/4

Introduction to L CL,
A Larch/C Interface Language

J.V. Guttag and J.J. Horning

July 24, 1991




Systems Research Center

DEC's business and technology objectives require a strong research program. The
Systems Research Center (SRC) and three other research laboratories are committed to
filling that need.

SRC began recruiting its first research scientists in 1984—their charter, to advance
the state of knowledge in al aspects of computer systems research. Our current
work includes expl oring high-performance persona computing, distributed computing,
programming environments, system modelling techniques, specification technology,
and tightly-coupled multiprocessors.

Our approach to both hardware and software research isto create and use real systems
so that we can investigate their properties fully. Complex systems cannot be eval uated
solely in the abstract. Based on this belief, our strategy isto demonstrate the technical
and practical feasibility of our ideas by building prototypes and using them as daily
tools. The experience we gain is useful in the short term in enabling us to refine our
designs, and invaluableinthelong termin hel ping usto advance the state of knowledge
about those systems. Most of the mgjor advances in information systems have come
through this strategy, including time-sharing, the ArpaNet, and distributed personal
computing.

SRC a so performswork of amoremathematical flavor which complementsour systems
research. Some of thiswork isin established fieldsof theoretical computer science, such
astheanalysisof a gorithms, computational geometry, and logicsof programming. The
rest of thiswork explores new ground motivated by problems that arisein our systems
research.

DEC has a strong commitment to communicating the results and experience gained
through pursuing these activities. The Company values the improved understanding
that comes with exposing and testing our ideas within the research community. SRC
will thereforereport resultsin conferences, in professional journals, and in our research
report series. Wewill seek usersfor our prototype systems among those with whomwe
have common research interests, and we will encourage collaboration with university
researchers.

Robert W. Taylor, Director



Introduction to LCL,
A Larch/C Interface Language

J.V. Guttag and J.J. Horning

July 24, 1991



©Digital Equipment Corporation 1991

This work may not be copied or reproduced in whole or in part for any commercial
purpose. Permission to copy in part without payment of fee is granted for nonprofit
educational and research purposes provided that all such wholeor partia copiesinclude
the following: a notice that such copying is by permission of the Systems Research
Center of Digital Equipment Corporationin Palo Alto, Caifornia; an acknowledgment
of the authors and individual contributorsto the work; and al applicable portions of
the copyright notice. Copying, reproducing, or republishing for any other purpose
shall require alicense with payment of fee to the Systems Research Center. All rights
reserved.



Abstract

This report is aimed primarily at the C programmer who wishes to begin to
integrate formal specificationsinto the program development cycle. We present a
specification language targeted specifically at C and discuss how it can be used to
support astyle of C programming in which abstraction plays avital role.

The report begins with a quick overview of the use of the Larch family of
languages for program specification. It continues with an overview of LCL, a
Larch interface language for (ANSI) standard C. It then describes LCL by means
of an extended example. Parts of an implementation of the specified interfaces are
provided in the body of the report. The remaining parts of the implementation are
presented in an appendix. Another appendix contains a brief introduction to the
Larch Shared Language.
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1 Anoverview of Larch

The most vexing problems in building systems concern overal system organization
and the integration of components. Modularity is the key to controlling them, and
specifications are essential for achieving program modularity. Abstraction boundaries
make it possible to understand programs one component at a time. However, an
abstraction isintangible. Without a precise description, thereis no way to know what
itrealy is, and it iseasy to confuse an abstraction with one of itsimplementations.

Specifications can be written in natura languages, in semi-formal notations (with a
restricted syntax but no forma semantics), or in truly formal notations. The potential
advantages of formal specifications are that they have unambiguous meanings and are
subject to manipulation by programs. The latter advantage can be fully realized only
by using toolsthat support constructing and reasoning about them. The Larch Project
is developing languages, tools, and techniques to aid in the productive application of
formal specificationsto software design, implementation, integrati on, and mai ntenance.
[Guttag, et al. 85, 90, Garland et a. 90]

A Larch interface specification describes the interface that a program component
providesto clients (programs that use it). Each interface specification iswritten in a
programming-language-dependent Larch interface language. It relies on definitions
from an auxiliary specification, written in a programming-language-independent
specification language, the Larch Shared Language (LSL).

The Larch family of specification languages support:

e Specification reuse. Many language-independent abstractions are useful in a
wide variety of specifications, for example, integers, lists, sets, queues, arrays,
relations, mappings, and orders. Larch encourages the accumulation of open-
ended collections of reusable specification componentsin LSL handbooks.

e Abstraction. Larch supports a style of program design in which data and
functional abstractions play a prominent role.

e Development tools. The Larch languages are designed for use with tools that
support the construction and checking of specifications, implementations, and
clients.

Many informa specifications have a structure similar to Larch’s. They rely on
auxiliary specifications, but leave them implicit. They describe an interface in terms of
concepts—such as sets, lists, or files—with which readers are assumed to be familiar.
But they don’t definethem. Readers may misunderstand such specificationsunlesstheir
intuitiveunderstanding precisaly matches the specifier’s. And there snoway to be sure
that such intuitionsmatch. LSL specifications solve this problem by mathematically
defining the terms that appear in interface specifications. Appendix B provides a brief
introductionto LSL. A complete definition is available in a separate report [SRC-58].



An interface specification provides information that is needed both to write client
programs and to write acceptable implementations. A critical part of a component’s
interface is its communication with its environment. Communication mechanisms
differ from one programming language to another, sometimes in subtle ways. It is
easier to be precise about communication when the specification language reflects the
programming language. Such specifications are generally shorter than those written
in any “universal” interface language. They are also clearer to programmers who
implement interfaces and to programmers who use them.

Each Larch interface language deals with what can be observed about the behavior
of program components written in a particular programming language. It provides
a way to write assertions about program states. It incorporates notations that are
specific to its programming language for constructs such as side effects, exception
handling, concurrency, and iterators. Its smplicity or complexity depends largely on
the simplicity or complexity of its programming language.

Each Larch interface language has a mechanism for specifying abstract data types. If
its programming language doesn’t provide direct support for them (as C does not), the
mechanism is designed to be compatible with the general style of the programming
language.

LCL isaLarch interface language designed to specify program componentswrittenin,
or caled from, the standard C programming language [ANSI]. For comparison, LM3,
alLarch interface language for Modula-3 is described in [Jones 91].

2 LCL preliminaries

This report describes most of LCL (version 1.0) and gives an informal description of
itssemantics. It discusses some LCL tools, but it isnot auser’s guidefor any of them.

LCL isnot aC dialect or preprocessor. Programs specified and devel oped with LCL are
C programs, accepted by ordinary C compilers. The use of LCL will tend to encourage
some styles of development, but it does not change the programming language.

Before presenting any interface specifications, we discusstheintended rel ation between
LCL specifications and C programs, the structure of LCL function specifications, and
the relation of names appearing in LCL specificationsto valuesin C states.

