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Authors’ Abstract

We show how machine-checked verification can support an approach to circuit design based
on transformations. This approach starts with a conceptually simple (but inefficient) initial
design and uses a combination of ad hoc and algorithmic transformations to produce a design
that is more efficient (but more complex).

We present an example in which we start with a simplified CPU design and derive an
efficient pipelined form, including circuitry for reverting the effects of partially executed
instructions when a successful branch is detected late in the pipeline. The algorithmic
stage of our derivation applies a transformation, retiming, that has been proven to preserve
functional behavior in the general case. The ad hoc stage requires special justification, which
we supply in the form of a machine-checked formal verification.
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1 Introduction

This report presents an integrated approach to designing and verifying circuits. In this
approach one starts with a straightforward circuit design, whose semantics are easily un-
derstood. This design is then improved—under some measure such as cost, efficiency, or
functionality—by a series of transformations. Each transformation may serve either to effect
an improvement directly or to enable further transformations.

The transformations used are of two kinds: algorithmic and ad hoc. An algorithmic trans-
formation is one that can be mechanically applied to any circuit satisfying some mechanically-
checkable preconditions, and that is guaranteed to have a specific effect—or, more commonly,
lack of effect—on the functional behavior of any circuit to which it is applicable. When we
apply an ad hoc transformation, on the other hand, we must produce a specific proof that the
behavior of the transformed circuit has some desired relation to that of the original circuit.
Doing this is often difficult, and is the main subject of this report.

Three main issues must be considered when doing such proofs:

1. The cost of performing the proof. The primary cost of verification is people time, not
machine time. Often, the most important factor in determining the cost is how much and
what kind of work must be redone when changes are made to the circuit design or to the
properties to be proved.

2. The soundness of the proof. A proof can increase one’s confidence that some property
holds; it cannot provide a guarantee. Proofs, like circuits, can have bugs in them.

3. The relevance of the proof. For a proof to be relevant it must be based upon axioms that
accurately model the circuit about which properties are being proved. Furthermore, the
theorem that is proved must accurately model some property that it is desirable for the
circuit to have.

We approach the first issue in two ways. First, by making use of algorithmic transforma-
tions, we reduce the difficulty of the proofs to be done. Second, we provide a theorem prover
called the Larch Prover (LP) [3], that provides assistance in finding proofs. Nevertheless,
the cost is still high, in part because it requires someone who understands both the circuit
design and the proof technology to develop the proof.

LP also plays a major part in our approach to the soundness issue. In verifying circuits
(or programs) the mass of detail that must be managed increases the likelihood of error.
Experience indicates that when a proof is not machine checked, it is highly likely that cases
are omitted, undocumented assumptions are relied upon, and clerical errors are made 4,
5, 9] Even machine-checked proofs may not be sound; there is always the chance that the
program doing the checking is flawed.



The relevance issue is the hardest to deal with. We cannot prove theorems about physical
devices such as circuits, only about abstractions of such devices. The relevance of our proofs
rests in part on how accurately the abstractions model the circuits. Of course, this problem
is not limited to verification. The same problem arises in other kinds of analysis, such
as simulation. One way to increase the likely relevance is to develop a suite of tools for
specification, simulation, verification, and fabrication, all using a common source language.
Driving all tools off the same source files, would increase the likelihood that results from
tools such as simulators and verifiers will be about the circuit that actually gets built.!

A key technical question to resolve in building such tools is exactly what proof obli-
gation is entailed when verifying an ad hoc transformation. This question is particularly
complicated in our setting. While using the same language for expressing specifications
and implementations facilitates hierarchical decomposition, it raises several questions about
defining what it means for an implementation to satisfy its specification. In particular,

1. Must the implementation take the same number of clock cycles as the specification to
perform each function?

2. Which of the components appearing in the specification must also appear in the imple-
mentation? That is, which parts of the specification are part of its interface to the outside
world, and which parts are artifacts of our choice of description—virtual components that
need not correspond to any localized part of the implementation?

3. Once one has defined the interface of the specification, what aspects of the I/O behavior
of the specification must be preserved in the implementation?

In the next section we give an example of circuit design using ad hoc and algorithmic
transformations. In Section 3 we show how to formalize the claim that one of the transfor-
mations is correct, that is, that the transformed circuit description implements the original
circuit description. In carrying out this formalization, we address each of the three questions
just listed. We also show how the claim of correctness can be proved. In Section 4 we describe
the formal verification of the example transformation using the Larch Prover. In Section 5
we discuss some of the lessons we have learned from our experience with machine-checked
formal verification.

2 An example circuit

This section describes the derivation of an optimized circuit design by the application of
both ad hoc and algorithmic transformations to a simple initial design. We describe the

1The work presented in [10] has similar goals. However, it starts from a different design method, one in
which specifications and implementations are written in distinct languages. This leads to significant technical
differences.



circuits using (a) informal explanatory text, (b) diagrams, and (c) equations suitable for use
in formal verification. We also explain how to get from (b) to (c).

2.1 Specification of a minimal processor

Figure 1 shows an initial (“specification”) design for a stripped-down computer. In the dia-
gram, lines represent data paths, rectangles represent registers (clocked memory elements),
and other shapes represent combinational logic elements.
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Figure 1. The initial, simple processor design.

Registers are presumed to be driven by a giobal clock, not shown in the diagram. At
each tick of the global clock, each register begins to assert at its output whatever value was
present at its input just before the clock tick. The changes in the register outputs then
propagate through the combinational logic to produce new register inputs, which will be
captured at the next tick of the clock.

An ezecution history of a circuit consists of a sequence of values for each data path in the
circuit. By convention, we use the label of a data path to denote the sequence of values that



appear on it in this history.? Similarly, we use the same label for a register and its output
data path. We write P.t for the stable value on data path P at the end of time step t.

Each circuit element places a constraint on execution histories, which can be expressed as
an equation relating values on the data paths it connects. Combinational elements constrain
values at the same time step, while registers constrain values at consecutive time steps.

