
79

The Temporal Logic of Actions

Leslie Lamport

December 25, 1991



Systems Research Center

DEC's business and technology objectives require a strong research program.
The Systems Research Center (SRC) and three other research laboratories
are committed to �lling that need.

SRC began recruiting its �rst research scientists in l984|their charter, to
advance the state of knowledge in all aspects of computer systems research.
Our current work includes exploring high-performance personal computing,
distributed computing, programming environments, system modelling tech-
niques, speci�cation technology, and tightly-coupled multiprocessors.

Our approach to both hardware and software research is to create and use
real systems so that we can investigate their properties fully. Complex
systems cannot be evaluated solely in the abstract. Based on this belief,
our strategy is to demonstrate the technical and practical feasibility of our
ideas by building prototypes and using them as daily tools. The experience
we gain is useful in the short term in enabling us to re�ne our designs, and
invaluable in the long term in helping us to advance the state of knowledge
about those systems. Most of the major advances in information systems
have come through this strategy, including time-sharing, the ArpaNet, and
distributed personal computing.

SRC also performs work of a more mathematical 
avor which complements
our systems research. Some of this work is in established �elds of theoretical
computer science, such as the analysis of algorithms, computational geome-
try, and logics of programming. The rest of this work explores new ground
motivated by problems that arise in our systems research.

DEC has a strong commitment to communicating the results and experience
gained through pursuing these activities. The Company values the improved
understanding that comes with exposing and testing our ideas within the
research community. SRC will therefore report results in conferences, in
professional journals, and in our research report series. We will seek users
for our prototype systems among those with whom we have common research
interests, and we will encourage collaboration with university researchers.

Robert W. Taylor, Director



The Temporal Logic of Actions

Leslie Lamport

December 25, 1991

iii



c
Digital Equipment Corporation 1991

This work may not be copied or reproduced in whole or in part for any com-
mercial purpose. Permission to copy in whole or in part without payment
of fee is granted for nonpro�t educational and research purposes provided
that all such whole or partial copies include the following: a notice that
such copying is by permission of the Systems Research Center of Digital
Equipment Corporation in Palo Alto, California; an acknowledgment of the
authors and individual contributors to the work; and all applicable portions
of the copyright notice. Copying, reproducing, or republishing for any other
purpose shall require a license with payment of fee to the Systems Research
Center. All rights reserved.

iv



Author's Abstract

The temporal logic of actions (TLA) is a logic for specifying and reasoning
about concurrent systems. Systems and their properties are represented in
the same logic, so the assertion that a system meets its speci�cation and the
assertion that one system implements another are both expressed by logical
implication. TLA is very simple; its syntax and complete formal semantics
are summarized in a little over a page. Yet, TLA is not just a logician's
toy; it is extremely powerful, both in principle and in practice. This report
introduces TLA and describes how it is used to specify and verify concurrent
algorithms. The use of TLA to specify and reason about open systems will
be described elsewhere.
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1 Logic versus Programming

A concurrent algorithm is usually speci�ed by a program. Correctness of the
algorithm means that the program satis�es the desired property. Program,
property, and satis�es are three separate concepts, so there are three things
to de�ne: a programming language, a language for expressing properties,
and a satis�es relation.

We propose a simpler approach in which both the algorithm and the
property are speci�ed by formulas in a single logic. Correctness of the algo-
rithm means that the formula specifying the algorithm implies the formula
specifying the property, where implies is ordinary logical implication. The
three concepts program, property, and satis�es are replaced by the single
concept logical formula. One concept is simpler than three.

We are motivated not by an abstract ideal of elegance, but by the prac-
tical problem of reasoning about real algorithms. Rigorous reasoning is the
only way to avoid subtle errors in concurrent algorithms, and such reasoning
is practical only if the underlying formalism is simple.

How can we abandon conventional programming languages in favor of
logic if the algorithm must be coded as a program to be executed? The
answer is that we almost always reason about the abstract algorithm, not
the concurrent program that is actually executed. A typical example is
the distributed spanning-tree algorithm used in the Autonet local area net-
work [22]. The algorithm can be described in about one page of pseudo-code,
but its implementation required about 5000 lines of C code and 500 lines
of assembly code.1 Reasoning about 5000 lines of C would be a herculean
task, but we can reason about a one-page abstract algorithm. By starting
from a correct algorithm, we can avoid the timing-dependent synchroniza-
tion errors that are the bane of concurrent programming. If the algorithms
we reason about are not real, compilable programs, then they do not have
to be written in a programming language.

But, why replace a programming language by logic? Aren't programs
simpler than logical formulas? The answer is no. Programs are complicated;
logical formulas are simple. For example, consider the following three-line
Pascal statement and the approximately equivalent three-line logical for-
mula, which uses the convention that x0 denotes the new value of x.

1Assembly code was needed because C has no primitives for sending messages across

wires.
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if a > b then if a > c then x

:= a else x := c else if b > c

then x := b else x := c

x0 = max(a;max(b; c))
where max(v; w) = if v > w then v

else w

Most readers will �nd the logical formula much easier to understand than
the Pascal statement.

Of course, we cheated. The logical formula is easier to understand be-
cause it is formated better. But, we cheated to make a point. The reason
people think programs are simpler than logical formulas is that program-
mers are better at formating than logicians are. When properly formated,
logical formulas are no harder to read than programs.

Let us rewrite the Pascal statement and the logical formula in equally
readable forms.

x := max(a;max(b; c)) x0 = max(a;max(b; c))

Many readers may think that the statement and the formula are equally
simple. They are wrong. The formula is much simpler than the Pascal
statement. Equality is a simple concept that �ve-year-old children under-
stand. Assignment (:=) is a complicated concept that university students
�nd di�cult. Equality obeys simple algebraic laws; assignment doesn't. If
we assume that all variables are integer-valued, we can subtract the left-hand
side from both sides of the formula to obtain the equivalent formula

0 = max(a;max(b; c))� x0

Trying this with the Pascal statement yields the absurdity

0
?
:= max(a;max(b; c))� x

The right-hand sides of the Pascal assignment and the logical formula may
look the same, but they are quite di�erent. In the logical formula, \max"
represents a mathematical function. Mathematical functions are simple;
American children learn about them at the age of twelve. In the Pascal for-
mula, \max" is a Pascal function. Pascal functions are complicated, involv-
ing concepts like call by reference, call by value, and aliasing; it is unlikely
that many university students understand them well.

Since real languages like Pascal are so complicated, methods for reason-
ing about programs are usually based on toy languages. Although simpler
than real programming languages, toy languages are more complicated than
simple logic. Moreover, their resemblance to real languages can be dan-
gerously misleading. Consider the naive programmer who wants a Pascal
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procedure that reverses the order of 100-element arrays, so reverse(a; b) sets
a(0) to b(99), sets a(1) to b(98), and so on. He writes the procedure body

for i := 0; 99 do a(i) := b(99� i)

and uses his toy-language system to verify that it has the desired post-
condition, believing that this means his Pascal procedure is correct. He will
be surprised to discover that his program doesn't work because it contains
the procedure call reverse(c; c).

We do not mean to belittle programming languages. They are compli-
cated because they have a di�cult job to do. Logic can be based on simple
concepts like mathematical functions. Programming languages cannot, be-
cause they must allow reasonably simple compilers to translate programs
into reasonably e�cient code for complex computers. Real languages must
embrace di�cult concepts like the distinction between values and locations,
which leads to call-by-reference arguments and aliasing|complications that
have no counterpart in simple mathematics. Programming languages are
necessary for writing real programs; but logic o�ers a simpler alternative for
reasoning about concurrent algorithms.

To o�er a practical alternative to programming languages, a logic must
be both simple and expressive. There is no point trading a programming
language for a logic that is just as complicated and hard to understand. Fur-
thermore, a logic that achieves simplicity at the expense of needed expres-
siveness will be impractical because the formulas describing real algorithms
will be too long and complicated to understand.

The logic that we propose for reasoning about concurrent algorithms
is the temporal logic of actions, abbreviated as TLA. It is simple enough
that its syntax and complete formal semantics can be written in less than
a page. Almost all of TLA|syntax, formal semantics, all derived notation
used to express algorithms, and the axioms and proof rules used to rea-
son about algorithms|appears in Figures 4 (page 21), 5 (page 22), and 9
(page 45). (All that is missing from those �gures are the rules for adding
dummy variables, mentioned in Section 9.3.)

Logic is a tool. Its true test comes with use. Although TLA can be de-
�ned formally in a few pages, such a de�nition would tell you nothing about
how it is used. In this report, we develop TLA as a method of describing
and reasoning about concurrent algorithms. We limit ourselves to simple
examples, so we can only hint at how TLA works with real algorithms.
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2 Closed versus Open Systems

In this report, we consider closed systems. A closed system is one that is
completely self-contained|in contrast to an open system, which interacts
with its environment. Any real system is open; it does not eternally con-
template its navel, oblivious to the outside world. But for many purposes,
one can model the actual system together with its environment as a single
closed system. Such an approach is usually adequate for reasoning about
algorithms. However, some problems can be studied only in the context
of open systems. For example, composing component systems to form one
large system makes sense only for components that are open systems.

TLA can be used to describe and reason about open as well as closed
systems. But closed systems are simpler, and they provide a necessary
foundation for the study of open systems. This report develops TLA and
applies it to closed systems. Open systems will be discussed elsewhere.

3 The Logic of Actions

TLA is the combination of two logics: a logic of actions and a simple tem-
poral logic. This section describes the logic of actions, Section 4 describes
simple temporal logic, and Section 5 combines them into a logic called RTLA,
which is re�ned in Section 6 to TLA.

3.1 Values, Variables, and States

Algorithms manipulate data. We assume a set Val of values, where a value is
a data item. The set Val includes the booleans true and false, numbers such
as 1, 7, and �14, strings like \abc", and sets like the set Bool of booleans and
the set Nat of natural numbers. We won't bother to de�ne Val precisely, but
will simply assume that it contains all the values needed for our examples.Note2 1

We think of algorithms as assigning values to variables. We assume an
in�nite set Var of variable names. We won't bother describing a precise
syntax for generating variable names, but will use names like x and sem.

A logic consists of a set of rules for manipulating formulas. To under-
stand what the formulas and their manipulation mean, we need a semantics.
A semantics is given by de�ning a semantic meaning [[F ]] to syntactic objects
F in the logic.

2End notes appear on page 61.
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The semantics of our logic will be de�ned in terms of states. A state is
an assignment of values to variables|that is, a mapping from the set Var
of variable names to the set Val of values. Thus a state s assigns a value
s(x) to a variable x.

We will write s[[x]] to denote s(x). Thus, we consider the meaning [[x]] of
the variable x to be a mapping from states to values, using a post�x notation
for function application. States are a purely semantic concept; they are not
part of the logic.

3.2 State Functions and Predicates

A state function is an expression built from variables and values|for ex- Note 2
ample, x2+ y� 3. The meaning [[f ]] of a state function f is a mapping from
the set St of states to the set Val of values. For example, [[x2 + y � 3]] is
the mapping that assigns to a state s the value (s[[x]])2 + s[[y]] � 3. We use
a post�x functional notation, letting s[[f ]] denote the value that [[f ]] assigns
to state s. The semantic de�nition is

s[[f ]]
�

= f(8 `v ' : s[[v]]=v) (1)

where f(8 `v ' : s[[v]]=v) denotes the value obtained from f by substituting

s[[v]] for v, for all variables v. (The symbol
�

= means equals by de�nition.)

A variable x is a state function|the state function that assigns the value
s[[x]] to the state s. The de�nition of [[f ]] for a state function f therefore
extends the de�nition of [[x]] for a variable x.

A predicate is a boolean-valued state function|for example, x2 = y� 3 Note 3
and x 2 Nat. In other words, a predicate P is a state function such that
s[[P ]] equals true or false for every state s. We say that a state s satis�es a
predicate P i� (if and only if) s[[P ]] equals true.

State functions correspond both to expressions in ordinary programming
languages and to subexpressions of the assertions used in ordinary program
veri�cation. Predicates correspond both to boolean-valued expressions in
programming languages and to assertions.

3.3 Actions

An action is any boolean-valued expression formed from variables, primed
variables, and values|for example, x0 + 1 = y and x � 1 =2 z0 are actions,
where x, y, and z are variables.
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An action represents a relation between old states and new states, where
the unprimed variables refer to the old state and the primed variables refer
to the new state. Thus, y = x0 + 1 is the relation asserting that the value
of y in the old state is one greater than the value of x in the new state. An
atomic operation of a concurrent program will be represented in TLA by an
action.

Formally, the meaning [[A]] of an action A is a relation between states|
a function that assigns a boolean s[[A]]t to a pair of states s, t. We de�ne
s[[A]]t by considering s to be the \old state" and t the \new state", so s[[A]]t
is obtained from A by replacing each unprimed variable v by s[[v]] and each
primed variable v0 by t[[v]]:

s[[A]]t
�

= A(8 `v ' : s[[v]]=v; t[[v]]=v0) (2)

Thus, s[[y = x0 + 1]]t equals the boolean value s[[y]] = t[[x]] + 1.
The pair of states s; t is called an \A step" i� s[[A]]t equals true. If

action A represents an atomic operation of a program, then s; t is an A step
i� executing the operation in state s can produce state t.

3.4 Predicates as Actions

We have de�ned a predicate P to be a boolean-valued state function, so s[[P ]]
is a boolean, for any state s. The predicate P can also be viewed as an action
(a boolean-valued expression involving primed and unprimed variables) that
contains no primed variables. Thus, s[[P ]]t is a boolean, which equals s[[P ]],
for any states s and t. A pair of states s; t is a P step i� s satis�es P .

Recall that a state function is an expression built from variables and
values. For any state function f , we de�ne f 0 to be the expression obtained
by replacing each variable v in f by the primed variable v0:

f 0
�

= f(8 `v ' : v0=v) (3)

If P is a predicate, then P 0 is an action, and s[[P 0]]t equals t[[P ]] for any
states s and t.

3.5 Validity and Provability

An action A is said to be valid, written j= A, i� every step is an A step.
Formally,

j= A
�

= 8s; t 2 St : s[[A]]t
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As a special case of this de�nition, if P is a predicate, then

j= P
�

= 8s 2 St : s[[P ]]

A valid action is one that is true regardless of what values one substitutes
for the primed and unprimed variables. For example, the action

(x0 + y 2 Nat) ) (2(x0 + y) � x0 + y) (4)

is valid. The validity of an action thus expresses a theorem about values.
A logic contains rules for proving formulas. It is customary to write ` F

to denote that formula F is provable by the rules of the logic. Soundness of
the logic means that every provable formula is valid|in other words, that
` A implies j= A. The validity of actions such as (4) is proved by ordinary
mathematical reasoning. How this reasoning is formalized does not concern Note 4
us here, so we will not bother to de�ne a logic for proving the validity of
actions. But, this omission does not mean such reasoning is unimportant.
When verifying the validity of TLA formulas, most of the work goes into
proving the validity of actions (and of predicates, a special class of actions).
The practical success of any TLA veri�cation system will depend primarily
on how good it is at ordinary mathematical reasoning.

