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Systems Research Center

DEC's business and technology objectives require a strong research program.
The Systems Research Center (SRC) and three other research laboratories are
committed to filling that need.

SRC began recruiting its first research scientistsin 1984—their charter, to advance
the state of knowledge in all aspects of computer systems research. Our current
work includes exploring high-performance personal computing, distributed com-
puting, programming environments, system modelling techniques, specification
technol ogy, and tightly-coupled multiprocessors.

Our approach to both hardware and software research is to create and use real

systemssothat we caninvestigatetheir propertiesfully. Complex systemscannot be
evaluated solely in the abstract. Based on thisbelief, our strategy isto demonstrate
thetechnical and practical feasibility of our ideas by building prototypes and using
them as daily tools. The experience we gain is useful in the short term in enabling
ustorefine our designs, and invaluablein thelong termin hel ping usto advance the
state of knowledgeabout those systems. M ost of themajor advancesininformation
systems have come through this strategy, including time-sharing, the ArpaNet, and
distributed personal computing.

SRC & so performs work of a more mathematical flavor which complements our
systemsresearch. Some of thiswork isin established fields of theoretical computer
science, such as the analysis of algorithms, computational geometry, and logics of
programming. The rest of thiswork explores new ground motivated by problems
that arise in our systems research.

DEC hasastrong commitment to communi cating the results and experience gained
through pursuing these activities. The Company val uestheimproved understanding
that comes with exposing and testing our ideas within the research community.
SRC will therefore report results in conferences, in professional journals, and in
our research report series. We will seek users for our prototype systems among
those with whom we have common research interests, and we will encourage
collaboration with university researchers.

Robert W. Taylor, Director
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Abstract

Although systemsfor animating al gorithmsare becoming more powerful and easier
for programmers to use, not enough attention has been given to the techniques
that an algorithm animator needs to create effective visualizations. This paper
reviews the techniques for algorithm animation reported in the literature thus far
and introduces new techniques that we have developed for using color and, to a
lesser extent, sound. The paper also presentssix algorithm animationsthat illustrate
the new techniques. A videotape of these animationsis available.

Review by Lyle Ramshaw

A computer animation of an algorithm in action can clarify how and why that
algorithm works. But designing enlightening animationsis atricky psychological
and perceptua challenge. What information should be presented? How should it
be arranged, in space and in time? What will help the viewer or listener to notice
patterns? And how can different perspectives betied together? This paper presents
six example animations of clever algorithms and catal ogs the techniques — some
old and some new — used in those animations.



1 Introduction

Algorithm animation is a powerful approach for exploring a program’s behavior.
It has been used with success in teaching computer science courses [6], designing
and analyzing algorithms [3], producing technical drawings [26], tuning perfor-
mance [16], and documenting programs [23].

Although a gorithm animation systems are becoming more powerful and easier
for programmers to use, the task of using these tools to create effective dynamic
visualizationsof algorithmsstill remainsablack art. Littleattentionintheliterature
has been devoted to the techniques that an algorithm animator must use to design
dynamic graphics.

This paper adds to the collection of techniques developed by Brown and
Sedgewick [10] using the BALSA algorithm animation system in the “Electronic
Classroom” at Brown University in the mid-1980s. Our new techniques focus on
the use of color and sound, previously unexplored areas in a gorithm animation.

The techniques we describe evolved from our experience with the Zeus algo-
rithm animation system over the past three years. Zeus provides a programmer
with support so that it is almost as easy to animate a program as it would be to
produce a textual trace of it. Zeus provides a user of the resulting program with
ways to specify the input data, to select and manage the ensembl e of active views,
and to control the program’s execution. Technica details about Zeus are given
elsewhere [8]. By and large, the techniques we describe are independent of the
particular agorithm animation system that we used, and are applicable to other
algorithm animation systems.

The appendix contains screen dumps from six different animations that are
representative of the ways we have used Zeus. Three static pictures of each of the
examples cannot do justice to the interactive animations, and there is no sound,
but we hope the the figure captions will provide enough information about the
algorithms for you to imagine their dynamics. A color videotape, with sound,
showing al six animationsin action is available [11]. The figuresin the appendix
arenot presented in any particul ar sequence; aswediscussatopic, weshall illustrate
our points by referring to the relevant figure(s).