In each clock cycle, our example computer executes one instruction of the form “destina-
tion register becomes function of source register; branch on zero to target instruction.” The
next few paragraphs follow the instruction execution process in detail, giving both informal
commentary and equations. We use here a subset of the notations used by the Larch Prover
(LP) [3], but systematically elide details needed by LP, such as declarations. These details
will be discussed in Section 4.

At the beginning of time step t, an instruction address, SPCtr.t (the “S” is for specifi-
cation) is clocked out of the program counter (the rectangle in the upper right hand corner
of the diagram). We model the program itself as a block of combinational logic (think of
it as a ROM) that takes addresses as input and produces instructions as output. Thus the
instruction fetched in time step t is

SInstr.t == program(SPCtr.t)

The instruction is then decoded into its four components, namely the read address, the write
address, the ALU operation, and the branch target.

SRA.t == getRA(SInstr.t)
SWA.t == getWA(SInstr.t)
SOp.t == getOp(SInstr.t)
SBT.t == getBT(SInstr.t)

The read address SRA.t is used to read a data value SRD.t from the register file (modeled
as a single large register SRF):

SRD.t == select(SRF.t, SRA.t)

Using the read data and the operation part SOp.t of the current instruction, the ALU
computes result SWD.t (for “write data”):

SWD.t == ALU(SOp.t, SRD.t)
This result is stored back into the register file at the write address:
SRF.(t+1) == assign(SRF.t, SWA.t, SWD .t)

Meanwhile, the result is also compared to zero. According to the result SBC.t (for
“branch control”) of this comparison, the new value of the program counter is either set to

2Since we will not have occasion, in this report, to reason about two specific execution histories of the
same circuit at the same time, this convention introduces no ambiguity.



the branch target or computed by incrementing the current program counter:

SBC.t == (SWD.t) = zero
SNext.t == incr(SPCtr.t)
SPCtr.(t+1) == if(SBC.t, SBT.t, SNext.t)

where if (B, E1, E2) isread “if B then E1 else E2.” The if and “=” operators are among the
few built-in operators of LP. The others are the boolean operators “¢” (and), “|” (or), “=>”
(implies), “<=>" (iff), not, true, and false. For technical reasons, LP uses two different
symbols = and == to denote comparison for equality. The symbol == is used only as the
top level connective in equations; syntactically, it binds more loosely than = and other infix
operators.

The machine communicates to the external world by making all writes to the register file
visible at an external interface:

WA_out.t == SWA.t
WD_out.t == SWD.t

Since these interface signals are common to the “specification” circuit described here and
the “implementation” circuit described below, we do not apply the convention of starting
their names with S.

The speed at which a circuit such as this can run is bounded by the requirement that
all the combinational logic outputs must have time to settle to stable values in the interval
between one clock tick and the next. In Figure 1 there is a long combinational path that
starts at the program counter and goes through the instruction fetch logic, then through
the decode logic to select the read address, then through the register file reading logic, then
through the ALU, and then through the register write logic. Another long path starts in the
same way, going from the program counter through the instruction fetch and decode logic,
the register read logic, and the ALU, and then continues through the zero-tester and the
branch selection multiplexer. In a physical implementation based directly on Figure 1, one
of these two long paths would probably be the critical path limiting the clock speed.

Circuits containing long combinational paths can sometimes be sped up by retiming
(7, 8], a technique by which registers are removed from some points in the circuit and
inserted at other points according to rules that guarantee preservation of functional behavior.
Intuitively, if there are cyclic paths through the circuit on which the registers are distributed
unevenly with respect to the combinational logic, retiming can distribute the registers more
evenly, thus reducing the maximal combinational delays in the circuit.

Unfortunately, our example circuit in Figure 1 is not a good candidate for improvement
by retiming. One of the long combinational paths mentioned above leads from the output of
the program counter back to the input of the program counter. The attempt to “distribute
the registers more evenly” around a cycle is not likely to be fruitful when there is only one
register to distribute.



In the next section, we will transform Figure 1 by ad hoc methods to yield a new CPU,
shown in Figure 2, that executes the same instruction set. The new CPU is more compli-
cated (and probably slower) than that in Figure 1, but it has a higher ratio of registers to
combinational components along its critical feedback cycles, enabling retiming to produce a
machine, shown in Figure 3, that is faster than that in Figure 1.

2.2 An ad hoc transformation

Roughly speaking, the design of the pipelined machine in Figure 2 is based on the assumption
that branches (times for which SPCtr.(t+1) == SBT.t) are less common than straight line
execution (SPCtr. (t+1) == incr(SPCtr.t)). When execution of an instruction results in a
branch, the machine doesn’t “notice” the branch until several time steps have elapsed, during
which it has started executing the next few instructions along the straight line path “in the
shadow of the branch.” Upon detection of the branch condition, the effects of the shadowed
instructions are undone and program execution continues along the branching path. The
next few paragraphs describe the derivation of Figure 2 from Figure 1 in more detail.
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Figure 2. A pipelined processor design, derived from Figure 1 by an ad hoc transformation.




We begin by introducing four registers IBC3, IBC2, IBC1, and IBCO, (“I” for implemen-
tation) between the zero-comparator and the branch multiplexer, thereby delaying for four
clock cycles all decisions about whether or not to branch. In order to have the decision
about whether to branch and the appropriate destination of the potential branch arrive at
the branch multiplexer at the same time, we also introduce four registers IBT3, IBT2, IBT1,
and IBTO on the path by which branch targets are communicated from the instruction decode
logic to the branch multiplexer.

If these were the only changes we made, we would have produced a machine whose
instruction set differed from that of Figure 1 by having delayed branching. Whenever the
machine executed an instruction that should result in a branch, the next four instructions
along the straight-line execution path would be executed before control transferred to the
branch target. In order to restore the semantics of Figure 1, we must introduce additional
logic to insure that no effects of these (shadowed) instructions become permanent.

In order to postpone commitment of potentially shadowed register file writes, we intro-
duce delaying registers IWA3, IWA2, and IWA1 for the write addresses, and IWD3, IWD2, and
IWD1 for the write data destined to the register file. Whenever a branch is taken, write
suppression logic changes all queued write addresses to a special addresses, null. Writing
to null causes no change to the register file.