3.6 Rigid Variables and Quanti�ers

Consider a program that is described in terms of a parameter n|for example
an n-process mutual exclusion algorithm. An action representing an atomic
operation of that program may contain the symbol n. This symbol does not
represent a known value like 1 or \abc". But unlike the variables we have
considered so far, the value of n does not change; it must be the same in the
old and new state.

The symbol n denotes some �xed but unknown value. A programmer
would call it a constant because its value doesn't change during execution
of the program, while a mathematician would call it a variable because it
is an \unknown". We call such a symbol n a rigid variable. The variables
introduced above will be called program variables, or simply variables.

Rigid variables like n and values like the string \abc" are called constants .
A constant expression is an expression like \abc" 6= n that is composed of
constants. Constant expressions are ordinary mathematical formulas, and
can be manipulated by the ordinary rules of mathematics. In particular, we
can quantify over rigid variables. For example

(n 2 Nat) ^ (8m 2 Nat : m � n) (5)
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is a constant expression containing the free rigid variable n and the bound
rigid variable m. This expression is equal to the constant expression n = 0.

We could give a formal semantics for constant expressions, de�ning the
meaning of an expression like (5) in terms of other mathematical objects.
However, the semantics of constant expressions is the basis of ordinary pred-
icate calculus and is well known. We will therefore assume that the meaning
of a constant expression is understood, and we will use constant expressions
in de�ning the semantics of TLA.

We generalize state functions and actions to allow arbitrary constants
instead of just values. For example, if x is a (program) variable and n a
rigid variable, then x0 = x+ n is the action asserting that the value of x in
the new state is n greater than its value in the old state. More precisely, the
meaning [[x0 = x+ n]] of this action is de�ned by

s[[x0 = x+ n]]t
�

= t[[x]] = s[[x]] + n

Thus, the semantics of state functions and actions are now given in terms
of constant expressions rather than values. However, a state is still an
assignment of values to variables.

If A is an action and n a rigid variable, then 9n 2 Nat : A is also an
action|a boolean-valued expression composed of constants, variables, and
primed variables. The de�nition of [[A]] in Section 3.3 implies

[[9n 2 Nat : A]] � 9n 2 Nat : [[A]]

A constant expression exp is valid, denoted j= exp, i� it equals true

when any values are substituted for its rigid variables|for example, j= (n 2
Nat)) (n+1 > n). Since s[[A]]t is now a constant expression, not a boolean,
we must generalize our de�nition of validity to

j= A
�

= 8s; t 2 St : j= s[[A]]t

for any action A.

3.7 The Enabled Predicate

For any action A, we de�ne Enabled A to be the predicate that is true for a
state i� it is possible to take an A step starting in that state. Semantically,
Enabled A is de�ned by

s[[Enabled A]]
�

= 9t 2 St : s[[A]]t (6)
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for any state s. The predicate Enabled A can be de�ned syntactically as
follows. If v1, : : : , vn are all the (program) variables that occur in A, then

Enabled A
�

= 9c1; : : : ; cn : A(c1=v
0

1; : : : ; cn=v
0

n)

where A(c1=v
0
1; : : : ; cn=v

0
n) denotes the formula obtained by substituting the

rigid variables ci for all occurrences of the v
0
i in A. For example,

Enabled (y = (x0)2 + n) � 9c : y = c2 + n

If action A represents an atomic operation of a program, then Enabled A
is true for those states in which it is possible to perform the operation.

4 Simple Temporal Logic

An execution of an algorithm is often thought of as a sequence of steps, each
producing a new state by changing the values of one or more variables. We
will consider an execution to be the resulting sequence of states, and will
take the semantic meaning of an algorithm to be the set of all its possible
executions. Reasoning about algorithms will therefore require reasoning
about sequences of states. Such reasoning is the province of temporal logic.

4.1 Temporal Formulas

A temporal formula is built from elementary formulas using boolean oper-
ators and the unary operator 2 (read always). For example, if E1 and E2

are elementary formulas, then :E1 ^2(:E2) and 2(E1 ) 2(E1 _E2)) are
temporal formulas. We de�ne simple temporal logic for an arbitrary class of
elementary formulas. TLA will be de�ned later as a special case of simple
temporal logic by specifying its elementary formulas.

The semantics of temporal logic is based on behaviors , where a behavior
is an in�nite sequence of states. Think of a behavior as the sequence of states
that a computing device might go through when executing an algorithm. (It
might seem that a terminating execution would be represented by a �nite
sequence of states, but we will see in Section 6.5 why in�nite sequences are
enough.)

We will de�ne the meaning of a temporal formula in terms of the mean-
ings of the elementary formulas it contains. Since an arbitrary temporal
formula is built up from elementary formulas using boolean operators and
the 2 operator, and all the boolean operators can be de�ned in terms of ^
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and :, it su�ces to de�ne [[F ^ G]], [[:F ]], and [[2F ]] in terms of [[F ]] and
[[G]].

We interpret a temporal formula as an assertion about behaviors. For-
mally, the meaning [[F ]] of a formula F is a boolean-valued function on
behaviors. We let �[[F ]] denote the boolean value that formula F assigns to
behavior �, and we say that � satis�es F i� �[[F ]] equals true.

The de�nitions of [[F ^G]] and [[:F ]] are simple:

�[[F ^G]]
�

= �[[F ]]^ �[[G]]

�[[:F ]]
�

= :�[[F ]]

In other words, a behavior satis�es F ^G i� it satis�es both F and G; and
a behavior satis�es :F i� it does not satisfy F . One can derive similar
formulas for the other boolean operators. For example, since F ) G equals
:(F ^ :G), a straightforward calculation proves that �[[F ) G]] equals
�[[F ]]) �[[G]].

We now de�ne [[2F ]] in terms of [[F ]]. Let hhs0; s1; s2; : : :ii denote the
behavior whose �rst state is s0, second state is s1, and so on. Then

hhs0; s1; s2; : : :ii[[2F ]]
�

= 8n 2 Nat : hhsn; sn+1; sn+2; : : :ii[[F ]] (7)

Think of the behavior hhs0; : : :ii as representing the evolution of the universe,
where sn is the state of the universe at \time" n. The formula hhs0; : : :ii[[F ]]
asserts that F is true at time 0 of this behavior, and hhsn; : : :ii[[F ]] asserts
that it is true at time n. Thus, hhs0; : : :ii[[2F ]] asserts that F is true at all
times during the behavior hhs0; : : :ii. In other words, 2F asserts that F is
always true.

4.2 Some Useful Temporal Formulas

4.2.1 Eventually

For any temporal formula F , let 3F be de�ned by

3F
�

= :2:F (8)

This formula asserts that it is not the case that F is always false. In other
words, 3F asserts that F is eventually true. Since :8: is the same as 9,

hhs0; s1; s2; : : :ii[[3F ]] � 9n 2 Nat : hhsn; sn+1; sn+2; : : :ii[[F ]]

for any behavior hhs0; s1; : : :ii. Therefore, a behavior satis�es 3F i� F is
true at some time during the behavior.
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4.2.2 In�nitely Often and Eventually Always

The formula 23F is true for a behavior i� 3F is true at all times n during
that behavior, and 3F is true at time n i� F is true at some time m greater
than or equal to n. Formally,

hhs0; s1; : : :ii[[23F ]] � 8n 2 Nat : 9m 2 Nat : hhsn+m; sn+m+1; : : :ii[[F ]]

A formula of the form 8n : 9m : g(n + m) asserts that g(i) is true for
in�nitely many values of i. Thus, a behavior satis�es 23F i� F is true
at in�nitely many times during the behavior. In other words, 23F asserts
that F is true in�nitely often.

The formula 32F asserts that eventually F is always true. Thus, a
behavior satis�es 32F i� there is some time such that F is true from that
time on.

4.2.3 Leads To

For any temporal formulas F and G, we de�ne F ; G to equal 2(F ) 3G).
This formula asserts that any time F is true, G is true then or at some
later time. The operator ; (read leads to) is transitive, meaning that any
behavior satisfying F ; G and G ; H also satis�es F ; H . We suggest
that the reader convince himself both that; is transitive, and that it would
not be had F ; G been de�ned to equal F ) 3G.

4.3 Validity and Provability

A temporal formula F is said to be valid, written j= F , i� it is satis�ed by
all possible behaviors. More precisely,

j= F
�

= 8� 2 St1 : �[[F ]] (9)

where St1 denotes the set of all behaviors (in�nite sequences of elements
of St).

We will represent both algorithms and properties as temporal formulas.
An algorithm is represented by a temporal formula F such that �[[F ]] equals
true i� � represents a possible execution of the algorithm. If G is a temporal
formula, then F ) G is valid i� �[[F ) G]] equals true for every behavior �.
Since �[[F ) G]] equals �[[F ]]) �[[G]], validity of F ) G means that every
behavior representing a possible execution of the algorithm satis�es G. In
other words, j= F ) G asserts that the algorithm represented by F satis�es
property G.
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In Section 6.6, we give rules for proving temporal formulas. As usual,
soundness of the rules means that every provable formula is valid|that is,
` F implies j= F for any temporal formula F .

5 The Raw Logic

5.1 Actions as Temporal Formulas

The Raw Temporal Logic of Actions, or RTLA, is obtained by letting the
elementary temporal formulas be actions. To de�ne the semantics of RTLA
formulas, we must de�ne what it means for an action to be true on a behav-
ior.

In Section 3.3, we de�ned the meaning [[A]] of an action A to be a
boolean-valued function that assigns the value s[[A]]t to the pair of states
s; t. We de�ned s; t to be an A step i� s[[A]]t equals true. We now de�ne
[[A]] to be true for a behavior i� the �rst pair of states in the behavior is an
A step. Formally,Note 5

hhs0; s1; s2; : : :ii[[A]]
�

= s0[[A]]s1 (10)

RTLA formulas are built up from actions using logical operators and the
temporal operator 2. Thus, if A is an action, then 2A is an RTLA formula.
Its meaning is computed as follows.

hhs0; s1; s2; : : :ii[[2A]]
� 8n 2 Nat : hhsn; sn+1; sn+2; : : :ii[[A]] fby (7)g

� 8n 2 Nat : sn[[A]]sn+1 fby (10)g

In other words, a behavior satis�es 2A i� every step of the behavior is an
A step.

In Section 3.4, we observed that if P is a predicate, then s[[P ]]t equals
s[[P ]]. Therefore,

hhs0; s1; : : :ii[[P ]] � s0[[P ]]

hhs0; s1; : : :ii[[2P ]] � 8n 2 Nat : sn[[P ]]

In other words, a behavior satis�es a predicate P i� the �rst state of the
behavior satis�es P . A behavior satis�es 2P i� all states in the behavior
satisfy P .

We will see that the raw logic RTLA is too powerful; it allows one to
make assertions about behaviors that should not be assertable. We will
de�ne the formulas of TLA to be a subset of RTLA formulas.
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var natural x, y = 0 ;
do h true ! x := x+ 1 i

h true ! y := y + 1 i od

Figure 1: Program 1|a simple program, written in a conventional language.

5.2 Describing Programs with RTLA Formulas

We have de�ned the syntax and semantics of RTLA formulas, but have given
no idea what RTLA is good for. We illustrate how RTLA can be used by de-
scribing the simple Program 1 of Figure 1 on this page as an RTLA formula.
This program is written in a conventional language, using Dijkstra's do con-
struct [7], with angle brackets enclosing operations that are assumed to be
atomic. An execution of this program begins with x and y both zero, and
repeatedly increments either x or y (in a single operation), choosing non-
deterministically between them. We will de�ne an RTLA formula � that
represents this program, meaning that �[[�]] will equal true i� the behavior
� represents a possible execution of Program 1.

The formula � is de�ned in Figure 2 on the next page. The predicate
Init� asserts the initial condition, that x and y are both zero. The semantic
meaning of action M1 is a relation between states asserting that the value
of x in the new state is one greater than its value in the old state, and
the value of y is the same in the old and new states. Thus, an M1 step
represents an execution of the program's atomic operation of incrementing
x. Similarly, an M2 step represents an execution of the program's other
atomic operation, which increments y. The action M is de�ned to be the
disjunction of M1 and M2, so an M step represents an execution of one
program operation. The formula � is true of a behavior i� Init� is true of
the �rst state and every step is anM step. In other words, � asserts that
the initial condition is true initially, and that every step of the behavior
represents the execution of an atomic operation of the program. Clearly, a
behavior satis�es � i� it represents a possible execution of Program 1. Note 6

There is nothing special about our choice of names, or in the particu-
lar way of writing �. There are many ways of writing equivalent logical
formulas. Here are a couple of formulas that are equivalent to �.

(x = 0) ^ 2(M1 _M2) ^ (y = 0)

Init� ^ 2((x
0 = x+ 1) _ (y0 = y + 1)) ^ 2((x0 = x) _ (y0 = y))
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Init�
�

= (x = 0) ^ (y = 0)

M1
�

= (x0 = x + 1) ^ (y0 = y) M2
�

= (y0 = y + 1) ^ (x0 = x)

M
�

= M1 _M2

�
�

= Init� ^ 2M

Figure 2: An RTLA formula � describing Program 1.

The particular way of de�ning � in Figure 2 was chosen to make the corre-
spondence with Figure 1 obvious.

6 TLA

6.1 The Example Program Revisited

Formula � of Figure 2 is very simple. Unfortunately, it is too simple. In
addition to steps in which x or y is incremented, a formula describing Pro-
gram 1 should allow \stuttering" steps that leave both x and y unchanged.
Allowing these stuttering steps may seem strange now, but later it will be-
come clear why we need them.

It is easy to modify � so it asserts that every step is either anM step
or a step that leaves x and y unchanged; the new de�nition is

�
�

= Init� ^ 2(M _ ((x0 = x) ^ (y0 = y))) (11)

We now introduce notation to make such formulas easier to write. Two
ordered pairs are equal i� their components are equal, so the conjunction
(x0 = x) ^ (y0 = y) is equivalent to the single equality (x0; y0) = (x; y). The
de�nition of priming a state function (formula (3) on page 6) allows us to
write (x0; y0) as (x; y)0. For any action A and state function f , we letNote 7

[A]f
�

= A _ (f 0 = f) (12)

(The action [A]f is read square A sub f .) Then

[M](x;y) � M _ ((x; y)0 = (x; y))
� M _ ((x0 = x) ^ (y0 = y))

and we can rewrite (11) as

�
�

= Init� ^2[M](x;y) (13)
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We de�ne TLA to be the temporal logic whose elementary formulas are
predicates and formulas of the form 2[A]f , where A is an action and f a
state function. Since these formulas are RTLA formulas, we have already
de�ned their semantic meanings.

6.2 Adding Liveness

The formula � de�ned by (13) allows behaviors that start with Init� true (x
and y both zero) and never change x or y. Such behaviors do not represent
acceptable executions of Program 1, so we must strengthen � to disallow
them.