2.1 LCL specificationsand C implementations

Cisagenera and flexible language that is used in many different ways. A common
stylefor organizing programsisto construct them as a set of program units, often called
modules. A module consists of an interface and an implementation. The interfaceisa
collection of types, functions, variables, and constants for use in other modules, called
itsclients.



A C module M istypically represented by three files:

e M.c contains most of its implementation, including function definitions and
private data declarations.

e M.h contains a description of its interface, plus parts of its implementation.
Comments provide an informal specification of the module for the guidance
of client programmers. Type declarations, function prototypes, constant
definitions, declarations of external variables, and macro definitions provide
all theinformation about M that is needed to compileits clients.

e M.ocontainsitscompiled form. Suchfilesarelinked together to create executable
files.

C modules specified using LCL have two additional files:

e M.cl containsits LCL interface specification, aformal description of the types,
functions, variables, and constants provided for clients, together with comments
providing informal documentation. It replaces M.h as documentation for client
programmers. The extra information it provides will also be exploited by a
planned LCLint tool to perform more extensive checking than an ordinary C lint.

e M.lhis a header file derived automatically from M.Icl to be included in M.h.
Mechanical generation of .Ih-files file saves the user from having to repeat
information in the .h-file. This reduces the bulk of the implementation and
avoids an opportunity for error. The implementation portion of M.h must still be
provided by the implementor.

M.Icl may also refer to another kind of file:

o Id-filescontainauxiliary specificationsintheformof LSL traits. Atrait precisely
defines operators used in .Icl-files.

Traitsare the principal reusable unitsin Larch specifications. An interface specification
([Icl-file) may refer to more than one trait and atrait may be referred to by more than
one interface. Commonly useful traits are collected into handbooks.

2.2 Function specifications

A C function may communicate with its callers by returning a result, by accessing
objects accessible to the caller, or by modifying such objects. The specification of
each functionin an interface can be studied, understood, and used without reference to
the specifications of other functions. A specification consists of a function prototype
followed by a body of the form:



requires req P;
modifies mod List;
ensures ensP;

A specification places constraints on both clients and implementations of the function.
Therequires clause states restrictions on the arguments with which the client isallowed
tocal it. The modifies and ensures clauses place constraints on its behavior wheniitis
caled properly. They relate two states, the state when the functionis called, which we
cal pre, and the state when it terminates, which we call post. A requires clause refers
only to valuesin pre. An ensures clause may a so refer to valuesin post, including the
value returned by the function, written as result.

A modifies clause says what afunction is alowed to change. It says that the function
must not change the value of any objectsvisibleto the caller except for a specified list.
Any other object must have the same value in pre and post. If there is no modifies
clause, then nothingmay be changed. Of course, it would be an error to include a const
parameter in amodifies clause.

For each call, it istheresponsibility of the client to make the requires clause truein the
pre state. Having done that, the client may presume that: the function will terminate,
the ensures clause will betrue on termination, and changeswill belimited to the objects
indicated in the modifies clause. The client need not be concerned with how this
happens.

The implementor of a function is entitled to presume that the requires clause holds on
entry, and isnot responsiblefor the function’sbehavior if it does not. Sinceafunction’s
behavior istotally unconstrained unlessits requires clause is satisfied, it is good style
to use the weakest feasible requires clause. An omitted requires is equivaent to the
weakest possible requirement, requires true.

In summary, a specification as a whole is a predicate on the pre and post states,
interpreted as
reqP (pre) =>
(termanates I\ modP (pre, post) / \ ensP (pre, post))
where => stands for logical implication, and/ \ standsfor conjunction (logical and).

part of the post state is the point to which control will be transferred. For most invocations, this is the
return address of the pre state; constructslike exit, abort, and longjump can be specified as modifications of
the pseudo-variable control .



2.3 Statesand names

Simplifyingdlightly, states are mappingsfrom locs (locations) to objects. Each variable
identifier names aloc. The mgjor kinds of objects are:

e basicvalues. These are mathematical abstractions, liketheinteger 3 and theletter
A. Such values are independent of the state of any computation. As discussed in
Appendix B, LSL isused to give meaning to basic values.

e locs. These store objects; for example, intLocs store objects of type int. The
value stored in aloc in a state is the object to which the state maps the loc.

e structs. These are collections of locs, each denoted by a member name. For
example, given the variable declaration
struct {int first; char second;} s
s.first denotes an intLoc and s.second a charLoc.

e unions. These are similar to structs, except that their locs overlap.

e arrays. These are bounded vectors of adjacent locs, indexed from 0. If aisan
array, maxindex(a) is its upper bound.?

e pointers. These are references to collections of one or more adjacent locs, each
denoted by an offset from a base address. They can be thought of as triples
consisting of aloc and two bounding indexes. For example, given the code

inta 100] ;

int*p;

p=&(@ 1]);
*p denotes an intLoc in the region alocated to a and minindex(p) and
maxIndex(p) denote the maximum number of intLocs before and after * p,
respectively (1 and 98). These locs are accessible using arithmetic on p.

2C does not make the values of maxindex and minindex available at runtime, but they are useful for
specifying and reasoning about programs.



Thefollowing LCL primitivesare available for accessing the pre and post states:

e " can beapplied tolocs, arrays and structs. It is used to extract their values from
the pre state. It cannot be applied directly to unions, but can be appliedto theloc
yielded by applying afield selector to aunion.

— When appliedto aloc, it yieldsthe value stored in that loc in the pre state).

— When applied to an array, it yields a vector of the same length containing
the values stored in the array’slocsin the pre state.

— When applied to a struct, it yields a tuple containing the values stored in
the struct’slocsin the pre state.

e ' islike™, but extracts values from the post state.
e * isused, asin C, to dereference a pointer, producing its loc with offset 0.

e - > asin C, isasyntactic shorthand to dereference a pointer to a struct and then
select one of its members. For example, & >bisequivalentto (*a).b .

e [i] isused, asin C, toindex into an array, producing aloc.

e [] isappliedto a pointer to cast it into an array. For example, p[] isan array
whose first loc is * p and whose upper bound is maxindex(p), and p[]~ isa
vector.

LCL isstrongly typed. Each identifier’s type defines the kind of objects to which it
can map in any state. Similarly, each LSL value has a unique sort. To connect the
two languages, thereis amapping from C types (and LCL abstract types) to LSL sorts.
Each built-in type of C, each type built from C type constructors (e.g., int *), and
each abstract type defined in LCL is based on an LSL sort. LCL specifications are
written usingtypesand vaues. The properties of thesevaluesare definedin LSL, using
operators on the sorts on which those types are based.

A standard LSL trait defines operators of the sorts upon which C builtin types and type
congtructors are based. Users familiar with C will aready know what these operators
mean.

Consider the specification fragment:

void f(int i, int a[], const int *p) {
requires i >= 0 /\ i <= maxlndex(a);
nodi fies a;
ensures a[i]’ = (*p)" + 1;

}

3|t is also used to dereference an abstract ref, as described in Section 3.6.




