestions.

We owe a specia debt to Jim Horning and Jim Saxe. They have made so many useful suggestions that
we often think of them as co-designers of LP (whichisn't to say that they share blame with us for LP's
failings). They aso contributed an enormous number of helpful and useful comments about severa
versions of this guide.

53

Appendices

A Equational term-rewriting tutorial

Sections4 and 5 introduced severa key notions(e.g., normal formsand critical-pair equations) concerning
equational term-rewriting. This appendix provides further details concerning both the theoretical basis
for equational term-rewriting and a so its usein theorem proving. For a more comprehensive and formal
introduction to rewriting, see [7].

In generd, for any set A of axioms and any assertion a, we write A = a (aisalogical or semantic
consequence of A) to mean that a istruein all models of A. For example, if A isthe set of axiomsfor
groupsin Figure 4, then amodel of A isknown as agroup, and thelogical consequences of A are those
assertionsthat are truein all groups.

For some sets A of axioms, there are procedures that can be used to decide whether or not A = a. By
Church’s Undecidability Theorem [5], which shows that the first-order theory of the natura numbers
under addition and multiplicationis undecidable, such procedures do not exist for all A. This appendix
describes one approach to finding such procedures for some sets A of equations.

Appealing directly to the definition of |= is of little help, since A in general has infinitely many models,
and one cannot check whether a holds in al of them (or even in one of them, if that model happens
to be infinite). Hence our plan of attack is to define a more tractable relation A F a (a is a syntactic
consequence of A, or a is provable from A), and then to show that I is both sound with respect to =
(i.e, that A = awhenever A+ a) and complete with respect to A (i.e, that A+ a whenever A = a).

Godel’s Completeness Theorem [13] shows that such a notion of provability exists for first-order logic.
This theorem provides a semidecision procedure (albeit an inefficient one) for first-order logic, that
is, an effective procedure for enumerating the logical consequences of A when A itself is effectively
enumerable.

A.1 Equational theories

An equational theory isa set of equationsthat isaxiomatized by a set of equations, that is, the equational
theory of aset E of equationsisthe set of al equations e such that E = e. Birkhoff [2] proved that the
equational theory of E can be characterized syntactically in terms of the congruence relation defined by
E over itsfreeword algebra (see Section 4.3). Wewrite E+_ t == utomeanthat t iscongruenttouin
the congruence relation determined by E. Birkhoff showed that F_ is sound and complete with respect
to |= for equational theories, that is, that E -_ eif and only if E =e.

Like Godel’'s Theorem, Birkhoff’s Theorem provides a semidecision procedure for equationa theories:
E |= eiff ecan be proved from E by a series of steps, each of whichisjustified by reflexivity, symmetry,
transitivity, or substitutivity of equals for equals. Figure 5 showed a sample informal derivation, from
the axioms for groupsin Figure 4, of the fact that e isitsown inverse.

Equationa reasoning, such as used in Figure 5, does not provide a decision procedure, because the
appropriate series of stepsinaproof that E = e must be found and cannot, in general, be computed from
E and e. Indeed, some equational theories are undecidable (see[7]).

54

A.2 Term-rewriting systems

Asdiscussed in Section 4.4, arewriting system Risaset of equationsthat have been oriented into rewrite
rules. When arewriting system isterminating, al terms have normal forms; when it is aso convergent,
all terms have unique normal forms. Convergent rewriting systems provide decision procedures for
equationa theories: if R is convergent, then R = t; = t, if and only if t; and t, have the same
canonical form. Hence reduction to normal form provides a decision procedure for the equational theory
of a convergent rewriting system. This section provides more details about convergent term-rewriting
systems.

Twotermst and u arejoinablein Rif there existsaterm w such that t ~% w and u ~}% w. Rislocally
confluent if for every t, u, v such thatt ~> uandt ~» v, theterms u and v are joinable. It is globally
confluent, or simply confluent or Church-Rosser, if for every t, u, v such thatt ~* u andt ~* v, the
termsu and v are joinable,

If Ris confluent, theterminal form of any term, if it exists, isunique.** When aterminal form isunique,
we call it a canonical form. When every term has a canonical formin~-, we say that ~ is canonical.