Thenext section briefly reviewsthetechniquesreported by Brown and Sedgewick.
Section 3 discusses the problem of choosing input data that best exhibits an algo-
rithm’s properties. This technique was aluded to by Brown and Sedgewick but
never explored in depth. Finaly, sections 4 and 5 describe the new techniques we
have developed for using color and sound. Because the remainder of this paper
refers extensively to the figuresin the appendix, we recommend that you scan the
appendix, or view the videotape, before proceeding with the rest of the paper.



2 Previous Work

In this section we review the techniques for algorithm animation that Brown and
Sedgewick developed during their work with BALSA [10]. These techniques are
also important in our Zeus animations, and the figures illustrate how we have
incorporated them.

Multiple views. It is generally more effective to illustrate an agorithm with
severa different views than with a single monolithic view. A monolithic view
concentrates al the information about an algorithm into one dynamic image. This
is successful for showing simple algorithms, such as Quicksort in Fig. 3 (top)).

However, to depict a complicated algorithm in detail, or multiple aspects of
evenasimplealgorithm, asinglemonolithic view must encode so muchinformation
that it quickly becomes difficult for the user to pick out the details of interest from
the wealth of information on the screen. Our animations generally use multiple
views, each displaying a small number of aspects of the algorithm. Each view
is easy to comprehend in isolation, and the composition of several views is more
informativethan thesum of their individual contributions. Thehashinganimationin
Fig. 1 (middle) and the polygon decomposition animation in Fig. 4 (top) exemplify
this approach.

Another benefit of using several simple, easy-to-implement views is that it
encourages the animator to experiment with different views and keep those that
display the algorithm best.

Sate cues. Changes in the state of an agorithm’s data structures are reflected
on the screen by changes in their graphical representations. For example, in the
quicksort partition trees of Fig. 3 (middle), anodeisround whileits associated set
is being sorted, then changes to square when that set isfinished.

State cueslink different viewstogether—asingle object isrepresented the same
way in every view inwhich it appears. For example, in the polygon decomposition
animation of Fig. 4, polygon vertices change size as the algorithm processes them,
and this change is applied consistently throughout the views.

Finally, state cuesreflect the dynamic behavior of an agorithm. Inthequicksort
animation of Fig. 3, unsorted sets of elements are represented by horizontal boxes.
When aset is partitioned, its box isreplaced by atree node at the splitting element
with two smaller boxes as children. Watching the boxes split and the tree devel op
dynamically gives an excellent fed for the algorithm.

Satic history. Especialy when animation is used to explain an unfamiliar
algorithm, itishelpful to present astatic view of the history of thealgorithmand its
data structures. Such aview is similar to the way an example might be presented
in a textbook; it alows the user to become familiar with the dynamic behavior of



the agorithm at his own speed, and to focus on the crucial events where significant
changes happen, without paying too much attention to repetitive events.

For example, the hashing animation of Fig. 1 (bottom) records the history
of the dynamic hash tables of Fig. 1 (middie) in a left-to-right sweep. Table
rehashings, which are the significant events in the algorithm, are clearly visible as
sharp discontinuitiesin the historical record.

The idea of static history is also important in Fig. 4 (top). The Formula
view shows the development of a Boolean formula over time, as parentheses and
operators are added. The CSG Parse Tree view on the left a'so embodies a static
history: it displays the planar region corresponding to every subformula ever
constructed during the algorithm.

Amount of input data. If an animation isused to complement a textual descrip-
tion of an algorithm, it isimportant to introduce the animation on asmall problem
instance, preferably with textual annotation, to relate the visual displays to the
user’s previous understanding. Most of our animations follow this pattern (see
Figures 2, 4, and 5). In Fig. 4 (top), we illustrate the agorithm on a seven-vertex
polygon, complete with textual 1abels on al the edges and on the corresponding
nodes in the parse tree. Because the example is small and well labeled, the user
can easily understand the connections between the views. Once these connections
are established, we can introduce larger, more interesting data sets in which the
dynamic capabilities of the animationaremorefully utilized (asin Fig. 4 (middie)).
We omit thelabel swhen displaying theselarge problem instances, since they would
clutter the screen unnecessarily. Section 3 discusses other issuesto be considered
when choosing input data for an animation.