Since ints are passed by value in C, i denotes not an intLoc but an int value* The
expression g i] denotes theith loc of the array a. Applying’ to thisloc yields the
int it storesin the post state. Applying * to the pointer p yields an intLoc. Applying
" yieldsitsint value in the pre state. The other operators are defined by the standard
trait for int.

3 A guided tour through a specification

To illustrate the use of most of LCL's features, we present and discuss a small
specification. This example is only superficidly realistic; it was structured to use
language constructs in the order we want to discuss them. It is not really a typical
specification, or an especialy wonderful program design. Asyou study thisreport, you
will probably find it instructive to consider alternative designs and how they would be
specified.

Theexample in thissection uses various conventionsfor names, formatting, comments,
etc. These are not mandated by LCL; specifications should be written using the
conventions of the organization for which they are intended. Because the example
is being used to document LCL features, rather than areal interface, the density of
comments embedded within the formal text is low, and most of the comments arein
the accompanying prose.

Thisexampl e has been machine-checked (just asthe prose has been mechanically spell-
checked). The .Icl- and .Isl-files have been checked by the LCL and LSL Checkers,
respectively. The .Ih-fileswere automatically generated by the LCL Checker. The .Ih-,
.h-, and .c-files were compiled by gcc (this took somewhat longer than all the Larch
checking). Finally, the compiled code was exercised by a test driver. Although we
tried to be very careful at each stage of development, each of the mechanical checks
caught some errors that we had not. Based on this experience, we expect that when
LCLintisavailable, it will find afew more errors (just as we expect that careful readers
will find afew typosin the prose). These will probably be errors that would manifest
themselvesonly in very unusual circumstances, and would therefore be difficult to root
out by testing.

3.1 Gender

Theinterface specified in Figure 1, gender, exportsatype, a constant, and two functions
toitsclients.

Thefirst line defines an exposed type, also named gender, using a C typedef. Clients
of thisinterface are being told exactly how gender is represented as a C type. They

4Within the implementation of f, aloc will be associated with the formal, but since that loc does not exist
in the environment of the caller of f, it is not relevant to the specification.



/* Exports one type, a function to convert gen-

ders to */

/* strings and a function to (trivially) initialize the nod-
ule. */

typedef enum { MALE, FEMALE, gender_ANY} gender;

constant int gender_maxPrintSize = |enStr("unknown gender");

uses sprint(gender, char[]);

int gender_sprint(char s[], gender g) {
requi res maxl ndex(s) >= gender_maxPrintSi ze;

nodi fies s;
ensures isSprint(s’', @)
/\ result =lenStr(s’)

/\ result <= gender_maxPrintSize;

}

voi d gender _initMod(void) { ensures true; }
Figure 1: gender.lcl

may deal with gender valuesin any way alowed by standard C. However, LCL's type
checking is stricter than standard C's. LCL uses hame equality for type checking, and
LCLint will warn programmers about type violationsthat C lint will not catch.

The theory of C’'s types and type constructors is built into LCL. C's enum types are
axiomatized using LSL’s enumeration of shorthands, and struct types using tuple of
shorthands.

The constant declaration gives a symbolic name for an important property of the
interface: thesize of thelongest string gender_sprintisallowed toreturn. LCL interface
constants may be implemented either by macro definitions or by C const variables.

A uses clause invokes and auxiliary specification—an LSL trait that defines operators
used inthe LCL specification. Users familiar with the operatorsinvol ved may not need
to examine such traits closdly, but most users are expected to read them. The uses
clause here incorporates an LSL specification that gives the meaning of operators such
asisSprint and lenStr. It aso saysthe sort T of sprint.Idl isto be replaced by the sort
gender (on which the type gender is based) and the sort String by whatever sort thetype
char[ ] isbased on (itsname isn’t important).

The function gender_sprint is typical of akind found in many interfaces. It converts

5But, in deferenceto long tradition, LCLint will use structural type checking on calls to standard library
functions.



gender values into a string form suitable for printing, and returns the length of that
string. Its specification begins with its function prototype. LCL prototypes are more
restricted than C's. For example, LCL requires that each of the formal parameters be
named, athough names are optional in C. This guarantees that the specification can
refer to any parameter by name. Since all functionsin an interface are exported, the
keyword extern will be added automatically when gender.lh is generated.

L CL distinguishesbetween pointersand arraysin prototypes. InaC prototype, char * s
and char § | areessentially equivalent. In an LCL prototype, however, char * salows
access to all of the characters from * (s- minlndex(s)) to * (s + maxindex(s)), while
char ] alowsaccess only to the characters from g 0] to  maxindex(s)] .

The body of the specification consists of three clauses. The requires clause says that
the array s must be big enough to hold the longest string that will ever be returned. The
modifies clause says that only the contents of the array s can be changed. The ensures
clause constrainsthe new value of s and the function’sresult.®

Arrays are passed by reference in C, so the forma s refers to the array, rather than its
contents. Theterm s denotes the vector of characters contained by the locsin s upon
return from gender_sprint. Since parameters of enumeration types are passed by value,
g denotes a value of type gender. The meanings of isSprint and lenStr are given in
Figures 2 and 3, which are discussed bel ow.

This specification does not say what string will be generated for each gender value—
only that it will have certain properties. We might want such freedom, for example, in
amodule that will have different implementationsfor different countries or languages.
This specification doesn’t even require an implementation to be deterministic; for
example, it doesn't require gender_sprint(s, MALE) to always put the same charsins,
or to aways return the same int value. Although our implementation of gender doesn’t
take advantage of thisfreedom, later interfaces will have implementationsthat do.

Thetrait sprint.lsl was written for specifying functionsthat convert valuesto strings. It
includesthelibrary trait string, which specifies the operatorsnull Terminated and lenStr.
Note that string trait, like C, defines the value of lenStr only when it is applied to a
null-terminated string.

The trait in Figure 3 is intentionally weak. It doesn't say much about the meanings
of its operators. This alows considerable flexibility in implementing the interface
functions.” Thefirst two assertions guarantee that different T values will have different
string forms, without specifying what those forms are. The second equation gives two
important propertiesof acceptable string forms. We could repest these propertiesin the
interface specification of each such function, but it is better to get them right once, and
then reuse the trait.

6A good rule of thumb is that each object in the modifies clause should appear in primed form at |east
oncein the ensuresclause.

71t is hard to write a specification that |eaves theimplementation so much flexibility, but still imposesthe
necessary constraints. sprint is the most subtle trait in this report.