Suppose that some instruction writes to a particular address in the register file and
the next instruction in the normal execution sequence reads that same address. If both
instructions turn out to be permanent (i.e., not shadowed), we want to be sure that the data
read by the second instruction is the same as that written by the first, even though that
data has not yet been written to the actual register file. For this purpose, we introduce a
series of address-comparitors and read data multiplexers (known as “read-bypass” logic) to
allow the results of reading the register file to reflect any pending writes.

Finally, in the case of a branch we must suppress not only the register file writes of
shadowed instructions, but also any branches which may have been initiated by shadowed
instructions. The gates that drive the inputs of registers IBC3, ... , IBCO serve this purpose.

The interface signals WA_out and WD_out are supplied from the head of the write queue
so that shadowed writes will have had their addresses set to null before they become visible
at the interface.

Although the machine in Figure 2 is pipelined, the work done for each instruction is very
unevenly distributed among the stages of the pipe. If we look for the longest combinational
paths in Figure 2, we will see that the minimal clock period for a circuit based directly
on Figure 2 would not be much less (and might well be greater, depending on the relative
speeds of register assignment and the read-bypass circuitry) than the minimal clock period
of a circuit based directly on Figure 1. Since the Figure 2 circuit also loses four cycles to
shadowed instructions on every branch, we seem to have bought worse performance at the
price of added complexity. In the next section, we show how retiming can be used to reduce



the clock period by changing the distribution of registers in the circuit so as to balance the
pipeline.

2.3 An algorithmic transformation

Figure 3 shows a circuit that results from retiming Figure 2. I the circuits of Figures 2
and 3 are run side by side with appropriately corresponding initial conditions, then each
combinational element of Figure 3 will execute the same sequence of computations as the
corresponding element of Figure 2, but shifted later or earlier in time by some number of
clock ticks. The small numbers next to the combinational components in Figure 3 indicate
their time shifts with respect to the corresponding components of Figure 2, with positive
numbers denoting lags and negative numbers denoting leads.
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Figure 3. A pipelined processor design, derived from Figure 2 by retiming.

In Figure 3 there is only a relatively small amount of combinational logic on the path
from the output of any register to the input of the next register, implying that a circuit built
according to Figure 3 can safely run at a much higher clock speed than one based directly
on Figure 1. If the frequency of successful branches is sufficiently low, this faster clock speed
will more than compensate for the cycles lost to shadowed instructions.
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The retiming transformation used to produce Figure 3 from Figure 2 can be performed
algorithmically [8] and is guaranteed to preserve circuit behavior [7]. The ad hoc transforma-
tion used to produce Figure 2 from Figure 1 is another matter. Our description in Section 2.1
of the derivation of Figure 2 constitutes an informal argument for its correctness, but is by
no means a rigorous proof. A cautious designer would want more convincing evidence that
our ad hoc transformation is indeed valid. In the next section, we show how the correctness
of such a transformation can be proved.

3 A manual correctness proof

Description I implements description S if any observable behavior satisfying I also satisfies S.
So to demonstrate that our implementation (Figure 2) implements our specification (approxi-
mately given by Figure 1—see Section 3.3) we must demonstrate that for any legal execution
history of Figure 2 there exists a corresponding legal execution history of the specification.

y

3.1 Overview of the proof

We start by presenting the givens for the proof: the implementation equations, describing the
constraints on an arbitrary legal history of the implementation implied by Figure 2, and the
required properties of various operators such as select, assign, and kill. Then we state
the goals to be proved. These are the specification equations derived from Figure 1, each of
which must be satisfied. The proof proper comprises a level map, defining a specification
history in terms of the implementation history, and a proof of satisfaction, showing that each
goal is implied by the givens plus the level map.

3.2 Givens

3.2.1 The implementation equations

Fach implementation equation describes the behavior of a register and/or some combina-
tional elements. Identifiers starting with I denote the sequences of values that appear on
the correspondingly labeled data paths of Figure 2 during some arbitrary execution history;
the variable t denotes an arbitrary time step, modeled as a natural number; and the infix

operator “.” returns the element of its left (sequence) argument indexed by its right (time)
argument.
INext.t == incr(IPCtr.t)

IInstr.t
IBT4.t

program(IPCtr.t)
getBT(IInstr.t)



IBT3.(t+1) == IBT4.t

IBT2.(t+1) == IBT3.t

IBT1.(t+1) == IBT2.t

IBTO.(t+1) == IBTi.t

IRA.t == getRA(IInstr.t)

IRD1.t == gelect(IRF.t, IRA.t)

IRD2.t == if((IWA1.t)=(IRA.t), IWD1.t, IRD1.t)
IRD3.t == if ((IWA2.t)=(IRA.t), IWD2.t, IRD2.t)
IRD4.t == if((IWA3.t)=(IRA.t), IWD3.t, IRD3.t)

IWA4.t == getWA(IInstr.t)

IWA3. (t+1) == kill(IWA4.t, IBCO.t)
IWA2.(t+1) == kill(IWA3.t, IBCO.t)
IWA1.(t+1) == kill(IWA2.t, IBCO.t)
IRF. (t+1) == assign(IRF.t, kill(IWA1.t, IBCO.t), IWD1.t)
I0p.t == getOp(IInstr.t)

IWD4.t == ALU(IOp.t, IRD4.t)
IWD3.(t+1) == IWD4.t

IWD2.(t+1) == IWD3.t

IWD1.(t+1) == IWD2.t

IBC4.t == (IWD4.t) = zero
IBC3.(t+1) == (IBC4.t) & not(IBCO.t)
IBC2.(t+1) == (IBC3.t) & not(IBCO.t)

IBC1.(t+1) == (IBC2.t) & not(IBCO.t)
IBCO.(t+1) == (IBC1.t) & not(IBCO.t)
IPCtr.(t+1) == if(IBCO.t, IBTO.t, INext.t)
WA_out.t == kill(IWA1.t, IBCO.t)

WD_out.t == IWD1.t

3.2.2 Required properties of components

The circuit in Figure 2, relies on certain properties of assign, select, kill, and getRA. We
must state them explicitly, since we will use them in the proof. Our proof does not depend
on the properties of many other operators, such as ALU and incr, and they can be regarded
as parameters, or free variables, of the specification and implementation.

