
Page 1

An extension of system F with subtyping

Luca Cardelli 1 Simone Martini 2 John C. Mitchell 3 Andre Scedrov 4

Abstract
System F is a well-known typed λ-calculus with polymorphic types,

which provides a basis for polymorphic programming languages. We
study an extension of F, called F<: (pronounced ef-sub) that combines
parametric polymorphism with subtyping.

The main focus of the paper is the equational theory of F<: , which is
related to PER models and the notion of parametricity. We study some
categorical properties of the theory when restricted to closed terms,
including interesting categorical isomorphisms. We also investigate proof-
theoretical properties, such as the conservativity of typing judgments with
respect to F.

We demonstrate by a set of examples how a range of constructs may
be encoded in F<: . These include record operations and subtyping hierar-
chies that are related to features of object-oriented languages.

Appears in: International Conference on Theoretical Aspects of Computer Software, T.Ito, A.R.Meyer Eds., Lecture
Notes in Computer Science n. 526, pp 750-770, Springer Verlag, 1991.
Also to appear in Information & Computation.

SRC Research Report 80, December 30, 1991. Revised January 1, 1993.
 Digital Equipment Corporation 1991,1993.
This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies
include the following: a notice that such copying is by permission of the Systems Research Center of Digital Equipment Corporation
in Palo Alto, California; an acknowledgment of the authors and individuals contributors to the work; and all applicable portions of the
copyright notice. Copying, reproducing, or republishing for any other purpose shall require a license with payment of fee to the
Systems Research Center. All rights reserved.

1Digital Equipment Corporation, Systems Research Center, 130 Lytton Ave, Palo Alto CA 94301.
2Dipartimento di Informatica, Università di Pisa, Corso Italia 40, I-56125 Pisa, Italy.
This author is partially supported by the CNR-Stanford collaboration grant 89.00002.26.
3Computer Science Department, Stanford University, Stanford CA 94305.
4Department of Mathematics, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104-6395.
This author is partially supported by the ONR Contract N00014-88-K-0635 and by NSF Grant CCR-87-05596.

Page 2

Contents

1. Introduction
2. System F<:

2.1 Syntax
2.2 Rules
2.3 Basic properties
2.4 Derived rules
2.5 PER semantics
2.6 Conservativity of typing

2.6.1 Normal and minimal proofs in F<:
2.6.2 F<: typing is conservative over F typing
2.6.3 F<: typing is conservative “modulo an equality” over F1 typing

3. Expressiveness
3.1 Booleans
3.2 Naturals
3.3 Products
3.4 Simple tuples
3.5 Simple records
3.6 Lists

4. The category of closed terms
4.1 Definitions and basic properties
4.2 CL finite products and coproducts; well-pointedness

4.2.1 Terminal objects
4.2.2 Binary products
4.2.3 Initial objects
4.2.4 Binary coproducts
4.2.5 Well-pointedness

4.3 CL isomorphisms
4.3.1 Double negation
4.3.2 Existentials
4.3.3 Other cl-isomorphisms

Acknowledgments
References

Page 3

1. Introduction
System F [Gir 71] [Rey 74] is a well-known typed λ-calculus with polymorphic types

that provides a basis for polymorphic programming languages. We study an extension of
F that combines parametric polymorphism [Str 67] with subtyping. We call this language
F<: , where <: is our symbol for the subtype relation. F<: is closely related to the
language F≤ identified by Curien, and used by Curien and Ghelli primarily as a test case
for certain mathematical techniques [Ghe 90] [CG 91]. F≤ is, in turn, a fragment of the
language Fun [CW 85]. In spite of F<:'s apparent minimality, it has become apparent that a
range of constructs may be encoded in it (or in F≤); these include many of the record
operations and subtyping features of [Car 88], [CM 91] and related work that are connected
to operations used in object-oriented programming. We illustrate some of the power of
F<: in Section 3; see also [Car 91].

We have also found that the study of F<: raises semantic questions of independent
interest. A major concern in this paper is an equational theory for F<: terms. The
equational axioms for most systems of typed λ-calculi arise naturally as a consequence of
characterizing type connectives by adjoint situations (for example). In addition, it is often
the case that provable equality may be captured by a reduction system obtained by
orienting the equational axioms in a straightforward way. However, both of these
properties appear to fail for F<: . A simple example illustrates some of the basic issues.

Consider the polymorphic type Ó(A)AîïñAîïñA. This type is commonly referred to as
Bool, since in system F and related systems there are two definable elements of this type.
These elements are written as the following normal forms:

true @ λ(A) λ(x:A) λ(y:A) x
false @ λ(A) λ(x:A) λ(y:A) y

In F<: , however, there are two additional normal forms of type Bool. These arise because
we have a maximal type Top, which has all other types as its subtypes. The main idea
behind the additional terms is that we can change the type of any argument not used in
the body of a term to Top, and still have a term of the same type (by antimonotonicity of
the left operand of îïñ with respect to <:). This gives us the following two normal forms
of type Bool.

true' @ λ(A) λ(x:A) λ(y:Top) x
false' @ λ(A) λ(x:Top) λ(y:A) y

However, true and true' are completely equivalent terms when considered at type Bool.
Specifically, for any type A, the terms true(A) and true'(A) define extensionally equal
functions of type AîïñAîïñA. Put proof-theoretically, if we take any term a containing true
with the property that when reducing a to normal form we apply each occurrence of true
to two arguments, then we may replace any or all occurrences of true by true' and obtain
a provably equal term. For this reason, it seems natural to consider true = true', and

Page 4

similarly false = false', even though these terms have different normal forms. When we
add these two equations to our theory, we restore the pleasing property that Bool contains
precisely two equivalence classes of normal forms.

While our initial examination of the equational theory of F<: was motivated by a
vague intuition about observable properties of normal forms, our primary guide is the
PER semantics of polymorphic λ-calculus with subtyping [BL 88] [CL 90] [Ghe 90] [Sce 90].
One relevant characteristic of PER models is the parametric behavior of polymorphic
functions. Specifically, since polymorphic functions operate independently of their type
parameter, they may be considered equivalent at all their type instances. In F<: we can
state a consequence of this notion of parametricity, namely that whenever the two type
instances have a common supertype, they will be equal when considered as elements of
that supertype (see the rule (Eq appl2) in section 2.2). Hence the syntax of F<: can state, at
least to some extent, the semantic notion of parametricity investigated in [Rey 83], [Fre 91],
and [MS 91]. A general principle we have followed is to adopt axioms that express
parametricity properties satisfied by PER models, but not to capture explicitly the exact
theory of PER models [Mit 90]. This leads us to a new angle on parametricity which may
prove useful in further study, and also gives us a set of axioms that are sufficient to prove
true = true', and other expected equations, without appearing contrived to fit these
particular examples.

While F<: differs from each of the λ-calculi mentioned above, several properties of
F<: transfer easily from related work; in particular, F<: differs from F≤ [CG 91] only in the
equational theory. For syntactic properties we have strong normalization [Ghe 90];
canonical type derivations, coherence, minimum typing [CG 91]; and confluence of the β-
η-TopCollapse equational theory [CG 91a]. The PER semantics follows easily from the
work in [BL 88], [CL 90], [Ghe 90], and [Sce 90]. While an alternative semantics could
perhaps be developed in the style of [BFSS 90] and [Fre 91], we do not explore that
possibility here.

The main results of this paper are an equational theory for F<: , some proof-theoretic
properties developed in section 2 including conservativity of F<: typing over F, a set of
examples in section 3 demonstrating the expressiveness of F<: (some reported earlier in
[CL 90], and in [Ghe 90] with attribution), and in section 4 some categorical properties of
the theory when restricted to closed terms.

2. System F<:
F<: is obtained by extending F [Gir 71] [Rey 74] (see Appendix) with a notion of subtyping

(<:). This extension allows us to remain within a pure calculus. That is, we introduce
neither the basic types, nor the structured types, normally associated with subtyping in
programming languages. Instead, we show that these programming types can be obtained
via encodings within the pure calculus. In particular, we can encode record types with
their subtyping relations [Car 88].

Page 5

2.1 Syntax
Subtyping is reflected in the syntax of types by a new type constant Top (the

supertype of all types), and by a subtype bound on second-order quantifiers: Ó(X<:A)A'
(bounded quantifiers [CW 85]). Ordinary second-order quantifiers are recovered by setting
the quantifier bound to Top; we use Ó(X)A for Ó(X<:Top)A. The syntax of values is
extended by a constant top of type Top (mostly a convenience), and by a subtype bound
on polymorphic functions, λ(X<:A)a. We use λ(X)a for λ(X<:Top)a.

Syntax

A,B ::= Types
X type variables
Top the supertype of all types
AîïñB function spaces
Ó(X<:A)B bounded quantifications

a,b ::= Values
x value variables
top the canonical value of type Top
λ(x:A)b functions
b(a) applications
λ(X<:A)b bounded type functions
b(A) type applications

The îïñ operator associates to the right. The scoping of λ and Ó extends to the right as far
as possible. Types and terms can be parenthesized.
 A subtyping judgment is added to F 's judgments. Moreover, the equality judgment on
values is made relative to a type; this is important since values in F<: can have many
types, and two values may or may not be equivalent depending on the type that those
values are considered as possessing (see, for example, the rule (Eq collapse) in section 2.2).

Judgments

∫ E env E is a well-formed environment
E ∫ A type A is a type
E ∫ A <: B A is a subtype of B
E ∫ a : A a has type A
E ∫ a óïñ b : A a and b are equal members of type A

We use dom(E) for the set of variables defined by an environment E.
As usual, we identify terms up to renaming of bound variables; that is, using

B{XóïôC} for the substitution of C for X in B, and FV(-) for sets of free variables:

Page 6

Ó(X<:A)B 7 Ó(Y<:A) B{XóïôY} where Y Ì FV(B)
λ(x:A)b 7 λ(y:A) b{xóïôy} where y Ì FV(b)
λ(X<:A)b 7 λ(Y<:A) b{XóïôY} where Y Ì FV(b)

These identifications can be made directly on the syntax; that is, without knowing
whether the terms involved are the product of formal derivations in the system. By
adopting these identifications, we avoid the need of a type equivalence judgment for
quantifier renaming.

Environments, however, are not identified up to renaming of variables in their
domains; environment variables are kept distinct by construction. A more formal
approach would use de Bruijn indices for free and bound variables [deB 72].

2.2 Rules
The inference rules of F<: are listed below; the only essential difference between

these and the ones of F≤ [Ghe 90] [CG 91] is in the more general (Eq appl2) rule. We now
comment on the most interesting aspects of the rules. (See also the discussion about (Eq

appl2) in section 2.4.)
The subtyping judgment, E ∫ A <: B, is, for any E, a reflexive and transitive relation

on types with a subsumption property; that is, a member of a type is also a member of any
supertype of that type. Every type is a subtype of Top. The function space operator îïñ is
antimonotonic in its first argument and monotonic in its second. A bounded quantifier is
antimonotonic in its bound and monotonic in its body under an assumption about the free
variable.

The rules for the typing judgment, E ∫ a : A, are the same as the corresponding rules
in F, except for the extension to bounded quantifiers. However, additional typing power
is hidden in the subsumption rule, which allows a function to take an argument of a
subtype of its input type.

Most of the equivalence rules, E ∫ a óïñ b : A, are unremarkable. They provide
symmetry, transitivity, congruence on the syntax, and β and η equivalences. Two rules,
however, stand out. The first, (Eq collapse) (also called the Top-collapse rule), states that
any two terms are equivalent when “seen” at type Top; since no operations are available
on members of Top, all values are indistinguishable at that type. The second, (Eq appl2), is
the congruence rule for polymorphic type application, giving general conditions under
which two expressions b'(A') and b"(A") are equivalent at a type C. This rule has many
intriguing consequences, which will be amply explored throughout this work. (We
occasionally write E ∫ A,B<:C for E ∫ A<:C ∧ E ∫ B<:C, and so on.)