% Define the relation between Cs vectors of chars and
% C s conventions for null-term nated character strings.

string: trait

i ncl udes integer

i ntroduces
null: -> char
enpty: -> String
append: String, char -> String
len: String -> int
nul | Ternm nated: String -> bool
throughNull: String -> String
saneStr: String, String -> bool
lenStr: String -> int
% and many other operators not used here ...

asserts
String generated by enpty, append
forall s, s1, s2: String, c: char
len(enpty) == O;
I en(append(s, c)) == len(s) + 1,

not (nul | Ter m nat ed(enpty));
nul | Term nat ed(append(s, c¢)) ==
¢ = null \/ nullTerm nated(s);

nul | Term nat ed(s) =>

t hroughNul | (append(s, c¢)) = throughNull (s);
not (nul | Term nated(s)) =>

t hroughNul | (append(s, null)) = append(s, null);
sameStr(sl, s2) == throughNul I (s1) = throughNull (s2);
lenStr(s) == len(throughNull(s)) - 1
% and nany other axi oms not needed here ...

Figure 2: string.ldl fragment
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% Defines mnimum requirenents for an unparse function that
% converts froma T to a String without |osing information.

sprint(T, String): trait
includes string

i ntroduces
parse: String -> T
unparse: T -> String
isSprint: String, T -> bool

asserts
T partitioned by unparse
forall t: T, s: String
parse(unparse(t)) ==t;
isSprint(s, t) == parse(s) =t /\ nullTerninated(s)

Figure 3: sprint.lsl

typedef enum { MALE, FEMALE, gender _ANY} gender;

extern int gender_sprint(char s[], gender g);
extern void gender _ini t Mod(voi d);

Figure 4: gender.lh

In this example, we include an initMod function as part of every interface. Later we
will discuss the way in which we use these functions. The function gender_initMod
isrequired by its specification to have no visible effect, since it modifies nothing and
returns no value. The absence of arequires clause (equivalent to requires true) says
that it must always terminate.

From gender.Icl the LCL Checker generates thefile gender.lh, Figure4. Thisisusedin
the implementation of gender.h, Figure 5, and hence, gender.c, Figure6.

By convention, we start our .h-fileswith a#if that makes sure that including them more
than once into the same module will not cause a problem. Both gender.c and all clients
of gender will include gender.hin turn, gender.h includes gender.lh, which provides
prototypes. The implementation of the function gender_initMod is aso in gender.h.

1



#i f !defined(gender_h_expanded)
#defi ne gender _h_expanded
#defi ne gender _nmaxPrint Si ze (sizeof ("unknown gender"))

#i ncl ude "gender.|h"

#defi ne gender _i ni t Mod()
#endi f

Figure5: gender.h

#i ncl ude <string. h>
#i ncl ude "gender.h"

int gender_sprint (char s[], gender g) {
static char *resultstr[] ={"male", "fenale", "unknown gender"}

s[0] ="\0O
(void) strncat(s, resultstr[g], gender_maxPrintSize-1)

return strlen(s)

Figure 6: gender.c

3.2 Employee

The employee interface, Figure 7, directly exports to its clients two constants, three
exposed types, and three functions.

The imports clause says that the specification of the employee interface depends on
the specification of the gender interface; it gives employee and its clients access to the
type gender and the function gender_sprint. It also makes the trait associated with the
gender interface available for use in the specification of the employee interface. Such
specification dependenci es should not be confused with implementation dependencies,
where one module is used within the implementation of another; clients should not be
concerned with what modul es the implementation uses.

The constant clause equates the C constant maxEmployeeName and the LSL constant
MaxEmployeeName. Looking in employeeNameld, Figure 8, we see that the
implementation has a great dea of freedom in implementing this constant; any int
greater than zero is allowed.

The exposed types in this interface are conventional. We will later ensure that (in any
database) each Socia Security Number (ssNum) identifies a unique employee, so we
can useit as akey into the database. Cf. Figure 17 and the discussion on page 3.4.

12



i mports gender;

constant int maxEnpl oyeeNane = MaxEnpl oyeeNane;
constant int enployee_nmaxPrintSize =
maxEnmpl oyeeNane + gender _maxPrint Size + 30;

typedef enum {MER, NONMGR, job_ANY} job;
t ypedef char enpl oyeeNane[ maxEnpl oyeeNane] ;
typedef struct {int ssNum

enpl oyeeNane nane;

int salary;

gender gen;

job j;} enployee;

uses enpl oyeeNane, sprint(enployee, char[]);

bool enpl oyee_set Nane( enpl oyee *e, enpl oyeeNane na) {
requires null Term nated(na”);
nodi fi es e->nane;
ensures result = lenStr(na”) < maxEnpl oyeeNane
I\ (if result
then sameStr(e->nanme’, na")
/\ null Term nat ed( e->nane’)
el se unchanged(e->nane));
}
int enpl oyee_sprint(char s[], enployee e) {
requi res maxl ndex(s) >= enpl oyee_naxPrintSi ze;

nodi fies s;
ensures isSprint(s', e)
/\ result =lenStr(s’)

/\ result <= enpl oyee_nmaxPrintSize;

}
voi d enpl oyee_i ni t Mod(void) ({
ensures true;

}

Figure 7: employee.lc
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Like gender.lcl, employeelcl uses the sprint trait. This means that employee
incorporates sprint.Isl twice, with different renamings. directly with employee for
T, and indirectly with gender for T. It also uses employeeName, which was written
specifically for usein employee.lcl, and needs no renamings.

In addition to employee sprint and employee_initMod functions, this interface exports
the function employee setName. This function returns a value of type bool, the one
builtintype of LCL that ismissing from C. When LCL specifications are checked, bool
istreated as adigtinct type. If the type identifier bool appears in an LCL specification,
the Checker places #include" bool.h" in the corresponding .Ih-file. A typica bool.h
isshownin Figure 9.

The requires clause in employee_setName says that it should be called only with null-
terminated strings. The implementation is entitled to rely on this. Indeed, it often
must. It is not generally possible to determine at runtime the maxindex of an array.
Yet without a guarantee that a string is null-terminated, it is not safe to search for
its terminating null. The search might run past the end of the allocated storage and
generate references to nonexistent memory. Completely defensive programming just
isn't possiblein C.

The modifiesclause saysthat employee setName may changethe namefield, e- >name,
of itsfirst argument, but nothing else. Thisisafiner-grained constraint on modification
than is possible using only C’'s const qualifier. Unlike requires and ensures clauses, a

enpl oyeeNane: trait

includes string(enpl oyeeNane for String), integer
i ntroduces MaxEnpl oyeeName: -> int

asserts equations

MaxEnmpl oyeeNanme > 0

Figure 8: employeeName.ldl

#i f !defined(bool _h_expanded)
#defi ne bool _h_expanded

#defi ne FALSE O

#defi ne TRUE (! FALSE)

typedef int bool;

#defi ne bool _i ni t Mod()

#endi f

Figure 9: bool.h
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#i ncl ude "bool . h"
#i ncl ude "gender.h"

typedef enum { MGR, NONMGR, job_ANY} j ob;
typedef char enpl oyeeNane[ maxEnpl oyeeNane] ;
typedef struct {int ssNum

enpl oyeeNane nane;

int salary;

gender gen

job j;} enployee

extern bool enpl oyee_set Nane(enpl oyee *e, char na[])
extern int enployee_sprint(char s[], enployee e)

extern void enpl oyee_i nit Mbd(voi d)

Figure 10: employee.lh

modifies clause constrains everything it doesn’t mention.