Writing to address null must leave the register file unchanged.
assign(x, null, y) == x

Writing to an address other than null and then reading from the same address must yield
the data last written, and writing to one address must not change the contents of any other
address.
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select(assign(x, y1, z), y2) ==
if((y1 = y2) & not(y2 = null), z, select(x, y2))

The kill function used in the write suppression logic is a simple conditional.
kill(x, y) == if(y, null, x)

No instruction attempts to read from the address null.
getRA(program(x)) = null == false

If such a read were attempted, it might retrieve the data word from a suppressed write
recently queued by a shadowed instruction. Although this assumption seems obvious in
retrospect, we overlooked it in our first attempt at a formal proof.

3.3 The goals: specification equations

The specification equations play a different role than the implementation equations. The
implementation equations are assumptions of the verification; the specification equations
are the theorems that we must prove to show the correctness of the implementation. More
precisely, we would like to show that it is possible to choose an execution history for Figure 1
consisting of sequences SNext, SPCtr, SWA, ... such that these equations hold. Such an
execution history would constitute an explanation of how Figure 1 could have produced the
behavior produced by Figure 2, as observed on WA_out and WD_out. Unfortunately, such an
execution history may not exist.

There are several tedious reasons why there might not be an execution history of Figure 1
to explain an arbitrary execution history of Figure 2. As we modified Figure 1 to produce
Figure 2, we loosened the specification in a number of ways that were implicit in the informal
derivation of Section 2.1 but must be made explicit if we are to state (and prove) a valid
theorem about the possible behaviors of the implementation. Being forced to be explicit is
one of the benefits of constructing a formal proof.

If the initial contents of the implementation registers are arbitrary, there can be a startup
transient of up to three clock cycles (needed to flush the initial contents of the write queue)
during which the behavior of the implementation may not reflect anything allowed by the
specification.® In a real machine, of course, additional circuitry would be used to initialize
the machine state. In the interest of brevity, however, we choose the alternative course of
simply not observing the implementation during its first three cycles, by systematically using
t+3 rather than t in all the specification equations.

The processor drawn in Figure 1 executes an instruction every clock cycle. The processor

3The transformation to Figure 3 introduces an additional start-up transient of at most one cycle, arising
from the fact that some components have lags of —1 time step with respect to Figure 2, which is one less
than the lag (0) of the interface.

11



in Figure 2, on the other hand, takes five cycles to execute any instruction that actually
branches—the four extra cycles being spent on shadowed instructions. In order to allow these
extra cycles, we augment the specification by introducing a sequence, Stalled, of booleans
indicating cycles on which the system is “stalled,” and modify the equations describing the
register file and program counter to indicate that the register file’s contents are unchanged
during such cycles.

SRF. (t+4)

if(Stalled. (t+3),

SRF. (t+3), assign(SRF.(t+3), SWA.(t+3), SWD.(t+3)))
if(Stalled. (t+3),

SPCtr. (t+3), if(SBC.(t+3), SBT.(t+3), SNext.(t+3)))

SPCtr. (t+4)

The specification of behavior at the interface must also be modified to account for values
that may be seen during stalled cycles. Specifically, the write address to the register file is
required to be null (so that it won’t be seen at the interface as a genuine write), and the
write data is irrelevant, leading to the interface equations:

WA_out. (t+3) == if(Stalled.(t+3), null, SWD.(t+3))
((WD_out. (t+3)) = (SWD.(t+3))) | (Stalled.(t+3)) == true

The remaining specification equations simply describe constraints imposed by registers
and combinational elements in Figure 1.

SNext.(t+3) == incr(SPCtr.(t+3))
SInstr.(t+3) == program(SPCtr.(t+3))
SBT. (t+3) == getBT(SInstr.(t+3))

SRA. (t+3) == getRA(SInstr.(t+3))

SRD. (t+3) == gelect (SRF.(t+3), SRA.(t+3))
SWA. (t+3) == getWA(SInstr. (t+3))

SOp. (t+3) == getOp(SInstr.(t+3))

SWD. (t+3) == ALU(SOp.(t+3), SRD.(t+3))
SBC. (t+3) == (SWD.(t+3)) = zero

3.4 The proof
3.4.1 The level map

We next construct a specification history to account for the observed behavior of an arbitrary
implementation history. Such a history can be given by a level map—a set of equations
defining a specification history in terms of a given implementation history.

Note that the definitions of the sequences, SRF, SPCtr, etc., comprising the specification
history must be just that—definitions. If a “level map” employs muitiple or circular defini-
tions of some component of the specification history, then it may implicitly introduce new
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constraints on the implementation history, or may even be outright inconsistent. Technically
speaking, the theory obtained by adding the level map equations to the previously assumed
theory (consisting of the implementation equations, the required operator properties, and
the standard rules for arithmetic, booleans, and sequences) must be a conservative extension
of the previously assumed theory. That is, any theorem that doesn’t involve the newly intro-
duced symbols, SRF, SPCtr, etc., and that is provable in the new system must be provable
in the old system.

SRF.t == JRF.t
SPCtr. (t+3) if(IBCO.t, IBTO.t,
if(IBC1.t, IBT1.t,
if(IBC2.t, IBT2.t,
if(IBC3.t, IBT3.t,

IPCtr.t

) ) ) )
SNext .t == incr(SPCtr.t)
SInstr.t == program(SPCtr.t)
SBT.t == getBT(SInstr.t)
SWA.t == gatWA(SInstr.t)
SRA.t == getRA(SInstr.t)
SOp.t == gatOp(SInstr.t)
SRD.t == gelect(IRF.t, SRA.t)
SWD.t == ALU(SOp.t, SRD.t)

SBC.t == (SWD.t) = zero
Stalled.(t+3) == (IBCO.t) | (IBC1i.t) | (IBC2.t) | (IBC3.t)