Continuous versus discrete transitions. When a change to a data structure
is represented graphically, the change may be either continuous or discrete. For
example, when two sticksexchange placesin asorting animation, itiseasier to see
the exchange if it appears as a smaooth transition instead of an abrupt erase-and-
repaint. Continuous change is most helpful for small data sets; for large enough
amounts of data, small discrete changes look smooth, and any smoother motion
would not be noticeable. (This observation confirms the findings of researchers
studying the psychology of human-computer interaction, who suggest that in order
to maintain the illusion of animation, the screen must be repainted at least every
tenth of asecond [14].)

Smooth motion should ideally be provided by underlying graphics software.
The animator would specify the endpoints of the transition, a path between them,
and the time to be spent moving along it; the graphics package would perform
the in-betweening. The TANGO agorithm animation system provides an elegant
framework to achieve this effect [28]. Our environment does not provide such
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support, and so we have used smooth motion in only afew cases, such as moving
a sweepline across a polygon (not illustrated).

Multiplealgorithms. Running several algorithms simultaneously alows auser
to readily compare and contrast the different algorithms. See, for example, the
multiple algorithms shown in Figures 2 (bottom), 3 (bottom), 4 (bottom), and
5 (middle).

Algorithm animation systems vary widely in the support they provide for
running algorithms simultaneously. The BALSA system is the only system that
provides tightly coupled synchronization: each algorithm is run as a coroutine
(BALSA is single-threaded), and the coroutine relinquishes flow-of-control each
timethere is an “interesting event” in the algorithm that will cause a changein the
display. The Zeus system provides no specia support for synchronizing multiple
algorithms. However, because Zeus isimplemented on a multi-processor worksta-
tion [29] in a software environment that emphasizes concurrency [24, 25], we can
easily run severa animations simultaneously with their views on the same screen.
This technigue was used in Figures 2 (bottom), 3 (bottom), and 4 (bottom). The
comparison of agorithmsin Fig. 5 (middle) is implemented within the algorithm
code, without support from the algorithm animation system, in order to achieve
accurate rel ative execution speeds of the various agorithms.

3 Choosing Input Data

Thechoice of input datastrongly influences the message that an animation conveys.
In section 2, we discussed the role that the amount of input data can play. In
particular, we noted that small amounts of data are good for introducing a new
algorithm, whereas large amounts of data are good for developing an intuitive
understanding of the algorithm’s behavior. This section presents some additional
observations on the importance of choosing input data for animations.

Pathological data. It is often instructive to choose pathological data to push
the algorithm to extreme behavior.

For example, in the polygon decomposition animation of Fig. 4, we ran the
algorithm using both perfectly convex polygons and tight spirals as input. Each
input produced a characteristic parse tree (balanced or skewed). When we ran the
algorithm on less contrived data, as in Fig. 4 (middle), we could easily pick out
the unbalanced subtrees of the parse tree corresponding to the spirals of the input
polygon.

In the sweepline animation of Fig. 2, we chose aregular pattern of lines (tan-
gentsto aparabola) to understand how different implementations of the algorithm



work. The regular arrangement reveals the algorithm’s structure better than the
more chaotic example of Fig. 2 (middle).

In fact, running the polygon decomposition animation on regular data was
instrumental in discovering a subtle bug, as mentioned in the caption for Fig. 4: A
perfectly convex polygon asinput should have generated a perfectly balanced tree,
not merely awell-balanced tree. This bug was not noticed in the more “random”
input polygons that we had been using.

Cooked data. Another example of choosing data for pedagogical purposesis
shown in Fig. 1. The hashing algorithm of that animation is very effective—so
effective that rehashings almost never occur in practicel To make the animation
more interesting and instructive, we stacked the deck, so to speak, by filtering out
some of the randomness in the input data. The “crippler” filter, whose control
interfaceisshown at thetop of thefigure, runsin aseparate thread and sel ectsinput
data that hashes into a fixed subset of each hash table, thereby insuring enough
collisionsto force the tables to be rehashed.

4 Color Techniques

In thissection, we outlinethe waysin which we have used color in Zeus. Color has
the potential to communicate lots of information efficiently; however, it isnot easy
to achieve thisgoal. Graphicstheorists, most notably Bertin [4] and Tufte[30, 31],
offer excellent advice on the pragmatics and pitfalls of the use of color (and of
displaying data graphically in general). We have tried to follow their principles,
but the psychology of color in enhancing communication is beyond the scope of
the current discussion.