The ensures clause says that employee_setName will have one of two outcomes. It will
either:

o Makethe namefield of itsfirst argument the same asits second argument (when
both are interpreted as strings), make the new value of the name field be null-
terminated, and return TRUE, or

e Change nothing and return FAL SE.

Furthermore, the first outcome will occur exactly when the new name fits, (i.e,
lenStr(na” ) < maxEmployeeName). The useof result in several subtermsof an ensures
clause is a frequent idiom. Since the predicate in the ensures clause is just a logical
formula, it makes no semantic difference whether the equation for result iswritten first
or last. We are free to choose an order that helps the exposition or emphasizes some
particular aspect of the specification.

A number of design decisions are recorded in employee.lcl. It says which functions
must be implemented, and for each function it indicates both the conditions that must
hold at the point of call and the conditionsthat must hold upon return. This constitutes
a contract between the implementation and the clients of employee that establishes a
“logicadl firewall,” alowing their programmersto proceed independently of each other,
relying only on the interface specification.

The file employee.lh, Figure 10, is automatically constructed from employeelcl. In
addition to the appropriate typedefs and function prototypes, it #includes the .h-files of
the explicitly imported interface gender and the implicitly imported interface bool.
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#i f !defined(enpl oyee_h_expanded)
#defi ne enpl oyee_h_expanded

#defi ne maxEnpl oyeeNane 20

#defi ne enpl oyee_maxPrint Si ze (nmaxEnpl oyeeNane + gen-
der _maxPrintSize + 30)

#i ncl ude "enpl oyee. | h"

#defi ne enpl oyee_i ni t Mod()\

do {bool _initMd(); gender_initMd();} while (0)

#endi f

Figure 11: employeeh

Thefileemployee.h, Figure 11, defines the constant maxEmployeeName using amacro.
Because of a restriction imposed by C, this definition must precede the inclusion of
employee.lh, since the constant is used in the typedef of employee name contained in
employee.lh. The#define cannot be automatically generated becausethe L CL processor
has no way of knowing what vaue the constant isto have; the specification |eaves that
decision to the implementation.

The file employee.h aso implements employee_ initMod. Our convention is for each
module to initialize any modules it explicitly imports. Thus employee initMod cals
gender_initMod. Since the specification of this function guarantees that it modifies
nothing, calling it multipletimes cannot have effects visibleto clients.

In genera, M.h contains, in order:

A test of whether M_h_expanded is defined in the current context. This makes
sure, for example, that a client of employee can safely include both employee.h
and gender.h without getting an error caused by a second occurrence of the type
definition for gender.

A definition of M _h_expanded.

Definitions of al constants declared in M.lcl, either as macros or as C const
variables.

Concrete representations (typedefs) for any abstract types declared in M.lcl.
Abstract data types are discussed in the next section.

Aninclude of M.|h.

Mecros, if any, for inlineimplementations of functionswith prototypesin M.lh.

The implementation of employee setName in employee.c, Figure 12, relies on the
requires clause inits specification. It may crash if na” isn't null-terminated.
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#i ncl ude <string. h>
#i ncl ude "enpl oyee. h"

bool enpl oyee_set Nane(enpl oyee *e, enpl oyeeNane na) {
int i;
for (i =0; na[i] !'="\0"; i++)
if (i == maxEnpl oyeeNane) return FALSE;
strcpy(e->nanme, na);
return TRUE;

}
int enployee_sprint(char s[], enployee e) {
char gstring[gender_maxPrintSize];
static char *jobs[] = {"nmanager", "non-nanager", "unknown job"};

gender _sprint(gstring, e.gen);

(void) sprintf(s, "%, %, %, %, $od",
e.ssNum e.nanme, gstring, jobs[e.j], e.salary);
return strlen(s);

}
Figure 12: employee.c

3.3 Empsat

Theinterface empset.lcl, Figure 13, exportsaset of functionsand an abstract data type.
Types specified in LCL can be either exposed or abstract. Aswe have seen, exposed
types are specified using C typedefs. Abstract types are specified by specifying a
collection of functionsthat create, examine, and manipulate their values, leaving their
representation as a“secret” of the implementation.

Although C provides no direct support for abstract types, there is a style of C
programming in which they play a prominent role. The programmer relies on
conventions to ensure that the implementation of an abstract type can be changed
without affecting the correctness of clients. The key restriction is that clients never
directly accesstherepresentation of an abstract value. All accessisthroughthefunctions
providedin itsinterface.

Toensurethat client programsareindependent of theway abstract typesare represented,
severa restrictions on their use are necessary. Vaues of abstract types must not be
assigned with = or compared with ==28 Without these restrictions, the choice of
representations would be severely limited; for example, if comparison using == were
allowed, structscould not be used at thetop-level of arepresentation. Moreimportantly,
these operators would likely have surprising semantics in client programs. Consider,
for example, two empsets, s and s2. Suppose each empset was implemented by a

8Ref abstract types, discussed below, are an exception to this rule.

17



/* enpset is a set of enployees */
/* set.lsl can be found in an LSL handbook */

i mports enpl oyee;

abstract type enpset;

uses set(enployee for Elem enpset for Set),
sprint(enpset, char[]);

void enpset _init(enpset *s) {
nodi fies *s;
ensures (*s)’ ={ };
}
void enmpset _final (enpset *s) {
nodi fies *s;
ensures trashed(*s);
}
voi d enpset _cl ear (enpset *s) {
nodi fies *s;
ensures (*s)’ ={ };
}
bool enpset_insert(enpset *s, enployee e) {
nodi fies *s;
ensures result = not(e \in (*s)") /\ (*s)' =in-
sert(e, (*s)7);

voi d enpset _i nsertUni que(enpset *s, enployee e) {
requires not(e \in (*s)7);
nodi fies *s;
ensures (*s)' = insert(e, (*s)7)
}
bool enpset_del et e(enpset *s, enployee e) {
nodi fies *s;

ensures result = e \in (*s)” /\ (*s)' = delete(e, (*s)7)
}
enpset *enpset _union(enpset *sl1, enpset *s2) {
ensures (*result)’ = (*sl1l)” \union (*s2)” /\ fresh(*result);
}

Figure 13: empset.Icl, part 1
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enpset *enpset _di sjoi nt Uni on(enpset *sl1, enpset *s2) ({

requires (*sl1l)” \intersect (*s2)” ={ };
ensures (*result)’ = (*sl1l)” \union (*s2)” /\ fresh(*result);
}

voi d enpset _intersect (enpset *sl, enpset *s2) {
nodi fies *sl
ensures (*sl1)' = (*sl)” \intersect (*s2)”
}
int enpset_size(enpset *s) {
ensures result = size((*s)”);
}
bool enpset_nenber (enpl oyee e, enpset *s) {
ensures result = e \in (*s)";
}
bool enpset_subset(enpset *sl, enpset *s2) {
ensures result = (*sl1l)” \subset (*s2)”
}
enpl oyee enpset _choose(enpset *s) {
requires (*s)” '={ };
ensures result \in (*s)”;
}
int enpset_sprint(char s[], enpset *es) {
requires maxln-
dex(s) >= (size((*es)”) * enployee_maxPrintSize)

nodi fies s;
ensures isSprint(s', (*es)")
/\ result =lenStr(s’)
I\ re-
sult <= (size((*es)”) * enployee_naxPrintSize);
}

voi d enpset _ini t Mod(void) {
ensures true

}

Figure 13: empset.Icl, part 2
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pointer to some data structure, with NIL representing the empty set. The expression
s1 == s2 would return true whenever two empty sets were compared, but otherwise
would return fal se whenever two distinct objects were compared, even if they had the
same values as sets. The statement s/ = 52 would make s/ and s2 point into the
same data structure; modificationsto either set would then change both.