We insure the conservativeness of our level map by following a certain syntactic style. For
each component sequence of the specification history, there is exactly one defining equation,
with that component on its left hand side and with only previously defined terms (possibly
including previously defined specification history components) on the right hand side. To
illustrate these ideas in a simpler context, consider a proof in which we have introduced
integers a and b but have not yet used the name c. A legitimate next step would be to say,
(1) “Let ¢ == a + b.” It would not be legitimate to say (2) “Let ¢ == a + a and also let
c ==b + b, or(3) “Letc == a + c - b.” We know by the syntactic form of (1)—namely,
“Let ¢ == (ezpression containing neither c nor any free variable)”—that it is conservative.
Multiple definitions, such as (2), or a circular definition, such as (3), may implicitly introduce
unwarranted assumptions about a and b (in these examples, the assumption a == b). As
a final example consider (4) “Let a == b + ¢ + 1.” While (4) is technically conservative,
it does not have the syntactic form of a definition of c. The conservativeness of (4) cannot
be deduced by mere examination of its form, but depends on properties of integer addition;
if the universe of discourse were the natural numbers rather than the integers, (4) would
embody the assumption a > b.*

4A fine point: Since the operators “.” and “+” appear on the left hand sides of the “definitions” in our
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There is no set method for deriving a level map. We arrived at this one by understanding
why the system in Figure 2 works and applying brain power. Note that an ill-chosen level
map may lead to failure to verify a correct implementation, but, so long as it is conservative,
cannot lead to “verification” of an incorrect implementation.

3.4.2 Validating the specification history

All that remains is to prove that the execution history given by the level map satisfies the
specification equations. There are thirteen specification equations to prove. Nine of them are
simply instances of level map equations. The other four do not follow quite so trivially, but
can be proved by case analysis on the values of some of the boolean signals in the specification
and implementation equations. We give here a sampling of the sort of reasoning used. The
non-trivial goals are:

SRF. (t+4) ==

if(Stalled.(t+3), SRF.(t+3), assign(SRF. (t+3), SWA.(t+3), SWD.(t+3)))
SPCtr.(t+4) ==

if(Stalled.(t+3), SPCtr.(t+3), if(SBC. (t+3), SBT.(t+3), SNext.(t+3)))
WA_out. (t+3) == if(Stalled.(t+3), null, SWA.(t+3))
(Stalled.(t+3)) | ((WD_out.(t+3)) = (SWD.(t+3))) == true

We may proceed by considering first the case in which time step t+3 is a non-stalling cycle
and then the case of a stalling cycle.

We consider first the non-stalling case, in which we assume
Stalled. (t+3) == false
This assumption lets us reduce our four goals to

SRF. (t+4) == assign(SRF.(t+3), SWA. (t+3), SWD.(t+3))
SPCtr.(t+4) == if (SBC.(t+3), SBT.(t+3), SNext.(t+3))
WA_out. (t+3) == SWA.(t+3)
WD_out. (t+3) == SWD. (t+3)

It also allows us to make some forward inferences. By expanding the definition of Stalled
in the level map, we have

IBCO.t == false

IBC1.t == false
IBC2.t == false
IBC3.t == false

level map, the legitimacy of these definitions technically depends on certain properties of sequences and of
natural numbers not explicitly stated above. Specifically, (1) every function from indices (natural numbers)
to scalars is the characteristic function of some sequence, and (2) addition of the constant 3 to distinct
augends gives distinct results.

14



Expanding the definition of SPCtr then gives
SPCtr.(t+3) == IPCtr.t
from which we obtain®
SNext.(t+3) == incr(SPCtr.(t+3)) == incr(IPCtr.t) == INext.t

and similarly

SInstr.(t+3) == IInstr.t
SBT. (t+3) == JBT4.t
SWA. (t+3) == JWA4.t
SRA. (t+3) == JRA.t
SOp. (t+3) == I0p.t

The rest of the specification state components for time t+3 also map (in this non-stalled
case) directly to particular implementation state components for time t, but the calculations
necessary to confirm this take a bit more work.

We start by considering the implementation equations for the registers in the branch
condition pipeline IBCO, ..., IBC3. Note that

IBCO.(t+1) == (IBC1.t) & not(IBCO.t)
== false & not(false)
= false

Similarly, we obtain

IBCO. (t+2)
IBCO. (t+3)

IBC1. (t+1) == false
IBC1.(t+2) == IBC2.(t+1) == false

Since IBCO is false at steps t through t+3, we find that the write addresses in the pipeline
at time t propagate to the register file assignment logic without change:

WA_out.t == kill(IWA1.t, IBCO.t)
== JWAl.t
WA_out.(t+1) == IWALl.(t+1) == IWA2.t
WA_out. (t+2) == IWA1.(t+2) == IWA2.(t+1) == IWA3.t
WA_out. (t+3) == IWA1l.(t+3) == IWA2.(t+2) == IWA3.(t+1) == IWA4.t

Since we already had
SWA. (t+3) == IWA4.t

we obtain one of our four goals for the not-stalled case:

5The shorthand used here, in which we write “E1 == E2 == E3 == E4” to indicate the line of reasoning
“El == E2; E2 == E3; E3 == E4; therefore E1 == E4” is not used by LP, which does not produce—and
cannot parse—any “equation” containing more than one “==" sign.
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WA_out.(t+3) == IWA4.t == SWA.(t+3)

For the remaining three goals, we next consider the level map for the register file and its
relation to the read-bypass equations.

If we repeatedly apply the implementation equation for the implementation register file
IRF to expand the level map definition for the specification register file SRF, we get

SRF.(t+3) == IRF.(t+3)
assign(IRF. (t+2),
kill(IWA1.(t+2), IBCO.(t+2)),
IWD1.(t+2))
== assign(IRF.(t+2), IWA1.(t+2), IWD2.(t+1))
== assign(IRF.(t+2), IWA3.t, IWD3.t)

== assign(assign(assign(IRF.t, IWA1.t, IWD1.t),
IwWA2.t, IWD2.t),
IWA3.t, IWD3.t)

If we start expanding the definition of SRD for time step t+3, we get

SRD. (t+3) == select(SRF.(t+3), SRA.(t+3))
== gelect(assign(IRF.(t+2), IWA3.t, IWD3.t) IRA.t)
== if((IRA.t = IWA3.t) & not((IRA.t) = null),
IWD3.t, select(IRF.(t+2), IRA.t))