A canonical system is always confluent.”® However, a confluent system need not be canonical (consider
the nonterminating set {a — b, b — a} of rewriterules).

A rewriting system is convergent if it is terminating and confluent. A convergent rewriting system
is canonical.?® If a rewriting system R is convergent, the joinability of two terms is decidable by
reducing both termsto their canonical form and checking whether they are identical. Furthermore, if R
isconvergent and E isthe set of all equationsu == v such that R containseither u — v or v — u, then
E =u==vifandonlyif uand v haveidentica canonica formsin R.

Thefollowingimportant characterization of confluence in terminating rewriting systemsis easily proved
by induction (see Figure 16).
Diamond lemma [23]: A terminating rewriting system is confluent if and only if it islocally confluent.

Termination is essentia for the diamond lemma, as is shown by thelocally confluent, but not confluent,
set{a — b,a— c,c — a, c— d} of rewriterules.

Despite the obvious advantages of convergent rewriting systems, nonconvergent systems are more often
used in practice. Some interesting theories, including al undecidable ones, cannot be described by
convergent systems. Sometimes a convergent system exists, but finding it is impractical. Sometimes a
convergent system exists and is easy to find, but isimpractical to use.

A.3 Unification

Unification was first described by Herbrand [17] in 1930. It was put to practica use in 1965 by
Robinson [27] asthe basic step in resolution, and is now most widely used in computer science for logic
programming and for type inference systems such asthat in ML [16].

Figure 17 shows a simple recursive implementation of ordinary unification. (When associative-

2proof: Supposet ~+* t; andt ~* to, wheret; andt, are terminal. By confluence, there exists a v such that t; ~+* v and
to ~* v. Sincet; andty areterminal, ty, to, and v must be identical.

Sproof: Supposet ~+* t; andt ~+* t,. Canonicity impliesthat t; and t, both have unique terminal forms, which must be the
same as the unique terminal form of t.

%proof: Suppose that R is terminating and confluent. Termination implies that every term has at least one terminal form.
Confluenceimplies that this formis unique.

55

local
confluence

Figure 16: Proof of diamond lemma

commutative operators are present, unification becomes considerably more complicated. See [29].)
Asymptotically better (e.g., linear) algorithmsexist, but the ones that perform best in practice are similar
to this. The algorithm can fail to unify two terms s and t in two ways. by a clash, which occurs when s
andt are headed by different operators, and by a cycle, which prevents x from being unified with f (x).

A.4 Critical pairs

The computation of critical-pair equations in ordinary term-rewriting was described in Section 5.3. In
equational term-rewriting, it may be necessary to generdize the critical-pair computation to capture
further ways in which a singleterm can be reduced. Such isthe case when ac operators are present.

Supposethat x isan ac operator, that I1 isty *. .. *ty, thatly — ry andl, — r, aretwo rewriterules, and
that |1 * X — rq * X isnot an instance of another rewrite rule. When computing critical-pair equations
between these rewrite rules, we need to consider not only the overlaps of 1; with,, but aso the overlaps
of I1 x x withl, aswell. For example, there are no critical pairsbetween therewriterulei (x) *x x — eand
itself if « isan ordinary operator. But if * isac, then we can unify i (x) * x with the nonvariable subterm
yx zof i(y) * y * zto obtain the critical-pair equation i (e) x e == e; furthermore, i (i (X)) * i (X) * X and
(X *y)*i(X)*X*yareunificationsof i (x) * x x yand i (X') * X' x y', sotha e x == i(i(x)) *xeand
exi(X) == i(X *Yy) xex Yy areaso critica-pair equations between i (x) x X — e and itself.

Itiseasy to see that for afinite rewriting system there are a finite number of critical pairs, and that these
are effectively computable. Thisisimportant because of the following lemma.

Critical-pair lemma [19, 26]: A rewriting system islocdly confluent if and only if every critical pair is
joinable.

In conjunction with the diamond lemma, the critical-pair lemma providesaway to decide the confluence

of terminating rewriting systems. First compute al critical-pair equations among the rewrite rules. |If
each of them normalizesto an identity, the rewriting system islocaly, and therefore globally, confluent.