For the same reasons that assignment of abstract types is not allowed, using values
of abstract types as parameters or as resultsis forbidden. References are passed and
returned, instead. For example, empset_union takes and returns val ues of type empset
* | rather than empset.

Type checking for abstract types (like that for exposed types) in both the LCL Checker
and LCLint is based on type names, not on their representations. However there are
two differences in the way LCLint will check the use of abstract types. First, for
exposed types, cals to functions from the standard C library will be checked using the
representation of thetype. For abstract types, names will be used for al type checking.
Second, withinthe implementation of the module exporting an abstract type, thetype's
representation will be used. This alows the implementation to access the internal
structurethat is hidden from clients.

The first two functions, empset_init and empset_fina are typica of functionsfound in
interfaces exporting abstract types. Since an abstract type cannot be assigned outside
itsimplementation, itsvariablesmust beinitialized by calling afunctioninitsinterface.
By convention, an object of an abstract typeT isinitialized by the T_init function before
any other use. LCLint will check for thisin the same way it checks for uninitialized
variables of exposed types. Once it has been initialized, no reference to it should be
passed to T_init again.

A client of empset should call empset_fina when it knows that an empset object will
never be referenced again. The clause ensures trashed(* s) says that upon return from
empset_final nothing can be assumed about the storage pointed to by s in the pre
state. References to that loc could even cause the client program to crash. A good
implementation of empset_final will free storage that isno longer needed, athough this
specification does not require it to. Since a client has no information about how an
empset isrepresented, it cannot directly freeone. For example, if empset isimplemented
as a pointer to a data structure, the call free(&sl1) would free only the pointer, not the
datastructure.

Thethird functionintheinterface, empset_clear, appearsto have the same specification
asempset_init. However, empset_clear isprovided for reinitializingan existing empset,
rather than initializing a new one, and LCLint will treat it differently, because it is not
themandatory initializationfunction. Aswewill seelater, empset_init and empset_clear
implemented very differently.

The functions empset_insert and empset_insertUnique both add an employee to an
empset. The chief difference is that empset_insertUnique requires that the employee
to be added is not aready present. This makes it possible to implement the
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function more efficiently. However, if the requirement is violated, the behavior of
empset_insertUniqueistotally unconstrained by the specification. The implementation
we give later does not check the requirement. If it is violated the implementation
returns without complaint, but it breaks a representation invariant—thus leading to
unpredi ctabl e behavior on subsequent uses of the empset.

The functions empset_union and empset_digointUnion both return the union of two
empsets. Once again, the requires clause makes it possible to implement one more
efficiently than the other. Notice that even though * s1 and * s2 are not modified, the
specifications refer to (* s1)” and (* s2)” . The” is needed because * sl and * 2 refer
to locs containing empsets. These must be evaluated in some state to get an empset.
Here * s1 and * s2 contain the same value in the pre and post states. We use”™ rather
than’ for objectsthat are guaranteed to have the same valuesin both states.

Both functions are required (by fresh(* result)) to return sets that are not aiased to any
objectsvisiblein the pre state. Thus the sets that they return can be modified without
affecting the values of other sets. One way of implementing thisis to alocate new
storage.

The requires clause of empset_choose is necessary to guarantee that the ensures clause
issatisfiable. If (*S)” isempty, it isnot possibleto return an employee that isamember
of it. Should (*s)” contain more than one element, the specificationissilent astowhich
member empset_choose returns. The implementation we present later gains efficiency
by being abstractly non-deterministic: A single empset value may have many different
representations (depending on the order in which its elements were inserted), and the
value returned by empset_choose is determined by the representation value passed in.

Although the remaining functions are a necessary part of this interface, they don't
illustrateany new LCL features. Itsimplementationisgivenin Appendix A, Figures 35
and 36, after we have specified the subsidiary abstractionsit uses.

The specifications presented to this point have been in the ASCII form in which they
can be entered for checking by thetools. One of the planned toolsis a prettyprinter that
will take thisraw form, and convert it to amore readable form using the capabilities of
amodern formatting system and alaser printer or bitmapped display device. Figure 14
shows sample of what its output will look like. The analogoustool for LSL isalready
inuse.
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/* empset isa set of employees */
/* set.ldl can be found in an LSL handbook */

imports employeg;

abstract type empset;

uses set(employee for Elem, empset for Set),
sprint(empset, char(]);

void empset_init(empset xs) {
modifies xS;
ensures (xS)" = {};
}
void empset_final (empset xS) {
modifies xS;
ensurestrashed(xS);
}
void empset_clear(empset *S) {
modifies xS;
ensures (xS)" = {};
}
bool empset_insert(empset xs, employee e) {
modifies xS;
ensuresresult = —(e € (xS)") A (xS) = insert(e, (*s)");
}
void empset_insertUnique(empset xs, employee €) {
requires—(e € (xS)");

modifies xS;
ensures (xS)’ = insert (e, (xS)");
}
bool empset_del ete(empset s, employee €) {
modifies xS;

ensuresresult = e e (xS)™ A (xS) = ddete(e, (xs)");
}
empset xempset_union(empset xs1, empset xS2) {
ensures (xresult) = (xs1)™ U (xs2)" A fresh(xresult);

}

Figure 14: empset.Icl fragment, prettyprinted
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34 DBase

Up to now we have presented modules by first giving an interface specification, then
itsauxiliary LSL specification, and finally, its implementation. Thisworks well when
thereader has good a priori intuition about the meaning of the abstractionsused in the
interface specification. When such intuition cannot be relied upon, it is often better to
present the auxiliary specification first, as we do here.

The definitionsin trait dbase, Figure 16 use operators defined by the traits associated
with gender and employee. But LSL specifications are programming-language-
independent, and hence aren’t allowed to reference LCL specifications. We could
copy the operator definitions into dbaseld, but this would be another opportunity
for unchecked discrepancies between parts of the specification. Instead, dbase.ld,
Figure 16, documents them as assumptions. Figure 15, dbaseAssumptions, indicates
what must be supplied by any environment in which trait dbase is used. These
assumptions are discharged in dbaselcl by the imports of gender and employee;
someday the LCL Checker will make sure that all assumptions are discharged.