Since
IRA.t == getRA(IInstr.t) == getRA(program(IPCtr.t))
we know
(IRA.t) = null == false
So the above simplifies further to
SRD. (t+3) == if((IRA.t = IWA3.t), IWD3.t, select(IRF.(t+2), IRA.t))
Similarly expanding the subexpression select (IRF.(t+2), IRA.t), we eventually get

SRD.(t+3) == if((IRA.t = IWA3.t), IWD3.t,
if((IRA.t = IWA2.t), IWD2.t,
if((IRA.t = IWA1.t), IWD1.t,
select (IRF.t, IRA.t))))

The right hand side of this equation is exactly what we get by applying the implementation
equations for the combinational logic that computes IRD4.t. So we have

SRD. (t+3) == IRD4.t
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which we can use to obtain

SWD. (t+3)

ALU(SOp. (t+3), SRD.(t+3))
ALU(IOp.t, IRD4.t)
IWD4 .t

|
1l

The equations for the write data pipeline give us

IWD1.(t+3) == IWD2.(t+2) == IWD3.(t+1) == IWD4.t
So we have

WD_out.(t+3) == IWD1.(t+3) == IWD4.t == SWD.(t+3)
and another of our four goals is achieved.

The remaining two goals can be proved in a similar fashion. We would then turn to
the stalling case, which turns out to need nested case analysis on the position of the first
queued branch in the pipeline, but is basically similar. It should be clear by now why such
manual proofs are extremely tedious and error-prone. Much of the detailed analysis, formula
manipulation, and checking can and should be automated. The next section discusses one
way to do that.

4 A machine-checked proof

In this section, we present a slightly abridged script for a formal verification of the Figure 2
circuit using the Larch Prover (LP). While we include brief explanations of the LP commands
used in this example, this section is not intended as a tutorial on LP. Readers who want to
learn more about LP are referred to [3].

4.1 Declarations

In LP, all user identifiers must be declared, with signatures, before use. Here are some
examples of declarations used in our formal verification.

declare sort Nat % The sort of natural numbers
declare variable t: Nat % Used for time steps
declare sorts
RAddr, % The sort of register addresses
IAddr, % Instruction addresses
Data, % Data words
Instr, % Instructions
RAddr_seq, % Sequences of register addresses
IAddr_seq, % Sequences of instruction addresses
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Data_seq, % Sequences of data words
Instr_seq % Sequences of instructions
.. % .. marks the end of a multi-line LP command.
declare operators
: RAddr_seq, Nat -> RAddr % The name "." is overloaded to denote several

: IAddr_seq, Nat -> IAddr J operators for indexing sequences of different

: Data_seq, Nat -> Data % sorts. LP determines which one is meant

: Instr_seq, Nat -> Instr % on the basis of the sorts of the arguments.

. % LP has no built-in rules about sequences.

declare variable
xInstr: Instr % xInstr is a variable denoting an arbitrary

.. % instruction.

declare operators

program: IAddr -> Instr % Instruction fetch. Takes an IAddr as
% argument and returns an Instr
incr: IAddr -> IAddr % Increment.

declare operators
IPCtr, INext: ~> IAddr_seq Y% Constants in LP are modeled as nullary
IInstr: -> Instr_seq % operators. Our proof starts by picking
.. % an arbitrary "fixed" execution history.
declare operators
0,1, 2, 3, 4, 5, 6, 7: -> Nat
zero: -> Data

It is important to understand the distinction between variables (such as t and xInstr)
and constants (modeled as nullary operators, such a IPCtr and zero). An occurrence of a
variable in an LP equation indicates that the equation holds for all values of that variable’s
sort. An occurrence of a constant indicates only that the equation holds for the particular
value denoted by the constant.

4.2 Assertions

Having declared the necessary identifiers, we then assert the implementation equations, re-
quired operator properties, and level map definition, as described in Section 3. The proof
also uses some simple facts about arithmetic. Normally these would come from a standard
library but for the sake of completeness, we give here all those that are actually used.

6We must admit here that the conservativeness of the level map is not machine-checked. While we know
how to remedy this deficiency, to do so with the current version of LP would require a style of proof rather
more cumbersome, both to use and to explain, than the one we use in this report. Instead we have chosen
to rely on the syntactic conventions described in Section 3.4.1.
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set order left-to-right

assert % definitions of numerals
2==1+1
3==24+1
4 == 3 + 1
5==4 + 1
6 ==5+1
7 ==6+1

assert ac + % "+" is associative and commutative

assert % implementation equations
INext.t == incr(IPCtr.t)
% etc., as given in Section 3.2.1
WD_out.t == IWD1.t

assert % required properties of operators (Section 3.2.2)
assign(xRFile, null, xData) == xRFile
select(assign(xRFile, xRAddr, xData),yRAddr) ==
if( (xRAddr = yRAddr) & not(yRAddr = null),
xData,
select (xRFile, yRAddr)
)

kill(xRAddr, xBool) == if(xBool, null, xRAddr)
getRA(program(xIAddr)) = null == false

assert % level map

SRF.t == JRF.t

SPCtr. (t+3) == if(IBCO.t, IBTO.t,
if(IBC1.t, IBT1.t,

if(IBC2.t, IBT2.t,
if(IBC3.t, IBT3.t,
IPCtr.t

> ) ) )

% etc., as given in Section 3.4.1)
Stalled.(t+3) == (IBCO.t) | (IBC1.t) | (IBC2.t) | (IBC3.t)

Much of LP’s deductive system is based upon orienting equations into rewrite rules. The
command “set order left-to-right” causes LP to produce rules that rewrite expressions

19



matching the left hand sides of the equations above into corresponding instances of the right
hand sides, rather than the other way around. While the left-to-right ordering rule works
for our example proof, such user-chosen orderings are potentially dangerous because they
may lead to non-terminating rewriting systems. For this reason, LP includes automated
strategies for producing rewriting systems that are guaranteed to terminate {1, 3]. One
such strategy can be caused to orient all the equations above in the left-to-right direction
(thereby certifying the termination of the resulting rewriting system), but only if the user
supplies appropriate hints. Further discussion of such ordering hints is beyond the scope of
this report; the reader is referred to [3] for a thorough discussion of LP’s ordering facilities
and the theory behind them.