56

unify = proc (s, t: term) returns (substitution) signals (failure)
guard s, t are both variables::
return({s fort})
guard sisavariableandt isnot ::
if soccursint then failure(cycle) elsereturn({t for s})
guardtisavariableand sisnot ::
if t occursin s then failure(cycle) else return({s for t})
guardsis f(sy, ..., Sn), tisg(ty, ..., ty),and f £Ag::
failure(clash)
guardsis f(sy, ..., sy andtis f(ty, ..., ty)
o :=1{}
fori :=1tondoo :=unify(o(s),o(i)) oo
resignal failure
return(o)
end unify

Figure 17: Recursive implementation of unification

If any critical-pair equation does not normalize to an identity, the rewriting system is not locally (or
globally) confluent. Note the vital role played by termination. It enables us to invoke the diamond
lemma and consider only loca confluence, and it assures us that the test for joinability of critical pairs
terminates.

A5 Completion

Given amethod for orienting equationsinto terminating rewriting systems, the critical-pair computation
can be used to compl ete a set of rewrite rulesand thereby build adecision procedurefor a set of equations.
For example, we can add the nonjoinablecritical -pair equation ex z == i (y) * (Y * z) to the three axioms
for group theory and continue computing critical pairs in an attempt to arrive at a convergent set of
rewriterules.

In general, given a set of equations E, we can execute the nondeterministic procedure in Figure 18 to
compute sets E, and R, of equationsand rewrite rules such that E, U R, has the same equational theory
as E. If thecomputation reaches apoint where al guardsarefalse and E,, isempty, then R, isconvergent
and can be used to decide the equationa theory of E. If it reaches a point where all the guards are
faseand E, isnonempty, then E,, contains consequences of E that cannot be oriented into rewrite rules
without causing R, to be nonterminating. If the computation never terminates, but is nonetheless fair
(i.e., no guard remains true forever without its command being executed), then the equational theory of
E isnot decidable, but normalization with respect to the successive sets R, of rewrite rules provides a
semidecision procedure for this equational theory.

There are severa reasons why the completion procedure may fail to orient an equation. Sometimes an
equation cannot be oriented because each side contains some variable that the other does not. Such an
equation is called incompatible. Sometimes an equation (e.g, X + y == y + X) cannot be oriented into
aterminating rewrite rule. And sometimes decisions made when orienting other rewriterulesin R may
prevent the remainder of E from being oriented while still preserving termination.?’

2'The original formulation of the completion procedure used a fixed ordering on terms to orient equations, so there were no

57

Ri={}
do whileany guard istrue
guards==1t € E Aterminates(RU {s — t}) ::
R:=RU{s—t}
E=E—-{s==t}
guards==1t € E Aterminates(RU {t — s}) ::
R.=RU{t — g}
E=E—-{s==t}
guard u ~% SAU~Kt A—joinableg(s, t)
E.=EU{s==t}
guards==te EAs~fu:
E=EU{u==t}—{s==t}
guards==te EAt~fu:
E=EU{s==uU} —{s==1}
guards==se E::
E.=E—{s==-5s}
end

Figure 18: Abstract completion procedure

To implement the abstract version of the completion procedure, it is necessary to replace the first
two guards by conditions that are decidable (as noted earlier, termination is undecidable). The next
subsection describes severa decidable conditionsthat ensure termination. It isaso possible to optimize
the completion procedure, as follows. The third guard can be restricted to cases in which {s, t} isa
nonjoinable critical pair of the rewrite rulesin R. That thisis sufficient follows immediately from the
critical-pair lemma. Another useful optimizationisto keep all equations and rules in normal form with
respect to R. Such a system is called internormalized. A procedure incorporating these optimizations
wasfirst described in[19] and iswell known as the K nuth-Bendix compl etion procedure. The completion
procedure was extended to handl e associative-commutative operatorsin [26]. The description presented
hereis closer to the one appearing in [7] than to the earlier formulations.

A.6 Provingtermination

Terminating rewriting systems are desirable for threereasons. If they are confluent, then their equational
theories are decidable (by reduction to normal form). Furthermore, it is decidable whether terminating
rewriting systems are confluent (by the critical-pair lemma), and we can try to complete them with the
compl etion procedure when they are not confluent.