Algorithm animation introduces additional problems that “classical” graphic
designersdonot face. Screensaresmaller (especially when multipleviewspartition
the screen) and have much lower resolution than paper. Views are dynamic; paper
diagrams are not, though they may capture in astatic picture data that has changed
over time. Multiple views must be united and consistent, yet not interfere with
each other; traditional graphic designistypically concerned with a single picture.
Views in agorithm animation must be robust enough to handle many different
sets of data, not necessarily known in advance. This contrasts with static graphic
designs, which may be tuned to a particular data set.

Our use of color as an integra element in program visualization is novel.
(Although color plates appear in previous artticles on BALSA [7, 9], they are
static images, not generated directly by that animation system.) We use color for
five distinct purposes: encoding the state of data structures, tying views together,



highlighting activity, emphasi zing patterns, and making history visible. Thefigures
in the appendix illustrate al these uses.

Color reveals an algorithm's state. For example, in the paralel quicksort
algorithm of Fig. 3, the colors of dots and blocks indicate the partition of the
elementsamong the sorting processors. Intherobot a gorithm of Fig. 6, green, pink,
and gray indicatethe suitability of different starting pointsfor robot motion; thetwo
key data structures, which are otherwise similar in appearance, are distinguished
by pink and light blue coloring. In Fig. 1 (middle), different hash functions are
indicated by a colored band around the hash table. The band changes color when
anew hash function is chosen.

Asanindicator of algorithm state, color enhances and complementsthe graph-
ical techniguesmentionedin Section 2in at least three ways. First, it givesan extra
dimensionfor state display—one can encode information in both the shape and the
color of objects. Second, it allowsdenser presentation of information: fewer pixels
are needed to make a color change visible than to make a change in the shape of an
object visible. Third, color isgood for displaying global patterns. For example, if
amonochromatic group of small triangles changes to a monochromatic mixture of
circles and squares, it will be much harder to perceive global patterns than if, say,
agroup of black dots changes to a mixture of red and blue dots.

Color unites multiple views. When multiple views show different aspects of
the same data structure, or different representations of logically related objects,
an application can cregte a smoother, more harmonious picture by painting corre-
sponding featureswith thesamecolorsinall theviews. Thepolygondecompoasition
animation (Fig. 4) uses the colors blue, red, and black to denote objects that have
been, are being, or have not yet been processed, respectively. Thisideais applied
uniformly; combined with the visual prominence of the color red, this makes it
easy to see the connection between the active edges of the polygon and the corre-
sponding active sites in the formula and parse tree views. The hashing animation
of Fig. 1 associates keys with tables by painting them with the same color. In the
sweepline animation in Fig. 2, the edges that cross the sweepline are painted red
in al the views in which the sweepline is important; similarly, vertices where the
sweepline can advance are marked with black disks.

Color highlightsareas of interest. Many animations temporarily paint a small
region with a transparent, contrasting color to focus attention on the painted area.
Because the highlight color is transparent, it does not interact visually with the
data elements on the screen, but simply draws the eye to them. For example, in
Fig. 4 (top), the active polygon edge C is highlighted in brown. A second use
of highlighting is to display transient computations without permanently atering
the on-screen state. In Fig. 4 (middle), the brown convex hull is an essentia part
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of the agorithm, but it changes too rapidly to belong to the relatively stable state
displayed in therest of the view. The convex hull is shown in a separate view—it
would bedistractingif it were always shown—and drawn as atemporary highlight.
Similarly, therobot paths of Fig. 6 are drawn only in highlighting, since they don’t
change the underlying data structures.

The mechanism of highlighting is worth mentioning. Because a highlight is
only temporary, we must be able to remove it and quickly restore the parts of the
scene the highlight overwrote. In the absence of double-buffering, we accomplish
thiswith color tabletrickery. Thehighlightisassigned one bit of the eight-bit color
table index; painting or erasing a highlight means setting or clearing that bit. The
colors in the table are carefully arranged so this gives the effect of painting with
transparent color. Because each view appears in its own window installed in the
window manger, the views must cooperate and use the same color table to ensure
that the correct colors are seen in all views simultaneously.

Thesamehighlightingtechniqueisused in Fig. 2to movethe sweeplinewithout
overwriting the linearrangement below it. If wejust used XOR on astandard color
table, as is often done for highlighting, we would not get the uniform highlight
color we want.