Page 7

 Environments

(Env ) (Env x) (Env X)

E ∫ A type xÌdom(E) E ∫ A type XÌdom(E)
 ———— —————————– —————————–

∫  env ∫ E,x:A env ∫ E,X<:A env

Types

(Type X) (Type Top)

∫ E,X<:A,E' env ∫ E env
———————– —————

E,X<:A,E' ∫ X type E ∫ Top type

(Type îïñ) (Type Ó)

E ∫ A type E ∫ B type E,X<:A ∫ B type
—————————— ————————

E ∫ AîïñB type E ∫ Ó(X<:A)B type

Subtypes

(Sub refl) (Sub trans)

E ∫ A type E ∫ A<:B E ∫ B<:C
 ————— —————————–

E ∫ A <: A E ∫ A <: C

(Sub X) (Sub Top)

∫ E,X<:A,E' env E ∫ A type
 ———————— —————

E,X<:A,E' ∫ X<:A E ∫ A <: Top

(Sub îïñ) (Sub Ó)

E ∫ A'<:A E ∫ B<:B' E ∫ A'<:A E,X<:A' ∫ B<:B'
 —————————— —————————————

E ∫ AîïñB <: A'îïñB' E ∫ Ó(X<:A)B <: Ó(X<:A')B'

Values

(Subsumption) (Val x) (Val top)

E ∫ a:A E ∫ A<:B ∫ E,x:A,E' env ∫ E env
———————— ——————– —————

E ∫ a : B E,x:A,E' ∫ x:A E ∫ top : Top

(Val fun) (Val appl)

E,x:A ∫ b:B E ∫ b : AîïñB E ∫ a:A
 ———————— ——————————

E ∫ λ(x:A)b : AîïñB E ∫ b(a) : B

(Val fun2) (Val appl2)

E,X<:A ∫ b:B E ∫ b : Ó(X<:A)B E ∫ A'<:A
 ——————————— —————————————

E ∫ λ(X<:A)b : Ó(X<:A)B E ∫ b(A') : B{XóïôA'}

Page 8

Equivalence

(Eq symm) (Eq trans)

E ∫ a óïñ b : A E ∫ a óïñ b : A E ∫ b óïñ c : A
 —————– —————————————

E ∫ b óïñ a : A E ∫ a óïñ c : A

(Eq x) (Eq collapse)

E ∫ x:A E ∫ a : Top E ∫ b : Top
 —————— ——————————

E ∫ x óïñ x : A E ∫ a óïñ b : Top

(Eq fun) (Eq appl)

E,x:A ∫ bóïñb' : B E ∫ bóïñb' : AîïñB E ∫ aóïña' : A
—————————————— ——————————————

E ∫ λ(x:A)b óïñ λ(x:A)b' : AîïñB E ∫ b(a) óïñ b'(a') : B

(Eq appl2)

(Eq fun2) E ∫ b'óïñb" : Ó(X<:A)B E ∫ A',A"<:A
E,X<:A ∫ bóïñb' : B E ∫ B{XóïôA'}, B{XóïôA"} <: C

—————————————————— —————————————————

E ∫ λ(X<:A)b óïñ λ(X<:A)b' : Ó(X<:A)B E ∫ b'(A') óïñ b"(A") : C

(Eq eta) (Eq eta2)

E ∫ b óïñ b' : AîïñB yÌdom(E) E ∫ b óïñ b' : Ó(X<:A)B YÌdom(E)
—————————————— ————————————————

E ∫ λ(y:A)b(y) óïñ b' : AîïñB E ∫ λ(Y<:A)b(Y) óïñ b' : Ó(X<:A)B

(Eq beta) (Eq beta2)

E,x:A ∫ b óïñ b' : B E ∫ a óïñ a' : A E,X<:A ∫ b óïñ b':B E ∫ A' <: A
——————————————— ———————————————————

E ∫ (λ(x:A)b)(a) óïñ b'{xóïôa'} : B E ∫ (λ(X<:A)b)(A') óïñ b'{XóïôA'} : B{XóïôA'}

2.3 Basic properties
We now state some basic lemmas about F<: derivations. Most of these are proven by

(simultaneous) induction on the size of the derivations; the proofs are long, but
straightforward if carried out in the order indicated. We conclude the section with an
application of these lemmas, showing that typing is preserved under β-η-reductions.

Notation
Let ϑ stand for either C type, C<:C', c:C, or cóïñc':C.

Lemma (Renaming)
Assume YÌdom(E,X<:D,E')

∫ E,X<:D,E' env öõú ∫ E,Y<:D,E'{XóïôY} env (equal-size derivations)
E,X<:D,E' ∫ ϑ öõú E,Y<:D,E'{XóïôY} ∫ ϑ{XóïôY} (equal-size derivations)

Assume yÌdom(E,x:D,E')
∫ E,x:D,E' env öõú ∫ E,y:D,E' env (equal-size derivations)
E,x:D,E' ∫ ϑ öõú E,y:D,E' ∫ ϑ{xóïôy} (equal-size derivations)

Page 9

Lemma (Implied judgments)
(J/env) ∫ E,F env öõú ∫ E env

E,F ∫ ϑ öõú ∫ E env
(env/type) ∫ E,X<:D,E' env öõú E ∫ D type

∫ E,x:D,E' env öõú E ∫ D type

Lemma (Bound change)
∫ E,X<:D',E' env, E ∫ D type öõú ∫ E,X<:D,E' env
E,X<:D',E' ∫ C type, E ∫ D type öõú E,X<:D,E' ∫ C type

Lemma (Weakening)
Let ß stand for either X<:D or x:D.
Assume ∫ E,ß env, and X,xÌdom(E')

∫ E,E' env öõú ∫ E,ß,E' env
E,E' ∫ ϑ öõú E,ß,E' ∫ ϑ

Lemma (Multiple weakening)
Assume ∫ E,F env and dom(F)∩dom(E')=.

∫ E,E' env öõú ∫ E,F,E' env
E,E' ∫ ϑ öõú E,F,E' ∫ ϑ

Proof Induction on the length of F. M

Lemma (Implied judgments, continued)
(sub/type) E ∫ C<:C' öõú E ∫ C type, E ∫ C' type

Lemma (Bound weakening)
Let <ß,ß'> stand for either <X<:D,X<:D'> or <x:D,x:D'>.
Assume E ∫ D'<:D.

∫ E,ß,E' env öõú ∫ E,ß',E' env
E,ß,E' ∫ ϑ öõú E,ß',E' ∫ ϑ

Lemma (Type substitution)
Assume E ∫ D'<:D; then

∫ E,X<:D,E' env öõú ∫ E,E'{XóïôD'} env
E,X<:D,E' ∫ ϑ öõú E,E'{XóïôD'} ∫ ϑ{XóïôD'}

Lemma (Value substitution)
Assume E ∫ d:D; then

∫ E,x:D,E' env öõú ∫ E,E' env
E,x:D,E' ∫ ϑ öõú E,E' ∫ ϑ{xóïôd}

Lemma (Value strengthening)
AssumexÌFV(ϑ); then, for ϑ ≠ cóïñc':C.

∫ E,x:D,E' env öõú ∫ E,E' env
E,x:D,E' ∫ ϑ öõú E,E' ∫ ϑ

Page 10

Lemma (Implied judgments, continued)
(val/type) E ∫ c : C öõú E ∫ C type,
(eq/val) E ∫ cóïñc' : C öõú E ∫ c : C, E ∫ c' : C,

Lemma (Eq subsumption)
E ∫ cóïñc' : C, E ∫ C<:D öõú E ∫ cóïñc' : D

Proof
By sub/type lemma, E ∫ C type. Take xÌdom(E).
Then ∫ E,x:C env and E,x:C ∫ x:C.
By weakening lemma E,x:C ∫ C<:D
By (Subsumption) E,x:C ∫ x:D, and by (Eq x), E,x:C ∫ xóïñx:D.
By (Eq fun), E ∫ λ(x:C)xóïñλ(x:C)x : CîïñD.
By hypothesis and (Eq appl), E ∫ (λ(x:C)x)(c)óïñ(λ(x:C)x)(c') : D
By (Eq beta), E ∫ (λ(x:C)x)(c)óïñc' : D.
By (Eq symm) (Eq beta), E ∫ (λ(x:C)x)(c')óïñc : D.
Hence by (Eq symm) (Eq trans), E ∫ cóïñc' : D. M

Lemma (Implied judgments, continued)
(val/eq) E ∫ c : C öõú E ∫ cóïñc : C

Lemma (Congruence)
E ∫ dóïñd' : D ∧ E,x:D,E' ∫ c:C öõú

E,E' ∫ c{xóïôd}óïñc{xóïôd'} : C

Lemma (Exchange)
Let ß stand for either X<:D or x:D.
Let ß' stand for either X'<:D' or x':D'.
Assume ∫ E,ß' env.

∫ E,ß,ß',E' env öõú ∫ E,ß',ß,E' env
E,ß,ß',E' ∫ ϑ öõú E,ß',ß,E' ∫ ϑ

Lemma (Substitution exchange)
Let ß stand for either x':D' or X'<:D'.

∫ E,X<:D,ß,E' env öõú ∫ E,ß{XóïôD},X<:D,E' env
E,X<:D,ß,E' ∫ C type öõú E,ß{XóïôD},X<:D,E' ∫ C type

The following two lemmas draw conclusions about the shape of terms and derivations
from the fact that certain subtyping and typing judgments have been derived.

Lemma (Subtyping decomposition)
¢ If E ∫ A<:X, then A7Y1 for some type variable Y1

and either Y17X, or for some n≥1, Y1<:Y2ÏE ... Yn<:XÏE.
¢ If E,X<:B,E' ∫ X<:A, then either A7X or E,X<:B,E' ∫ B<:A.
¢ If E ∫ Top<:A, then A7Top.

Page 11

¢ If E ∫ B'îïñB"<:A, then either A7Top
or A7A'îïñA", E ∫ A'<:B' and E ∫ B"<:A".

¢ If E ∫ A<:B'îïñB", then
either A7A'îïñA" for some A',A", with E ∫ B'<:A' and E ∫ A"<:B"
or A7X1 and for some A',A",n≥1: X1<:X2 Ï E .. Xn<:A'îïñA" Ï E

with E ∫ B'<:A' and E ∫ A"<:B".
¢ If E ∫ Ó(X<:B')B"<:A, then either A7Top

or A7Ó(X<:A')A", E ∫ A'<:B' and E,X<:A' ∫ B"<:A".
¢ If E ∫ A<:Ó(X<:B')B", then

either A7Ó(X<:A')A" for some A',A",
with E ∫ B'<:A' and E,X<:B' ∫ A"<:B"

or A7X1 and for some A',A",n≥1: X1<:X2 Ï E .. Xn<:Ó(X<:A')A" Ï E
with E ∫ B'<:A' and E,X<:B' ∫ A"<:B".

Proof (sketch)
All cases are proven by induction on the size of the derivations, in order to

circumvent the (Sub refl) and (Sub trans) rules that do not follow the structure of terms.
Otherwise the proofs are straightforward. M

Lemma (Typing decomposition)
¢ If E,x:D,E' ∫ x:C, then E ∫ D<:C.
¢ If E ∫ top:A, then A7Top.
¢ If E ∫ λ(x:B')b : A, then either A7Top,

or, for some A',A",B", A7A'îïñA"
with E ∫ A'<:B', E ∫ B"<:A", and E,x:B' ∫ b : B".

¢ If E ∫ b(c) : B" then for some B',
E ∫ b : B'îïñB" and E ∫ c : B'.

¢ If E ∫ λ(X<:B')b : A, then either A7Top,
or, for some A',A",B", A7Ó(X<:A')A"
with E ∫ A'<:B', E,X<:A' ∫ B"<:A", and E,X<:B' ∫ b : B".

¢ If E ∫ b(C) : D then for some B',B",X,
E ∫ C<:B', E ∫ B"{XóïôC} <: D, and E ∫ b : Ó(X<:B')B".

Proof (sketch)
All cases are proven by induction on the size of the derivations, in order to

circumvent the (Subsumption) rule that does not follow the structure of terms.
Otherwise the proofs are straightforward. M

We conclude with a proposition about the preservation of typing under β and η
reduction. The second-order η case is by far the hardest, and it requires the following
lemma about the elimination of unused free variables (FV).

Page 12

Lemma (Non-occurring type variable)
If XÌFV(c,E') and E,X<:D,E' ∫ c : C then for some C0 with XÌFV(C0)

E,X<:D,E' ∫ c : C0 and E,X<:D,E' ∫ C0<:C
Proof

By induction on the derivation of E,X<:D,E' ∫ c : C. The interesting cases are (Val

appl) and (Val appl2), where we use the subtyping decomposition lemmas for îïñ and Ó.
We show the (Val appl2) case, where we have:

c7b(A'), C7B{YóïôA'} (forYÌdom(E,X<:D,E'))
E,X<:D,E' ∫ b : Ó(Y<:A)B, E,X<:D,E' ∫ A'<:A.

Since XÌFV(b), by induction there is a type AB0 with XÌFV(AB0), and
E,X<:D,E' ∫ b : AB0, E,X<:D,E' ∫ AB0<:Ó(Y<:A)B.

By the (subtyping decomposition lemma) AB07Ó(Y<:A0)B0 with:
either AB07Ó(Y<:A0)B0 for some A0,B0,

with E,X<:D,E' ∫ A<:A0 and E,X<:D,E',Y<:A0 ∫ B0<:B.
Hence, XÌFV(Ó(Y<:A0)B0), E,X<:D,E' ∫ b : Ó(Y<:A0)B0

or AB07X1 and for some A0,B0,n≥1:
X1<:X2 Ï E,X<:D,E' ... Xn<:Ó(Y<:A0)B0 Ï E,X<:D,E'

with E,X<:D,E' ∫ A<:A0 and E,X<:D,E',Y<:A0 ∫ B0<:B.
If Xn<:Ó(Y<:A0)B0 Ï E; XÌFV(Ó(Y<:A0)B0) since X comes after E.
If Xn<:Ó(Y<:A0)B0 7 X<:D; XÌFV(D7Ó(Y<:A0)B0).
If Xn<:Ó(Y<:A0)B0 Ï E'; XÌFV(Ó(Y<:A0)B0) by the hyp. XÌFV(E').
By n uses of (Sub X) and (Subsumption), E,X<:D,E' ∫ b : Ó(Y<:A0)B0.

Hence, in both cases, by (Sub Trans), E,X<:D,E' ∫ A' <: A0,
and E,X<:D,E' ∫ b(A') : B0{YóïôA'}, with XÌFV(B0{YóïôA'}),
Moreover, from E,X<:D,E',Y<:A0 ∫ B0<:B
by (bound weakening lemma) E,X<:D,E',Y<:A' ∫ B0<:B
and by (type substitution lemma) E,X<:D,E' ∫ B0{YóïôA'}<:B{YóïôA'}.
Hence we can take C0 7 B0{YóïôA'}. M

Proposition (Preservation of typing under b-h-reductions)
(β1) E ∫ (λ(x:B)b)(c) : A öõú E ∫ b{xóïôc} : A
(η1) E ∫ λ(x:B)c(x) : A, xÌFV(c) öõú E ∫ c : A
(β2) E ∫ (λ(X<:B)b)(C) : A öõú E ∫ b{XóïôC} : A
(η2) E ∫ λ(X<:B)c(X) : A, XÌFV(c) öõú E ∫ c : A

Proof
The first three cases are obtained easily by applying the appropriate decomposition

lemmas, along with weakening, bound weakening, value and type substitution, and value
strengthening.