A relation ~» is said to be locally finite if for every term t the set {u|t ~» u} isfinite. It issaid to be
globally finite if {u|t ~* u} isfinite. If Risfinite, then ~»g islocaly finite, but need not be globally
finite.

A relation~+ isacyclic if thereisnotermt suchthatt ~* t. If ~ isglobaly finite and acyclic, it must

nondeterministic ordering choices to be made. When the ordering is fixed, there is at most one convergent rewriting system
corresponding to an equational theory [6].

58

be terminating.?® The converse is not true: if ~+ isterminating, it is not necessarily globally finite.?®
However, alocaly finiterelation isterminating if and only if it is both globally finite and acyclic.3® An
important corollary isthat the rewriting relation of afinite set of rulesisterminating if and only if itis
both globally finite and acyclic.

Although termination is undecidable, there are methods that can be used to prove the termination of
many rewriting systems. Most seek to embed the (inverse of) the rewriting rel ation~- g in awell-founded
relation, that is, in arelation > that has no infinite decreasing sequencet; > t, >tz >

A.6.1 Simplification orderings

A simplification ordering [6] is a partial ordering 1 (i.e., atransitive, irreflexive binary relation) that is
monotonic, in other words,

sOt= f(..,s,..00f(..,t,..)
and that has the subterm property, in other words,
f(...,t,..) 3t

Consider, for example, orderings on the term algebra generated by 0, 1, and +. Let num(f, u) be
the number of times the function symbol f occurs in the term u. The ordering s O t if and
only if num(1,s) > num(l,t) is a simplification ordering. The ordering s J t if and only if
num(l, s) — num(0,s) > num(l,t) — num(0,t) is not a simplification ordering, because it does
not have the subterm property.

A rewriting system R terminates if there exists a simplification ordering 3 such that o(s) 3 o (t) for
all subgtitutionso and al rewrite ruless — t in R (see [6]). This result provides a means of proving
termination that is independent of the set of terms one might attempt to reduce. However, since the
number of substitutioninstances of rewriterulesisusualy infinite, it is hard to apply directly. Thisleads
usto require that the ordering be stable, in other words, that

Sdt=o0(s) Jo()

A rewriting system R terminates if there exists a stable simplification ordering J such that s 7 t for al
rewriteruless — tin R.

A.6.2 Registered orderings

A registered ordering is a function from registries to stable simplification orderings. A registry isapair
(7, ¥), where v is aprecedence relation on operators and a status map.

A status map is a partial mapping from operators to the set {multiset, |eft-to-right, right-to-left}. A
precedence is a pair of binary relations (>, #), on operators such that > is reflexive and transitive, £
isirreflexive and symmetric, and for any three operators f,gand h, (f > gang>haA(f #gvg#
h)) = f #h.

2proof: Any nonterminating sequencet; ~+ t, ~ ... would either haveto repeat some elements, in which case~+ is cyclic,
or contain infinitely many distinct elements, in which case ~+ is globally infinite.

2Consider therelationinwhich 1~ nforaln > 1.

3Oproof: We have just shown one direction. Conversely, if ~+ is cyclic, then it is clearly not terminating. Supposeit is not
globally finite. Since it is locally finite, some term t; has infinitely many descendents. By Konig's lemma, there is an infinite
sequencet; ~ tp ~ ... starting at that term.

59

Two operatorsare comparable under 7 if they are comparable under >. We define f > gtomean f > g
and f #g,and f =gtomean f > gandg > f. Therelation > isapartial ordering. A precedenceis
total over a set of operatorsif and only if for al operators f andgintheset, f > g,g> for f =g.

When using a registered simplification ordering O, LP orients an equation s ==t into a rewrite rule
only when sandt arerelated in the ordering generated by applying O to the current registry reg, that is,
only if S >o(reg) t Or t >0(reg) S. If the equation has been entered using the syntax s — t, the equation
will be oriented only if S >o(reg) t in the ordering.