4.3 Proving the specification equations

All that remains is to prove the modified specification equations from Section 3.3. LP gets
the easy ones without any user guidance:

prove SNext.(t+3) == incr(SPCtr.(t+3))

qed

prove SInstr.(t+3) == program(SPCtr.(t+3))
qed

prove SBT.(t+3) == getBT(SInstr.(t+3))

qed

prove SRA.(t+3) == getRA(SInstr.(t+3))

qed

prove SRD.(t+3) == select(SRF.(t+3), SRA.(t+3))
qed

prove ((SWA.(t+3)) = getWA(SInstr.(t+3)))
qed

prove SOp.(t+3) == getOp(SInstr.(t+3))

qed

prove SWD.(t+3) == ALU(SOp.(t+3), SRD.(t+3))
qed

prove SBC.(t+3) == (SWD.(t+3)) = zero

qed

The qed command causes LP to check whether there are any outstanding unproven conjec-
tures on its stack. If there are, LP displays an error message, and, if the failing qed came
from a file, returns to interactive mode.

For some of the proofs LP requires a bit of assistance from the user. There are a variety
of ways in which this can be provided. For this example, the only guidance needed is for the
user to suggest appropriate uses of case analysis. The necessary commands exhibit several
features of LP, which we will explain presently.
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set box-checking on /% This command is explained on the next page.
prove
SPCtr. (t+4) ==
if (Stalled. (t+3), SPCtr.(t+3), if (SBC.(t+3), SBT.(t+3), SNext.(t+3)))

resume by case IBCO.t
<> 2 subgoals for proof by cases
[] case IBCO . tc
resume by case IBCl.tc
<> 2 subgoals for proof by cases
[] case IBC1 . tc
resume by case IBC2.tc
<> 2 subgoals for proof by cases
[] case IBC2 . tc
[] case not(IBC2 . tc)
[1 case not(IBC1 . tc)
(] case not(IBCO . tc)
[]J conjecture
qed

The command resume by case E (where the case ezpression E is of sort boolean) causes
LP to replace the goal of proving the current conjecture with two subgoals: proving the
conjecture under the assumption that the case expression is true and proving the conjecture
under the assumption that the case expression is false.” These assumptions are known as
“case hypotheses” in their respective arms of the proof.

A technical issue arises when the case expression contains a variable. Since variables are
implicitly universally quantified, the cases

IBCO.t == true Y% for all t
and

IBCO.t =

false % for all t

do not cover all possible situations. The data path IBCO might carry the value true on some
time steps and false on others. In order to make the case analysis sound, LP replaces each
variable in the case expression with a so-far-unused constant (tc in this case). All occur-
rences of these case variables in the conjecture are likewise replaced with the corresponding
constants. The soundness of this procedure follows from the observation that, if some prop-
erty can be proven for a particular time step of tc about which no special information is
given, then that property must hold at every time step. Since, within any arm of the case
analysis, LP is working on a conjecture in which the variable t has been replaced by the

7LP also supports proofs by multi-way case analyses, where the set of cases examined must be proven to
be exhaustive. We do not happen to use this facility in this report.
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constant tc, nested resume by case commands use case expressions that likewise contain
tc in place of t.

The lines beginning with boxes ([]) and diamonds (<>) are annotations to the proof.
When LP is run with its “box-checking” mode turned on, and is reading commands from a
file, it expects to see a line beginning with a diamond (and an appropriate number) every
time it introduces one or more subgoals, and it expects to see a line beginning with a box
every time a subgoal is discharged. Otherwise, it displays an error message and returns to
interactive mode. This feature, like the qed command described above, is quite useful when
one is replaying a slightly modified version of an old command file, since it notifies the user
of the first deviation of a proof from its expected course, rather than letting LP proceed to
apply additional commands in an inappropriate context. Note that if the box and diamond
lines were removed from the proof script above, it would be impossible to tell (even using
indentation as a hint) whether the cases analysis on IBC1.tc was intended to be applied
within the case IBCO.tc == true or within the case IBCO.tc == false.

The remaining pieces of the proof proceed similarly to those above. Here they are, with
the box and diamond lines omitted:

set box-checking off
prove
SRF. (t+4) ==
if(Stalled. (t+3), SRF.(t+3), assign(SRF.(t+3), SWA.(t+3), SWD.(t+3)))

resume by case IBCO.(t)
resume by case IBC1l.tc
resume by case IBC2.tc
resume by case IBC3.tc
qed
prove WA_out.(t+3) == if(Stalled.(t+3), null, SWA.(t+3))
resume by case IBCO.(t)
resume by case IBC1l.tc
resume by case IBC2.tc
gqed
prove
(Stalled.(t+3)) | ((WD_out.(t+3)) = (SWD.(t+3))) % "== true" is implicit.

resume by case IBCO.(t)
resume by case IBCl.tc
resume by case IBC2.tc
resume by case IBC3.tc
qed
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The preceding theorems cover only safety properties of Figure 2, showing that every
step of its execution (after the start-up transient) corresponds either to a step of Figure 1’s
execution or to a stall. It would also be useful to know that the implementation cannot
simulate stalling forever. The following commands suffice to prove that, once the start-up
transient is over. the circuit can never stall for more than four consecutive cycles—the time
needed to clear the pipe of shadowed instructions after a successful branch.

prove
not( (Stalled.(t+3)) & (Stalled.(t+4)) & (Stalled.(t+5)) &
(Stalled.(t+6)) & (Stalled.(t+7))
)

resume by case IBCO.(t)
resume by case IBCi.tc
resume by case IBC2.tc
resume by case IBC3.tc
qed

5 Discussion

5.1 Distance from a real circuit

The example presented in this report is at a level of abstraction somewhat removed from
actual circuits. The details we have abstracted away fall into two broad classes:

1. We have been intentionally silent about some aspects of the circuit design, including

e The kinds of data carried on internal data paths; for example, how big are the
instruction and register address spaces?

o The semantics of the operators; for example, how many ALU operation codes are
there and what does each ALU operation code mean?

e The encodings of the data presented at the interface; for example, how is a data word
encoded in bits.