The (η2) case goes as follows. From E ∫ λ(X<:B)c(X) : A by the (typing
decomposition lemma) for fun2 and appl2, we obtain (omitting the easy case of A7Top),
for some A',A",B",Y,C',C":

Page 13

A7Ó(X<:A')A" with E ∫A'<:B', E,X<:A' ∫B"<:A", and E,X<:B' ∫c(X) : B"
E,X<:B' ∫c : Ó(Y<:C')C" with E,X<:B' ∫X<:C' and E,X<:B' ∫C"{YóïôX} <: B".

Since XÌFV(c), by the (non-occurring type variable) lemma there is a D with:
XÌFV(D) and E,X<:B' ∫ c : D, E,X<:B' ∫ D <: Ó(Y<:C')C"

Using the (subtyping decomposition lemma) on D we obtain two subcases that, for some
D',D", both lead to:

E,X<:B' ∫ c : Ó(Y<:D')D", XÌFV(Ó(Y<:D')D")
with E,X<:B' ∫ C'<:D' and E,X<:B',Y<:C' ∫ D"<:C"

By the (type strengthening lemma) from E,X<:B' ∫ c : Ó(Y<:D')D":
E ∫ c : Ó(Y<:D')D" i.e. E ∫ c : Ó(X<:D')D"{YóïôX}

Now, to obtain the final goal E ∫ c : Ó(X<:A')A" via subsumption, we need to show only
that E ∫ Ó(X<:D')D"{YóïôX}<:Ó(X<:A')A", i.e. that:

(1) E ∫A'<:D'
(2) E,X<:A' ∫D"{YóïôX}<:A"

For (1) we use the (type substitution lemma) to get:
E ∫B'<:C'{XóïôB'} (from E,X<:B' ∫X<:C')
E ∫C'{XóïôB'}<:D'{XóïôB'}7D' (from E,X<:B' ∫ C'<:D')

Hence E ∫ A'<:B'<:C'{XóïôB'} <: D'.
For (2) we use the (bound weakening lemma) twice to get:

E,X<:A',Y<:X ∫ D" <: C"
(from E,X<:B',Y<:C' ∫ D" <: C", E,X<:B' ∫ X<:C', E ∫ A'<:B')

from this by the (type substitution lemma)
E,X<:A' ∫ D"{YóïôX} <: C"{YóïôX}

We also have, by the (bound weakening lemma):
E,X<:A' ∫ C"{YóïôX} <: B" (from E,X<:B' ∫ C"{YóïôX} <: B", E ∫ A'<:B')

Finally: E,X<:A' ∫ D"{YóïôX} <: C"{YóïôX} <: B" <: A". M

Note that this proposition is nontrivial; for example, the (β1) case does not follow
simply from the (Eq beta) rule and the eq/val lemma. Moreover, the derivation of E ∫
b{xóïôc} : A will have, in general, quite a different shape than the derivation of E ∫
(λ(x:B)b)(c) : A.

2.4 Derived rules
Most of the lemmas in the previous section can be written down as derived inference

rules. Here we discuss some derived rules of special significance.
First, the eq-subsumption lemma in the previous section gives us a very interesting

rule that lifts subsumption to the equality judgment. We remark that this is proven via the
(Eq beta) rule.

Page 14

 (Eq subsumption)

E ∫ a óïñ a' : A E ∫ A <: B
————————————

E ∫ a óïñ a' : B

Note that, in general, it is not true that E ∫ a óïñ a' : B and E ∫ A <: B imply E ∫
a óïñ a' : A.

The following two lemmas concern the equivalence of functions modulo domain
restriction; the first one will find a useful application in section 3.1.

Lemma (Domain restriction)
If f: AîïñB, then f is equivalent to its restriction f |A' to a smaller domain A'<:A, when

they are both seen at type A'îïñB. That is:

(Eq fun')

E ∫ A'<:A E ∫ B<:B' E,x:A ∫ bóïñb' : B
——————————————————

E ∫ λ(x:A)b óïñ λ(x:A')b' : A'îïñB'

Proof (sketch)
First derive E ∫ λ(y:A')(λ(x:A)b)(y)óïñλ(x:A')b' : A'îïñB' via (Eq-subsumption)

and (Eq beta). Then pass from E ∫ λ(x:A)b óïñ λ(x:A)b : AîïñB to
E ∫ λ(x:A)b óïñ λ(x:A)b : A'îïñB' by (Eq subsumption), and to
E ∫ λ(y:A')(λ(x:A)b)(y) óïñ λ(x:A)b : A'îïñB' by (Eq eta).
Conclude by transitivity. M

Lemma (Bound restriction)
If f: Ó(X<:A)B, then f is equivalent to its restriction f |A' to a smaller bound A'<:A,

when they are both seen at type Ó(X<:A')B. That is:

(Eq fun2')

E ∫ A'<:A E,X<:A' ∫ B<:B' E,X<:A ∫ bóïñb' : B
—————————————————————

E ∫ λ(X<:A)b óïñ λ(X<:A')b' : Ó(X<:A')B'

Proof
Similar to the previous lemma, using (Eq beta2) and (Eq eta2). M

We now turn to the (Eq appl2) rule. This rule asserts that if a polymorphic function b :
Ó(X<:A)B is instantiated at two types A'<:A and A"<:A, then both instantiations evaluate
to the same value with respect to any result type that is an upper bound of B{XóïôA'} and
B{XóïôA"}.

(Eq appl2)

E ∫ b'óïñb" : Ó(X<:A)B E ∫ A'<:A E ∫ A"<:A
E ∫ B{XóïôA'}<:C E ∫ B{XóïôA"}<:C

—————————————————————

E ∫ b'(A') óïñ b"(A") : C

Page 15

Note that this rule asserts that the result of b(A) is independent of A, in the proper result
type.

A simpler derived rule (used in F≤ [CG 91]) is obtained by setting A'=A":

(Eq appl2 A'=A")

E ∫ b'óïñb" : Ó(X<:A)B E ∫ A'<:A
——————————————

E ∫ b'(A') óïñ b"(A') : B{XóïôA'}

However, the (Eq appl2) rule is most useful when A'≠A" and we can find a nontrivial
upper bound to B{XóïôA'} and B{XóïôA"}. This fact motivates the following derived rule,
which is often used in practice.

Denote by B{X -óïôC,X +óïôD} the substitution of C for the negative occurrences of X
in B, and of D for the positive ones. Take A'<:A" (<: A), then we have:

 B{XóïôA'} 7 B{X -óïôA',X +óïôA'} <: B{X -óïôA',X +óïôA"}
 B{XóïôA"} 7 B{X -óïôA",X +óïôA"} <: B{X -óïôA',X +óïôA"}

(A proof of this may be found in [Ghe 90], section 14.3.) Hence, for A'<:A"<:A we have a
(nontrivial) common supertype for B{XóïôA'} and B{XóïôA"}. This fact then justifies the
rule:

(Eq appl2 -+)

E ∫ b'óïñb" : Ó(X<:A)B E ∫ A'<:A"<:A
———————————————————

E ∫ b'(A') óïñ b"(A") : B{X -óïôA',X +óïôA"}

This rule is in fact a special case of dinaturality of type application [BFSS 90], where
the dinaturality is required only with respect to coercions A'<:A" , for all A', A" subtypes
of A. We have the diagram:

B{XóïôA'}

Ó(X<:A)B B{X -óïôA',X +óïôA"}

B{XóïôA"}

The two arrows on the left are the A' and A" instances of generic type application x(X),
where x is a variable of type Ó(X<:A)B, and B might have the type variable X free. The
two arrows on the right are coercions induced by A'<:A". Here Ó(X<:A)B is constant in
X, so the coercion A'<:A" has no effect on this type. Hence the diagram above is just a
brief version of:

Page 16

Ó(X<:A)B B{XóïôA'}
id

Ó(X<:A)B B{X -óïôA',X +óïôA"}

id
 Ó(X<:A)B B{XóïôA"}

where now the two horizontal arrows are the A' and A" instances of x(X). In the
terminology of [BFSS 90, p.42], the family given by {x(X)|X<:A} is dinatural in the
coercions.

We conclude this section with an application of (Eq appl2), which is used in sections
3.3 and 4.

Proposition (Eq-substitution)
Assume E,X<:A,x: S ∫ b:B and X positive in S and B.
If E ∫ A1,A2 <: A, E ∫ s1:S{XóïôA1}, E ∫ s2:S{XóïôA2}, E ∫ s1óïñs2:S{XóïôA}
then E ∫ b{XóïôA1,xóïôs1}óïñb{XóïôA2,xóïôs2}: B{XóïôA}

Proof
Let M @ λ(X<:A)λ(x:S)b. Then E ∫ M:Ó(X<:A)SîïñB. Now prove:
(1) E ∫ M(A1)(s1) óïñ M(A)(s1) : B{XóïôA},

by (Eq appl2) and (Eq appl), since X is positive in S and B.
(2) E ∫ M(A2)(s2) óïñ M(A)(s2) : B{XóïôA}

similarly to (1).
(3) E ∫ M(A)(s1) óïñ M(A)(s2) : B{XóïôA}

by (Eq appl2) and (Eq appl), since E ∫ s1óïñs2:S{XóïôA}.
Conclude by (Eq trans), (Beta2), and (Beta). M

The proposition can be easily generalized to the case where there are several variables
x1: S1,…, xn: Sn (X posit ive in all of them) and terms E ∫ s1:-
S{XóïôA1},…, E ∫ sn:S{XóïôAn}, with E ∫ A1,…,An <: A and E ∫ s1óïñ…óïñsn:S{XóïôA}.

2.5 PER semantics
For the PER semantics, the reader can consult [BL 88], [CL 90], [Ghe 90], and [Sce 90].

The interpretation of F<: in PER is explained in those papers, except that the rule (Eq

appl2) must be shown sound. The proof rests on the fact that, given types Ó(X<:A)B and
A'<:A and denoting with [_] the interpretation function for types, we have [Ó(X<:A)B]
⊆ [B{XóïôA'}]. From this, and the observation that the interpretation for terms is given by
erasing the type information, the conclusion is straightforward.

Page 17

2.6 Conservativity of typing
Besides the presence of subtypes, the main new feature of F<: with respect to F lies in

its equational theory, which extends the standard β-η equality in two directions, by
adding a terminal type Top and introducing the rule (Eq appl2). Besides nonessential
syntactic variants, the language of F is included in F<:’s language and thus it makes sense
to investigate whether F<: is conservative over F. We may, however, consider also an
“intermediate” system between F and F<: , with the property that the language inclusion
of F into F<: “splits”.

The system we are interested in is F1 , obtained by adding to F the type constant Top,
together with rule (Eq collapse) for making Top a terminal type. If we want to compare F<:
with its underlying subtype-free systems, we need a system such as F1 , and not F, since
it is well known that the terminal type is not definable in F. Moreover, the conservativity
result we will prove with respect to F holds because F<: proves only trivial subtype
judgments between F types, while the situation for F1 is more complex and its analysis
sheds some more light on the structure of subtype proofs.

First of all, the equational theory (óïñ) of F<: is not conservative over F, because of
the rule (Eq appl2). Consider, for example:

Proposition
E ∫ B type, E ∫ c : Ó(X)XîïñB, E ∫ a : A

öõú E ∫ c(Top)(top) óïñ c(A)(a) : B
Proof

E ∫ c(Top)(top) óïñ c(Top)(a) : B val/eq lemma (Eq appl2) (Eq collapse) (Eq appl)

E ∫ c(Top)(a) óïñ c(A)(a) : B val/eq lemma (Eq appl2) (Eq appl)

E ∫ c(Top)(top) óïñ c(A)(a) : B (Eq trans). M

By applying this fact twice via (Eq trans) we can show:

y : Ó(X)XîïñBool ∫ y(Bool)(true) óïñ y(Bool)(false) : Bool

which is an F-judgment equating two different β-η-normal forms. It is well known that
no such judgment is derivable in F. A further application of (Eq fun) produces two closed
terms with the same property.
 As for the typing theory, however, F<:’s rules are designed to maintain and carefully
generalize those of its subsystems. Writing ∫F for derivations in F, ∫1 for derivations in
F1 , and ∫<: for derivations in F<: , we can prove the following result.

Theorem
(i) If E ∫<: a : A, where E, a, and A are in the language of F,

then E ∫F a : A.
(ii) If E ∫<: a : A, where E, a, and A are in the language of F1 , then there

exists an F1-term, a1, such that E ∫1 a1 : A and E ∫<: aóïña1 : A.

Page 18

The proof of these statements (inspired by some results in [Ghe 90]) requires a detour on
normal form proofs in F<: . These normal forms are studied in [CG 91] for a slightly
different system, but they share with F<: the same typing judgments. The reason for the
detour is that trivial proofs by induction on the derivation of E ∫<: a : A do not work,
since F<: has “cut rules” (e.g. (Subsumption), (Sub Trans), or (Val appl)) that may introduce
non-F (or non-F1) types.

2.6.1 Normal and minimal proofs in F<:
In F<: a single typing judgment may have many proofs. The non-determinism of the

proof search arises from the freedom in the order in which the rules (Subsumption) and (Sub

trans) can be applied. However, as showed in [CG 91], this freedom does not provide
additional proving power. In subtype proofs we can do without (Sub trans) except for the
uses where the first (i.e., smallest) type is a variable appearing in the environment. In type
proofs, we can restrict the use of (Subsumption) so as to derive only the least type for a
given term, which may be then given a larger type with a single, last application of
(Subsumption). These ideas are the inspiration for the notions of normal and minimal
normal proofs.