LP's dsmpos ordering is a registered simplification ordering. When using conventiona (as opposed to
equational) term-rewriting, it can be used to prove that the rewriting system terminates. It works as
follows. Let s andt be two terms, withs = f(sy,...,Sp) andt = g(ty, ..., t,)). Thens >t inthe
dsmpos ordering iff

e 5 >t for somei, or
e f > g (intheregistry) ands > t; for al i, or
e f =g (intheregistry),or f > g (intheregistry) ands > t; foral i, and

— f and g can have multiset status and {si, ..., Sn} is greater than or equa to {t1,...,ty} asa
multiset, or

— f and g have lexicographic status (i.e., right-to-left or left-to-right), s > t; for al i, and
(S1, ..., Sm) isgreater than or equal to (ty, ..., t,) inlexicographic order.

Here M; isless than M, as a multiset if and only if for every element m; that occurs with greater
multiplicity in M; than in M, there is an element m, such that m; < m; and m; occurs with greater
multiplicity in M, than in M.

Note that if an operator has multiset status, the ordering produced by the registered ordering treats the
arguments of that operator as a multiset, that is, their order isirrelevant. If an operator has |eft-to-right
or right-to-left status, a lexicographic ordering is produced in which either the leftmost or rightmost
arguments are given extra weight. Consider, for example, the equation f(a, b) == f(b, a), where
a > b inthe precedence. Thisequation cannot be ordered if f has multiset status; it will be ordered to
f(a, b) — f(b,a)if f hasleft-to-right statusand to f (b, a) — f(a, b) if f hasright-to-left status.

When asked to orient an equation that cannot be oriented using its current registry, LP attempts to find a
minimal extension to the registry that allows the equation to be oriented. If LP succeeds, it can extend
theregistry and orient the equation. The algorithmin Figure 19 is an abstraction of the one used by LP
to orient a set of equationsinto a set of rewrite rules. This algorithm relies on the fact that the ordering
>0(reg) IS MONOtonic with respect to extensionsto reg.

The function Extensions computes the set of al minimal extensions to the registry that make it possible
to order the pair of terms.

60

% reg isthe current registry

% Risthecurrent set of rewriterules
% E isthe current set of equations

% O isthe current registered ordering

foreachs==t € Edo
guard s >oeg t i
R:= RU{s -t}
E=E—-{s—>t}
guardt >o(eg) S::
R:=RU{t — g}
E=E—-{s—>t}
guard neither s >oeg t NOr t >0oreg) S
Ext : Set[Registry] := Extensions(reg, s, t)
if isEmpty(Ext) then failureelse
reg := choose(Ext)
R:= RUIf(S>0oqeg t, {S—t}, {t = s}
E=E—-{s—>t}

end

Figure 19: Abstract ordering procedure

B Sample proof

Figure 20 shows the contents of a file sample.lp that contains LP commands for proving two simple
theorems about sets. The following transcript shows the output produced by LP asit executes sample.lp.
In addition to our usua typesetting conventions (see Section 3.1), we have underlined al input to LP,
whether typed by the user or read from thefile sample.lp. We have also condensed the transcript dightly
by omitting some of the lessinteresting L P output, but none of theinput.

61

declare sorts Elem Set
declare variables e, e : El em
decl are variables x, y, z: Set

decl are operators

enpty: -> Set
singleton: El em -> Set
\ uni on: Set, Set -> Set
\in: El em Set -> Bool
insert: El em Set -> Set

set nane set
assert ac \union
assert Set generated by enpty, singleton, \union
assert
e \in enpty == fal se

e \in singleton(e’) == e = e
e \in (x \union y) == e \in x| el\iny
insert(e, x) == singleton(e) \union x

set nane extensionality
assert Set partitioned by \in
di splay extensionality

set nanme thm

prove x = x \union X
instantiate s1 by x, s2 by x \union x in extensionality
ged

set proof-nethods => nornalization
prove e \in x => insert(e, x) = x by induction
resune by cases ec \in xc, ec \in xcl
critical-pairs thnCaseHyp with thm nduct Hyp
critical-pairs thnmCaseHyp with thm nduct Hyp
ged
qui t

Figure 20: File sample.lp of commands for proof

62

LP1: executesample
LP1.1: declaresorts Elem, Set

LP1.2: declarevariablese, €: Elem
LP1.3: declarevariablesx, y, z: Set

LP1.4: declareoperators
empty: — Set
singleton: Elem — Set
U: Set, Set — Set
e: Elem, Set — Bool
insert: Elem, Set — Set

LP1.5:

LP1.6: set name set

LP1.7: assertacu

LP1.8: assert Set generated by empty, singleton, U

LP1.9: assert
e e empty == false
eesingleton(e) ==e=¢
ee(xUy)==eex|eey
insert(e, X) == singleton(e) U x

LP1.10:
LP1.11: set name extensionality
LP1.12: assert Set partitioned by €

LP1.13: display extensionality

Deduction rules:

extensionality.1: when (forall €) e € s1 == e € s2yield s1 == s2
LP1.14:

LP1.15: set namethm

LP1.16: provex == x UX

Conjecturethm.1: x == X U X
Proof suspended.