Color emphasizes patterns. In the polygon decomposition animation of Fig. 4
(middle), each deep subtreein the right view grows downward at the same time as
the highlighted vertex runs inward along one of the spirasin the left view. The
colorsof the subtrees and the spiralsalso changein concert. Thekinetic connection
between the two views underlines the linkage between spirals and deep parse tree
subtrees.

Color captures history. In many examples, we have used a spectrum to show
the history of an agorithm. Tufte warns that humans do not perceive the rainbow
color sequence as ordered [31]; neverthel ess, a sequence of colors ordered by hue
can be used to represent a linear time order, especially when there is also some
spatial monotonicity to the regions to be painted. Figures 2 and 6 illustrate this
point. In both cases the colored regions are roughly ordered by time, and so the
viewer does not need a sense of the global color order—it is enough to perceive
neighbor differences.

5 Audio Techniques

Although our use of soundin Zeusfor algorithm animation is by no means sophisti-
cated, our preliminary experiments have convinced usthat sound will be apowerful
technique for communicating information. We strongly concur with Gaver that



Auditory displayshavethe potential to convey informationthat isdiffi-
cult or awvkward to display graphically. Sound can provideinformation
about events that may not be visualy attended, and about events that
are obscured or difficult to visualize. Auditory information can be
redundant with visual information, so that the strengths of each mode
can be exploited. In addition, using sound can help reduce the visua
clutter of current graphic interfaces by providing an aternative means
for information presentation. [19]

With recent advances in workstation technology that make it easy to generate
sound, it is not surprising that other researchers are a so beginning to use sound for
program comprehension [27] and monitoring performance of pardlel programs[1].
Infact, arecently published mathematical textbook i spackaged with acompact disc
depicting many of the analytical functions discussed and presented graphically in
thetext [20]. Anexcelent survey of usesof sound for human-computer interaction
is contained in the notes for Buxton, Gaver, and Bly’s tutorial on The Use of
Non-Speech Audio at the Interface [12].

We have found sound to be much more difficult to use than color, primarily
because most people do not have the same level of sophistication and training
aurdly as they do visualy. Audio also raises a few logistical problems: What
happens when more than one workstation is using audio in the same room? What
happens when more than one “view” uses audio?

Nonetheless, we have had positive preliminary experiences using audio in
algorithm animations for reinforcing visual views, conveying patterns, replacing
visua views, and signaling exceptional conditions. We now elaborate on each of
these uses.

Audio reinforces visual views. Our first foray into using audio, and perhaps
its most obvious use, was simply to reinforce what was being displayed visualy.
For example, in the hashing animation of Fig. 1, each table has a pitch associated
with it; inserting an element into a table produces a tone of the corresponding
pitch. In the sorting animation of Fig. 3, each comparison or movement of an
element produces atone whose pitchislinearly related to the element’svalue. The
musical score below shows the notes generated while sorting afile of 32 elements
by insertion sort.
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Audio conveys patterns. It became immediately obvious to us in “hearing”
the sorting animation that sorting algorithms produce auditory signatures just as
distinctive as the visual patterns of moving sticks or dots. It would be generous to
use the term “music” to describe the signature, of course. Compare the signature
of bubble sort, shown below, with that of insertion sort above.
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Itispossiblefor peopleto hear relationshipsin datathat are never seen or displayed
(and vice versa). Because sound intrinsically depends on the passage of timeto be



perceived, it is not surprising that sound is very effective for displaying dynamic
phenomena, such as running agorithms.

Audioreplacesvisual views. We've used audio viewsto replace what can easily
be displayed inavisua view in order to allow the user to focus full visual attention
on other visua views. For example, in the parallel quicksort algorithm in Fig. 3
and in the parallel topologica sweepinFig. 2, the sound effects“view” producesa
tone whose pitch rises with the number of active threads (virtual processors). This
number could easily be printed textually, or graphicaly displayed as a bar chart.
However, because the user receives the thread information through a non-visual
channel, he can focus full visual attention on the algorithm at work. The scores
bel ow compare the thread information for two sets of topol ogical sweep input data.
The top score corresponds to the regular arrangement of linesin Fig. 2 (bottom),
and the lower score to the less orderly arrangement in Fig. 2 (middle).
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Audio signals exceptional conditions. It came as no surprise to us to find that
audiowas very effectivefor signaling exceptional conditions. (After al, computers
have long beeped at users.) However, an algorithm animation is different from an
interactive program that, say, beeps when the user tries to do something illegal.
Thisis because there are long periods of using al gorithm animations when the user
is passively watching the algorithm in action. In this situation, the visual input
channel can easily be “turned off” by looking away, looking at the wrong part of a
display, or being lulled into complacency by the normal case. It isharder (though
certainly not impossible) to turn off people's audio input channel.