Formula � of (13) asserts that a behavior may not start in any state
other than one satisfying Init� and may never take any step other than
a [M](x;y) step. An assertion that something may never happen is called
a safety property. An assertion that something eventually does happen is
called a liveness property. (Safety and liveness have been de�ned formally
by Alpern and Schneider [3].) The formula Init� ^ 2[M](x;y) is a safety
property. To complete the description of Program 1, we need an additional
liveness property asserting that the program keeps going.

By Dijkstra's semantics for his do construct, the liveness property for
Program 1 should assert only that the program never terminates. In other
words, Dijkstra would require that a behavior must contain in�nitely many
steps that increment x or y. This property is expressed by the RTLA formula
23M, which asserts that there are in�nitely manyM steps. Dijkstra would
have us de�ne � by

�
�

= Init� ^ 2[M](x;y) ^ 23M (14)

However, the example becomes more interesting if we add the fairness re-
quirement that both x and y must be incremented in�nitely often. (Di-
jkstra's de�nition would allow an execution in which one variable is incre-
mented in�nitely often while the other is incremented only a �nite number
of times.) Since we are not fettered by the dictates of conventional pro-
gramming languages, we will adopt this stronger liveness requirement. The
formula � representing the program with this fairness requirement is

�
�

= Init� ^ 2[M](x;y) ^ 23M1 ^ 23M2 (15)

Formulas (14) and (15) are RTLA formulas, but not TLA formulas. An
action A can appear in a TLA formula only in the form 2[A]f , so 23M1

and 23M2 are not TLA formulas. We now rewrite them as TLA formulas.
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Let A be any action and f any state function. Then :A is also an action,
so :2[:A]f is a TLA formula. Applying our de�nitions gives

:2[:A]f � 3:[:A]f fby (8), which implies :2 : : : � 3: : : :g

� 3:(:A _ (f 0 = f)) fby (12)g

� 3(A^ (f 0 6= f)) fby simple logicg

We de�ne the action hAif (read angle A sub f) by

hAif
�

= A ^ (f 0 6= f) (16)

The calculation above shows that 3hAif equals :2[:A]f , so it is a TLA
formula.

Since incrementing a variable changes its value, bothM1 andM2 imply
(x; y)0 6= (x; y). Hence,M1 is equivalent to hM1i(x;y), andM2 is equivalentNote 8
to hM2i(x;y). We can therefore rewrite � as a TLA formula as follows.

�
�

= Init� ^ 2[M](x;y) ^ 23hM1i(x;y) ^ 23hM2i(x;y) (17)

6.3 Fairness

The liveness condition 23hM1i(x;y) ^ 23hM2i(x;y) for Program 1 is very
simple. In realistic examples, liveness conditions are not always so simple.
We now rewrite this condition in a more general form that can be used to
express most of the liveness conditions that arise in practice.

Liveness conditions of concurrent algorithms are expressed by fairness
properties. Fairness means that if a certain operation is possible, then the
program must eventually execute it. To our knowledge, all fairness condi-
tions that have been proposed fall into one of two classes: weak fairness and
strong fairness. We �rst de�ne weak and strong fairness informally, then
translate the informal de�nitions into TLA formulas.

Weak fairness asserts that an operation must be executed if it remains
possible to do so for a long enough time. \Long enough" means until the
operation is executed, so weak fairness asserts that eventually the operation
must either be executed or become impossible to execute|perhaps only
brie
y. A naive temporal-logic translation is

weak fairness : (3 executed) _ (3 impossible)

Strong fairness asserts that the operation must be executed if it is often
enough possible to do so. Interpreting \often enough" to mean in�nitely
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often, strong fairness asserts that either the operation is eventually executed,
or its execution is not in�nitely often possible. Not in�nitely often possible
is the same as eventually always impossible (because (8) implies :23 : : :�

32: : : :), so we get

strong fairness : (3 executed) _ (32 impossible)

These two temporal formulas assert fairness at \time zero", but we want
fairness to hold at all times. The correct formulas are therefore

weak fairness : 2((3 executed) _ (3 impossible))
strong fairness : 2((3 executed) _ (32 impossible))

Temporal-logic reasoning, using either the axioms in Section 6.6 or the se-
mantic de�nitions of 2 and 3, shows that these conditions are equivalent
to

weak fairness : (23 executed) _ (23 impossible)
strong fairness : (23 executed) _ (32 impossible)

To formalize these de�nitions, we must de�ne \executed" and \impossible".

In Program 1, execution of the operation x := x + 1 corresponds to an
M1 step in the behavior. To obtain a TLA formula, the \3 executed" for
this operation must be expressed as 3hM1i(x;y). In general, \3 executed"
will be expressed as 3hAif , where A is the action that corresponds to an
execution of the operation, and f is an n-tuple of relevant variables. Recall
that an hAif step is an A step that changes the value of f . Steps that do not
change the values of any relevant variables might as well not have occurred,
so there is no need to consider them as representing operation executions.

We now de�ne \impossible". Executing an operation means taking an
hAif step for some action A and state function f . It is possible to take such
a step i� Enabled hAif is true. Thus, Enabled hAif asserts that it is possible
to execute the operation represented by the action hAif , so \impossible" is
:Enabled hAif .

Weak fairness and strong fairness are therefore expressed by the two
formulas

WFf (A)
�

= (23hAif)_ (23:Enabled hAif) (18)

SFf (A)
�

= (23hAif)_ (32:Enabled hAif) (19)
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Init�
�

= (x = 0) ^ (y = 0)

M1
�

= (x0 = x + 1) ^ (y0 = y) M2
�

= (y0 = y + 1) ^ (x0 = x)

M
�

= M1 _M2

�
�

= Init� ^ 2[M](x;y) ^ WF(x;y)(M1) ^ WF(x;y)(M2)

Figure 3: The TLA formula � describing Program 1.

6.4 Rewriting the Fairness Condition

We now rewrite the property23hM1i(x;y)^23hM2i(x;y) in terms of fairness
conditions. An hM1i(x;y) step is one that increments x by one, leaves y
unchanged, and changes the value of (x; y). It is always possible to take
a step that adds one to x and leaves y unchanged, and adding one to a
number changes it. Hence, Enabled hM1i(x;y) equals true throughout any
execution of Program 1. Since 2:true equals false, both WF(x;y)(M1) andNote 9
SF(x;y)(M1) equal 23hM1i(x;y). Similarly, WF(x;y)(M2) and SF(x;y)(M2)
both equal 23hM2i(x;y). We can therefore rewrite the de�nition (17) of �
as shown in Figure 3 on this page.

Suppose we wanted the weaker liveness condition that execution never
terminates, so the program is described by the RTLA formula (14) on
page 15. The same argument as for M1 and M2 shows that 23hMi(x;y)
equals WF(x;y)(M). Therefore, Program 1 with this weaker liveness condi-
tion is described by the TLA formula Init� ^ 2[M](x;y) ^ WF(x;y)(M).

6.5 Examining Formula �

TLA formulas that represent programs can always be written in the same
form as � of Figure 3|that is, as a conjunction Init ^2[N ]f ^ F , where

Init is a predicate specifying the initial values of variables.

N is the program's next-state relation, the action whose steps represent
executions of individual atomic operations.

f is the n-tuple of all program variables.

F is the conjunction of formulas of the formWFf (A) and/or SFf (A), where
A is an action representing some subset of the program's atomic op-
erations.
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We now examine the behaviors that satisfy formula �. Let

((x
�

= 7; y
�

= �10; z
�

= \abc"; : : :))

denote a state s such that s[[x]] = 7, s[[y]] = �10, and s[[z]] = \abc". (The
\: : :" indicates that the value of s[[v]] is left unspeci�ed for all other variables
v.) A behavior that satis�es � begins in a state satisfying Init�, and consists
of a sequence of [M](x;y) steps|ones that are either M steps or else leave
x and y unchanged. One such behavior is

(( x
�

= 0, y
�

= 0, z
�

= \abc" : : : ))

(( x
�

= 1, y
�

= 0, z
�

= true : : : ))

(( x
�

= 2, y
�

= 0, z
�

= true : : : ))

(( x
�

= 2, y
�

= 0, z
�

= �20 : : : ))

(( x
�

= 2, y
�

= 1, z
�

= Nat : : : ))
...

Observe that � constrains only the values of x and y; it allows all other vari-
ables such as z to assume completely arbitrary values. Suppose 	 is a for-
mula describing a program that has no variables in common with �. Then a
behavior satis�es �^	 i� it represents an execution of both programs|that
is, i� it describes a universe in which both � and 	 are executed concur-
rently. Thus, �^	 is the TLA formula representing the parallel composition
of the two programs. In the realm of closed systems, conjunction represents
parallel composition only in special cases|for example, when the programs
do not interact, so they are represented by TLA formulas with no variables
in common. The desire to make conjunction represent parallel composition Note 10
for interacting programs guides our approach to open systems, but that is
a topic to be discussed elsewhere.

The observation that a single behavior can represent an execution of two
or more noninteracting programs explains why we represent terminating as
well as nonterminating executions by in�nite behaviors. Termination of a
programmeans that it has stopped; it does not mean that the entire universe
has come to a halt. A terminating execution is represented by a behavior in
which eventually all of the program's variables stop changing.

It is unusual in computer science for the semantics of a formula describing
a program with variables x and y to involve other variables such as z. One
of the keys to TLA's simplicity is that its semantics rests on a single, in�nite
set of variables|not on a di�erent set of variables for each program. Thus,
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in TLA as in elementary logic, we can take the conjunction F ^ G and
negation :F of any formulas F and G|not just of formulas with properly
matching variable declarations.

6.6 Simple TLA

We now complete the de�nition of Simple TLA by adding one more bit of
notation. (The full logic, containing quanti�cation, is introduced in Sec-
tion 9.) It is convenient to de�ne the action Unchanged f , for f a state
function, by

Unchanged f
�

= f 0 = f

Thus, an Unchanged f step is one in which the value of f does not change.

The syntax and semantics of Simple TLA, along with the additional
notation we use to write TLA formulas, are all summarized in Figure 4 on
the next page. This �gure explains all you need to know to understand TLA
formulas such as formula � of Figure 3.

A logic contains not only syntax and semantics, but also rules for proving
theorems. Figure 5 on page 22 lists all the axioms and proof rules we need
for proving simple TLA formulas.3 We will not prove the soundness of these
rules here.

The rules of simple temporal logic are used to derive temporal tautolo-
gies|formulas that are true regardless of the meanings of their elementary
formulas. Rule STL1 encompasses the rules of ordinary logic, such as modusNote 11
ponens. The Lattice Rule assumes a (possibly in�nite) nonempty set of
formulas Hc indexed by elements of a set S. A partial order � on S is
well-founded i� there exists no in�nite descending chain c1 � c2 � : : : with
all the ci in S. This rule permits the formalization of counting-down argu-
ments, such as the ones traditionally used to prove termination of sequential
programs.

Rules STL1{STL6, the Lattice Rule, and the basic rules TLA1 and TLA2
form a relatively complete proof system for reasoning about algorithms in
TLA. Roughly speaking, this means that every valid TLA formula that
we must prove to verify properties of algorithms would be provable from
these rules if we could prove all valid action formulas. (This is analogous to
the traditional relative completeness results for program veri�cation, which

3A proof rule F

G
asserts that ` F implies ` G. We use the term \rule" for both axioms

and proof rules, since an axiom may be viewed as a proof rule with no hypotheses.
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Syntax

hformulai
�

= hpredicatei j 2[hactioni]hstate functioni j :hformulai

j hformulai ^ hformulai j 2 hformulai

hactioni
�

= boolean-valued expression containing constants,
variables, and primed variables

hpredicatei
�

= boolean-valued hstate functioni j Enabled hactioni

hstate functioni
�

= expression containing constants and variables

Semantics

s[[f ]]
�

= f(8 `v ' : s[[v]]=v) �[[F ^G]]
�

= �[[F ]]^ �[[G]]

s[[A]]t
�

= A(8 `v ' : s[[v]]=v; t[[v]]=v0) �[[:F ]]
�

= :�[[F ]]

j= A
�

= 8s; t 2 St :j= s[[A]]t j= F
�

= 8� 2 St1 :j= �[[F ]]

s[[Enabled A]]
�

= 9t 2 St : s[[A]]t

hhs0; s1; : : :ii[[2F ]]
�

= 8n 2 Nat : hhsn; sn+1; : : :ii[[F ]]

hhs0; s1; : : :ii[[A]]
�

= s0[[A]]s1

Additional notation

f 0
�

= f(8 `v ' : v0=v) 3F
�

= :2:F

[A]f
�

= A _ (f 0 = f) F ; G
�

= 2(F ) 3G)

hAif
�

= A ^ (f 0 6= f) WFf (A)
�

= 23hAif _23:Enabled hAif

Unchanged f
�

= f 0 = f SFf (A)
�

= 23hAif _32:Enabled hAif

where f is a hstate functioni s, s0, s1, : : : are states

A is an hactioni � is a behavior

F , G are hformulais (8 `v ' : : : :=v; : : :=v0) denotes substitution

for all variables v

Figure 4: Simple TLA.
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The Rules of Simple Temporal Logic

STL1: F provable by
propositional logic

F

STL4: F ) G

2F ) 2G

STL2: ` 2F ) F STL5: ` 2(F ^ G) � (2F ) ^ (2G)

STL3: ` 22F � 2F STL6: ` (32F ) ^ (32G) � 32(F ^G)

LATTICE: � well-founded partial order on nonempty set S
F ^ (c 2 S) ) (Hc ; (G _ 9d 2 S : (c � d) ^Hd))

F ) ((9c 2 S : Hc); G)

The Basic Rules of TLA

TLA1: ` 2P � P ^2[P ) P 0]P TLA2: P ^ [A]f ) Q ^ [B]g

2P ^2[A]f ) 2Q ^ 2[B]g

Additional Rules

INV1: I ^ [N ]f ) I0

I ^2[N ]f ) 2I

INV2: ` 2I ) (2[N ]f � 2[N ^ I ^ I0]f )

WF1:

P ^ [N ]f ) (P 0 _Q0)

P ^ hN ^Aif ) Q0

P ) Enabled hAif

2[N ]f ^WFf (A) ) (P ; Q)

WF2:

hN ^ Bif ) hMig
P ^ P 0 ^ hN ^Aif ) B

P ^ Enabled hMig ) Enabled hAif
2[N ^:B]f ^WFf (A) ^2F ) 32P

2[N ]f ^WFf (A) ^2F ) WFg(M)

SF1:

P ^ [N ]f ) (P 0 _Q0)

P ^ hN ^Aif ) Q0

2P ^2[N ]f ^2F ) 3Enabled hAif

2[N ]f ^ SFf (A) ^2F ) (P ; Q)

SF2:

hN ^ Bif ) hM ig
P ^ P 0 ^ hN ^Aif ) B

P ^ Enabled hMig ) Enabled hAif
2[N ^:B]f ^ SFf (A) ^2F ) 32P

2[N ]f ^ SFf (A) ^2F ) SFg(M)

where F , G, Hc are TLA formulas P , Q, I are predicates
A, B, N ,M are actions f , g are state functions

Figure 5: The axioms and proof rules of Simple TLA.
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assume provability of all valid predicates [4].) The precise statement and
proof of the completeness theorem will appear elsewhere.