Subtype proofs
A normal form proof of E ∫<: A<:B is a proof E ∫nf A<:B obtained in the formal

system ∫nf consisting of the rules (Sub Top), (Sub îïñ), (Sub Ó) (where ∫<: is replaced by
∫nf), plus the following rules:

(Sub Refl-X) (Sub Trans-X)

E ∫nf X type E',X<:B,E" ∫nf B <: A A?Top
————— —————————

E ∫nf X <: X E',X<:B,E" ∫nf X <: A

Type proofs
Normal form proofs and minimal normal form proofs of E ∫< : a : A are

simultaneously defined as follows.
A normal form proof E ∫nf a : A is either (1) a minimal normal form proof E ∫mnf a :

A , or (2) a minimal normal form proof followed by a single nontrivial use of
subsumption; in this case the final step has the form:

E ∫mnf a : A' E ∫nf A' <: A where A'?A.
————————————

E ∫nf a : A

A minimal normal form proof E ∫mnf a : A is a proof using only the rules: (Val x), (Val

top), (Val fun), (Val fun2) (where ∫<: is replaced by ∫mnf), or one of the two rules below,
which use the following notation:

° E(X)7A if E7E1,X<:A,E2.

Page 19

° E*(C)7C if C is not a variable;
E*(X)7E(X) if E(X) is not a variable,
E*(X)7E1*(E(X)) if E(X) is a variable and E7E1,X<:A,E2.

(Val appl-min)

E ∫mnf b : C E ∫nf a : A E*(C)7AîïñB
———————————

E ∫mnf b(a) : B

(Val appl2-min)

E ∫mnf b : C E ∫nf A' <: A E*(C)7Ó(X<:A)B
————————————

E ∫mnf b(A') : B{XóïôA'}

Proposition
For any provable judgment E ∫<: a : A, there exists a unique derivation
of E ∫nf a : A.

Proof [CG 91] M

2.6.2 F<: typing is conservative over F typing
It is not difficult to see F as a subsystem of F<: . We can define a translation function

τ over the language of F so that:

τ (ÓX.A) 7 Ó(X<:Top) τ (A)
τ (ΛX.M) 7 λ(X<:Top) τ (M)

and which is trivially defined on all the other constructs. A well-formed environment E in
F consists of a collection E17X1,…,Xh of type variables and a list E27x1: S1, …, xh: Sh
of type assumptions, where at most the type variables in E1 can appear free. Then:

τ (E) 7 X1<:Top, …, Xh<:Top, x1:τ (S1), …, xh:τ (Sh).

From this, it is almost obvious that F-derivations E ∫F a:A and E ∫F aóïña':A are mapped
to F<:-derivations τ (E) ∫ τ (a):τ (A) and τ (E) ∫ τ (a)óïñτ (a'):τ (A) with the following
properties. The resulting derivations never use (Subsumption) (and thus subtyping rules) or
Top rules, and (Eq appl2) is always applied in its special case when A '7A" and
C7B{XóïôA'}. In the following we will argue directly in the language of F<: (thus
dispensing with τ).

Lemma
Let E be an F-environment, and let A and B be F-types.
E ∫<: A<:B iff A7B.

Proof
The “if” direction is a routine induction. For the other direction, take the normal form

proof of E ∫<: A<:B. Then, (Sub îïñ) and (Sub Ó) proceed by induction, and (Sub Refl-X) is

Page 20

trivial. For (Sub Trans-X), E ∫nf X<:A must have been derived from E',X<:Top,E" ∫nf Top
<: A, but the latter implies A7Top by the subtyping decomposition lemma, which is
absurd since A is an F-type. M

Lemma
Let E be an F-environment, a be an F-term, and let E ∫mnf a : A. Then A is an F-type

and E ∫F a : A.
Proof

By induction on the derivation E ∫mnf a : A.

(Val x) E',x:A,E" ∫mnf x : A.
Then A is an F-type, since E is an F-environment.

(Val fun) The last rule is:

E,x:A ∫mnf b : B
——————————

E ∫mnf λ(x:A)b : AîïñB

By hypothesis, λ(x:A)b is an F-term and therefore A is an F-type.
By induction hypothesis, B is an F-type and E,x:A ∫F b : B.

(Val fun2) is analogous to (Val fun).

(Val appl-min) The last rule is:

E ∫mnf b : C E ∫nf a : A E*(C)7AîïñB
———————————

E ∫mnf b(a) : B

Consider first the premise E ∫mnf b : C.
We show that C cannot be a variable. Indeed, if it were the case that
C7X, then E*(C)7E(X)7Top, since E is an F-environment, contrary to
the side-condition that E*(C) has to be a function type.
Therefore C is not a variable, and E*(C)7C7AîïñB.
By induction hypothesis, AîïñB is an F-type and E ∫F b : AîïñB.
Consider now the proof E ∫nf a : A. We claim it is actually
a minimal normal form proof. In fact, we already proved that AîïñB is
an F-type; hence A is an F-type. If it were the case that the last step of
the proof E ∫nf a : A is

E ∫mnf a : A' E ∫nf A' <: A
-—————————————

E ∫nf a : A

with A '?A, then, by induction hypothesis, A' would be an F-type
and A'7A by the previous lemma. Hence the proof E ∫nf a : A is a
minimal normal proof E ∫mnf a : A and, by induction hypothesis,
E ∫F a : A.

Page 21

(Val appl2-min) The last rule is:

E ∫mnf b : C E ∫nf A' <: A E*(C)7Ó(X<:A)B
————————————

E ∫mnf b(A') : B{XóïôA'}

Note first that since b(A') is an F-term, A' is an F-type. As in the
previous case, C cannot be a variable, and C7Ó(X<:A)B.
By induction hypothesis, Ó(X<:A)B is an F-type (thus A7Top, making
trivial the other premise E ∫nf A' <: Top) and E ∫F b : Ó(X<:Top)B.
Then E ∫F b(A') : B{XóïôA'}. M

Theorem (Conservativity of typing over F)
Let E be an F-environment, a be an F-term and A be an F-type.

E ∫<: a : A öõú E ∫F a : A
Proof

Consider the unique normal form proof E ∫nf a : A.
If its last step is:

E ∫mnf a : A' E ∫nf A' <: A
-—————————————

E ∫nf a : A
with A '?A, then, by the previous lemma, A' would be an F-type
and A'7A by the other lemma. The proof E ∫nf a : A is then a proof
E ∫mnf a : A; the previous lemma allows us to obtain the conclusion. M

2.6.3 F<: typing is conservative “modulo an equality” over F1 typing
As in the case of F, system F1 can be easily viewed as a subsystem of F<: . Consider

the subsystem of F<: obtained by: restricting (Env X) to the case where A7Top, dropping
all the subtyping rules but (Sub Top), removing (Subsumption), and restricting (Eq appl2) to the
case where A'7A" and C7B{Xóïô A'}. We will therefore identify F1 with this subsystem
and write ∫1 for F1-derivations.

The reason why the typing theory of F<: is conservative over that of F (expressed in
the first lemma of the previous subsection) is that only trivial subtype judgments E ∫<:
A<:B with A7B can be proved when A and B are F-types. The situation for F1-types is
more interesting, since, due to (Sub Top), nontrivial inclusions can be proved.

A first remark is that the typing of F<: is not conservative over that of F1:

X<:Top,x:X ∫<: x:Top

but, of course,

¬ (X<:Top,x:X ∫1 x:Top)

Page 22

This failure is, indeed, one of the pragmatic reasons (from the programming language
design viewpoint) for introducing (Subsumption), since this is the mechanism by which a
program (method, function, …) can be inherited in other types.

We can look, however, for conservativity modulo an F<:-equality. If E ∫<: a : A,
where E, a, and A are in the language of F1 , then there exists an F1-term, a1 say, such
that E ∫1 a1 : A and E ∫<: aóïña1 : A. In the example above, it is obvious that
X<:Top,x:X ∫1 top:Top and X<:Top,x:X ∫1 xóïñtop:Top, by (Eq Top).

We start with some preliminary lemmas. Let

id 7 λ(X<:Top)λ(x:X)x

Lemma (Identity coercions)
Let E be an F1-environment, A and B be F1-types, and E ∫<: A<:B. Then there exists
an F1-term kA,B such that:

E ∫1 kA,B:AîïñB and E ∫<: kA,Bóïñid(A) : AîïñB.
Proof

By induction on the normal form proof E ∫nf A<:B.
Note first that (Sub Trans-X) cannot be the last rule of such a proof,
because its premise would be E',X<:Top,E" ∫nf Top <: A (since E is an
F1-environment), which would imply A7Top by subtyping decomposition
lemma, which is impossible because of the side condition requiring A?Top.
In the other cases, we take kA,B as the (inductively defined)
explicit coercion between A and B. Details are as follows.

(Sub Refl-X) is trivial.

(Sub Top) E ∫<: A<:Top. Take then kA,Top 7 λ(x:A)top.
Rules (Eq collapse) and (Eq fun) give E ∫<: kA,Topóïñid(A) : AîïñTop.

(Sub îïñ) Define kAîïñB,A'îïñB' 7 λ(f:AîïñB) kB,B' • f • kA',A.
From E ∫nf AîïñB <: A'îïñB', by induction hypothesis
and an easy argument:

E, f:AîïñB ∫<: λ(x:A')kB,B' (f(kA',A(x))) óïñ λ(x:A')f(x) : A'îïñB'
by (Eq eta) and transitivity:

E, f:AîïñB ∫<: λ(x:A')kB,B'(f(kA',A(x)))óïñf : A'îïñB'
by (Eq fun):

E ∫<: λ(f:AîïñB)λ(x:A')kB,B'(f(kA',A(x)))
óïñ λ(f:AîïñB)f : (AîïñB)îïñ(A'îïñB')

(Sub Ó) E ∫nf Ó(X<:A)B <: Ó(X<:A')B' where A7A'7Top because
both Ó(X<:A)B and Ó(X<:A')B' are F1-types. Let:

C7Ó(X<:Top)B and C'7Ó(X<:Top)B'
and define:

kC,C' 7 λ(x:C)λ(X<:Top)kB,B'(x(X))

Page 23

From E ∫nf C <: C', by induction and an easy argument
E,x:C ∫<: λ(X<:Top)kB,B'(x(X)) óïñ λ(X<:Top)x(X) : C'

by (Eq eta2) and transitivity
E,x:C ∫<: λ(X<:Top)kB,B'(x(X)) óïñ x : C'

and hence the thesis, by (Eq fun). M

Lemma
Let E be an F1-environment, a an F1-term and E ∫mnf a : A. Then:
(i) A is an F1-type
(ii) there exists an F1-term a1 such that E ∫1 a1 : A and E ∫<: aóïña1 : A

Proof
By induction on E ∫mnf a : A.

(Val x) E',x:A,E" ∫mnf x : A. Then A is an F1-type, since E is an
F1-environment and a17x; the conclusion (ii) follows by (Eq x).

(Val top) E ∫mnf top : Top. Then also E ∫1 top : Top and we can take a17top.

(Val fun) The last rule is:

E,x:A ∫mnf b : B
——————————

E ∫mnf λ(x:A)b : AîïñB

By hypothesis, λ(x:A)b is an F1-term and therefore A is an F1-type.
By induction hypothesis, B is an F1-type and there exists a term b1
such that E,x:A ∫1 b1 : B and E,x:A ∫<: bóïñb1 : B.
The thesis follows by (Eq fun).

(Val fun2) is analogous to (Val fun).

(Val appl-min) The last rule is:

E ∫mnf b : C E ∫nf a : A E*(C)7AîïñB
———————————

E ∫mnf b(a) : B

Consider first the left premise, E ∫mnf b : C.
We observe that C cannot be a variable X. If it were, since
E is an F1-environment, we would have E*(C)7E(X)7Top,
contradicting the assumption that E*(C)7AîïñB.
Thus, C7AîïñB, induction applies, AîïñB is an F1-type and
we obtain an F1-term b1 such that

E ∫1 b1 : AîïñB and E ∫<: bóïñb1 : AîïñB.
Consider now the other premise, E ∫nf a : A.
If it happens to be a minimal normal form proof E ∫mnf a : A
then by induction hypothesis we have a term a1 such that:

E ∫1 a1 : A and E ∫<: aóïña1 : A.

Page 24

Otherwise, the last step of E ∫nf a : A is:

E ∫mnf a : A' E ∫nf A' <: A
————————————

E ∫nf a : A

By induction hypothesis, A' is an F1-type and we get an F1-term a'
such that E ∫1 a':A' and E ∫<: aóïña':A'.
We already proved that AîïñB is an F1-type; hence A is an F1-type.
From E ∫nf A' <: A, the identity coercions lemma gives an F1
term kA',A such that E ∫1 kA',A:A'îïñA and E ∫<: kA',Aóïñid(A') : A'îïñA.
Take then a17kA',A(a'). Simple computations give:

E ∫1 a1 : A and E ∫<: aóïña1 : A.
Finally, by (Eq appl)

E ∫1 b1(a1) : B and E ∫<: b1(a1) óïñ b(a) : B.

(Val appl2-min) The last rule is

E ∫mnf b : C E ∫nf A' <: A E*(C)7Ó(X<:A)B
————————————

E ∫mnf b(A') : B{XóïôA'}

Note, first, that since b(A') is an F1-term, A' is an F1-type.
As in the previous case, in E ∫mnf b : C, C cannot be a variable.
Therefore, the left premise is E ∫mnf b : Ó(X<:A)B.
By induction hypothesis, Ó(X<:A)B is an F1-type
(thus A7Top and the second premise is trivial)
and we have an F1-term b1 such that

E ∫1 b1 : Ó(X<:Top)B and E ∫<: bóïñb1 : Ó(X<:Top)B.
Then E ∫1 b1(A') : B{XóïôA'} and E ∫<: b(A')óïñb1(A') : B{XóïôA'}. M

We can finally prove our conservativity result:

Theorem (Conservativity of typing over F1)
If E ∫<: a : A, where E, a, and A are in the language of F1 , then there
exists an F1-term, a1, such that E ∫1 a1 : A and E ∫<: aóïña1 : A.