For example, in the hashing animation shown in Fig. 1, inserting an element
into a table makes a tone whose pitch depends on the table. Thus, the executing
algorithm sounds notes within some chord. However, when anew element collides
withold elementsin al tables, the sound of aviolent car crashisheard, underlining
theideaof acoallision. The score below shows the same hash tabl e history recorded
visually in Fig. 1 (bottom). The vertical wavy bars denote the crash sounds.

10



p=an

2 58
baand
Bl
Bl
P
Bl
RN

N>
Bl
Lala’y

(It is easy to discount this use of real-world sounds as cutesy. We refer the
skeptic to Gaver for a thorough discussion of how and why everyday sounds can
and should be integrated into computer programs [19].)

6 Conclusion

Using an algorithm animation system to create effective dynamic visuaizations
of computer programs is a craft, not a science. In practice, successful algorithm
animationsmakeuse of asmall “bag of tricks” Thispaper reviewed the techniques
previously reported in the literature, and offered a number of new techniques,
primarily for using color and sound, that we have utilized during the past three
years. The figures in the appendix give examples of the techniques discussed.

We found that we use color for encoding the state of data structures, tying
multiple views together, highlighting activity, emphasizing patterns, and making
an agorithm’shistory visiblein asingle staticimage. We use sound for reinforcing
visual views, conveying patterns, replacing visua views, and signaling exceptional
conditions. Although our experimentation with sound is still very preliminary and
relatively unsophisticated, it has proven to be very useful.

Asworkstation hardware and software become more powerful, more sophisti-
cated graphics and audio techniques will become possible. For example, current
workstation technology can support real-time 3-D views, ranging in sophistication
from black-and-white stick figures to redistic, ray-traced images. Our intuition
(supported by Lieberman [22] and recently corroborated at Xerox PARC [13]) is
that 3-D views can give an “extra dimension of information” in the same way that
color and audio convey more information than silent black-and-white.

Color and sound (and probably 3-D graphics) do not merely enhance the beauty
of apresentation; they can be used to give fundamental information. Now, itishard
for us to imagine trying to convey sufficient information in agorithm animations
without color or sound, aswe used to do. We hope the new techniques presented in
thispaper for using color and sound will easethetask of futurea gorithm animators.
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APPENDI X
Animation Examples

The following pages display screen images from six different Zeus animations.
The animated algorithms span a wide variety of agorithmic disciplines, ranging
from basic sorting a gorithmsto a gorithmsfor hashing, competitive spinning, and
computational geometry. The figure captions describe the agorithms and their
animationsin detail, illustrating the techniques described in the body of thisreport.
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Figurel. Multi-level adaptive hashing [5]. The screenimageat the top showsthe
Zeus control panel. The control panel provides menusto select algorithms, views,
andinput data. The datamenu may be customized tothe application, asinthiscase;
otherwise, the default menu is a browser to select an input file. Zeus provides a
snapshot/restore capability for preserving settings between program runs. Finaly,
the control panel contains buttons for starting/stopping/stepping the algorithm, as
well as aslider controlling its execution speed.

The middle screen image illustrates a hashing scheme that uses multiple hash
tables to store an online dictionary. The tables are linked in a chain from left to
right, so a collision in one table causes the colliding element to percolate into the
next table. Whenever too many elements have percolated out of atable, that table
and al itssuccessors will be rehashed with new hash functionsthe next timethat a
new element collidesin all thetables. Thisscheme provides constant-timelookup,
provided that the hardware accesses the tables in parallel.