A complete proof system is not necessarily a convenient one. There
are a number of rules that are useful in practice but are either di�cult or
impossible to derive from STL1{TLA2. For a practical system, STL1{STL6
should be expanded to include some useful temporal tautologies like

` (2F ) ^ (3G) ) 3(F ^G)

With practice, such simple tautologies become as obvious as the ordinary
laws of propositional logic, and they are usually assumed in proofs that are
not machine-checked. We will not bother to provide a complete list of the
useful rules and theorems of simple temporal logic.

Assuming simple temporal reasoning, we have found that TLA2 and the
\additional rules" INV1{SF2 of Figure 5 provide a convenient system for all
the proofs that arise in reasoning about programs with TLA. The overbars
in rules WF2 and SF2 are explained in Section 9.3; for now, the reader can
pretend that they are not there, obtaining special cases of the rules.

We do not know how to prove \practical completeness", and there are
probably examples in which TLA2 and INV1{SF2 are inadequate, compli-
cated reasoning with TLA1 and TLA2 being necessary. However, we have
not yet encountered such examples and we believe they will be rare.

7 Proving Simple Properties of Programs

Having expressed Program 1 of Figure 1 as the TLA formula � of Figure 3,
we now consider how to express and prove properties of such a program.
A property is expressed by a TLA formula F . The assertion \program �
has property F" is expressed in TLA by the validity of the formula �) F ,
which asserts that every behavior satisfying � satis�es F . We consider two
popular classes of properties, invariance and eventuality.

7.1 Invariance Properties

7.1.1 De�nition

An invariance property is expressed by a TLA formula 2P , where P is a
predicate. Examples of invariance properties include

partial correctness P asserts that if the program has terminated, then
the answer is correct.
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deadlock freedom P asserts that the program is not deadlocked.

mutual exclusion P asserts that at most one process is in its critical sec-
tion.

Invariance properties are proved with rule INV1 of Figure 5. Its hypothesis
asserts that any [N ]f step starting with I true in the old state leaves I true
in the new state. The conclusion asserts that, for any behavior that starts
in a state with I true and has only [N ]f steps, I is true in all states. The
soundness of this deduction is proved by a simple induction argument.

7.1.2 An Example: Type Correctness

One part of the program in Figure 1 does not correspond to anything in
Figure 3|the type declaration of the variables x and y. Such a declara-
tion is not needed because type-correctness is an invariance property of the
program, asserting that x and y are always natural numbers. We illustrate
invariance proofs by proving type correctness of Program 1. Type correct-
ness is expressed formally as �) 2T , where

T
�

= (x 2 Nat) ^ (y 2 Nat) (20)

Rule INV1 tells us that we must prove

Init� ) T (21)

T ^ [M](x;y)) T 0 (22)

from which we deduce �) 2T as follows

� ) Init� ^2[M](x;y) fby de�nition of � (Figure 3)g

) T ^ 2[M](x;y) fby (21)g

) 2T fby (22) and INV1g

The proof of (21) is trivial. The proof of (22) is quite simple, but we will
sketch it to show how the structure of the formulas leads to a natural de-
composition of the proof. First, we expand the de�nition of [M](x;y).

[M](x;y) � M_ ((x; y)
0 = (x; y)) fby (12)g

� M1 _M2 _ ((x; y)
0 = (x; y)) fby de�nition of Mg
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Since [M](x;y) is the disjunction of three actions, the proof of (22) decom-
poses into the proof of three simpler formulas:

T ^M1 ) T 0 (23)

T ^M2 ) T 0 (24)

T ^ ((x; y)0 = (x; y)) ) T 0 (25)

We consider the proof of (23); the others are equally simple. First, we
expand the de�nition of T 0.

T 0
� ((x 2 Nat) ^ (y 2 Nat))0 fby (20)g

� (x0 2 Nat) ^ (y0 2 Nat) fby (3)g

The structure of T 0 as the conjunction of two actions leads to the decompo-
sition of the proof of (23) into the proof of the two simpler formulas

T ^M1 ) x0 2 Nat (26)

T ^M1 ) y0 2 Nat (27)

The proof of (26) is

T ^M1 ) (x 2 Nat) ^ (x0 = x+ 1) fby de�nition of T and M1g

) x0 2 Nat fby properties of natural numbersg

and the proof of (27) is equally trivial.
The purpose of this exercise in simple mathematics is to illustrate how

\mechanical" the proof of this invariance property is. Rule INV1 tells us
we must prove (21) and (22), and the structure of [M](x;y) and T leads to
the decomposition of those proofs into the veri�cation of simple facts about
natural numbers, such as (x 2 Nat)) (x+ 1 2 Nat).

7.1.3 General Invariance Proofs

The proof of � ) 2T was simple because T is an invariant of the action
[M](x;y), meaning that T ^ [M](x;y) implies T

0. Therefore, � ) 2T could
be proved by simply substituting T for I in rule INV1. For invariance prop-
erties 2P other than simple type correctness, P is usually not an invariant.
In general, one proves that 2P is an invariance property of the program
represented by the TLA formula Init ^ 2[N ]f ^ F by �nding a predicate I
(the invariant) satisfying the three conditions

Init ) I (28)

I ) P (29)

I ^ [N ]f ) I 0 (30)
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Rule INV1 and some simple temporal reasoning shows that (28){(30) imply
Init ^2[N ]f ) 2P .

Creative thought is needed to �nd the invariant I . Once I is found,
verifying (28){(30) is a matter of mechanically applying the de�nitions and
using the structure of the formulas to decompose the proofs, just as in the
proof of �) 2T above. The formulas Init , I , and N will usually be much
more complicated than in the example, but the principle is the same.

Formulas (28){(30) are assertions about predicates and actions; they are
not temporal formulas. All the work in proving an invariance property is
done in the realm of predicates and actions|expressions involving variables
and primed variables that can be manipulated by ordinary mathematics.
Temporal reasoning is used only to deduce Init ^ 2[N ]f ) 2P from (28){
(30). It is this reduction of temporal properties to ordinary, nontemporal
reasoning that makes TLA practical.

7.1.4 More About Invariance Proofs

Over the years, many methods have been proposed to prove invariance prop-
erties of programs, including Floyd's method [10], Hoare logic [13], and the
Owicki-Gries method [19]. All of these methods are essentially the same|
when applied to the same program, they involve the same proof steps, though
perhaps in di�erent orders and with di�erent notation. These methods can
be described formally in TLA as applications of rule INV1. The advantage
of TLA is that the proof method arises directly from the logic, without the
need for proof rules based on a particular programming language.

We illustrate the advantage of working in a simple logic by considering
the use of one invariance property to prove another. We have just proved
� ) 2T , the assertion that the program satis�es the invariance property
2T . How can we use this fact when proving that the program satis�es a
second invariance property 2P? Some methods have a special rule saying
that if a program satis�es 2T , then one can pretend that T is true when
reasoning about the program. (The \substitution axiom" of Unity [6] is
such a rule.) In TLA, we use Rule INV2 of Figure 5. This rule implies that
having proved �) 2T , we can rewrite the de�nition of � in Figure 3 as

�
�

= Init� ^ 2[M^ T ^ T
0](x;y) ^ WF(x;y)(M1) ^ WF(x;y)(M2)

It follows that in proving � implies 2P , instead of assuming every step to
be a [M](x;y) step, we can make the stronger assumption that every step is a
[M^T ^T 0](x;y) step. More precisely, we can substituteM^T ^T 0 instead
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ofM for N in rule INV1, giving a stronger proof rule. This stronger rule is
tantamount to \pretending T is true". The validity of this pretense follows
directly from the logic; it is not an ad hoc rule.

7.1.5 More About Types

In TLA, variables have no types. Any variable can assume any value. Type-
correctness of a program is a provable property, not a syntactic requirement
as in strongly-typed programming languages. This has some subtle conse-
quences. Consider the action x0 = x + 1. Its meaning is a boolean-valued
function on pairs of states. Suppose s and t are states that assign the values
\abc" and true to x, respectively|that is, so s[[x]] equals \abc" and t[[x]]
equals true. Then s[[x0 = x + 1]]t equals true = \abc" + 1. But what is
\abc"+ 1? Does it equal true?

We don't know the answers to these questions, and we don't care. All
we know is that \abc"+ 1 is some value. Since that value is either equal to
or unequal to true, the expression true = \abc" + 1 is equal to either true

or false. More precisely, we assume that m+ n is an element of the set Val
of values, for any m and n in Val. However, we have no rules for deducing
anything about the value of m + n except when m and n are numbers. In
general, we assume that all functions such as \+" are total|their domains
include all elements of Val, and their range is (a subset of) Val. What we
usually think of as the domain of a function is just the set of values for which
we know how to evaluate the function. We know how to evaluate p^ q only
when p and q are elements of the set Bool of booleans, but it is de�ned (in
the mathematical sense of being a meaningful expression) for all values p

and q.

Since we can't deduce anything about the value \abc"+ 1, whatever we
prove about an algorithm is true regardless of what that value is. If we can
prove that the program is correct, then either it will never add 1 to \abc"

(as in the case of Program 1), or else correctness does not depend on the
result of that addition.

This approach may seem strange to computer scientists used to types
in programming languages, but it captures the way mathematicians have
reasoned for thousands of years. For example, mathematicians would say
that the formula

(n 2 Nat)) (n+ 1 > n)
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is true for all n. Substituting \abc" for n yields

(\abc" 2 Nat)) (\abc"+ 1 > \abc")

This formula equals true regardless of what \abc"+1 equals, and whether or
not that value is greater than \abc", because \abc" 2 Nat equals false. TheNote 12
formula is not meaningless or \type-incorrect" just because we don't know
the value of \abc"+ 1; we don't need any complicated three-valued logic to
understand the formula.

Types are a useful feature in programming languages, but they are a
needless complication when reasoning about algorithms. Logic should be
simple, and one of the ways we keep TLA simple is by not complicating it
with any notion of types.

We have found computer scientists to be skeptical of our eliminating
types from logic. They seem to feel that type-checking is easier than proving
a property like 2T . This is nonsense. Type-checking the program of Figure 1
is logically equivalent to proving the TLA formula � ) 2T , so a type-
checker must perform exactly the same reasoning that we did. Adding strong
typing to the logic would mean that a TLA formula would be type-correct
only if the proof of the corresponding invariance property were so trivial that
it could be done automatically. If type-correctness of the program were not
completely trivial, so its proof required even the tiniest bit of intelligence,
then strong typing would prohibit us from expressing it in the logic.

We can assure the reader that, just as mathematics thrived for thousands
of years without type theory, logic works �ne without types. Experience has
taught us that adding types would only make TLA less convenient to use.
The absence of types in TLA does not prevent mechanized type checking.
One can still write a program that tries to prove the TLA formula represent-
ing type correctness, and complains if it fails. But only an intelligent human
can determine if the type checker failed because of its stupidity, or because
the TLA formula is invalid. If he expects to verify interesting properties of
concurrent algorithms, our human had better be intelligent enough to prove
simple type correctness.

7.2 Eventuality Properties

The second class of properties we consider are eventuality properties|ones
asserting that something eventually happens. Here are some traditional
eventuality properties and their expressions in temporal logic:

termination The program eventually terminates: 3 terminated.
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service If a process has requested service, then it eventually is served:
requested ; served .

message delivery If a message is sent often enough, then it is eventually
delivered: (23 sent)) 3 delivered.

Although eventuality properties are expressed by a variety of temporal for-
mulas, their proofs are always reduced to the proof of leads-to properties|
formulas of the form P ; Q. For example, suppose we want to prove that
Program 1 increases the value of x without bound. The TLA formula to be
proved is

� ^ (n 2 Nat) ) 3(x > n) (31)

The Lattice Rule of Figure 5 together with some simple temporal reasoning
shows that (31) follows from

� ) ((n 2 Nat ^ x = n); (x = n+ 1)) (32)

To illustrate the use of TLA in proving leads-to properties, we now sketch
the proof of (32).

Since safety properties don't imply that anything ever happens, leads-to
properties must be derived from the program's fairness condition. Examin-
ing Figure 5 leads us to try rule WF1, with the following substitutions:

P  n 2 Nat ^ x = n N  M f  (x; y)
Q x = n+ 1 A  M1

The rule's hypotheses become

(n 2 Nat ^ x = n) ^ [M](x;y) ) ((n 2 Nat ^ x0 = n) _ (x0 = n+ 1))

(n 2 Nat ^ x = n) ^ hM1i(x;y) ) (x0 = n + 1)

(n 2 Nat ^ x = n) ) Enabled hM1i(x;y)

which follow easily from the de�nitions of M1 and M in Figure 3. The
rule's conclusion becomes

2[M](x;y) ^WF(x;y)(M1) ) ((n 2 Nat ^ x = n); (x = n+ 1))

which, by de�nition of �, implies (32).
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7.3 Other Properties

We have seen how invariance properties and eventuality properties are ex-
pressed as TLA formulas and proved. But, what about more complicated
properties? How would one state the following property as a TLA formula?

A behavior begins with x and y both zero, and repeatedly in-
crements either x or y (in a single operation), choosing nonde-
terministically between them, but choosing each in�nitely many
times.

The answer, of course, it that we already have expressed this property in
TLA. It is formula � of Figure 3.

In TLA, there is no distinction between a program and a property. In-
stead of viewing � as a description of a program, we can just as well consider
it to be a property that we want a program to satisfy. The formula �, like
the program of Figure 1 that it represents, is so simple that we can regard
it as a speci�cation of how we want a program to behave. As our next ex-
ample, we consider a program that implements property �. That is, we will
give a program represented by a TLA formula 	 that implies �.

8 Another Example

8.1 Program 2

Our next example is Program 2 of Figure 6 on the next page, written in a
language invented for this program. (Since its only purpose is to help us
write the TLA formula, the programming-language description of the pro-
gram can be written with any convenient notation.) The program consists of
two processes, each repeatedly executing a loop that contains three atomic
operations. The variable sem is an integer semaphore, and P and V are the
standard semaphore operations [8]. Since Figure 6 is an informal descrip-
tion, it doesn't matter whether or not you understand it. The real de�nition
of Program 2 is the TLA formula 	 de�ned below.

Describing the execution of Program 2 as a sequence of states requires
each state to specify not only the values of the variables x, y, and sem, but
also the control state of each process. Control in process 1 can be at one
of the three \control points" �1, �1, or 
1. We introduce the variable pc1
that will assume the values \a", \b", and \g", denoting that control is at
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var integer x, y = 0 ;
semaphore sem = 1 ;

cobegin loop �1: h P (sem) i ;
�1: h x := x+ 1 i ;

1: h V (sem) i endloop

loop �2: h P (sem) i ;
�2: h y := y + 1 i ;

2: h V (sem) i endloop

coend

Figure 6: Program 2|our second example program.

�1, �1, and 
1, respectively. A similar variable pc2 denotes the control state
of process 2.