Figure 16 introduces operators to create, manipulate, and query dbase values and then
provides axioms giving their meanings. Once these operators are understood, it is
straightforward to understand the specifications of the functions exported by dbase.lcl,
Figure 17 (just as an understanding of the conventional operators on finite setsis the
basis for understanding the specifications of the functionsin empset.lcl).

The dbase modul e encapsul ates adatabase and aset of functionsto query and manipulate
it. It exportstwo exposed types, dbase_q and dbase_status, and a number of functions.
It also contains our first use of global variables. LCL uses the same scope rules as
C. However, LCL extends the function prototype by including a list of the global

dbaseAssunptions: trait

i ncl udes integer,
set (enmpl oyee for Elem enpset for Set)

gender enuneration of MALE, FEMALE, gender_ANY
job enuneration of MER NONMER job_ANY
enpl oyee tuple of ssNum int,

nane: enpl oyeeNane,

salary: int,

gen: gender,
j: job

Figure 15: dbaseAssumptions.Isl
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variables referenced by the function. For example, hire is allowed to reference d, but
not initNeeded. LCLint will check that each global variable accessed by the function
body appearsin thislist.

Asit happens, dbase has only private variables, defined for use only in the specification
itself. Client code can refer to the functions specified in dbaselcl, but cannot refer
to private types and variables. Furthermore, since they are not exported, the private
types and variables need not be implemented. The type dbase is defined only to
declare the private variable d. Neither the type dbase nor the variable d appearsin our
implementation.

Notice that there is no dbase_init function for the private type dbase. Any necessary
initidization of the private variable d can be done in dbase_initMod, which has access
to the private variables.

The variable initNeeded is used to ensure that dbase initMod is idempotent. This
guarantees that multipleclients can use the database, and can each call dbase_initMod,
to ensure that the data base is initialized, without worrying about interfering with one
another.

The function hire is closely related to the operator hire of dbaseld. The difference
isthat it does some error checking and returns a result indicating the outcome of this
checking.

The function uncheckedHire is even more similar to the LSL operator, since it does no

dbase: trait
assunes dbaseAssunpti ons

dbase_q tuple of g:gender, j: job, I: int, h: int
dbase_status enunerati on of dbase_OK, sal ERR, gender ERR
j obERR, dupl ERR

i ntroduces

new. -> dbase

hi re: dbase, enployee -> dbase

fire, pronmote: dbase, int -> dbase

setSal: dbase, int, int -> dbase

find: dbase, int -> enployee

enpl oyed: dbase, int -> boo

nunEnpl oyees: dbase -> int

mat ch: gender, gender -> boo

match: job, job -> boo

query: dbase, dbase_q -> enpset

Figure 16: dbase.ld, part 1
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asserts
dbase generated by new, hire
dbase partitioned by query
forall e: enployee, k: int, g, gq: gender, j, jqg: job,
g: dbase_q, sal: int, d: dbase
fire(new, k) == new;
fire(hire(d, e), k) ==
if e.ssNum = k then fire(d, k) else hire(fire(d, k), e);
pronot e(new, k) == new,
pronote(hire(d, e), k) ==
if e.ssNum = k
then hire(promote(d, k), set_j(e, MR))
el se hire(pronote(d, k), e);
set Sal (new, k, sal) == new,
setSal (hire(d, e), k, sal) ==
if e.ssNum = k
then hire(setSal (d, k, sal), set_salary(e, sal))
el se hire(setSal (d, k, sal), e);
find(hire(d, e), k) == if e.ssNum = k then e else find(d, k);
enpl oyed(new, k) == fal se;
enpl oyed(hire(d, e), k) ==
if e.ssNum = k then true el se enployed(d, k);
nunEnmpl oyees(new) == 0;
nunEnmpl oyees(hire(d, e)) == nunEnpl oyees(d)
+ (if enployed(d, e.ssNun) then O else 1);
mat ch(gq, g) == gq = gender _ANY \/ g = gq;
match(jg, j) ==jq =job_ANY \/ | =jaq;
query(new, q) == { };
query(hire(d, e), q) ==
if match(g.g, e.gen) /\ match(qg.j, e.j)
/I\ gq.1 <= e.salary /\ e.salary <= qg.h
then insert(e, query(d, q)) else query(d, Q)

Figure 16: dbase.ld, part 2
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inmports enpl oyee, gender, enpset;

typedef struct{gender g; job j; int |I; int h;} dbase_qg
typedef enum {dbase_OK, sal ERR, genderERR, jOobERR
dupl ERR} dbase_st at us;
private abstract type dbase
private dbase d
private bool initNeeded = true

uses dbase, sprint(dbase, char[]);

dbase_status hire(enpl oyee e) dbase d; {
nodi fies d;
ensures
(if re-
sult = dbase_K then d° = hire(d”, e) else unchanged(d))
/\ result = (if e.gen = gender_ANY then gender ERR
else if e.j = job_ANY then jobERR
else if e.salary < 0 then sal ERR
else if enployed(d”, e.ssNum) then dupl ERR
el se dbase_(X);

}
voi d uncheckedHire(enpl oyee e) dbase d; {
requires e.gen != gender_ANY /\ e.j != job_ANY
/\ e.salary > 0 /\ not(enployed(d”, e.ssNum)
nmodi fies d;
ensures d = hire(d”, e);
}
bool fire(int ssNum dbase d; {
nmodi fies d;

ensures result = enployed(d”, ssNum
I\ (if result then d° = fire(d”, ssNun)
el se unchanged(d));

Figure 17: dbasellcl, part 1
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int query(dbase_qgq q, enpset *s) dbase d; {
nodi fi es *s;

ensures (*s)’ = (*s)” \union query(d®, q)
/\ result = size((*s)’ - (*s)7)
}
bool pronote(int ssNun) dbase d; {
nodi fies d;

ensures result = (enployed(d”, ssNum
/\ find(d™, ssNum).j = NONMGER)
/\ (if result then d° = pronote(d”, ssNum
el se unchanged(d));
}
bool setSalary(int ssNum int sal) dbase d; {
nodi fies d;
ensures result = enployed(d”, ssNum
/\ (if result then d = setSal (d”, ssNum sal)
el se unchanged(d));

}
int dbase_sprint(char s[]) dbase d; {
requires

max| ndex(s) >= (nunEnpl oy-
ees(d”) * enployee_maxPrintSize);
nodi fies s;
ensures isSprint(s’, d°)
/\ result =lenStr(s’)
/\ result <= (nunEnpl oy-
ees(d”) * enployee_maxPrintSize);

voi d dbase_init Mbd(voi d) dbase d; bool initNeeded; ({
nodi fies d, initNeeded

ensures if initNeeded”
then d° = new /\ not(initNeeded' ) else unchanged(all)

Figure 17: dbasellcl, part 2
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#i ncl ude "bool . h"

#i ncl ude "gender.h"
#i ncl ude "enpl oyee. h"
#i ncl ude "enpset.h"

typedef enum {dbase_OK

sal ERR
gender ERR,
j obERR
dupl ERR} dbase_st at us
typedef struct{gender g; job j; int |I; int h;} dbase_q;

extern dbase_status hire(enpl oyee e)
extern void uncheckedH re(enpl oyee e)
extern bool fire(int ssNunj;

extern int query(dbase_q q, enpset *s)
extern bool pronote(int ssNum;

extern bool setSalary(int ssNum int sal)
extern int dbase_sprint(char s[])

extern void dbase_init Mod(voi d)

Figure 18: dbase.lh

error checking. Of course, if it is called when its requires clause does not hold, it is
likely to do something unfortunate that may not be detected for quite some time, for
example, when the employee is fired. Both functions modify the private variable d.
Sinced isaglobal variablerather than aformal parameter, it can be accessed directly;
thereisno need to passin a pointer toit.