LP1.17: instantiate s1 by x, s2 by x U x in extensionality

Deduction rule extensionality.1 has been instantiated to deduction rule extensionality.1.1,
when (foralle)ee x == e e (x UX) yield X == x U x
which was normalized to equation extensionality.1.1.1, x == x U X

Conjecturethm.1: x == X U X
[] Proved by normalization.

LP1.18: ged
All conjectures have been proved.
LP1.19:

63

LP1.20: set proof-methods =, normalization

LP1.21: provee € x = insert(e, X) = X by induction

Conjecturethm.2: Subgoalsfor proof by induction on ‘X’
Basis subgoals:
thm.2.1: e e empty = empty = insert(e, empty) == true
thm.2.2: e e singleton(€) = insert(e, singleton(e)) = singleton(e') == true
Induction constants: xc, xcl
Induction hypotheses:
thminductHyp.1: e € Xxc = insert(e, Xxc) = X¢c == true
thminductHyp.2: e € xcl = insert(e, xcl) = xcl == true
Induction subgoal:
thm.2.3: e € (xc1l U xc) = insert(e, xc1lU Xc) = xclU xc == true

Subgoal thm.2.1: Subgoal for proof of =
New constant: ec
Hypothesis:
thmimpliesHyp.1: ec € empty == true
Subgoal:
thm.2.1.1: empty = insert(ec, empty) == true

Subgoal thm.2.1.1: empty = insert(ec, empty) == true
[] Proved by inconsistent hypothesis.

Subgoal thm.2.1: e € empty = empty = insert(e, empty) == true
[1Proved =.

Subgoal thm.2.2: Subgoal for proof of =
New constants: ec, €'c
Hypothesis:
thmimpliesHyp.2: ec € singleton(e’'c) == true
Subgoal:
thm.2.2.1: insert(ec, singleton(e'c)) = singleton(e'c) == true

Deduction rulelp_equals.s_true hasbeen applied to equation thmimpliesHyp.2 to yield equation thmimpliesHyp.2.1,
€'c == ec, which implies thmimpliesHyp.2.

Subgoal thm.2.2.1: insert(ec, singleton(e'c)) = singleton(e'c) == true
[] Proved by normalization.

Subgoal thm.2.2: e € singleton(€') = insert(e, singleton(e')) = singleton(e) == true
[] Proved =.

Subgoal thm.2.3: Subgoal for proof of =
New constant: ec
Hypothesis:
thmimpliesHyp.3: ec € (xc1U xc) == true
Subgoal:
thm.2.3.1: insert(ec, xcl1 U Xc) = Xc1l U Xc == true

Subgoal thm.2.3.1: insert(ec, xc1l U xc) = xclU xc == true
Current subgoal: singleton(ec) U xclU xc = xc1lU Xc == true
Proof suspended.

LP1.22: resumeby casesec € xc, ec € xcl

Subgoal thm.2.3.1: Subgoalsfor proof by cases
First subgoal:

64

Cases.1: ec € xXC | ec € xcl == true
Case hypotheses:
thmCaseHyp.1.1: ec € Xxc == true
thmCaseHyp.1.2: ec € xcl == true
Subgoal for cases:
thm.2.3.1.1:2: singleton(ec) U xc1U Xc = Xc1U xc == true

Subgoal Cases.1: ec € xc | ec € xcl == true
[] Proved by normalization.

Added hypothesisthmCaseHyp.1.1 to the system.

Subgoal thm.2.3.1.1: singleton(ec) U xcl U xc = xclU xc == true
Proof suspended.