The de�nition of the TLA formula 	 that represents Program 2 is given
in Figure 7 on the next page.4 We have used the following convention to
make our formulas easier to read: a list of formulas preceded by \^"s denotes
the conjunction of those formulas. Thus, Figure 7 de�nes the predicate Init	
to be the conjunction of three formulas, the second of which is (x = 0)^(y =
0).

As we explained in Section 6.5 (page 18), a program is represented by a
formula Init^2[N ]f ^F . In this example, the formulas Init and f are fairly
obvious: Init is the predicate Init	 that speci�es the initial values of the
variables, and f is the 5-tuple w consisting of all the program's variables.
The next-state relation N and the fairness condition F are less obvious and
merit some discussion.

8.1.1 The Next-State Relation

Corresponding to the six atomic operations in Figure 6 are the six actions
�1, : : : , 
2 de�ned in Figure 7. The four conjuncts in the de�nition of �1
assert that an �1 step:

1. Starts in a state with pc1 = \a" (control in the �rst process is at
control point �1) and 0 < sem (the semaphore is positive).

2. Ends in a state with pc1 = \b" (control in the �rst process is at control
point �1).

4Section 10.2 discusses why Figure 7 is longer and seems more complex than Figure 6.
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Init	
�

= ^ (pc1 = \a") ^ (pc2 = \a")
^ (x = 0) ^ (y = 0)
^ sem = 1

�1
�

= ^ (pc1 = \a")^ (0 < sem)
^ pc01 = \b"

^ sem0 = sem � 1
^ Unchanged (x; y; pc2)

�2
�

= ^ (pc2 = \a") ^ (0 < sem)
^ pc02 = \b"

^ sem 0 = sem � 1
^ Unchanged (x; y; pc1)

�1
�

= ^ pc1 = \b"

^ pc01 = \g"

^ x0 = x+ 1
^ Unchanged (y; sem; pc2)

�2
�

= ^ pc2 = \b"

^ pc02 = \g"

^ y0 = y + 1
^ Unchanged (x; sem; pc1)


1
�

= ^ pc1 = \g"

^ pc01 = \a"

^ sem 0 = sem + 1
^ Unchanged (x; y; pc2)


2
�

= ^ pc02 = \a"

^ pc2 = \g"

^ sem0 = sem + 1
^ Unchanged (x; y; pc1)

N1
�

= �1 _ �1 _ 
1 N2
�

= �2 _ �2 _ 
2

N
�

= N1 _N2

w
�

= (x; y; sem; pc1; pc2)

	
�

= Init	 ^ 2[N ]w ^ SFw(N 1)^ SFw(N 2)

Figure 7: The formula 	 describing Program 2.
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3. Decrements sem.

4. Does not change the values of x, y, and pc2

Thus, an �1 step represents an execution of statement �1 of Figure 6. Sim-
ilarly, the other actions represent the other operations of the program in
Figure 6.

An N1 step is either an �1 step, a �1 step, or a 
1 step, so it represents
an execution of an atomic operation by the �rst process. Similarly, an N2

step represents an execution of an atomic operation by the second process.
An N step represents a step of either process, so every program step is an N
step|in other words, N is the program's next-state relation. Thus, 2[N ]w
is true for a behavior i� every step of the behavior is either a program step
or else leaves the variables x, y, sem, pc1, and pc2 unchanged.

8.1.2 The Fairness Condition

We want program 	 to implement program �. Hence, 	 must guarantee
that both x and y are incremented in�nitely often. To guarantee that x is
incremented in�nitely often, we need some fairness condition to ensure that
in�nitely many N1 steps occur. This condition must rule out the following
behavior, in which process 1 is never executed.

((x
�

= 0; y
�

= 0; sem
�

= 1; pc1
�

= \a"; pc2
�

= \a"; : : :))

((x
�

= 0; y
�

= 0; sem
�

= 0; pc1
�

= \a"; pc2
�

= \b"; : : : ))

((x
�

= 0; y
�

= 1; sem
�

= 0; pc1
�

= \a"; pc2
�

= \g"; : : :))

((x
�

= 0; y
�

= 1; sem
�

= 1; pc1
�

= \a"; pc2
�

= \a"; : : :))

((x
�

= 0; y
�

= 1; sem
�

= 0; pc1
�

= \a"; pc2
�

= \b"; : : : ))

((x
�

= 0; y
�

= 2; sem
�

= 0; pc1
�

= \a"; pc2
�

= \g"; : : :))

((x
�

= 0; y
�

= 2; sem
�

= 1; pc1
�

= \a"; pc2
�

= \a"; : : :))
...

Observe that an �1 step is possible i� pc1 equals \a" and sem is positive, so
Enabled �1 equals (pc1 = \a")^ (0 < sem). In this behavior, Enabled �1 is
true whenever pc2 equals \a", and false otherwise|both situations occurring
in�nitely often. An �1 step is also an N1 step. Moreover, every �1 step
changes pc1 and sem, so it changes w. Hence, any �1 step is an hN1iw step,
so hN1iw is enabled and disabled in�nitely often in this behavior.
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The weak fairness condition WFw(N1) asserts that hN1iw is disabled
in�nitely often or in�nitely many hN1iw steps occur. Since hN1iw is disabled
in�nitely often, WFw(N1) does not rule out this behavior.

The strong fairness condition SFw(N1) asserts that either hN1iw is even-
tually forever disabled or else in�nitely many hN1iw steps occur. Neither
assertion is true for this behavior, so the behavior does not satisfy SFw(N1).
This example indicates why we need the fairness condition SFw(N1) to guar-
antee that x is incremented in�nitely often.

There are other ways of writing this fairness condition. An equivalent
de�nition of 	 is obtained by replacing SFw(N1) with SFw(�1)^ SFw(�1)^
SFw(
1) or with SFw(�1)^WFw(�1)^WFw(
1). Equivalence of these def-
initions follows from the formulas

Init	 ^2[N ]w ) SFw(N1) � ^ SFw(�1)
^ SFw(�1)
^ SFw(
1)

(33)

Init	 ^2[N ]w ) SFw(�1) �WFw(�1) (34)

Init	 ^2[N ]w ) SFw(
1) �WFw(
1) (35)

Intuitively, (33) holds because once control reaches �1, �1, or 
1, it remains
there until the corresponding action is executed; (34) holds because once
control reaches �1, action �1 is enabled until it is executed; and (35) is
similar to (34).

Corresponding reasoning about y and N2 leads to the fairness condition
SFw(N2) for the second process.

8.2 Proving Program 2 Implements Program 1

To show that Program 2 implements Program 1, we must prove the TLA
formula 	) �, where 	 is de�ned in Figure 7 on page 32 and � is de�ned in
Figure 3 on page 18. By these de�nitions, 	) � follows from the following
three formulas.

Init	 ) Init� (36)

2[N ]w ) 2[M](x;y) (37)

	 ) WF(x;y)(M1) ^WF(x;y)(M2) (38)

Formula (36) asserts that the initial condition of 	 implies the initial
condition of �. It follows easily from the de�nitions of Init	 and Init�.

34



Roughly speaking, formula (37) asserts that every N step simulates an
M step, and (38) asserts that Program 2 implements Program 1's fairness
conditions. We now sketch the proofs of these two formulas.

8.2.1 Proof of Step-Simulation

Applying rule TLA2 of Figure 5 with true substituted for P and Q shows
that (37) follows from

[N ]w ) [M](x;y) (39)

By de�nition, [N ]w equals �1 _ : : : _ 
2 _ (w0 = w) and [M](x;y) equals
M1 _M2 _ ((x; y)

0 = (x; y)). Formula (37) therefore follows from

�1 ) (x; y)0 = (x; y) �2 ) (x; y)0 = (x; y)
�1 ) M1 �2 ) M2


1 ) (x; y)0 = (x; y) 
2 ) (x; y)0 = (x; y)
(w0 = w) ) (x; y)0 = (x; y)

(40)

The reader can check that all these implications are trivial consequences of
the de�nitions.

8.2.2 Proof of Fairness

For the fairness condition (38), we sketch the proof that 	 implies
WF(x;y)(M1). The proof that it implies WF(x;y)(M2) is similar.

Strong fairness of Program 2 is necessary to insure that x is incremented
in�nitely often, so Figure 5 suggests applying SF2 (without the overbars). At
�rst glance, SF2 doesn't seem to work because its conclusion implies a strong
fairness condition, and we want to prove 	 )WF(x;y)(M1). However, if x
is a natural number, so x0 6= x+ 1, then Enabled M1 equals true. A simple
invariance argument proves � ) 2(x 2 Nat), so � ) 2(Enabled M1).
Hence, � implies that SF(x;y)(M1) and WF(x;y)(M1) are equivalent|both
being equal to 23hM1i(x;y). It therefore su�ces to prove 	) SF(x;y)(M1).

Comparing the conclusion of rule SF2 with the formula we are trying to
prove apparently leads to the following substitutions in the rule.

N  N M M1 f  w g  (x; y)

However, it turns out that we need to strengthen N by the use of an in-
variant. We must �nd a predicate I (an invariant) that rules out these bad
states and satis�es

Init	 ^2[N ]w ) 2I (41)
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By rule INV2, we can then rewrite 	 as

Init	 ^ 2[N ^ I ^ I
0]w ^ SFw(N1) ^ SFw(N2)

and substitute N ^ I ^ I 0 for N . We will discover the invariant I in the
course of the proof.

The �rst hypothesis of the rule and (40) suggest substituting �1 for
B. The conclusion and the second hypothesis leads to the substitution of
N1 for A and SFw(N2) for 2F , using the temporal tautology SFw(N2) �
2SFw(N2). The second and fourth hypotheses lead to the substitution of
pc1 = \b" for P . With these substitutions, the proof rule becomes

hN ^ I ^ I 0 ^ �1iw ) hM1i(x;y)

(pc1 = \b") ^ (pc01 = \b") ^ hN ^ I ^ I 0 ^ N1iw ) �1
(pc1 = \b") ^ Enabled hM1i(x;y) ) Enabled hN1iw

2[N ^ I ^ I 0 ^ :�1]w ^ SFw(N1)^ SFw(N2) ) 32(pc1 = \b")

2[N ^ I ^ I 0]w ^ SFw(N1) ^ SFw(N2) ) SF(x;y)(M1)

The �rst three hypotheses are simple action formulas. The second and
third follow easily from the de�nitions of N1, �1 and M1. To prove the
�rst hypothesis, we must show that N ^ I ^ I 0 ^ �1 ^ (w0 6= w) implies
M1 ^ ((x; y)

0
6= (x; y)). As we observed in (40), �1 implies M1. Since �1

also implies x0 = x + 1, which implies x0 6= x if x is a natural number, the
�rst hypothesis holds if the invariant I implies x 2 Nat.

The fourth hypothesis is a temporal formula, which we now examine. To
simplify the intuitive reasoning, let us ignore steps that don't change w. The
fourth hypothesis then asserts that if every step is an N ^ I ^ I 0 step that
is not a �1 step, and the fairness conditions hold, then eventually control
reaches �1 and remains there forever. From the informal description of the
program in Figure 6, this seems valid. No matter where control starts in
process 1, fairness implies that eventually it must reach �1, where it must
remain forever if no �1 step is performed.

Unfortunately, this intuitive reasoning is wrong. The fourth hypothesis
is not a valid TLA formula. For example, consider a behavior that starts
in a state with pc1 = pc2 = \a" and sem = 0, and that remains in this
state forever. In such a behavior, the left-side of the implication in the
fourth hypothesis is true, but pc1 never becomes equal to \b". Thus, the
hypothesis is not satis�ed by these behaviors.

The fourth hypothesis is invalid for behaviors starting in \bad" states|
ones that are not reachable by executing the program from an initial state

36



satisfying Init	. Such states have to be ruled out by the invariant I . We
must substitute SFw(N2)^2I for F and (pc1 = \b")^ I for P in Rule SF2,
obtaining the following as the fourth hypothesis.

G ) 32((pc1 = \b") ^ I)

where G
�

= 2[N ^ I ^ I 0 ^ :�1]w ^ SFw(N1) ^ SFw(N2) ^ 2I

(42)

Remembering that I must imply x 2 Nat, the reader with experience reason-
ing about concurrent programs will discover that the appropriate invariant
is

I
�

= ^ x 2 Nat

^ _ (sem = 1) ^ (pc1 = pc2 = \a")
_ (sem = 0) ^ _ (pc1 = \a") ^ (pc2 2 f\b"; \g"g)

_ (pc2 = \a") ^ (pc1 2 f\b"; \g"g)

(Note the use of \_" lists to denote disjunctions, and of indentation to
eliminate parentheses.) With this de�nition of I , the invariance property
(41) follows easily from Rule INV1.

Having deduced that we need to prove (42), we must understand why it
is true. A little thought reveals that (42) holds because control in process 1
must eventually reach �1, and 2[N : : :^:�1]w, which asserts that a �1 action
is never executed, implies that control must then remain there forever. This
reasoning is formalized by applying simple temporal reasoning based on the
Lattice Rule to derive (42) from:

G ) ( (pc1 = \g")^ I ; (pc1 = \a") ^ I ) (43)

G ) ( (pc1 = \a") ^ I ; (pc1 = \b")^ I ) (44)

G ) ( (pc1 = \b") ^ I ) 2((pc1 = \b") ^ I) ) (45)

To see how to prove these formulas, we once again use simple pattern-
matching against the proof rules of Figure 5. We �nd that (43) and (44)
should be proved by Rule SF1 with N1 substituted for A and SFw(N2)
substituted for 2F , and that (45) should be proved by rule INV1 with
(pc1 = \b") ^ I substituted for I . The proofs of (43) and (45) are simple.
The proof of (44) is not so easy, the hard part being the proof of the third
hypothesis:

H ) 3Enabled hN1iw

where H
�

= ^ 2((pc1 = \a")^ I)
^ 2[N ^ I ^ I 0 ^ :�1]w
^ SFw(N2)

(46)
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Once again, we have reached a point where blind application of rules fails;
we must understand why (46) is true. If pc1 equals \a", then action N1 is
enabled when control in process 2 is at �2, and strong fairness forN2 implies
that control must eventually reach �2. This intuitive reasoning leads us to
deduce (46) by temporal reasoning from

(pc1 = \a") ^ I ) (Enabled hN1iw � (pc2 = \a"))

H ) ((pc2 = \b") ; (pc2 = \g"))

H ) ((pc2 = \g") ; (pc2 = \a"))

The �rst formula follows from the observation that

Enabled hN1iw � _ pc1 = \a" ^ 0 < sem

_ pc1 = \b"

_ pc1 = \g"

Pattern-matching against the proof rules leads to simple proofs of the re-
maining two formulas by substituting N2 for A and true for F in SF1.

8.3 Comments on the Proof

This example illustrates the general method of proving that a lower-level
program 	 implements a higher-level program �. There are three things to
prove: (i) the initial predicate of 	 implies the initial predicate of �, (ii) a
step of 	 simulates a step of �, and (iii) 	 implies the fairness condition of
�.

As in the example, proving the initial condition is generally straightfor-
ward. Of course, in more realistic examples there will be more details to
check.