2. We have said nothing about the physical realization of the circuit. In particular, we have
not discussed what design rules must be obeyed in order to guarantee that the physical
circuit behaves consistently with the equations describing it.

We have avoided the first class of details by treating many aspects of the design as
parameters. In effect, we have designed a class of circuits. In a real application, the specifi-
cation writer would at some point instantiate the design parameters by requiring a particular
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word size, ALU semantics, etc. The soundness of our algorithmic transformations and our
verification of the ad hoc transformation do not depend upon how these parameters are in-
stantiated. They are independent not only of the implementation of, say, the ALU, but even

of its specification. It is only necessary that Figure 3 be instantiated with the same word
size, ALU specification, etc. as Figure 1.

In contrast, the second class of details is not easily dealt with within our framework.
Recall that each implementation equation in Section 3.2.1 corresponds to one or a few com-
ponents in the Figure 2 diagram. We assume that if the physical components are properly
fabricated and connected to each other in accordance with the diagram, then the resulting
system will obey the equations. In general, however, the signals at the inputs and outputs
of a physical component (for example, an AND gate) can be guaranteed to satisfy the cor-
responding equation (out.t == (inl.t) & (in2.t)) only if the system as a whole obeys
certain design rules. For example, the outputs of different components must not be shorted
together, and the clock period must be long enough to allow all combinational outputs to
achieve stable values between successive ticks.

5.2 Debugging and maintaining machine-checked proofs

In our experience with mechanical proof checking, a few things stand out:

e Almost every “theorem” we try to prove isn’t.

o If we don’t understand why a theorem is valid, there is very little chance of discovering a
mechanical proof.

o Even if we do understand why a theorem is valid, the first proofs we attempt are likely to

be flawed.
Consequently, we want our proof checker to have a number of properties:

o It should assist in the interactive development of proofs.

e It should quickly detect invalid proof steps, and provide feedback that will help the user
discover the error.

o To the greatest extent possible, it should “fail fast” on non-theorems, that is, stop and
complain rather than automatically indulging in complex or time-consuming heuristics.
There’s a very good chance that simple proofs aren’t working because the conjecture just
isn’t true.

o It should make it easy to formulate proof scripts that will be robust. It is frequently
necessary to replay the proof of a theorem after small changes in axioms, the proofs
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of previous theorems, or the statement of the theorem itself. These should not require
development of a completely new proof script.

o During replay, it should monitor the correspondence between the script and the progress
of the proof, and stop as soon as a divergence is detected. This realization led us to the
implementation of the <>, [], and qed commands described in Section 4.3.

5.3 Development, debugging, and generalization of our example
proof

The circuits in Figures 1, 2, and 3 were originally designed by Jim Saxe to illustrate the
application of successive transformations in the systematic design of high-speed digital cir-
cuits by deriving Figure 3 from Figure 1 by way of Figure 2. Although he was convinced of
the “equivalence” of Figures 1 and 2, because he had carefully derived the latter from the
former, he wasn’t sure how to prove it formally. So he solicited help from Leslie Lamport,
who, in the course of an afternoon, generated both a formal statement of the theorem to be
proved and a sketch of a formal proof.® Leslie suggested that greater confidence in the proof
could be gained by using a term rewriting system some of us had been building, Reve (2, 6],
to perform the symbol manipulation needed to complete his proof sketch.

It took us about three man-weeks to come up with our first machine-checked proof based
on the sketch we were given. We had to fix a number of small errors that are practically
a litany of what goes wrong in hand proofs: there was a missing parenthesis in one of
the formulas; there was an off-by-one error in a loop; the restriction that no instruction
may attempt to read from the address null was left unstated; one case (branch taken) was
ignored in the analysis; the proof used an invariant that we had to strengthen. We also spent
time debugging our axiomatization of the circuit. In some places the prover was very helpful
in doing this; for example, an inconsistent specification of the assign and select operators
was detected by the prover. In other places, it was less helpful.

It is interesting that all the problems we found were errors in the hand proof or in our
translation of the hand proof to Reve notation, and not in the machine design. It really was
the proof, and not the design, that we debugged. It is important to note, however, that in
constructing the proof we were forced to think carefully about the specification of the circuit,
making explicit a variety of assumptions upon which the correctness of the design depends.
For example, the specification used in our proof included the possibility of a start-up transient
and the possibility of occasional stalls. If the circuit described by Figure 1 were to be used in
a context where such behaviors were not acceptable, then a physical implementation based
on Figure 3 would not be acceptable. Making such assumptions explicit is an important
benefit of machine-checked verification.

8Both the original statement of the theorem and the structure of the proof differ significantly from the
ones given in this report, although they are of similar complexity.
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A key feature of our formalization of start-up transients and stalls was its nondetermin-
ism. For example, the specification equations in Section 3.3 do not, for any given time step
t, determine Stalled. (t+1) as a function of SPctr.t and SRF.t. It was by making stalling
on any cycle optional, rather than mandatory or forbidden, that we allowed physical imple-
mentations based on Figures 2 or 3 without forbidding an implementation based directly of
Figure 1.

Figure 2 was produced by adding four stages of pipelining to Figure 1, one of which is
partially optimized away. One would expect similar correctness proofs to work for circuits
derived by adding more or fewer stages of pipelining. Our experiments in this direction
gave precisely the results we expected: It was an entirely straightforward, albeit tedious,
task to modify all the circuit descriptions, conjectures, and proofs given above so that they
would work with different numbers of stages; but the time and space requirements of such
proofs rose exponentially with the number of stages. Under a reformulation of the circuit
descriptions using single LP symbols to represent arrays of circuit components, we were able
to prove, by induction on the depth, the correctness of versions of Figure 2 with arbitrary-
depth pipelines.

When we produced our first machine-checked verification of Figure 2, based on Leslie
Lamport’s proof sketch, our tools were not as good as they are now. In fact, much of the
early evolution of LP from Reve was motivated by the example we have presented here.
Also, we had very little experience with mechanical proofs of this nature. However, despite
improvements in our tools and our increased experience, it still seems harder to construct
machine-checked proofs than hand proofs, not least because the machine has an annoying
habit of rejecting plausible but erroneous arguments.
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