LP1.23: critical-pair s thmCaseHyp with thmlnductHyp

A critical pair between rewrite rules thmCaseHyp.1.1 and thminductHyp.1 is
thm.3: singleton(ec) U xc = xc == true

Deductionrulelp_equals.is_truehasbeen applied to equationthm.3 to yield equationthm.3.1, singleton(ec) Uxc ==
xc, which implies thm.3.

Critical pair computation abandoned because a theorem has been proved.

Subgoal thm.2.3.1.1: singleton(ec) U xcl U xc = xclU xc == true
[] Proved by normalization.

Added hypothesisthmCaseHyp.1.2 to the system.

Subgoal thm.2.3.1.2: singleton(ec) U xcl U xc = Xxcl1 U xc == true
Proof suspended.

LP1.24: critical-pair s thmCaseHyp with thmlnductHyp

A critical pair between rewrite rules thmCaseHyp.1.2 and thminductHyp.2 is
thm.4: singleton(ec) U xcl = xcl == true

Deduction rule Ip_equals.is_true has been applied to equation thm.4 to yield equation thm.4.1, singleton(ec) U
xcl == xc1, which impliesthm.4.

Critical pair computation abandoned because a theorem has been proved.

Subgoal thm.2.3.1.2: singleton(ec) U xcl U xc = xc1lU xc == true
[] Proved by normalization.

Subgoal thm.2.3.1: insert(ec, xc1 U xc) = xc1lU xc == true
[] Proved by casesec € xc, ec € xcl.

Subgoal thm.2.3: e € (xc1U xc) = insert(e, xc1U xc) = xclU xc == true
[] Proved =.

Conjecturethm.2: e € x = insert(e, X) = X == true
[] Proved by inductionon ‘x’.

LP1.25: ged
All conjectures have been proved.
LP1.26: quit

65

References

(1]

(2]

(3]
[4]
(5]

(6]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

Ben Cherifa, A. and Lescanne, P. “An actual implementation of a procedure that mechanically
proves termination of rewriting systems based on inequalitiesbetween polynomial interpretations,”
Proceedingsof the 8th Inter national Conference on Automated Deduction, Oxford, England, Lecture
Notesin Computer Science 230, Springer-Verlag, July 1986, 42-51.

Birkhoff, G. “On the structure of abstract algebras,” Proceedings of the Cambridge Philosophical
Society 31 (1935), 433-454.

Boyer, R. S. and Moore, J S. A Computational Logic, New York: Academic Press, 1979.
Boyer, R. S. and Moore, JS. A Computational Logic Handbook, New York: Academic Press, 1988.

Church, A. “An unsolvable problem of elementary number theory,” American Journal of
Mathematics 58 (1936), 345-363.

Dershowitz, N. “Orderingsfor term-rewriting systems,” Theoretical Computer Science 17:3(March
1982), 279-301.

Dershowitz, N. and Jouannaud, J-P, “Rewrite systems,” Handbook of Theoretical Computer
Science, Volume B, Chapter 15, North-Holland, 1989.

Detlefs, D. and Forgaard, R. “A procedure for automatically proving the termination of a set of
rewrite rules,” Proceedings of the First International Conference on Rewriting Techniques and
Applications, Dijon, France, Lecture Notes in Computer Science 202, Springer-Verlag, May 1985,
255-270.

Garland, S. J. and Guttag, J. V. “Inductive methods for reasoning about abstract data types,”
Proceedings of the 15th ACM Conference on Principles of Programming Languages, San Diego,
Cadlifornia, January 1988, 219-228.

Garland, S. J,, Guttag, J. V. and Staunstrup, J. “Verification of VLSI circuitsusing LP” Proceedings
of the IFIP WG 10.2 Conference on the Fusion of Hardware Design and \erification, NorthHolland,
1988, 329-345.

Garland, S. J. and Guttag, J. V. “An overview of LP, the Larch Prover,” Proceedings of the Third
International Conference on Rewriting Techniques and Applications, Chapel Hill, N.C., Lecture
Notesin Computer Science 355, Springer-Verlag, 1989, 137-151.

Garland, S. J,, Guttag, J. V. and Horning, J. J. “Debugging Larch Shared Language specifications,”
|EEE Transactions on Software Engineering 16:9 (September 1990), 1044-1057. Also available
from Digital Equipment Corporation Systems Research Center, 130 Lytton Avenue, Palo Alto, CA
94301, as Report 60 (July 1990).