Proof
Take the normal form proof E ∫nf a : A. If it is a minimal normal form
proof, then the thesis follows by the previous lemma. If, on the other
hand, it consists of a minimal normal form proof E ∫mnf a : A' followed by
subsumption with premise E ∫nf A' <: A, then, by the previous lemma,
A' is an F1-type and we have an F1-term, a', such that E ∫1 a' : A' and
E ∫<: aóïña' : A'. The thesis then follows by the identity coercions lemma
and (Eq appl). M

Page 25

3. Expressiveness
Since F<: is an extension of F, one can already carry out all the standard encodings of

algebraic data types that are possible in F [BB 85]. However, it is not clear that anything of
further interest can be obtained from the subtyping rules of F<: , which involve only an
apparently useless type Top and the simple rules for îïñ and Ó. In this section we begin to
show that we can in fact construct rich subtyping relations on familiar data structures.

3.1 Booleans
In the rest of section 3 we concentrate on inclusion of structured types, but for this to

make sense we need to show that there are some nontrivial inclusions already at the level
of basic types. We investigate here the type of booleans, illustrating some consequences
of the F<: rules.
 Starting from the encoding of Church's booleans in F, we can define three subtypes of
Bool as follows (cf. [Fai 89]):

Bool @ Ó(A) AîïñAîïñA
True @ Ó(A) AîïñTopîïñA
False @ Ó(A) TopîïñAîïñA
None @ Ó(A) TopîïñTopîïñA

where:

None <: True, None <: False, True <: Bool, False <: Bool

Looking at all the closed normal forms (that is, the elements) of these types, we have:

trueBool : Bool @ λ(A) λ(x:A) λ(y:A) x
falseBool : Bool @ λ(A) λ(x:A) λ(y:A) y
trueTrue : True @ λ(A) λ(x:A) λ(y:Top) x
falseFalse : False @ λ(A) λ(x:Top) λ(y:A) y

We obtain four elements of type Bool; in addition to the usual two, trueBool and falseBool,
the extra trueTrue and falseFalse have type Bool by subsumption. This is somewhat
surprising because computationally there are only two booleans. Intuitively, if two
arguments of an arbitrary type are given, there are only two ways of providing a result of
that type. This coincides with the fact that by removing all the type information in the
terms above, we obtain only two distinct untyped terms. Fortunately, we can show that
trueBool and trueTrue are provably equivalent at type Bool, by using the domain restriction
lemma (Eq fun') from section 2.4.

Page 26

E,A<:Top,x:A,y:Top ∫ x óïñ x : A E ∫ A<:Top
 ———————————————————

E,A<:Top,x:A ∫ λ(y:Top) x óïñ λ(y:A) x : AîïñA (Eq fun')
 —————————————————————————

E,A<:Top ∫ λ(x:A) λ(y:Top) x óïñ λ(x:A) λ(y:A) x : AîïñAîïñA
 ————————————————————————————

E ∫ λ(A) λ(x:A) λ(y:Top) x óïñ λ(A) λ(x:A) λ(y:A) x : Ó(A) AîïñAîïñA
 ————————————————————————————

E ∫ trueTrue óïñ trueBool : Bool

Similarly, we can show that E ∫ falseFalse óïñ falseBool : Bool. Hence, there really are
only two different values in Bool; one value each in True and False , and none in None.

3.2 Naturals
The encoding of booleans in the previous section does not seem to generalize to other

algebraic types. A different style of encoding (which can also be applied to booleans)
works better for naturals. In the following encoding, Nat stands for the type of naturals,
Natz for the type of zero naturals (the singleton zero), and Nats for the type of non-zero
naturals.

Nat @ Ó(N) Ó(Nz<:N) Ó(Ns<:N) Nzîïñ(NîïñNs)îïñN
Natz @ Ó(N) Ó(Nz<:N) Ó(Ns<:N) Nzîïñ(NîïñNs)îïñNz
Nats @ Ó(N) Ó(Nz<:N) Ó(Ns<:N) Nzîïñ(NîïñNs)îïñNs

The closed normal forms of minimal type for Nat are the usual Church numerals; for Natz
we have only the zero natural, and for Nats the non-zero naturals. We obtain:

Natz <: Nat, Nats <: Nat

zero: Natz @
λ(N) λ(Nz<:N) λ(Ns<:N) λ(z:Nz) λ(s:NîïñNs) z

succ: NatîïñNats @
λ(n:Nat)

λ(N) λ(Nz<:N) λ(Ns<:N) λ(z:Nz) λ(s:NîïñNs)
s(n(N)(Nz)(Ns)(z)(s))

3.3 Products
The standard encoding for pairs in F, shown below, already exhibits useful subtyping

properties.

A×B @ Ó(C)(AîïñBîïñC)îïñC

Both A and B occur in monotonic positions in A×B, being placed on the left of an îïñ
which is on the left of another îïñ. Hence we obtain the expected monotonic inclusion of
products as a derived rule:

Page 27

E ∫ A <: A' E ∫ B <: B'
 ———————————

E ∫ A×B <: A'×B'

The operations on pairs are defined, as usual, as:

pair: Ó(A) Ó(B) AîïñBîïñA×B
@ λ(A) λ(B) λ(a:A) λ(b:B) λ(C) λ(f:AîïñBîïñC) f(a)(b)

fst: Ó(A) Ó(B) A×BîïñA
@ λ(A) λ(B) λ(c:A×B) c(A)(λ(x:A)λ(y:B)x)

snd: Ó(A) Ó(B) A×BîïñB
@ λ(A) λ(B) λ(c:A×B) c(B)(λ(x:A)λ(y:B)y)

We often use the following abbreviations, disambiguated by context:

a,b 7 a,A×Bb 7 pair(A)(B)(a)(b)
fst(c) 7 fstA×B(c) 7 fst(A)(B)(c)
snd(c) 7 sndA×B(c) 7 snd(A)(B)(c)

3.4 Simple tuples
A tuple type is an iterated product type. When the last factor of this iterated product is

a type variable, we have an extensible tuple type. When it is Top, we have a simple tuple
type. In this paper we discuss only simple tuple types.

Tuple(Top) @ Top
Tuple(A1,..,An,Top) @ A1×(..×(An×Top)..) n≥1

With derived rule:

E ∫ A1 <: B1 .. E ∫ An <: Bn E ∫ An+1 type .. E ∫ Am type
 —————————————————————————

E ∫ Tuple(A1,..,An,..,Am,Top) <: Tuple(B1,..,Bn,Top)

For example:

Tuple(A, B, Top) <: Tuple(A, Top)
because A <: A, B×Top <: Top, and × is monotonic.

We note here that the type Top assumes a very useful role, in allowing a longer tuple
type to be a subtype of a shorter tuple type. The intuition is that a longer tuple value can
always be regarded as a shorter tuple value, by “forgetting” the additional components,
and this is possible since everything is forgotten in Top.

For tuple values we have:

tuple(top) @ top
tuple(a1,..,an,top) @ a1,(..,(an, top)..) n≥1

with derived rules:

Page 28

E ∫ a1 : A1 .. E ∫ an : An
 —————————————————

E ∫ tuple(a1,..,an,top) : Tuple(A1,..,An,Top)

E ∫ a1óïñb1 : A1 .. E ∫ anóïñbn : An
 ——————————————————————————

E ∫ tuple(a1,..,an,top) óïñ tuple(b1,..,bn,top) : Tuple(A1,..,An,Top)

The basic tuple operations are: ai, dropping the first i components of tuple a; and a.i,
selecting the i-th component of a. These are defined by iterating product operations;
again, we omit some typing information:

ai 7 sndi(a)

a.i 7 fst(ai)

We obtain the derived rules:

E ∫ a : Tuple(A0,..,An,Top) n≥0, iÏ0..n+1
 ———————————

E ∫ ai : Tuple(Ai,..,An,Top)

E ∫ a : Tuple(A0,..,An,Top) n≥0, iÏ0..n
 ———––———————

E ∫ a.i : Ai

E ∫ a0 : A0 .. E ∫ an : An n≥0
 ——————————————————————————

E ∫ tuple(a0,..,an,top)i óïñ tuple(ai,..,an,top) : Tuple(Ai,..,An,Top) iÏ0..n+1

E ∫ a0 : A0 .. E ∫ an : An n≥0, iÏ0..n
 —————————————

E ∫ tuple(a0,..,an,top).i óïñ ai : Ai

3.5. Simple records
 We restrict ourselves to the encoding of simple records (the ones with a fixed number
of components [CL 90]); extensible records are treated in [Car 91].

Let L be a countable set of labels, enumerated by a bijection ιÏLîïñNat. We indicate
by li, with a superscript, the i-th label in this enumeration. Often we need to refer to a list
of n distinct labels out of this enumeration; we then use subscripts, as in l1..ln. So we may
have, for example, l1,l2,l3 = l5,l1,l17. More precisely, l1..ln stands for lσ(1),..,lσ(n)

 for some
injective σÏ1..nîïñNat.

A record type has the form Rcd(l1:A1,..,ln:An,C); in this presentation C will always be
Top. Once the enumeration of labels is fixed, a record type is encoded as a tuple type
where the record components are allocated to tuple slots as determined by the index of
their labels. The component of label li is allocated into the i-th tuple slot; the remaining
slots are filled with Top “padding”. For example:

Rcd(l2:C, l0:A, Top) @ Tuple(A, Top, C, Top)

Page 29

Since record type components are canonically sorted under the encoding, two record
types that differ only in the order of their components will be equal under the encoding.
Hence we can consider record components as unordered.

From the encoding, we derive the familiar rule for simple records [Car 88]:

E ∫ A1 <: B1 .. E ∫ An <: Bn E ∫ An+1 type .. E ∫ Am type
 —————————————————————————

E ∫ Rcd(l1:A1,..,ln:An,..,lm:Am,Top) <: Rcd(l1:B1,..,ln:Bn,Top)

This holds because any additional field lk:Ak (n<k≤m) on the left is absorbed either by the
Top padding on the right, if ι(lk)<max(ι(l1)..ι(ln)), or by the final Top, otherwise. For
example:

Rcd(l0:A, l1:B, l2:C, Top) 7 Tuple(A, B, C, Top)
<: Tuple(Top, B, Top) 7 Rcd(l1:B, Top)

Record values are similarly encoded, for example:

rcd(l2=c, l0=a, top) @ tuple(a, top, c, top)

from which we obtain the rules:

E ∫ a1 : A1 .. E ∫ an : An
 —————————————————————

E ∫ rcd(l1=a1,..,ln=an,top) : Rcd(l1:A1,..,ln:An,Top)

E ∫ a1óïña'1 : A1 .. E ∫ anóïña'n : An
 ————————————————————————————————

E ∫ rcd(l1=a1,..,ln=an,top) óïñ rcd(l1=a'1,..,ln=a'n,top) : Rcd(l1:A1,..,ln:An,Top)

Record selection is encoded as follows:

r.li @ r.ι(li)

E ∫ r : Rcd(l:A,Top)
 ————————

E ∫ r.l : A

Note that, by subsumption, we have the following as (further) derived rules:

E ∫ a1 : A1 .. E ∫ an : An .. E ∫ am : Am
 ————————————–————————————

E ∫ rcd(l1=a1,..,ln=an,..,lm=am,top) : Rcd(l1:A1,..,ln:An,Top)

E ∫ a1óïñb1 : A1 .. E ∫ anóïñbn : An
E ∫ an+1 : Bn+1 .. E ∫ ap : Bp E ∫ bn+1 : Cn+1 .. E ∫ bq : Cq

 ————————————————————————————

E ∫ rcd(l1=a1,..,ln=an,..,lp=ap,top) óïñ rcd(l1=b1,..,ln=bn,..,lq=bq,top)
: Rcd(l1:A1,..,ln:An,Top)

E ∫ r : Rcd(l1:A1,..,ln:An,Top) iÏ1..n
 ————————————

E ∫ r.li : Ai

The second rule above is particularly interesting. It expresses a form of observational
equivalence: two records are equivalent if they coincide on the components that are

Page 30

observable at a given type. This holds ultimately because any two values are equivalent at
type Top.

3.6. Lists
Following the pattern used in the encoding of Naturals, we can define the algebra of

parametric lists [BB 85]. List[A] stands for the homogeneous lists of type A.

List[A] @ Ó(L) Lîïñ(AîïñLîïñL)îïñL

We have:

A <: B öõú List[A] <: List[B]

nil: Ó(A) List[A] @
λ(A) λ(L) λ(n:L) λ(c:AîïñLîïñL) n

cons: Ó(A) AîïñList[A]îïñList[A] @
λ(A) λ(hd:A) λ(tl:List[A])

λ(L) λ(n:L) λ(c:AîïñLîïñL)
c(hd)(tl(L)(n)(c))

length: Ó(A) List[A]îïñNat @
λ(A) λ(l:List[A])

l(Nat)(zero)(λ(a:A)λ(n:Nat)succ(n))

As an application of (Eq appl2) we can now show some interesting facts. Namely, any
two null lists are equal in List[Top], and have the same length in Nat. Similarly for two
singleton lists, and so on. In the proof, we will use the Eq-substitution proposition of
Section 2.4.

Take b:B and c:C, then:

∫ nil(B) óïñ nil(C) : List[Top] (Eq appl2)

∫ length(Top)(nil(B)) óïñ length(Top)(nil(C)) : Nat (Eq appl2, Eq appl)

∫ cons(B)(b)(nil(B)) óïñ cons(C)(c)(nil(C)) : List[Top]
by Eq-substitution, starting from
X<:Top, x:X,l:List[X] ∫ cons(X)(x)(l) : List[X]

∫ length(B)(cons(B)(b)(nil(B))) óïñ length(C)(cons(C)(c)(nil(C))) : Nat
by Eq-substitution, starting from
X<:Top, l:List[X] ∫ length (X)(l) : Nat

Note that we have proven an interesting property of the behavior of length uniquely
from its type; any function f: Ó(A) List[A]îïñNat has such a property. This fact is related
to the theorems proved in [Wad 89] using only the types of terms. A difference is that our

Page 31

proof is carried out within F<: , whereas Wadler uses semantic parametricity properties
beyond the proof system of F.