Because our example was so simple, the proof of step-simulation was
atypical. Usually, a step of the lower-level program starting in a completely
arbitrary state does not simulate a step of the higher-level program. We
must �rst �nd the proper invariant, and then apply Rule INV2 to prove
step-simulation. Once the invariant is found, the proof is a straightforward
exercise in showing that one action implies another. The structure of the
formulas tells us how to decompose a large proof into a number of smaller
ones.

Our proof of fairness was quite typical in its alternation of blind appli-
cation of proof rules with the need to understand why a property holds. As
in this proof, an invariant is almost always required. Usually, it is the same
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invariant as in the proof of step-simulation. Of course, the proofs of real
algorithms will be more complicated.

Our proof may already have seemed rather complicated for such a simple
example, but the example is a bit more subtle than it appears. The reader
who attempts a rigorous informal proof will discover that each step in the
TLA proof mirrors a step in the informal proof. The more rigorous the
informal proof, the more it will resemble the TLA proof. Rules SF1 and
SF2 conveniently encapsulate reasoning that occurs over and over again in
informal proofs. We believe that temporal logic provides an ideal formalism
for translating intuitive understanding of why a liveness property holds into
a formal proof.

Were we to choose the weaker fairness requirement WF(x;y)(M) for Pro-
gram 1 , then Program 2's fairness condition could be weakened to WFw(N ).
The proof of 	 ) �, using WF2 instead of SF2, would then be simpler.
Writing out this proof is a good exercise in applying TLA.

8.4 Stuttering and Re�nement

Observe that Program 2 is �ner-grained than Program 1, in the sense that
the three atomic operations of each process's loop in Program 2 correspond
to a single atomic operation of Program 1. Besides the steps that increment
x or y, Program 2 takes steps that modify sem and pc1 or pc2, but leave x
and y unchanged. Program 2 implements Program 1|that is, the formula
	) � is valid|only because � allows \stuttering" steps that do not change
x and y. Program 2 can in turn be implemented by a still �ner-grained
program because 	 allows steps that do not change any of its variables.

Allowing stuttering steps is the key to re�ning the grain of atomicity.
We abandoned the simple RTLA formula � of Figure 2 on page 14 because
it did not allow stuttering steps.

A temporal formula F is said to be invariant under stuttering i� �[[F ]]
and � [[F ]] are equivalent whenever � and � di�er only by stuttering steps. To
formalize this de�nition, we �rst de�ne \� to be the behavior obtained from
the behavior � by removing all stuttering steps|except that if � ends with
in�nite stuttering, then those �nal stuttering steps are kept. The precise
de�nition is:

\hhs0; s1; s2; : : :ii
�

= if 8n 2 Nat : sn = s0
then hhs0; s0; s0; : : :ii

else if s1 = s0 then \hhs1; s2; s3; : : :ii

else hhs0ii � \hhs1; s2; : : :ii

(47)
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where � denotes concatenation of sequences. A temporal formula F is in-
variant under stuttering i� \� = \� implies �[[F ]] � � [[F ]], for all behaviors
� and � . Every TLA formula is invariant under stuttering, but not every
RTLA formula is.

9 Hiding Variables

9.1 A Memory Speci�cation

We now consider another example: a simple processor/memory interface.
The processor issues read and write operations that are executed by the
memory. The interface consists of three registers, represented by the follow-
ing three variables.

op: Set by the processor to indicate the desired operation, and reset by the
memory after executing the operation.

adr : Set by the processor to indicate the address of the memory location to
be read or written.

val : Set by the processor to indicate the value to be written by a write, and
set by the memory to return the result of a read.

Here is a typical behavior, where \|" indicates that the value is irrelevant,
and memory location 432 happens to have the initial value 777.

((op
�

= \ready", adr
�

= | , val
�

= | , : : : ))

((op
�

= \read", adr
�

= 432, val
�

= | , : : : ))

((op
�

= \ready", adr
�

= | , val
�

= 777, : : : ))

((op
�

= \write", adr
�

= 196, val
�

= 0, : : : ))

((op
�

= \ready", adr
�

= | , val
�

= | , : : : ))
...

It is easy to specify this interface if we introduce an additional variable mem-
ory to denote the contents of memory, so memory(n) is the current value
of memory location n. The property � describing the desired behaviors is
shown in Figure 8, where Address is the set of legal addresses, and MemVal

is the set of possible memory values. Action S(m; v) represents the assign-
ment memory(m) := v. Actions Rproc and Wproc represent the processor'sNote 13
read- and write-request operations; actions Rmem and Wmem represent the
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Init�
�

= ^ op = \ready"

^ 8n 2 Address : memory(n) 2 MemVal

S(m; v)
�

= 8n 2 Address : ^ (n = m)) (memory(n)0 = v)
^ (n 6= m)) (memory(n)0 = memory(n))

Rproc
�

= ^ op = \ready"

^ op0 = \read"

^ adr 0 2 Address

^ memory 0 = memory

Rmem
�

= ^ op = \read"

^ op 0 = \ready"

^ val 0 = memory(adr)
^ memory 0 = memory

Wproc
�

= ^ op = \ready"

^ op0 = \write"

^ adr 0 2 Address

^ val 0 2 MemVal

^ memory 0 = memory

Wmem
�

= ^ op = \write"

^ op 0 = \ready"

^ S(adr ; val)

Nmem
�

= Rmem _Wmem

N
�

= Nmem _Rproc _Wproc

w
�

= (op; adr ; val;memory)

�
�

= Init� ^ 2[N ]w ^ WFw(Nmem )

Figure 8: \Internal" speci�cation of a processor/memory interface.

memory's responses to those requests. Action Nmem denotes the memory's
next-state relation. The fairness condition WFw(Nmem ) asserts that the
memory eventually responds to each request; there is no requirement that
the processor ever issues requests.

Observe that the action S(m; v) is used only to de�ne Wmem ; it was
introduced just to keep the de�nition of Wmem from running o� the page.
There is no formal signi�cance to our choice of names such as Rproc . Our
decision to de�ne Nmem as the disjunction of two simpler actions was com-
pletely arbitrary; we could just as well have de�ned it all at once, or as the
disjunction of more than two actions. There are countless ways of writing
logically equivalent formulas �.

The formula � speci�es the right behavior for the interface variables op,
adr , and val . However, it also speci�es the value of the variable memory ,
which we did not want to specify. We want to specify only how the three
interface variables change; we do not care how any other variables such as
x , sem, or memory change. We therefore want a formula asserting that op,
adr , and val behave as described by �, but that it doesn't matter what
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values memory assumes. Such a formula is sometimes described as � with
the variable memory \hidden". This formula is written 9 memory : �.

The precise meaning of the formula 9 memory : � is de�ned below.
Here, we simply want to observe that the free (program) variables of this
formula are op, adr , and val . Since x , sem, and memory do not occur free,
the formula does not constrain them in any way.

9.2 Quanti�cation over Program Variables

We now de�ne 9 x : F , where x is a (program) variable and F a temporal
formula. Intuitively, 9 x : F asserts that it doesn't matter what the actual
values of x are, but that there are some values x can assume for which F

holds. For example, 9 x : 2[y = x0](x;y) is satis�ed by the behavior

((x
�

= \a", y
�

= 0, z
�

= true, : : :))

((x
�

= \b", y
�

= 1, z
�

= �13, : : :))

((x
�

= \c", y
�

= 1, z
�

= �13, : : :))

((x
�

= 77, y
�

= 2, z
�

= true, : : :))
...

because by changing only the values of x, we get the following behavior that
satis�es 2[y = x0](x;y).

((x
�

= \a", y
�

= 0, z
�

= true, : : : ))

((x
�

= 0, y
�

= 1, z
�

= �13, : : : ))

((x
�

= 1, y
�

= 1, z
�

= �13, : : : ))

((x
�

= 1, y
�

= 2, z
�

= true, : : : ))
...

In fact, every behavior satis�es 9 x : 2[y = x0](x;y).
To de�ne 9 x : F formally, we need some auxiliary de�nitions. For any

variable x and states s and t, let s =x t mean that s and t assign the same
values to all variables other than x. More precisely,

s =x t
�

= 8 `v ' 6= `x ' : s[[v]] = t[[v]]

We extend the relation =x to behaviors in the obvious way:

hhs0; s1; : : :ii =x hht0; t1; : : :ii
�

= 8 n 2 Nat : sn =x tn
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The obvious next step is to de�ne

�[[9 x : F ]]
�

= 9 � 2 St1 : (� =x �) ^ � [[F ]] (48)

for any behavior �. (Recall that St1 is the set of all behaviors.) However,
this de�nition is not quite right, because the formula it de�nes is not neces-
sarily invariant under stuttering. For example, suppose F is satis�ed only
by behaviors in which x changes before y does, including the behavior

((x
�

= 1; y
�

= \a"; z
�

= true; : : :))

((x
�

= 2; y
�

= \a"; z
�

= true; : : :))

((x
�

= 2; y
�

= \b"; z
�

= true; : : :))
...

Then de�nition (48) implies that the behavior

((x
�

= 999; y
�

= \a"; z
�

= true; : : :))

((x
�

= 999; y
�

= \a"; z
�

= true; : : :))

((x
�

= 999; y
�

= \b"; z
�

= true; : : :))
...

satis�es 9 x : F (because we can produce a behavior satisfying F by changing
only the values of x). However, the behavior

((x
�

= 999; y
�

= \a"; z
�

= true; : : :))

((x
�

= 999; y
�

= \b"; z
�

= true; : : :))
...

does not satisfy 9 x : F (because of the assumption that F requires x to
change before y does). With appropriate values for all other variables, these
two behaviors di�er only by stuttering steps. Hence, with de�nition (48),
9 x : F is not necessarily invariant under stuttering even though F is.

To obtain invariance under stuttering, we must de�ne 9 x : F to be
satis�ed by a behavior � i� we can obtain a behavior that satis�es F by
�rst adding stuttering and then changing the values of x. The appropriate
de�nition is

�[[9 x : F ]]
�

= 9 �; � 2 St1 : (\� = \�) ^ (� =x �) ^ � [[F ]] (49)

The operator 9 x di�ers from ordinary existential quanti�cation because
it asserts the existence not of a single value to be substituted for x, but of
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an in�nite sequence of values. However, it really is existential quanti�cation
because it obeys the ordinary laws of existential quanti�cation. In particular,
the usual rules E1 and E2 of Figure 9 on the next page are sound. From these
rules, one can deduce the expected properties of existential quanti�cation,
such as

(9 x : F _G) � (9 x : F ) _ (9 x : G)

We can extend TLA to allow quanti�cation over rigid variables as well as
program variables. Since the value of a rigid variable is constant throughout
a behavior, quanti�cation over rigid variables is much simpler than quanti�-
cation over program variables. However, it is of less use. The semantics ofNote 14
quanti�cation over rigid variables is de�ned in Figure 9.

General TLA formulas consist of all formulas obtained from simple TLA
formulas by logical operators and quanti�cation over program and rigid vari-
ables. The syntax and semantics of quanti�cation are summarized in Fig-
ure 9 on the next page, which together with Figure 4 on page 21 gives the
complete de�nition of TLA.

9.3 Re�nement Mappings

9.3.1 Implementing The Memory Speci�cation

We now give a simple implementation of the processor/memory interface
speci�ed by the formula 9 memory : �, where � is de�ned in Figure 8. The
implementation uses a main memory and a cache, represented by variables
main and cache. The value of cache(m) represents the cache's value for
memory location m, the special value ? (assumed not to be in MemVal)
denoting that this memory location is not in the cache. The processor's
read and write requests are serviced from the cache, and separate internal
actions (not visible from the interface) move values between the cache and
main memory. When the processor reads a value not in the cache, the value
is �rst moved into the cache and then put in val .

The \internal" description, in which main and cache are free variables,
is the formula 	 of Figure 10 on page 46. The actions de�ned in the �gure
have the following interpretations.

T (a ;m; v) Represents the assignment a(m) := v. This action is introduced
only to simplify the de�nitions of other actions.

Rpro, Wpro The processor's read- and write-request operations.
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Syntax

hgeneral formulai
�

= hformulai j 9 hvariablei : hgeneral formulai
j 9 hrigid variablei : hgeneral formulai
j hgeneral formulai ^ hgeneral formulai

j :hgeneral formulai

hformulai
�

= a simple TLA formula (see Figure 4)

Semantics

hhs0; s1; : : :ii =x hht0; t1; : : :ii
�

= 8 n 2 Nat : 8 `v ' 6= `x ' : sn[[v]] = tn[[v]]

\hhs0; s1; s2; : : :ii
�

= if 8n 2 Nat : sn = s0
then hhs0; s0; s0; : : :ii

else if s1 = s0 then \hhs1; s2; s3; : : :ii

else hhs0ii � \hhs1; s2; : : :ii

�[[9 x : F ]]
�

= 9 �; � 2 St1 : (\� = \�) ^ (� =x �) ^ � [[F ]]

�[[9 c : F ]]
�

= 9c 2 Val : �[[F ]]

Proof Rules

E1: ` F (f=x)) 9 x : F E2: F ) G

x does not occur free in G

(9 x : F ) ) G

F1: ` F (e=c)) 9 c : F F2: F ) G

c does not occur free in G

(9 c : F ) ) G

where x is a hvariablei F , G are hgeneral formulais
f is a state function s, s0, t0, s1, t1, : : : are states
c is a hrigid variablei � is a behavior
e is a constant expression

Figure 9: Quanti�cation in TLA.
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Init	
�

= ^ op = \ready"

^ 8n 2 Address : (main(n) 2 MemVal) ^ (cache(n) = ?)

T (a ;m; v)
�

= 8n 2 Address : ^ (n = m)) (a 0(n) = v)

^ (n 6= m)) (a 0(n) = a(n))

Rpro
�

= ^ op = \ready"

^ op 0 = \read"

^ adr 0 2 Address

^ Unchanged (main; cache)

Rcch
�

= ^ op = \read"

^ cache(adr) 6= ?

^ op0 = \ready"

^ val 0 = cache(adr )

^ Unchanged (main; cache)

Wpro
�

= ^ op = \ready"

^ op 0 = \write"

^ adr
0 2 Address

^ val 0 2 MemVal

^ Unchanged (main ; cache)

Wcch
�

= ^ op = \write"

^ op0 = \ready"

^ T (cache ; adr ; val)

^ Unchanged main

Cget(m)
�

= ^ cache(m) = ?

^ T (cache;m;main(m))

^ Unchanged (op; adr ;

val ;main)

C
(m)
�

= ^ cache(m) 6= ?

^ _ op 6= \read"

_ m 6= adr

^ T (main;m; cache(m))

^ T (cache ;m;?)

^ Unchanged (op; adr ; val)

P
�

= Rpro _ Wpro _ Rcch _ Wcch _ (9 m 2 Address : Cget(m) _ C
(m))

F
�

= Rcch _ Wcch _ (Cget(adr ) ^ (op = \read"))

u
�

= (op; adr ; val ;main; cache)

	
�

= Init	 ^ 2[P]u ^ WFu(F)

Figure 10: A simple cached memory.
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Rcch , Wcch The memory's responses to processor requests, the value being
read from or written to the cache. An Rcch action can be executed
only if the value to be read is in the cache.