Godel, K. “Die Vollstandigkeit der Axiome des logischen Funktionenkalkills,” Monatshefte fir
Mathematik und Physik 37 (1930), 349-360.

Guttag, J. V. and Horning, J. J. “Report on the Larch Shared Language” and “A Larch Shared
Language Handbook,” Science of Computer Programming 6:2 (March 1986), 103-157.

66

[15] Guttag, J. V., Horning, J. J., and Modet, A. “Report on the Larch Shared Language, Version 2.3"
Digital Equipment Corporation Systems Research Center Report 58, May 1990.

[16] Harper, R. Report on Standard ML, Report ECS-LFCS-86-14, Department of Computer Science,
University of Edinburgh, 1986.

[17] Herbrand, J. Recherches sur la théorie de la demonstration, Travaux de la Société des Sciences
et des Lettres de Varsovie, Classe |11 sciences mathématiques et physiques 33 (1930), 128 pp.
Trangdation in Logical Writings, Harvard University Press, 1971.

[18] Hsiang, J. and Dershowitz, N. “Rewrite methods for clausal and nonclausal theorem proving,”
Proceedings of the 10th EATCS International Colloguium on Automata, Languages, and
Programming, Barcelona, Spain, Lecture Notes in Computer Science 154, Springer-Verlag, July
1983, 331-346.

[19] Knuth, D. E. and Bendix, P. B. “Simple word problems in universal algebras,” in Computational
Problems in Abstract Algebra, J. Leech (ed.), Pergamon Press, Oxford, England, 1969, 263-297.

[20] Lamport, L. LaTeX: A Document Preparation System, Addison-Wesl ey Publishing Company, 1986.

[21] Lamport, L. “A Tempora Logic of Actions,” Digita Equipment Corporation Systems Research
Center Report 57, April 1990.

[22] Lescanne, P.“REVE: arewriterulelaboratory,” Proceedings of the 8th I nternational Conference on
Automated Deduction, Oxford, England, Lecture Notesin Computer Science 230, Springer-Verlag,
July 1986, 695-696.

[23] Newman, M. H. A. “On theories with a combinatorial definition of ‘equivalence’,” Annals of
Mathematics 59: 4 (October, 1942), 223-243.

[24] Paulson, L. C. Logic and Computation: Interactive Proof with Cambridge LCF, Cambridge
University Press, Cambridge, 1987.

[25] Paulson, L. C.“The foundation of ageneric theorem prover,” Technical Report No. 130, University
of Cambridge Computer Laboratory, March 1988.

[26] Peterson, G. L. and Stickel, M. E. “Complete sets of reductions for some equational theories,”
Journal of the ACM 28:2 (Apr. 1981), 233-264.

[27] Robinson, J. A. “A machine-oriented logic based on the resolution principle,” Journal of the ACM
12 (1965), 23-41.

[28] Saxe, J.B., Garland, S. J., Guttag, J. V., and Horning, J. J., “Using transformations and verification
incircuit design,” Digital Equipment Corporation Systems Research Center Report 78, September
1991.

[29] Siekmann, J.H."Anintroductionto unificationtheory,” Formal Techniquesin Artificial Intelligence:
A Sourcebook, R. B. Banerji (ed.), North-Holland, 1990, 369-424.

[30] Staunstrup, J., Garland, S. J.,, and Guttag, J. V. “Localized verification of circuit descriptions,”
Proceedings of an International Workshop on Automatic \erification Methods for Finite State
Systems, Grenable, France, Lecture Notesin Computer Science 407, Springer-Verlag, 1989, 349—
364.

67

[31] Stickel, M. E. “A case study of theorem proving by the Knuth-Bendix method: discovering that
x3 = x impliesring commutativity,” Proceedings of the 7th I nter national Conference on Automated
Deduction, Napa, California, Lecture Notesin Computer Science 170, Springer-Verlag, May 1984,
248-258.

[32] Zhegalkin, I. 1. “On atechnique of evaluation of propositionsin symbolic logic,” Matematisheskii
Soornik 34:1 (1927), 9-27.

68