4. The category of closed terms
It is well known that the usual second-order encodings for products and coproducts,

while logically sound, do not define under β-η-equality true categorical constructions.
One can easily prove the existence of a term making a certain diagram commute, but its
uniqueness does not follow from the standard equational rules.

As an example of the expressive power of (Eq appl2), we show that those encodings are
really categorical constructions when the underlying equational theory is the one of F<: .
In the same vein, motivated by the semantic isomorphisms obtained in [BFSS 90] and [Fre

91] as consequences of parametricity, we investigate some provable isomorphisms in a
suitable setting. The framework for our discussion is a category whose objects are the sets
of closed terms of a closed type.

4.1 Definitions and basic properties
Recall that given a typed λ-calculus language and a λ-theory T, a category Cl(T) is

determined by taking as objects of Cl(T) the (closed) types of T [LS 86] [MS 89]. As for
morphisms, choose first one variable for each type and define the morphisms from A to B
to be equivalence classes of typing judgments x:A ∫ t:B, where x is the chosen variable of
type A, and the equivalence relation is given by the equality judgments x:A ∫ tóïñt':B of
T. We will write [x:A ∫ t:B] for the morphism given by the judgment x:A ∫ t:B. Identity
is given by [x:A ∫ x:A] and composition is defined by substitution:

[y:B ∫ s:C] • [x:A ∫ t:B] = [x:A∫ s{yóïôt}:C]

The category Cl(F<:), obtained by applying this construction to F<: , has a terminal
object, given by Top. For any object A, the canonical morphism from A to Top is [x:A ∫
top:Top]; uniqueness is guaranteed by (Eq collapse).

Now, given an arbitrary (small) category C with a terminal object 1, consider the
canonical functor “_” : C îïñ Sets given by:

For any object A:
“A” = C(1,A) (the set of all morphisms 1îïñA)

For any morphism fÏC(A,B):
“f ” is the mapping from “A” to “B” given by composing with f

(that is “f ”(p) = f•p for pÏC(1,A))

Note that “_” is not faithful if C is not well-pointed (as defined in 4.2.5). Given
f,gÏC(A,B), “f ” and “g” are set-theoretical mappings and therefore, in order to have “f ”=“g”,
it is sufficient that f•p=g•p for any pÏC(1,A). The values of the functor “_” : C îïñ Sets

Page 32

over all the objects and morphisms of C give a subcategory of Sets that can be denoted
with “C”.

The category we are interested in is “Cl(F<:)”. We will prove, as consequences of (Eq

appl2), that it has finite products and coproducts. For this, however, it is convenient to
introduce the category CL, equivalent to “Cl(F<:)”, for which we can give a more explicit
description.

Remark
∫ A type reads “A is a closed type”
∫ a:A reads “a is a closed term of closed type A”

Definition (cl-equality)
For ∫ f,f ':AîïñB, we say ∫ f óïñcl f ' : AîïñB iff
for all a, ∫ a:A öõú ∫ f(a) óïñ f '(a) : B

The objects of “Cl(F<:)” are, for any ∫ A type, the sets of morphisms [z:Top ∫ t:A]. By
(Eq collapse) and congruence, [z:Top ∫ t:A] = [z:Top ∫ t{zóïôtop}:A]. The term t{zóïôtop} is
closed and z:Top ∫ t{zóïôtop}:A iff ∫ t{zóïôtop}:A. Any object of “Cl(F<:)” is therefore
isomorphic to the set of equivalence classes [∫ a:A] of closed terms of a closed type; the
equivalence relation is given by the equality judgments ∫ aóïña':A. (Write ∫ A type for
such a set.) These sets are the objects of the category CL.

The morphisms of “Cl(F<:)” are, for any morphism f = [x:A ∫ t:B] of Cl(F<:), the
mappings from “A” to “B” given by “f ”([z:Top ∫ a:A]) = [z:Top ∫ t{xóïôa}:B] for any
[z:Top ∫ a:A]. By β- and η-conversion one obtains a category equivalent to “Cl(F<:)” by
stipulating that a morphism of CL from ∫ A type to ∫ B type is an equivalence class of
derivable term judgments:

∫ f:AîïñB

where the morphism equivalence is

(∫ f:AîïñB) = (∫ f ':AîïñB) iff ∫ f óïñcl f ':AîïñB.

The identity judgment is

idA @ ∫ λ(x:A)x : AîïñA

and the composition judgment is, for any ∫ h:AîïñB and ∫ g:BîïñC:

g•h @ ∫ λ(x:A)g(h(x)) : AîïñC

(We also ambiguously use g•h @ λ(x:A)g(h(x)).)
We remark that morphism equivalence is not provable equality. For two morphisms ∫

f:AîïñB and ∫ f ':AîïñB to be equal it is sufficient that f and f ' agree on the closed terms of
type A. Similarly, the following two definitions correspond to isomorphism and
uniqueness (for morphisms) in CL.

Page 33

Definition (cl-isomorphism)
We say ∫ A ~cl B iff there exist ∫ f:AîïñB, ∫ g:BîïñA such that

∫ g•f óïñcl idA : AîïñA
∫ f•g óïñcl idB : BîïñB

Definition (cl-uniqueness)
We say ∫ f:AîïñB is the cl-unique f satisfying P(f) iff
for any other ∫ f ':AîïñB satisfying P(f ') we have ∫ f óïñcl f ' : AîïñB.

In order to prove that CL has finite products and coproducts, we need some more
lemmas in F<: , and especially the crucial consequence of (Eq appl2) expressed in the eq-
var-substitution lemma, below.

Lemma (Type monotonicity)
Let E,X<:B ∫ C <: D <: B and E,X<:B,E' ∫ S type. Then
(i) X positive in S öõú E,X<:B,E' ∫ S{XóïôC} <: S{XóïôD}
(ii) X negative in S öõú E,X<:B,E' ∫ S{XóïôD} <: S{XóïôC}

Proof
By induction on the derivation E,X<:B,E' ∫ S type. The only less trivial
case is (Type Ó). Assume X positive in Ó(Y<:S1)S2. By induction hypothesis:

E,X<:B,E' ∫ S1{XóïôD} <: S1{XóïôC}
From E,X<:B,E',Y<:S1 ∫ S2 type, by bound change lemma:

E,X<:B,E',Y<:S1{XóïôD} ∫ S2 type
Now conclude by induction and (Sub Ó). M

Definition (Pointed on X)
Given a type variable X, a type S is pointed on X iff X is positive in
S and S7Ó(Y1<:B1)…Ó(Yk<:Bk)T1îïñ(…îïñ(ThîïñX)…) for k≥0, h≥0.

Lemma (Generalized collapse)
Let E,X<:Top ∫ S type, with S pointed on X.
E ∫ D type and E ∫ s : S{XóïôD} öõú E,X<:Top,x:S ∫ xóïñs : S{XóïôTop}

Proof
Let S7Ó(Y1<:B1)…Ó(Yk<:Bk)T1îïñ(…îïñ(ThîïñX)…).
By type monotonicity lemma,

E,X<:Top ∫ S <: S{XóïôTop} and E,X<:Top ∫ S{XóïôD} <: S{XóïôTop}.
Let F7Y1<:B1{XóïôTop},…,Yk<:Bk{XóïôTop}, t1:T1{XóïôTop},…,th:Th{XóïôTop}.
By (Val x), weakening, and (Subsumption),

E,X<:Top,x:S,F ∫ x : S{XóïôTop}
by (Eq appl2) and (Eq appl),

E,X<:Top,x:S,F ∫ x(Y1)…(Yk)(t1)…(th) : Top
Analogously, from E ∫ s : S{XóïôD} we obtain:

E,X<:Top,x:S,F ∫ s: S{XóïôTop}

Page 34

and then:
E,X<:Top,x:S,F ∫ s(Y1)…(Yk)(t1)…(th) : Top

By (Eq collapse),
E,X<:Top,x:S,F ∫ x(Y1)…(Yk)(t1)…(th) óïñ s(Y1)…(Yk)(t1)…(th) : Top

By (Eq fun), (Eq fun2), (Eq eta) and (Eq eta2),
E,X<:Top,x:S ∫ x óïñ s : S{XóïôTop}. M

By generalized collapse and the eq-substitution property (section 2.4) we obtain the
following lemma, which expresses a parametricity property: a (possibly open) term a of a
closed type A is provably equal to any term obtained by substituting specific types and
terms for its free variables.

Lemma (Eq-var-substitution)
Assume, for i=1..n, E',X<:Top ∫ Si type and Si pointed on X. Let:

E 7 E', X<:Top, x1: S1, …, xn: Sn.
If ∫ A type, E ∫ a:A, E' ∫ D type and E' ∫ ti: Si{XóïôD} for i=1..n,
then E ∫ a óïñ a{XóïôD, x1óïôt1, …, xnóïôtn} : A.

Proof
By generalized collapse lemma, , for i=1..n:

E',X<:Top,xi: Si ∫ xi óïñ ti : Si{XóïôTop}.
The eq-substitution proposition (Sect. 2.4) allows us to conclude. M

4.2 CL finite products and coproducts; well-pointedness
In this section we show that the equational theory of F<: is strong enough to entail

some basic categorical properties of CL..

4.2.1 Terminal objects

Proposition
For any object ∫ C type, there is a unique morphism ∫ 1C : CîïñTop.

Proof
Take 1C @ λ(x:C) top.
Take any other morphism ∫ f : CîïñTop.

x:C ∫ f : CîïñTop (weaken)
x:C ∫ f(x) óïñ top : Top (Eq collapse)

∫ λ(x:C) f(x) óïñ λ(x:C) top : CîïñTop (Eq fun)

∫ f óïñ 1C : CîïñTop (Eq eta)

A fortiori, ∫ f óïñcl 1C : CîïñTop. M

Page 35

4.2.2 Binary products

Definition
A × B @ Ó(C) (AîïñBîïñC)îïñC

Proposition
For any pair of objects ∫ A type, ∫ B type, the object ∫ A×B
type is their categorical product. That is, there exist
∫ l:A×BîïñA, ∫ r:A×BîïñB such that for any ∫ C type, and for
any ∫ f:CîïñA , ∫ g:CîïñB, there exists a unique (i.e. cl-
unique) ∫ h:CîïñA×B such that ∫ l•h óïñcl f : CîïñA and ∫ r•h
óïñcl g : CîïñB.

A B

C

l r

f g
h

A×B

Proof
Define:

px @ λ(x:A)λ(y:B)x
py @ λ(x:A)λ(y:B)y

l @ λ(p:A×B)p(A)(px) then ∫ l:A×BîïñA
r @ λ(p:A×B)p(B)(py) then ∫ r:A×BîïñB
pair @ λ(a:A)λ(b:B)λ(C)λ(q:AîïñBîïñC)q(a)(b)

then ∫ pair : AîïñBîïñA×B
couple @ λ(C)λ(f:CîïñA)λ(g:CîïñB)λ(c:C)pair(f(c))(g(c))

then ∫ couple : Ó(C) (CîïñA)îïñ(CîïñB)îïñCîïñ(A×B)

Fix an object ∫ C type and two morphisms ∫ f:CîïñA and ∫ g:CîïñB.

1) Existence.
Take h @ couple(C)(f)(g) óïñ λ(c:C)pair(f(c))(g(c))

∫ l•h óïñ λ(z:C)l(h(z)) óïñ λ(z:C)f(z) óïñ f : CîïñA
∫ r•h óïñ λ(z:C)r(h(z)) óïñ λ(z:C)g(z) óïñ g : CîïñB

2) The morphism above is well defined. Just show that:
∫ f ' óïñcl f : CîïñA, ∫ g' óïñcl g : CîïñB implies

∫ couple(C)(f)(g) óïñcl couple(C)(f ')(g') : CîïñA×B

3) Uniqueness.

3.1) Show, for ∫ c:A×B, that ∫ couple(A×B)(l)(r)(c) óïñ c : A×B
The normal form of c must have the shape:

c 7 λ(C)λ(q:D)q(a)(b)
for some C<:Top ∫ AîïñBîïñC<:D, C<:Top,q:D ∫ a:A, and C<:Top,q:D ∫ b:B.
By the bound weakening lemma,

C<:Top,q:AîïñBîïñC ∫ a:A, and C<:Top,q:AîïñBîïñC ∫ b:B
and by (Eq fun'), for c' @ λ(C)λ(q:AîïñBîïñC)q(a)(b),

Page 36

∫ cóïñc' : A×B.
By β-conversion

∫ l(c) óïñ c(A)(px) óïñ a{CóïôA,qóïôpx} : A Let a1 @ a{CóïôA,qóïôpx}
∫ r(c) óïñ c(B)(py) óïñ b{CóïôB,qóïôpy} : B Let b1 @ a{CóïôB,qóïôpy}.