Cget (m), C
(m) The internal actions of moving a value from main memory
to the cache, and of 
ushing a value from the cache to main memory.
The second conjunct of C
(m) prevents a value from being 
ushed
while it is being read. This is the only constraint on when values can
be moved into or out of the cache; no particular cache maintenance
policy is speci�ed.

P The next-state relation, which is the disjunction of all possible actions of
the processor and the memory.

F The disjunction of all the memory actions that must be performed to re-
spond to a processor request. The third disjunct represents the action
of moving the value for a read request from main memory into the
cache. (It is enabled only if the value is not already in the cache.)

If we consider main and cache to be internal variables, then the cached
memory is described by the TLA formula5 9 main ; cache : 	. The asser-
tion that the cached memory correctly implements the processor/memory
interface is expressed by the formula

(9 main ; cache : 	) ) (9 memory : �) (50)

To prove (50), we de�ne the state function memory by

memory(m)
�

= if cache(m) = ? then main(m)
else cache(m)

and then prove 	 ) �, where � denotes the formula �(memory=memory)
obtained by substituting memory for all free occurrences of memory in �.
Applying rule E1 of Figure 9, substituting memory for f and memory for
x, we obtain 	 ) 9 memory : �. Rule E2 then yields (50).

The formula 	) � asserts that any sequence of values for the variables
op, adr , and val , and for the state function memory , that is allowed by
	 is a sequence of values that � allows for the variables op, adr , val , and
memory . We can regard memory as the \concrete" state function with
which 	 implements the \abstract" variable memory .

5As usual in logic, we write 9 x; y : F as an abbreviation for 9 x : 9 y : F , which by E1

and E2 of Figure 9 is equivalent to 9 y : 9 x : F .
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How do we prove that 	 implies �? To �nd the answer, we exam-
ine the structure of �. For any formula F , let F denote the formula
F (memory=memory) obtained by substituting memory for all free occur-
rences of memory in F . For example, w is the state function (op; adr ; val ;
memory). Then � equals Init� ^ 2[N ]w ^ WFw(Nmem ). The formula �
therefore looks much like an ordinary TLA formula representing a program,
with initial condition Init� and next-state relation N . The only di�erence
is that instead of an ordinary weak fairness condition, � has as a conjunct
the \barred" fairness condition WFw(Nmem).

The proof of 	) � is similar to the proof in Section 8.2 that Program 2
implements Program 1. We �rst prove that Init	 implies Init�. We next
prove that 	 implies 2[N ]w (step-simulation) by applying rule TLA2 of
Figure 5 (page 22) with the substitutions

A  P B  N f  u g w P  true Q true

Finally, we prove that 	 implies WFw(Nmem) (fairness) by applying WF2
with the substitutions

M N A  F f  u

N  P B  Rcch _Wcch g  w

P  (op = \write") _ (op = \read" ^ cache(adr ) 6= ?)

(Observe that Rule WF2 has the appropriate \bars" to prove the desired
conclusion.) As in our previous example, the proofs consist of straightfor-
ward calculations punctuated by the occasional need for insight into why
what we are trying to prove is true.

This cached memory is quite abstract; it allows any policy for deciding
when to move values between the cache and main memory. Given a particu-
lar caching algorithm, we would prove that it implements the simple cached
memory|meaning that the TLA formula representing the algorithm implies
9 main; cache : 	. By the transitivity of implication, this proves that the
algorithm implements the memory/processor interface.

9.3.2 Re�nement Mappings

It is clear how to generalize the example above to the problem of proving

(9 x1; : : : ; xm : 	) ) (9 y1; : : : ; yn : �) (51)

for arbitrary 	 and �. We must de�ne state functions y1, : : : , yn in terms of
the variables that occur in 	 and prove 	) �, where � denotes the formula
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�(y1=y1; : : : ; yn=yn) obtained by substituting yi for the free occurrences of
yi in �, for all i. We then infer (51) from rules E1 and E2.

The collection of state functions y1, : : : , yn is called a re�nement map-

ping. The \barred variable" yi is the state function with which 	 implements
the variable yi of �.

To prove (51), one must �nd a re�nement mapping such that 	 ) �
is valid. The completeness theorem then implies that the proof of 	 ) �
can be reduced to the proof of valid action formulas by using the rules of
Figure 5. But can the requisite re�nement mapping always be found? Does
the validity of (51) imply the existence of a re�nement mapping such that
	) � is valid?

The answer is no; a re�nement mapping need not exist. As an example,
we return to Programs 1 and 2, represented by formulas � of Figure 3 on
page 18 and 	 of Figure 7 on page 32. Program 2 permits precisely the same
sequences of values for x and y as does Program 1. Therefore, the formula
9 sem; pc1; pc2 : 	, which describes only the sequences of values for x and y

allowed by Program 2, is equivalent to �. Can we prove this equivalence?

We already sketched the proof of 	 ) �, which by Rule E2 implies
(9 sem; pc1; pc2 : 	) ) �. In this case, � has no internal variables, so the
re�nement mapping is the trivial one consisting of the empty set of barred
variables. Now consider the converse,

� ) (9 sem; pc1; pc2 : 	) (52)

Can we de�ne the requisite state functions sem, pc1, and pc2 in terms of
x and y (the only variables that occur in �) so that Program 1 allows
them to assume only those sequences of values that Program 2 allows the
corresponding variables to assume? Clearly not. There is no way to infer
from the values of x and y what the values of sem, pc1, and pc2 should be.
Thus, there does not exist a re�nement mapping for which � implies 	.

To prove (52), one must modify � by adding dummy variables. Intu-
itively, a dummy variable is one that is added to a program without a�ecting
the program's behavior. Formally, adding a dummy variable d to a formula
� means �nding a formula �d such that 9 d : �d is equivalent to �. (The
variable d is assumed not to occur free in �.) Formula (52) can be proved
by adding two dummy variables h and p to �. That is, we can construct a
formula �hp such that 9 h; p : �hp is equivalent to �, and can then prove

(9 h; p : �hp) ) (9 sem; pc1; pc2 : 	)
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by constructing a re�nement mapping such that �hp implies 	. The re�ne-
ment mapping can be found because the state functions sem, pc1, and pc2
are allowed to depend upon h and p as well as x and y.

In general, re�nement mappings can always be found if we add the right
dummy variables. The completeness theorem of [1] shows that, under certain
reasonable assumptions about 	 and �, if (51) is valid, then it can in prin-
ciple be proved by adding dummy variables to 	 and �nding the requisite
re�nement mapping. This theorem and the completeness theorem provide
a relative completeness result for TLA formulas of the form (51) when �
and 	 are formulas of the form Init ^2[N ]f ^F , with F the conjunction of
fairness conditions.

9.3.3 \Barring" Fairness

When � has the canonical form Init ^ 2[N ]f ^ F , the formula � equals
Init ^ 2[N ]

f
^ F . If F is the conjunction of fairness conditions of the

form WFg(M) and SFg(M), then F is the conjunction of \barred" fairness
conditions WFg(M) and SFg(M).

We might expect that WFg(M) would be equivalent to WFg(M) and
SFg(M) equivalent to SFg(M), but that need not be the case. It is true
that

WFg(M) � 23:Enabled hMig _ 23hMig

SFg(M) � 23:Enabled hMig _ 32hMig

(53)

However, Enabled hMig is not necessarily equivalent to Enabled hMig . For
example, letM be the action (x0 = x) ^ (y0 6= y), let g equal (x; y), and let
the re�nement mapping be de�ned by x = z and y = z. Then Enabled hMig
equals true, so Enabled hMig equals true. But

Enabled hMig

� Enabled h(x0 = x) ^ (y0 6= y)i
(x;y)

fby de�nition of M and gg

� Enabled h(x 0 = x) ^ (y 0 6= y)i(x;y) fby de�nition of : : :g

� Enabled h(z0 = z) ^ (z0 6= z)i(z;z) fby de�nition of x and yg

� Enabled false fby de�nition of h : : :i:::g

� false fby de�nition of Enabled g

Thus, Enabled hMig is not equivalent to Enabled hMig . In general, the
primed variables in the action hMig are not free variables of the expression

50



Enabled hMig, so we can't obtain Enabled hMig from Enabled hMig by
blindly barring all variables.

In rules WF2 and SF2, the formulas WFg(M) and SFg(M) are de�ned
by (53). The rules are sound when M is any action, g any state function,
and Enabled hMig any predicate|assuming that WFg(M) and SFg(M)
are de�ned by (53). In practice, the barred formulas will be obtained from
unbarred ones by substituting \barred variables" (state functions) for vari-
ables, as in our example.

10 Further Comments

10.1 Mechanical Veri�cation

Because it is a simple logic, TLA is ideally suited for mechanization. Urban
Engberg and Peter Gr�nning have been working on the mechanical veri�-
cation of TLA, using LP|an \o�-the-shelf" veri�cation system based on
rewriting [11]. Although initial experiments showed that LP can be used
directly, it was decided to write a preprocessor. In addition to allowing
more readable speci�cations, the preprocessor allows separate LP proofs for
action formulas and temporal formulas, using simpler encodings of the for-
mulas than would be possible with a single proof. Since most reasoning
in a TLA proof is about actions, a simple encoding of action formulas is
important.

The proof in Section 8.2, that the formula 	 describing Program 2 im-
plies the formula � describing Program 1, has been checked with LP. Fig-
ure 11 shows the de�nitions of � and 	 in the actual preprocessor input.
(Declarations and preprocessor directives have been omitted.) Observe that
these de�nitions are almost perfect transliterations of the ones in Figures 3
and 7. The major di�erences are the use of \*" to represent tuples and \<<"
instead of \<"|di�erences introduced because comma and \<" have other
meanings.

Following these de�nitions is the preprocessor directive

Prove Temp Psi => Phi

that creates an LP theorem whose proof implies the validity of the temporal
formula 	 ) �. (The directive Prove Act is used for action formulas.)
The rest of the preprocessor input is a proof of this theorem, consisting of
a sequence of Prove directives and LP commands to prove the correspond-
ing assertions. The only part of the proof that was not checked by LP is
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InitPhi == (x = 0) /\ (y = 0)

M1 == (x 0 = x + 1) /\ (y 0 = y)

M2 == (y 0 = y + 1) /\ (x 0 = x)

M == M1 \/ M2

v == (x * y)

Phi == InitPhi /\ [][M]_v /\ WF(v,M1) /\ WF(v,M2)

InitPsi == /\ (pc1 = a) /\ (pc2 = a)

/\ (x = 0) /\ (y = 0)

/\ sem = 1

alpha1 == /\ (pc1 = a) /\ (0 << sem)

/\ pc1 0 = b

/\ sem 0 = sem - 1

/\ Unchanged(x * y * pc2)

...

gamma2 == /\ pc2 = g

/\ pc2 0 = a

/\ sem 0 = sem + 1

/\ Unchanged(x * y * pc1)

N1 == alpha1 \/ beta1 \/ gamma1

N2 == alpha2 \/ beta2 \/ gamma2

N == N1 \/ N2

w == (x * y * pc1 * pc2 * sem)

Psi == InitPsi /\ [][N]_w /\ SF(w,N1) /\ SF(w,N2)

Figure 11: The representation of the formulas � and 	 of Figures 3 and 7
for the mechanical veri�cation of the theorem 	) �.
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the computation of the Enabled predicates. Although algorithmically sim-
ple, these computations are awkward to do in LP. A future version of the
preprocessor will compute Enabled predicates.

The work on mechanically verifying TLA formulas with LP is prelim-
inary. So far, only very simple examples have been attempted. The pre-
processor is a prototype, representing about two man-months of e�ort. The
goal of the project is to assess the feasibility of implementing a veri�cation
system that will be useful for real problems.

10.2 TLA versus Programming Languages

Let us compare Figure 6, the description of Program 2 in a conventional
programming language, with Figure 7, its representation as a TLA formula.
At �rst glance, the program looks simpler than the TLA formula. However,
the program seems simple only because you are already familiar with its
notation. To understand what the program means, you need to understand
the meaning of the var declarations, the cobegin, loop, \;", and \:="
constructs, and the P and V operations. In contrast, everything needed
to understand the TLA formula appears in Figure 4. It is easy to make
something seem simple by omitting the complicated de�nitions needed to
understand it.

One reason for the conventional program's apparent simplicity is that it
does not specify liveness properties. Nothing in Figure 6 told us that the
fairness condition for 	 should be strong fairness (SFw(M1) ^ SFw(M2))
rather than weak fairness (WFw(M)). To allow either fairness condition,
a programming language should provide di�erent 
avors of cobegin and
semaphore operations. If the language provides only one kind of fairness,
specifying a di�erent fairness condition requires a complicated encoding with
additional variables|if it is even possible.

The TLA formula is longer than the conventional program. The formula
can be made shorter by de�ning some notation. For example, letting P (sem)
equal (0 < sem)^ (sem 0 = sem � 1) and v : d! e denote (v = d)^ (v0 = e),
action �1 can be written as

�1
�

= P (sem) ^ (pc1 : \a"! \b")^ Unchanged (x; y; pc2)

There are just two basic reasons why a TLA formula is longer than
the corresponding conventional program: (i) what remains unchanged is
implicit in a program statement, but must be stated explicitly in an action
de�nition; and (ii) how the control state changes is implicit in the program,
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but is described explicitly in the formula. We now discuss these two sources
of length.

The explicit Unchanged clauses add only about 10% to the length of
the de�nition of 	 in Figure 7; in more realistic examples, they might add
somewhat less. Still, why pay that price? An obvious way of simplifying the
formulas is to let the omission of a variable from an action mean that the
variable is left unchanged. Thus, x0 = x + 1 would be equivalent to (x0 =
x + 1) ^ (y0 = y). However, this \simpli�cation" would in fact make TLA
much more complicated. For example, it would mean that the obviously true
formula y0 = y0 is not equivalent to true, since the formulas (x0 = x+1)^(y0 =
y0) and x0 = x + 1 would not be equivalent|the �rst would allow y to
change and the second would not. Like ordinary mathematics, TLA is simple
because a formula constrains only the variables that it explicitly mentions.
This is what makes x0 = x + 1 so much simpler than x := x + 1. Writing
Unchanged clauses is a small price to pay for the simplicity of ordinary
mathematics.

The control structures of ordinary programming languages provide a
convenient method of specifying that operations are to be performed in a
particular order. Specifying this in TLA requires the use of explicit control
variables, which are a source of complexity. However, remember that we
are interested in reasoning about abstract descriptions of algorithms, not C
code. An abstract algorithm usually has few separate actions, so its control
structure is simple; if control variables are needed, they usually add little
complexity.

In abstract algorithms, it is just as common to specify that actions can
occur in any order as it is to specify that they occur in some particular order.
Conventional languages make it is awkward to allow operations to occur in
any order. Dijkstra's guarded commands provide a simple mechanism for
allowing nondeterminism, but they are ill-suited to describing concurrent
programs. For example, can the statement

do h b! skipi h :b! skipi do

terminate if some other process is concurrently changing the boolean variable
b? We do not know if Dijkstra has ever answered this question, but we
believe that there is no single answer that is right in all circumstances.
We urge the reader to code the cache example of Figure 10 in his favorite
programming language. The precise liveness condition will probably be very
di�cult or even impossible to express within the language. Even ignoring
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the liveness condition, we expect that the TLA formula will be simpler than
the program.