Elementsinthe“Keys’ view are color-coded to indicate the tablesto which they
belong in the “Hash Tables” view. The color of the band surrounding each hash
table corresponds to the hash function currently in use for that table. When an
element is inserted, highlighting surrounds the location in each table to which it
hashes. In the example shown here, the new element will be inserted in the third
table, since it collides with elements in the first two tables. The two statistics
views on the right show the number of percolations out of the table and the table
load for each hash table; the third table has reached its percolation limit—thethird
and fourth tables will be rehashed after the next all-table collision. The “Sound
Effects’ view causes atable-specific tone to be sounded each timethat an element
isinserted into a hash table.

The bottom screen image shows the history of the hash tables over time. The
four tables are shown stacked atop each other, and time runs from left to right.
Keys are shown in the (permanent) color of their table; the background color of a
table changes when it is rehashed. For example, half-way through this execution
of the algorithm, all of the tables were rehashed; the tables were emptied and the
elements reinserted. (The rehashings are not simultaneous because elements are
reinserted into onetable at atime.)
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Figure 2. Topological sweepline [17]. An ordinary sweepline is a vertical line
that visits the O(n?) intersections in an arrangement of = lines in the plane by
sweeping across the arrangement from left to right. Such a sweepline uses only
O(n) working storage, but, because it sorts the intersections in z-order, it spends
O(n?logn) time. In many casesthe sortingisunnecessary; it isenoughjust tovisit
all theintersectionsin any order. A topological sweepline visits the intersections
in optimal O(n?) time by sacrificing the straightness of the ordinary sweepline,
while retaining the O (n) space bound.

In between visiting intersections, the topological sweepline crosses » edges of
the arrangement—an upper and alower edge from each convex faceit crosses. The
active edges—those crossed by the sweepline—are shown in red in the “Sweep
Line” view in thetop screen image. The light blue edges have aready been swept,
and the thin black edges remain to be swept. The black dots show intersections
that the sweepline could visit next (it could move from the two edges left of the
intersection to the two edges right of it). The sweepline can choose arbitrarily
which black dot to advance over next, or can even advance over al of them in
parallel. Thelower and upper “Horizon” views display the data structures that the
algorithm usesto identify intersectionsthat it can visit next. In the middleimage,
acolor spectrum is used to display the history of the sweepline's movement. Each
region of the arrangement is flagged with a triangle whose color tells when the
sweepline passed the rightmost intersection on its boundary.

The bottom image juxtaposes two different algorithms—the left one sequen-
tial and the right one parallel. The sequentia agorithm always advances the
sweepline at the uppermost possibleintersection, while the parallel algorithm ad-
vances over all possibleintersections concurrently. Thisconcurrent advance makes
the sweepline look ragged.
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Figure 3. Quicksort. Thetop screen image showsanaive parallel implementation
of Quicksort. When the elements to be sorted have been partitioned into two
groups, the partitioning thread recursively sorts one group, while a new thread is
forked to sort the other group. Each thread has its own color, which is used to
indicate the region and the elements on which it operates. The small window at
the top of the screen, which displays the number of active threads, is the visual
component of an “audio view”—the same information is represented by the pitch
of atone played through the workstation’s speaker.

The middleimage presents a binary-tree view of the partitioning process. Each
node in the tree represents a position in the array being sorted. Each subtree
represents ablock of elementsto be sorted recursively; the block is partitioned into
two groups separated by the root of the subtree. In the lower tree, the colors of
nodes and edges reflect the threads assigned to partition each block. In the upper
tree, red and blue colors are used to distinguish active blocks from inactive ones.
While a block is being sorted, its node and the edge to its parent are red; they
change to blue when the block isfinished. Horizontal boxes represent unexamined
blocks.

The bottom image compares three different quicksort implementationsusing the
red/blue tree view. The top tree shows a sequential version—exactly one root-
to-leaf path is active at any time. The naive paralel implementation is shown
on the right—many threads are active at once. The left view shows a more
sophisticated paralle agorithm. It sorts small blocks by selection sort (indicated
by the unexpanded boxes), and forks anew thread only when the block to be sorted
islarge enough—in thisview only two threads are active.
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Figure 4. Boolean Formulaefor Simple Polygons[15]. Given asimple polygon,
this algorithm represents its interior as a monotone Boolean combination of the
halfplanes determined by its edges. (A simple polygon is a closed polygonal path,
free of salf-intersections; a monotone Boolean combination is a Boolean formula
containing only unions (“+”) and intersections (“*”)—no negations are alowed.)
Theviewsdisplay the polygonitself, the Bool ean formulaand its development, and
the parse tree corresponding to theformula. Color isused consistentlyinall views:
red represents the subpath of the polygon being processed, blue the parts aready
processed, and black the parts yet to be processed. Highlighting focuses attention
on the edge or vertex where the formula is being changed. In the “CSG Parse
Tree,” each node is represented by the planar region that results from evaluating
its subformula. The “Parse Tree” view is a compact version of the same tree that
omitsthe CSG regions. It isespecialy appropriate for large examples like the one
inthemiddle.