By the eq-var-substitution lemma,
C<:Top,q:AîïñBîïñC ∫ a óïñ a1 : A
C<:Top,q:AîïñBîïñC ∫ b óïñ b1 : B
C<:Top,q:AîïñBîïñC ∫ q(a)(b) óïñ q(a1)(b1) : C (Eq-appl)

∫ λ(C)λ(q:AîïñBîïñC)q(a)(b) óïñ λ(C)λ(q:AîïñBîïñC)q(a1)(b1)
: A×B (Eq fun, Eq fun2)

Hence:
∫ couple(A×B)(l)(r)(c) óïñ pair(l(c))(r(c))

óïñ λ(C)λ(q:AîïñBîïñC)q(a1)(b1) óïñ λ(C)λ(q:AîïñBîïñC)q(a)(b)
óïñ c' óïñ c : A×B

3.2) Show, by β-conversion, that for any ∫ D type, ∫ k:DîïñC, and ∫ d:D,
∫ couple(D)(f•k)(g•k)(d) óïñ (couple(C)(f)(g)•k)(d) : A×B

That h is cl-unique now follows by the usual argument. M

Corollary ∫ A ~cl A', ∫ B ~cl B' öõú ∫ A×B ~cl A'×B'
Proof

Standard diagram chasing, from the existence of products. M

4.2.3 Initial objects

Definition
Bot @ Ó(X)X

Proposition
For any object ∫ C type, there is a unique morphism ∫ 0C : BotîïñC.

Proof
Take 0C @ λ(x:Bot) x(C).
Take any other morphism ∫ f : BotîïñC.
Since there are no terms c such that ∫ c : Bot, then it is vacuously
true that for all ∫ c : Bot, ∫ f(c) óïñ 0C (c) : C,
that is, that ∫ f óïñcl 0C : BotîïñC. M

Remark
BoolîïñBot is also an initial object, by the same argument, since there are no terms of

type BoolîïñBot. The unique map is the equivalence class of λ(x: BoolîïñBot) x(true)(C),
which includes λ(x: BoolîïñBot) x(false)(C). More generally, any empty type V for which

Page 37

there exists a term ∫ f:VîïñBot is initial. The canonical morphism is the equivalence class
of λ(x:V) f(x)(C), which is cl-unique since there are no closed terms ∫ c:V.

4.2.4 Binary coproducts

Definition
A + B @ Ó(C) (AîïñC)îïñ(BîïñC)îïñC

Proposition
For any pair of objects ∫ A type, ∫ B type, the object ∫ A+B
type is their categorical coproduct. That is, there exist
∫ i:AîïñA+B, ∫ j:BîïñA+B such that for any ∫ C type, and for
any ∫ f:AîïñC, ∫ g:BîïñC, there exists a unique (i.e. cl-
unique) ∫ h:A+BîïñC such that ∫ h•i óïñcl f : AîïñC and ∫ h•j
óïñcl g : BîïñC.

A B

C

i j

f gh

A+B

Proof
Define:

i @ λ(x:A)λ(C)λ(f:AîïñC)λ(g:BîïñC)f(x) then ∫ i : A îïñ A+B
j @ λ(y:B)λ(C)λ(f:AîïñC)λ(g:BîïñC)g(y) then ∫ j : B îïñ A+B
case @ λ(C)λ(f:AîïñC)λ(g:BîïñC)λ(c:A+B)c(C)(f)(g)

then ∫ case : Ó(C) (AîïñC)îïñ(BîïñC)îïñ(A+B)îïñC

0) Let ∫ c:A+B; then the normal form of c must have one of the shapes:
c 7 λ(C')λ(f ':D)λ(g':G)f '(a)

for some C'<:Top ∫AîïñC <:D, C'<:Top ∫BîïñC'<:G, and
C'<:Top,f ':D,g':G ∫ a:A

c 7 λ(C')λ(f ':D)λ(g':G)g'(b)
for some C'<:Top ∫AîïñC <:D, C'<:Top ∫BîïñC'<:G, and
C'<:Top,f ':D,g':G ∫ b:B

By the bound weakening lemma,
C'<:Top,f ':AîïñC',g':BîïñC' ∫ a:A
C'<:Top,f ':AîïñC',g':BîïñC' ∫ b:B

and, by (Eq fun'),
either ∫ c óïñ λ(C')λ(f ':AîïñC')λ(g':BîïñC')f '(a) : A+B
or ∫ c óïñ λ(C')λ(f ':AîïñC')λ(g':BîïñC')g'(b) : A+B

Fix an object ∫ C type and two morphisms ∫ f:AîïñC and ∫ g:BîïñC.

1) Existence
Take h @ case(C)(f)(g).

∫ h•i óïñ λ(x:A)h(i(x)) óïñ λ(x:A)f(x) óïñ f : AîïñC
∫ h•j óïñ λ(x:A)h(j(x)) óïñ λ(x:A)g(x) óïñ g : BîïñC

Page 38

2) The morphism above is well defined.
Show ∫ f " óïñcl f : AîïñC, ∫ g" óïñcl g : BîïñC implies

∫ case(C)(f)(g) óïñcl case(C)(f ")(g") : A+BîïñC
That is, for ∫ c:A+B,

∫ case(C)(f)(g)(c) óïñ case(C)(f ")(g")(c) : C
By (0) and β-conversion, either

∫ case(C)(f)(g)(c) óïñ f(a{C'óïôC,f 'óïôf,g'óïôg}) : C and
∫ case(C)(f ")(g")(c) óïñ f "(a{C'óïôC,f 'óïôf ",g'óïôg"}) : C

or
∫ case(C)(f)(g)(c) óïñ g(b{C'óïôC,f 'óïôf,g'óïôg}) : C and
∫ case(C)(f ")(g")(c) óïñ g"(b{C'óïôC,f 'óïôf ",g'óïôg"}) : C

In the first case (the other one is similar), the eq-var-substitution lemma gives:
C'<:Top,f ':AîïñC',g':BîïñC' ∫ a óïñ a{C'óïôC,f 'óïôf,g'óïôg} : A and also
C'<:Top,f ':AîïñC',g':BîïñC' ∫ a óïñ a{C'óïôC,f 'óïôf ",g'óïôg"} : A

from which we infer:
∫ a{C'óïôC,f 'óïôf ",g'óïôg"} óïñ a{C'óïôC,f 'óïôf,g'óïôg} : A

since both terms are closed. Now conclude by using ∫ f " óïñcl f : AîïñC.

3) Uniqueness.
3.1) Show, for ∫ c:A+B, that ∫ case(A+B)(i)(j)(c) óïñ c : A+B.
By cases on the normal form of c, according to (0).
In the first case,

∫ case(A+B)(i)(j)(c) óïñ c(A+B)(i)(j) óïñ i(a{C'óïôA+B,f 'óïôi,g'óïôj}) : A+B
Let a1 @ a{C'óïôA+B,f 'óïôi,g'óïôj}. By the eq-var-substitution lemma,

C'<:Top,f ':AîïñC',g':BîïñC' ∫ a1 óïñ a : A
C'<:Top,f ':AîïñC',g':BîïñC' ∫ f '(a1) óïñ f '(a) : C' (Eq appl)

∫ λ(C')λ(f ':AîïñC')λ(g':BîïñC')f '(a1)
óïñ λ(C')λ(f ':AîïñC')λ(g':BîïñC')f '(a) : A+B (Eq fun, Eq fun2)

∫ i(a1) óïñ c : A+B (def)
∫ case(A+B)(i)(j)(c) óïñ c : A+B (equation above)

The second case is similar.

3.2) Show, for any ∫ D type, ∫ k:CîïñD, and ∫ c:A+B,
∫ case(D)(k•f)(k•g)(c) óïñ (k•case(C)(f)(g))(c) : D.

By cases on the normal form of c, according to (0).
In the first case we have:

∫ case(D)(k•f)(k•g)(c) óïñ c(D)(k•f)(k•g)
óïñ k(f(a{C'óïôD,f 'óïôk•f,g'óïôk•g})) : D

∫ (k•case(C)(f)(g))(c) óïñ k(f(a{C'óïôC,f 'óïôf,g'óïôg})) : D
From the eq-var-substitution lemma,

Page 39

C'<:Top,f ':AîïñC',g':BîïñC' ∫ a óïñ a{C'óïôD,f 'óïôk•f,g'óïôk•g} : A
C'<:Top,f ':AîïñC',g':BîïñC' ∫ a óïñ a{C'óïôC,f 'óïôf,g'óïôg} : A

Conclude by transitivity and (Eq appl).

The second case is similar.

(4) Uniqueness can now be shown by the standard argument. M

Corollary ∫ A ~cl A', ∫ B ~cl B' öõú ∫ A+B ~cl A'+B'
Proof

Standard diagram chasing, from the existence of coproducts. M

4.2.5 Well-pointedness
A category C with a terminal object 1 is well-pointed iff for any pair of objects A and

B and any f,gÏC(A,B) we have:
f = g iff for any hÏC(1,A), f•h = g•h.

Proposition
CL is well-pointed.
That is, for any ∫ A type, ∫ B type, and any ∫ f,g : AîïñB, we have:

∫ f óïñcl g : AîïñB ùõú for any ∫ h : TopîïñA, ∫ f•h óïñcl g•h : TopîïñB
Proof
 öõú)

x:Top ∫ f(h(x)) óïñ f(h(top)) : B (Eq collapse) and (Eq appl)

x:Top ∫ g(h(x)) óïñ g(h(top)) : B similarly
x:Top ∫ f(h(top)) óïñ g(h(top)) : B hypothesis, weaken
∫ λ(x:Top) f(h(x)) óïñ λ(x:Top) g(h(x)) : TopîïñB (Eq trans) and (Eq fun)

Hence ∫ f•h óïñ g•h : TopîïñB.
 ùõü)

Take ∫ a : A, consider h=λ(x:Top)a.
∫ (f•h)(top) óïñ (g•h)(top) : B hypothesis
∫ f(a) óïñ g(a) : B (Eq beta)

Hence ∫ f óïñcl g : AîïñB. M

4.3 CL isomorphisms
The following isomorphisms were inspired by [BFSS 90] and [Fre 91].

4.3.1 Double negation
We prove that, for any ∫ A type we have A ~ Ó(C)(AîïñC)îïñC. This is an iso-

morphism holding in the models studied in [BFSS 90], but which has no known proof in F.
(See the remark at the end of this section.)

Page 40

Proposition
∫ A type öõú ∫ A ~cl Ó(C)(AîïñC)îïñC

Proof
Define: f @ λ(x:Ó(C)(AîïñC)îïñC) x(A)(id(A))

g @ λ(y:A) λ(C) λ(z:AîïñC) z(y)
Then: ∫ f: (Ó(C)(AîïñC)îïñC) îïñ A, and ∫ g: A îïñ (Ó(C)(AîïñC)îïñC)
Take a such that ∫ a:A. Then, by β-conversion:

∫ f(g(a)) óïñ f(λ(C) λ(z:AîïñC) z(a))
óïñ (λ(C) λ(z:AîïñC) z(a))(A)(id(A))
óïñ id(A)(a) óïñ a : A

Take closed b such that ∫ b : Ó(C)(AîïñC)îïñC.
Then b has a normal form of the shape

b = λ(C) λ(z:D) z(a1)
for some C<:Top ∫ AîïñC<:D and C<:Top,z:D ∫ a1:A.
By the bound weakening lemma,

C<:Top,z:AîïñC ∫ a1:A
and hence

∫ b óïñ λ(C) λ(z:AîïñC) z(a1)
Then

∫ g(f(b)) óïñ λ(C) λ(z:AîïñC) z(a1{CóïôA, zóïôid(A)})
: Ó(C)(AîïñC)îïñC

By the eq-var-substitution lemma,
C<:Top, z:AîïñC ∫ a1 óïñ a1{CóïôA, zóïôid(A)} : A

Hence,
C<:Top, z:AîïñC ∫ z(a1) óïñ z(a1{CóïôA, zóïôid(A)}) : C

That is:
∫ λ(C) λ(z:AîïñC) z(a1) óïñ λ(C) λ(z:AîïñC) z(a1{CóïôA, zóïôid(A)})

: Ó(C)(AîïñC)îïñC
Combining the two equations above:

∫ g(f(b)) óïñ λ(C) λ(z:AîïñC) z(a1) óïñ b : Ó(C)(AîïñC)îïñC. M

Remark
Christine Paulin-Mohring has shown that, even for A closed, A ~ Ó(C)(AîïñC)îïñC is

not provable in F via the isomorphism we have used in the proof above. (It is not known
whether some other isomorphism would work). To see this, let T be Ó(R)RîïñR; the term:

λ(P) λ(x:(TîïñT)îïñP)
x (λ(y:T) y (PîïñT) (λ(u:P)y) (x(λ(v:T)v)))

: Ó(P)((TîïñT)îïñP)îïñP

is not convertible to any term of the form:

Page 41

λ(P) λ(x:(TîïñT)îïñP) x(c)

where c is a closed term of type TîïñT.
Moreover, Roberto Di Cosmo [DiC 91] has shown that A is not isomorphic to

Ó(C)(AîïñC)îïñC in F in the usual sense of F-isomorphisms, as opposed to cl-
isomorphisms.