Any language will be better than TLA at representing a program written
especially for that language. Furthermore, a familiar notation, no matter
how cumbersome, invariably seems simpler than an unfamiliar one. Our
experience suggests that after one gets used to its notation, the TLA de-
scription of a \randomly chosen" algorithm is likely to seem simpler than its
representation in a conventional programming language, though it may be
longer. (If brevity were synonymous with simplicity, APL would be easier
to read than Pascal.)

10.3 Reduction

An algorithm must ultimately be translated into a computer program. One
develops a program through a series of re�nements, starting from a high-
level algorithm and eventually reaching a low-level program. Just as we
went from Program 1 to the �ner-grained Program 2, and from the simple
processor/memory interface to the more complicated cached memory, the
entire process from speci�cation to C code could in principle be carried out
in TLA. \All" we would need is a precise semantics of C, which would allow
the translation of any C program into a TLA formula.

In practice, the re�nement will be carried out in TLA until it becomes
obvious how to hand-translate the TLA formula into a program in a real pro-
gramming language|one with a compiler that produces satisfactory code.
But what does it mean for the translation to be obvious? From the point
of view of concurrency, the translation from the TLA formula to the pro-
gram is obvious when any step of the next-state relation corresponds to an
atomic operation of the program. In this sense, the translation from an
action (sem0 = sem + 1) ^ Unchanged (: : :) to an atomic V (sem) program
statement is obvious.

Real programming languages usually guarantee only an extremely �ne
grain of atomicity. When executing the statement x := x + 1, the read
and write of x might each consist of several atomic operations. It would be
impractical to describe such a �ne-grained program with a TLA formula.
Instead, one re�nes the TLA formula to the point where each step of the
next-state relation either corresponds to an atomic program operation like
V (sem), or else can be implemented with any grain of atomicity|for exam-
ple, because it occurs inside an appropriate critical section.

When can an atomic operation be implemented with any grain of atom-
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icity? To answer this, we must �rst ask: when does a �ne-grained program
implement a coarser-grained one? There have been a number of partial
answers to this question. Some lie in folk theorems|for example, that if
shared variables are accessed only in critical sections, then an entire criti-
cal section is equivalent to a single atomic operation. Other answers lie in
precise results stating that certain classes of properties are satis�ed by a
�ne-grained program if they are satis�ed by a coarser-grained version [18].

The question of when a �ne-grained program implements a coarser-
grained one is answered in TLA by a \reduction" theorem. This theorem
seems to include all prior answers as special cases|both the folk theorems
and the precise results. The precise statement of the theorem is somewhat
complicated, and will be given elsewhere. Here, we give only a rough de-
scription of what it says. The theorem's conclusion is approximately

� ) 9 w1; : : : ; wn : �red (w1=v1; : : : ; wn=vn) ^ 2R (54)

where

� is the simple TLA formula (with no hidden variables) describing the orig-
inal program.

�red is the coarser-grained \reduced" version of the program.

v1; : : : ; vn are all the variables that occur in � and �red .

R is a predicate containing the variables wi and vi.

Think of the vi as \real" variables and the wi as \pretend" variables. For-
mula (54) asserts that there exist pretend variables such that the original
program operating on the real variables implements the reduced program
operating on the pretend variables, and the relation R always holds between
the real and the pretend variables.

In applying the reduction theorem to critical sections, the reduced for-
mula �red is obtained from the original formula � by changing the next-state
relation to turn an entire execution of a critical section into a single step.
The relation R asserts that the real and the pretend variables are equal when
no process is in its critical section.

In practice, one reasons about the reduced formula �red and checks that
(54) implies the correctness of the �ne-grained formula �. For example, in
the critical-section application, if a property does not depend on the values
assumed by variables while processes are in their critical sections, then �
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satis�es the property if �red does. One must then verify that the formula
� representing the actual program satis�es the hypotheses of the Reduction
Theorem, without actually writing �. For complicated languages like C,
which lack a reasonable formal semantics, this veri�cation must be informal.
Whether formal veri�cation is practical, with either a new language or a
useful subset of an existing one, is a topic for research.

10.4 What is TLA Good For?

TLA, like any useful formal system, has a limited domain of applicability. A
formalism that encompasses everything is good for nothing. We believe that
TLA is useful for specifying and verifying safety and liveness properties of
discrete systems. Intuitively, a safety property asserts that something bad
does not happen, and a liveness property asserts that something good does
eventually happen.

We feel that the most signi�cant limitation of TLA is that TLA proper-
ties are true or false for an individual behavior. Thus, one cannot express
statistical properties of sets of behaviors|for example, that the program
has probability greater than .99 of terminating. The only way we know of
verifying such properties is to construct a formal model of the system, use
TLA to verify that the system correctly implements the model, and then
apply other techniques such as Markov analysis to verify that the model has
the desired property.

The limited expressiveness of TLA is not always a disadvantage. As
we have seen, TLA allows �ne-grained implementations of coarser-grained
speci�cations because it can express only properties that are invariant under
stuttering. A formalism that distinguished between doing nothing and tak-
ing a step that produces no change would seem to have a tenuous relation
to reality. Another class of properties whose inexpressibility in TLA causes
us no concern are possibility properties. We have never found it useful to
be able to assert that it is possible for a system to produce the right answer.
Some formalisms use possibility properties as a substitute for liveness; they
cannot prove that the system eventually does produce the right answer, so
they prove instead that it might. Since TLA can express liveness properties,
it needs no such substitute.

We are advocating TLA as a logic for reasoning about systems that ex-
hibit concurrent activity. Yet, the semantics of TLA is based on sequences
of states, with no concept of concurrent activity. The execution of a con-
current algorithm is modeled as a nondeterministic interleaving of \events",
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where an event is the state-change produced by executing a single atomic
operation. Various formalisms for describing concurrent systems have been
proposed in which an execution is modeled as a partially ordered set of
events, concurrent activity being represented by unordered events. For rea-
soning about safety and liveness properties, partial orderings are completely
equivalent to interleavings. In an interleaving model, a partial ordering of
events corresponds to the set of total orderings consistent with it. A system
satis�es a safety or liveness property i� every possible execution does. As-
serting in a partial-ordering model that the property holds for all possible
partial orderings of events is equivalent to asserting in an interleaving model
that it holds for all possible sequences of events. Thus, a partial ordering
semantics is not needed for reasoning about safety and liveness.

The basic assumption underlying TLA (and most formalisms in com-
puter science) is that an execution can be represented by a discrete col-
lection of atomic events. This is what distinguishes discrete systems from
continuous ones. In a register-transfer model of a computer, moving a value
into a register is represented as a discrete event, even though it is achieved
by continuously changing voltages.

TLA can be used to reason about a discrete system even if its events
depend upon continuous physical values. A particularly important physi-
cal value is time. Best- and worst-case time bounds on algorithms can be
expressed as safety properties and proved with TLA. For example, the as-
sertion that an algorithm always terminates within 15 seconds is a safety
property, where time having advanced 15 seconds without the algorithm hav-
ing terminated is the \something bad" that does not happen. A description
of how TLA is used to reason about real time appears in [2].

11 Historical Note

TLA is in the tradition of assertional methods for reasoning about pro-
grams. These methods go back to Floyd [10], who �rst proved partial cor-
rectness and termination of sequential programs. Hoare [13] recast partial
correctness reasoning into a logical framework. The �rst practical asser-
tional method for reasoning about concurrent programs was proposed by
Ashcroft [5]. Ashcroft's work was followed by a number of variations on the
same theme [9, 14, 15]; but the one that became popular is the Owicki/Gries
method, developed by Susan Owicki in her thesis [19], which was supervised
by David Gries. All these methods, though clothed in di�erent notations,
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proved safety properties by the use of an invariant; they would be described
in TLA as applications of Rule INV1.

Temporal logic was �rst used to reason about concurrency by Pnueli [20].
It provided the �rst practical approach to proving more general liveness
properties than simple termination. Pnueli introduced the simple temporal
logic described in Section 4, with predicates as the only elementary formulas.
Pnueli's logic was not expressive enough to describe all desired properties.
It was followed by a plethora of proposals for more expressive logics, all
obtained by introducing more powerful temporal operators. Pnueli was the
�rst to describe a program by a temporal logic formula [21]. He, and al-
most everyone else who followed him, represented programs by formulas
that are not invariant under stuttering, so a �ner-grained program could
not implement a coarser-grained one. The observation that invariance un-
der stuttering permits re�nement �rst appeared in [17]. While many of
the earlier logics were expressive enough in theory, we believe that TLA is
the �rst logic to provide a practical method for expressing a program as a
formula that is invariant under stuttering.

The use of primed and unprimed variables (or their equivalent) for de-
scribing \before" and \after" states of a program probably goes back to
the early 1970s; we do not know where it �rst appeared. The idea of actu-
ally specifying a program operation by a relation between primed and un-
primed variables appears to have been introduced independently by us [16],
Hehner [12], and Shankar and Lam [23]. These approaches all used the
convention that variables not mentioned are not changed, so they had the
inherent complexity epitomized by the observation that y0 = y0 is not equiv-
alent to true.

The key contribution of TLA is the generalization of Pnueli's simple logic
by allowing actions as elementary formulas. This provides the needed ex-
pressive power with minimal additional complexity. Another important fea-
ture of TLA is the mathematical simplicity it achieves by eschewing variable
declarations and types. While many systems for reasoning about programs
have been called \logics", not all of them share with TLA the property that
if F and G are formulas in the logic, then :F and F ^ G are also formulas
in the logic.
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Notes

Note 1 (page 4)

Although Val is in�nite, from a mathematical point of view it can be \small",
since it can be restricted to values constructible by simple rules from prim-
itive values such as booleans and integers. In particular, Russell's paradox
can be avoided.

Note 2 (page 5)

Formally, an operator like + is a value (an element of Val), and we regard
m + n as syntactic sugar for +(m; n). We assume an evaluation function
eval that maps tuples of values to values|for example, eval(+; 2; 3) equals
5, since 2 + 3 = +(2; 3) = 5. The mapping eval is assumed to be total, so
eval(+; \abc"; true) and eval(2;+; false) are values, though we have no idea
what values. (See the discussion of types on pages 27{28.) A state func-
tion is either a value, a variable, or an expression of the form f(f1; : : : ; fn)
where f , f1, : : : , fn are state functions. We de�ne s[[f(f1; : : : ; fn)]] to equal
eval(s[[f ]]; s[[f1]]; : : : ; [[fn]]), for any state s.

Note 3 (page 5)

We assume a syntactic class of boolean expressions, so a predicate is a
boolean expression built from variables and values. For any values c and d,
we assume that c = d and c 2 d are booleans. This implies that e = f and
e 2 f are boolean expressions, for any expressions e and f . One can also
de�ne a richer class of boolean expressions. For example, one can de�ne
c > d to have the expected meaning if c and d are both numbers, and to
equal false otherwise. With this de�nition, x > y is a predicate if x and y

are variables.

Note 4 (page 7)

When proving the validity of an action by ordinary reasoning, x and x0 must
be considered distinct variables. For example, (x = y) ) (x0 = y0), which
one might deduce by naive substitution of equals for equals, is not valid.
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Note 5 (page 12)

Formally, we should distinguish actions from temporal formulas. Letting
�(A) denote the temporal formula that we now write A, we should rewrite
(10) as

hhs0; s1; s2; : : :ii[[�(A)]]
�

= s0[[A]]s1

We would then notice that the temporal formula we now write A _ B can
denote either �(A _ B) or �(A) _ �(B). However, these two formulas are
equivalent, which is why we can get away with writing A instead of �(A).

Note 6 (page 13)

Formula � of Figure 2 asserts that every step of Program 1 increments either
x or y, but not both. We could allow simultaneous incrementing of x and y

by simply rede�ningM to equalM1 _M2 _M12, where

M12
�

= (x0 = x+ 1) ^ (y0 = y + 1)

However, there is no reason to complicate � in this way. In representing the
execution of x := x+ 1 by a single step, we are already modeling a complex
operation as one event. Nothing would be gained by allowing the additional
possibility of representing the executions of two separate statements as a
single step.

Note 7 (page 14)

To write the state function (x; y), we must assume that any pair of values
is a value. More generally, we assume that (c1; : : : ; cn) is a value, for any
values c1, : : : , cn.

Note 8 (page 16)

We have told a white lie; M1 is not equivalent to hM1i(x;y). For example,
suppose there is a value 1 such that 1+ 1 equals 1, and let s be a state
in which x has the value 1. Then the pair s; s is an M1 step, but not
an hM1i(x;y) step. However, it is true that de�nitions (15) and (17) are
equivalent, because Init� ^2[M](x;y) implies that the values of x and y are
always natural numbers, and n + 1 6= n is true for any natural number n.
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Note 9 (page 18)

Observe that Enabled hM1i(x;y) is not equivalent to true. For example,
hM1i(x;y) is not enabled in a state in which x equals 1 (see Note 8). How-
ever, hM1i(x;y) is enabled in any state in which x is a natural number, so
Init�^2[M](x;y) implies 2Enabled hM1i(x;y). Hence, (17) and the de�nition
of � in Figure 3 are equivalent.

Note 10 (page 19)

Program 1 itself provides another example of parallel composition as con-
junction. Rule STL5 of Figure 5 (page 22) and some simple logic shows that
� is equivalent to �1 ^ �2, where

�1
�

= (x = 0) ^ 2[M1]x ^ WFx(M1)

�2
�

= (y = 0) ^ 2[M2]y ^ WFy(M2)

Formulas �1 and �2 can be viewed as speci�cations of the two processes
forming Program 1, so � = �1^�2 asserts that � is the parallel composition
of these two components. The TLA formula for a multiprocess program
can be written in this way as the conjunction of formulas representing its
individual processes whenever each variable is modi�ed by only one process.

Note 11 (page 20)

The hypothesis of STL1 means that F is a propositional tautology or is
derivable by the laws of propositional logic from provable formulas.

Note 12 (page 28)

We are assuming that c > d is a boolean, for any values c and d (see Note 3),
since p ) q is guaranteed to be a boolean only if p and q are booleans. It
is actually not necessary for \abc" 2 Nat to equal false. The formula equals
true even if \abc" should happen to equal 135. By not assuming that strings
and numbers are disjoint sets, we allow implementations in which strings
and numbers share a common representation|for example, as strings of
bits. We do, however, assume that \abc" does not equal \xyz".

Note 13 (page 40)

In the de�nition of S(m; v), the symbols m and v are parameters. The
expression S(adr ; val) denotes the formula obtained by substituting adr for
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m and val for v in this de�nition.

Note 14 (page 44)

Quanti�cation over rigid variables can be de�ned in terms of quanti�cation
over program variables by

9c : F
�

= 9x : F (x=c) ^2[false]x

where c is a rigid variable and x is any program variable that does not occur
in the temporal formula F .
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