The middle example emphasizes a strength of agorithm animation—revealing
hitherto unnoticed features of the algorithm. The deep, zigzag subtreesin the parse
tree correspond to the spirals of the polygon, a fact underlined by the dynamic
visualization. (The zigzag subtree corresponding to the red spira is about to be
constructed.)

The bottom image illustrates the hel pfulness of graphical output in debugging.
We expected the parse tree for the circle polygon to be balanced, likethe onein the
bottommost view. When the algorithm instead produced the parse tree in the upper
view, which hasleaves at four different depths, we investigated and soon turned up
asubtle error in the implementation of the algorithm.
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Figure5. To Spin or toBlock? [21]. When onethread of amulti-threaded program
needs a shared resource (like a file server or a semaphore), it must wait until the
resource is available before it can proceed. While waiting, the thread may spin
(busy wait) or block (suspend itself). The former wastes processor time that might
be used by other threads, while the latter incurs a fixed context-switch overhead.
The best choice (spin or block) depends on the waiting time, which is not known
in advance. Theratio of processor time spent to that actually needed is potentialy
unbounded. But a program that spinsfor awhile and then blocks can come within
asmall factor of the optimal (clairvoyant) offline algorithm.

The top screen image compares an online agorithm that considers only the
previous three waiting times against the optimal agorithm. The three windows
present different views of the same data. The actual waiting times are shown
in gray-blue, the remembered times in brown, agorithm spin time in green, and
blockingtimeinred. Inthe*VBars’ window, the top row showsthe waiting times,
the middlerow represents the optimal algorithm, and the bottom row the algorithm
being demonstrated. The “VBars Superimposed” view superimposes these three
rows for easier comparison.

The middle image compares six different online algorithms with the optimal
offline algorithm. The gray-blue bars on the |eft show the waiting time; the green
and red bars show the spinning/blocking time used by each algorithm. The vertical
red lines show the current thresholds at which each algorithm stops spinning and
decides to block. The performance of each method is made visible graphically by
theprogressdownward in each column. Theview at the bottom of the screen shows
the performance ratiosnumerically and graphically. Thisview waswas constructed
graphically using the FormsVBT multi-view editor for user interfaces[2], asshown
in the bottom image. Here athermometer gauge has been selected in the graphical
editor, which pops up a property form and highlightsthe textua description of the
gaugein the text editor.
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Figure 6. Compliant motion planning [18]. This agorithm plans the motion of
arobot that, once started, always heads in the same direction. When the robot hits
an obstacle—such as a wall—obliquely, it slides aong that obstacle, continuing
to head in the same direction as it slides. The resulting path of the robot may or
may not reach the goal point, shown asared dot. Paths from two different starting
points that do reach the goal point are shown in the top image. The algorithm
computes the set (shown in green) of all pointsfrom which the robot can reach the
goal in asingle programmed movement.

For any point, the set of directions in which the robot can reach the goal forms
a single angular range. The agorithm finds these ranges by rotating a direction
o through 360°, while maintaining the set of points R,, from which the robot can
reach thegoal in direction «.. Thedirectionsat which a point entersand leaves R,,
bound itsangular range. When apoint enters R,,, it isadded to a start subdivision;
when it leaves, it is added to a stop subdivision, as shown in the middle image.
Color encodesthe directions at which pointsare added to the two subdivisions, and
hence records the history of the algorithm. The pink region inthetop right view is
the current set of points—pointsaready in the start subdivision, but not yet in the
stop subdivision.

After the two subdivisions are completed, the user can specify an initia robot
position with the mouse (bottom image). In response to the query, the algorithm
locates the point in the two subdivisions (the results are highlighted in green),
combines the results to get the range of feasible directions (the black angle in the
upper-right view), and computes the robot’s path (highlighted in purple).
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