4.3.2 Existentials
We prove in this section that the terminal type Top is isomorphic in CL to Ô(X)X.

From the programming point of view this is consistent with the intuition that, although
any value can be encapsulated as an object of type Ô(X)X, there is no way of using an
object of this type. We will prove, more generally, that Ô(X<:A)X ~ A (i.e. ∫ Ô(X<:A)X
~cl A)

Lemma 1
E ∫ B type, E ∫ y : Ó(X<:A)XîïñB, E ∫ A' <: A, E ∫ a' : A', E ∫ a'óïña : A

 öõú E ∫ y(A)(a) óïñ y(A')(a') : B
Proof

First,
E ∫ y óïñ y : Ó(X<:A)XîïñB hypothesis, (Eq x)

E ∫ y(A) óïñ y(A) : AîïñB (Eq appl2), since XÌFV(B), by E ∫ B type
E ∫ y(A)(a) óïñ y(A)(a') : B hypothesis, (Eq appl)

Then,
E ∫ y óïñ y : Ó(X<:A)XîïñB hypothesis, (Eq x)

E ∫ y(A) óïñ y(A') : A'îïñB (Eq appl2)

E ∫ y(A)(a') óïñ y(A')(a') : B hypothesis, (Eq appl)

Finally,
E ∫ y(A)(a) óïñ y(A')(a') : B. M

Definition
Let id : Ó(A) Ó(W<:A) WîïñW @ λ(A) λ(W<:A) λ(w:W) w

Definition
Ô(W<:A)B @ Ó(V)(Ó(W<:A)BîïñV)îïñV

some : Ó(A) Ó(X<:A) XîïñÔ(W<:A)W
@ λ(A) λ(X<:A) λ(x:X)

λ(V) λ(z:Ó(W<:A)WîïñV) z(X)(x)

Proposition
∫ A type öõú ∫ A ~cl Ô(X<:A)X

Proof
Let ∫ f : (Ô(W<:A)W) îïñ A

Page 42

where f = λ(p:Ô(W<:A)W)p(A)(id(A))
Let ∫ g : A îïñ (Ô(W<:A)W)

where g = λ(x:A)some(A)(A)(x)
Take a such that ∫ a:A. Then

∫ f(g(a)) óïñ f(some(A)(A)(a))
óïñ f(λ(V)(λ(z:Ó(W<:A)WîïñV)z(A)(a))
óïñ (λ(V)λ(z:Ó(W<:A)WîïñV)z(A)(a)) (A) (id(A))
óïñ id(A)(A)(a)
óïñ a : A

Take closed b such that ∫ b : Ô(W<:A)W.
Then b has a normal form of the shape:

b = λ(V)λ(z:D)z(B1)(b1)
for some D, B1, b1 such that:

V<:Top ∫ Ó(W<:A)WîïñV <: D
V<:Top,z:D ∫ b1 : B1 <: A

By the bound weakening lemma, and (Eq fun')

∫ b óïñ λ(V)λ(z:Ó(W<:A)WîïñV)z(B1)(b1)
Then

∫ g(f(b)) óïñ g(b(A)(id(A)))
óïñ g(id(A)(B1{VóïôA})(b1{VóïôA,zóïôid(A)})
óïñ g(b1{VóïôA,zóïôid(A)})
óïñ some(A)(A)(b1{VóïôA,zóïôid(A)})
óïñ λ(V)λ(z:Ó(W<:A)WîïñV) z(A)(b1{VóïôA,zóïôid(A)})

: Ô(W<:A)W
By the eq-var-substitution lemma, since

∫ id(A) : Ó(W<:A)WîïñW <: Ó(W<:A)WîïñA,
V<:Top, z:Ó(W<:A)WîïñV ∫ b1 óïñ b1{VóïôA,zóïôid(A)} : A.

Hence by Lemma 1,
V<:Top, z:Ó(W<:A)WîïñV ∫ z(A)(b1{VóïôA,zóïôid(A)}) óïñ z(B1)(b1) : V

That is:
∫ λ(V)λ(z:Ó(W<:A)WîïñV) z(A)(b1{VóïôA,zóïôid(A)})

óïñ λ(V)λ(z:Ó(W<:A)WîïñV) z(B1)(b1)
: Ô(W<:A)W

Combining the two equations above:
∫ g(f(b)) óïñ

óïñ λ(V)λ(z:Ó(W<:A)WîïñV) z(B1)(b1)
óïñ b

: Ô(W<:A)W. M

Corollary
∫ Top ~cl Ô(X)X

Page 43

4.3.3 Other cl-isomorphisms
Many other isomorphisms can be derived with the techniques developed in the

previous sections. Among them we have the following.

Domain restriction
C ~ Ó(X) XîïñC
AîïñC ~ Ó(X<:A) XîïñC

Categorical
(A×B)×C ~ A×(B×C)
A×Top ~ Top×A ~ A
(A+B)+C ~ A+(B+C)
A+Bot ~ Bot +A ~ A

Various
TopîïñA ~ A (by simple top collapse)
AîïñTop ~ Top (by simple top collapse)
Top ~ Ó(C) CîïñC (by analyzing the normal forms)
Bot îïñA ~ Top (by analyzing the normal forms)
Aîïñ Bot ~ Bot for A nonempty (by vacuous f•g óïñcl id conditions

 since both types are empty)
Ó(X) (AîïñX) ~ AîïñÓ(X) X (β-η suffices)

Conclusions
We study an extension of system F with subtyping and its equational theory. While

the equational rules are not complete for PER models, the main inspirations for the most
novel rules come from PER models and categorical notions of parametricity. Although
our proof system is not a conservative extension of system F, we prove the conservativity
of typing judgments with respect to F. We study some categorical properties of the theory
when restricted to closed terms, including interesting categorical isomorphisms. These
isomorphisms provide some confidence in the strength of the proof system. Additional
evidence is given by a set of encodings; these include record operations and subtyping
hierarchies that are related to features of object-oriented languages.

One important area we have not studied is an adequate computation system. Ideally
we would like to have a notion of reduction such that any two provably equal terms
reduce to a common term. If possible, we would like reductions to terminate as well. A
standard approach is to orient each equational axiom in one direction. The two equational
rules that lead to immediate problems are (Eq collapse) and (Eq appl2); for these it is not
obvious how to produce an oriented reduction rule. Furthermore, in order to capture
equivalence, a set of oriented rules would have to be proved confluent. If we had a

Page 44

computational characterization of equality, we would have decidability of the equational
system; in its absence, decidability remains an open problem.

The final form of the (Eq appl2) rule is still under investigation. Some recent insights
[ACC 93] seem to suggest that (Eq appl2-+) should be taken instead. Specifically, formal
systems considered in [BFSS 90] and [ACC 93] have the latter as a consequence, but not
the former. The (Eq appl2) rule was adopted here because it is valid in PER and has a
simpler syntactic form.

Acknowledgments
Simone Martini and Andre Scedrov would like to thank John C. Mitchell, the

Computer Science Department, and the Center for the Study of Language and
Information at Stanford University for their hospitality during those authors' extended
stay in 1989-1990, when much of this research was done.

Luca Cardelli and Simone Martini would like to thank Pierre-Louis Curien, Giorgio
Ghelli, and Giuseppe Longo for many stimulating discussions related to this work. In
particular, Curien helped in the early proof of Top ~ Ô(X)X.

Luca Cardelli also thanks Martín Abadi for his careful readings of the draft.

Page 45

Appendix: System F

Environments

(Env ) (Env x) (Env X)

E ∫ A type xÌdom(E) ∫ E env XÌdom(E)
 ———— —————————– ————————–

∫  env ∫ E,x:A env ∫ E,X env

Types

(Type X) (Type îïñ) (Type Ó)

∫ E,X,E' env E ∫ A type E ∫ B type E,X ∫ B type
——————– —————————— ———————

E,X,E' ∫ X type E ∫ AîïñB type E ∫ Ó(X)B type

Values

(Val x) (Val fun) (Val appl)

∫ E,x:A,E' env E,x:A ∫ b:B E ∫ b : AîïñB E ∫ a:A
——————– ———————— ——————————

E,x:A,E' ∫ x:A E ∫ λ(x:A)b : AîïñB E ∫ b(a) : B

(Val fun2) (Val appl2)

E,X ∫ b:B E ∫ b : Ó(X)B E ∫ A type
 ———————— ————————————

E ∫ λ(X)b : Ó(X)B E ∫ b(A) : B{XóïôA}

Equivalence

(Eq symm) (Eq trans)

E ∫ a óïñ b : A E ∫ a óïñ b : A E ∫ b óïñ c : A
 —————– —————————————

E ∫ b óïñ a : A E ∫ a óïñ c : A

(Eq x) (Eq fun) (Eq appl)

E ∫ x:A E,x:A ∫ bóïñb' : B E ∫ bóïñb' : AîïñB E ∫ aóïña' : A
 —————— ————————————— ——————————————

E ∫ x óïñ x : A E ∫ λ(x:A)b óïñ λ(x:A)b' : AîïñB E ∫ b(a) óïñ b'(a') : B

(Eq fun2) (Eq appl2)

E,X ∫ bóïñb' : B E ∫ bóïñb' : Ó(X)B E ∫ A type
———————————— —————————————

E ∫ λ(X)b óïñ λ(X)b' : Ó(X)B E ∫ b(A) óïñ b'(A) : B{XóïôA}

(Eq eta) (Eq eta2)

E ∫ b óïñ b' : AîïñB yÌdom(E) E ∫ b óïñ b' : Ó(X)B YÌdom(E)
————————————— ——————————————

E ∫ λ(y:A)b(y) óïñ b' : AîïñB E ∫ λ(Y)b(Y) óïñ b' : Ó(X)B

(Eq beta) (Eq beta2)

E,x:A ∫ b óïñ b' : B E ∫ a óïñ a' : A E,X ∫ b óïñ b':B E ∫ A type
——————————————— ————————————————

E ∫ (λ(x:A)b)(a) óïñ b'{xóïôa'} : B E ∫ (λ(X)b)(A) óïñ b'{XóïôA} : B{XóïôA}

Page 46

References

[ACC 93] M.Abadi, L.Cardelli, P.-L.Curien: Formal parametric polymophism, to appear.

[MS 91] J.C.Mitchell, A.Scedrov: Sconing, relators, and parametricity, manuscript.

[BB 85] C.Böhm, A.Berarducci: Automatic synthesis of typed l-programs on term algebras, Theoretical
Computer Science, 39, pp. 135-154, 1985.

[BFSS 90] E.S.Bainbridge, P.J.Freyd, A.Scedrov, P.J.Scott: Functorial polymorphism, Theoretical
Computer Science, vol.70, no.1, pp 35-64, 1990.

[BL 88] K.B.Bruce, G.Longo: A modest model of records, inheritance and bounded quantification,
Information and Computation, 87(1/2):196-240, 1990.

[Car 88] L.Cardelli: A semantics of multiple inheritance, in Information and Computation 76, pp 138-164,
1988.

[Car 91] L.Cardelli: Extensible records in a pure calculus of subtyping, to appear.

[CL 90] L.Cardelli, G.Longo: A semantic basis for Quest, Proceedings of the 6th ACM LISP and
Functional Programming Conference, ACM Press, 1990.

[CM 91] L.Cardelli, J.C.Mitchell: Operations on records, Mathematical Structures in Computer Science,
vol 1, pp.3-48, 1991.

[CW 85] L.Cardelli, P.Wegner: On understanding types, data abstraction and polymorphism, Computing
Surveys, Vol 17 n. 4, pp 471-522, December 1985.

[CG 91] P.-L.Curien, G.Ghelli: Coherence of subsumption, Mathematical Structures in Computer Science,
to appear. Short version in Proc. CAAP 90, Lecture Notes in Computer Science n.431.

[CG 91a] P.-L.Curien, G.Ghelli: Subtyping + extensionality: confluence of bhtop-reductions in F≤ , in
T.Ito,A.R.Meyer Eds. Theoretical Aspects of Computer Software, Sendai, Japan, Lecture Notes in
Computer Science n.526, pp. 731-749, Springer-Verlag, 1991

[deB 72] N.G.de Bruijn: Lambda-calculus notation with nameless dummies, in Indag. Math. 34(5), pp.
381-392, 1972.

[DiC 91] R.Di Cosmo: Invertibility of terms and valid isomorphisms, a proof theoretic study on second
order lambda-calculus with surjective pairing and terminal object, Technical Report TR 10-91,
LIENS Ecole Normale Supérieure, Paris, 1991.

[Fai 89] J.Fairbairn: Some types with inclusion properties in Ó, îïñ , m, Technical report No 171,
University of Cambridge, Computer Laboratory.

[Fre 91] P.J.Freyd: Structural polymorphism, to appear in TCS.

Page 47

[Ghe 90] G.Ghelli: Proof theoretic studies about a mininal type system integrating inclusion and
parametric polymorphism, Ph.D. Thesis TD-6/90, Università di Pisa, Dipartimento di Informatica,
1990.

[Gir 71] J-Y.Girard: Une extension de l'interprétation de Gödel à l'analyse, et son application à
l'élimination des coupures dans l'analyse et la théorie des types, Proceedings of the second
Scandinavian logic symposium, J.E.Fenstad Ed. pp. 63-92, North-Holland, 1971.

[LS 86] J.Lambek, P.J.Scott: Introduction to higher order categorical logic, Cambridge University Press,
1986.

[Mit 90] J.C.Mitchell: A type inference approach to reduction properties and semantics of polymorphic
expressions, Logical Foundations of Functional Programming, ed. G.Huet, Addison-Wesley, 1990.

[MS 89] J.C.Mitchell, P.J.Scott: Typed l-models and cartesian closed categories, in Categories in
Computer Science and Logic, J.W.Gray and A.Scedrov Eds. Contemporary Math. vol. 92, Amer.
Math. Soc., pp 301-316, 1989.

[Pit 87] A.M.Pitts: Polymorphism is set-theoretic, constructively, in Category Theory and Computer
Science, Proceedings Edinburgh 1987, D.H.Pitt, A.Poigné, and D.E.Rydeheard Eds. Springer Lecture
Notes in Computer Science, vol. 283, pp 12-39, 1987.

[Rey 74] J.C.Reynolds: Towards a theory of type structure, in Colloquium sur la programmation pp. 408-
423, Springer-Verlag Lecture Notes in Computer Science, n.19, 1974.

[Rey 83] J.C.Reynolds: Types, abstraction, and parametric polymorphism, in Information Processing '83,
pp 513-523, R.E.A.Mason ed., North Holland, Amsterdam, 1983.

[Sce 90] A.Scedrov: A guide to polymorphic types, in Logic and Computer Science, pp 387-420,
P.Odifreddi ed., Academic Press, 1990.

[Str 67] C.Strachey: Fundamental concepts in programming languages, lecture notes for the International
Summer School in Computer Programming, Copenhagen, August 1967.

[Wad 89] P.Wadler: Theorems for free!, Proc. of the Fourth International Conference on Fuctional
Programming and Computer Architecture, ACM Press, 1989.