The function query is also closely related to the LSL operator query. But the operator
returns an empset and the function returns an int: the number of employees added to
* sastherequired side effect of callingit. Thisisacommon C idiom.

Now we can show that dbase preserves the property that thereis at most one employee
ind with any given ssNum. The function dbase_initMod ensuresthat d starts out empty.
The only functionsthat are allowed to add employeesto d are hire and uncheckedHire.
If hireiscalled with an employeewhosessNum isalready ind, itsspecification saysthat
it must return duplERR and leave d unchanged. And uncheckedHire's requires clause
forbids caling it with an employee whose ssNum is aready in d—any subsequent
havoc is purely the responsibility of uncheckedHire's client.

The only thing of noteabout dbase.lh, Figure 18, isthat the private variablesand private
type do not appear init.
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Once again, we defer the presentation of dbase’s implementation to Appendix A,
Figures 37 and 38, sinceit aso relies on subsidiary abstractionsto be specified later.

3.5 Driver

Before looking at the abstractions used in the implementation of dbase, we pause to
takealook at some code that uses dbase. Figure 19 ispart of aprogram we used to test
our implementations of the modul es specified earlier in this section.

The program begins with a series of #includes of the .h-filesfor the modul es containing
functions or types that it uses directly. It does not include any subsidiary modules
that they may use. While the included .h-files are necessary to compile the driver,
to understand the code one need look only at the corresponding .Icl-files. If the
implementation of one of the used modules, such as empset, should change, the driver
will have to be re-compiled, but the code will not have to be changed.

After declaring some variables, the driver initializes the included modules (except
for stdio). LCLint will issue a warning if this initialization is not done immediately
following the declarations of the function main. Since the author of main has no way
of knowing what modul es are used in the implementationsof theincluded modules, the
various initMod functions must themselves call the initMod functions of the modules
they use. Thiscould result in some initMod functionsbeing called twice, which iswhy
their specifications typically require them to be idempotent.

The driver then initializes the the variable es. Our conventions require this because
empset isan abstract type. LCLint will issueawarning if alocally declared variable of
an abstract typeisn’t initialized immediately following the module initializations.

Finally, thedriver call ssomeof the specified functions. Effectsthat arefully constrained
by specifications, such as the result returned by fire, are checked internally. Where the
specification allowsavariety of acceptabl e effects, outputis printed soit can be checked
by hand or by atest harness (against previousruns).
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#i ncl ude <stdio. h>

#i ncl ude "bool . h"

#i ncl ude "gender.h"
#i ncl ude "enpl oyee. h"
#i ncl ude "enpset.h"
#i ncl ude "dbase. h"

int main(int argc, char *argv[]) {

enpl oyee e

enpset es;

enpset *enptr

char na[ 10000] ;
int i, j;
dbase_status stat;
dbase_q q

/* Initialize the LCL-specified nodul es that were included */
bool _i ni t Mod()
gender _i ni t Mod()
enpl oyee_i ni t Mod()
enpset _i ni t Mod()
dbase_i nit Mod();

/* Initialize all of the variables of abstract types */
enpset _init(&es);

Figure 19: drive.c fragment, part 1
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/* Performtests */

for (i =0; i < 20; i++) {
e.ssNum = i;
e.salary = 1000 * i;
if (i < 10) e.gen = MALE; el se e.gen = FEVALE;
if (i <15) e.j = NONMGR; else e.j = M3R;
(void) sprintf(na, "J. Doe %", i);
enpl oyee_set Nane(&e, na);
if ( (i/2)*2 ==1i) hire(e);

el se {uncheckedHire(e); stat = hire(e);}

}
if (stat == dupl ERR) printf("Error 1: Duplicate not found\n");

(void) dbase_sprint(na);
printf("Should print 20 enpl oyees:\n%\n", na);

dbase_initMdd(); /* Should have no effect */
if (!fire(17)) printf("Error 2: 17 not fired\n");
q.g = FEMALE; g.j = job_ANY; g.| = 15800; g.h = 18500;
if ((i = query(q, &es)) !=2)

printf("Error 3: Wong nunber found %\n", i);
(void) enpset_sprint(na, &es);
printf("Should print two enpl oyees: \n%\n", na);

[ |

Figure 19: drive.c fragment, part 2
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i mports enpl oyee;

constant int eref_maxPrintSize = enpl oyee_maxPrintSize + 27,
abstract type enployee ref eref;

uses sprint(eref, char[]);

int eref_sprint(char s[], eref er) {
requi res maxl ndex(s) >= eref_nmaxPrint Si ze;
nodi fi es s;
ensures isSprint(s’, er)
I\ result =lenStr(s’) /\ re-
sult <= eref_maxPrintSize;

}
void eref_initMd(void) {
ensures true;

}

Figure 20: eref.Icl

3.6 Eref

Now we move down a level of abstraction, and specify some modules that are useful
in implementing the modul es defined above. The next example introduces a new kind
of type constructor. The constructor ref is a more abstract version of the * used in
exposed types. Like al abstract types, values of ref types can be accessed only through
the functions exported from the interface in which they are declared. Unlike other
abstract types, however, the interface implicitly exports a constant and four functions
(type_dloc, type free, type_set, and type_get) in addition to those explicitly specified in
the .Icl-file. The functions correspond to builtin operations on C pointers. Since their
meaning is determined by LCL, they do not appear explicitly in the .Icl-file, but they
must be implemented.

Figure 20 exports a ref type, eref. Figure 21 specifies its four implicitly exported
functions, using a subset of LCL's pointer operations. The functionseref_free, eref_set
and eref_get have unconstrained behavior when they are called with erefNIL.

Unlike LCL's other abstract types, ref types can be assigned using =, passed as
parameters, returned from functions, and compared using ==. Since they can be
assigned, there is no need for the typeinitialization function that must be provided for
other abstract types.

Refs can be used in much the same way as pointers: to create sharing in data structures,
to assign large objectsinexpensively and pass them into and out of functions, to check
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inmports eref;
constant eref erefNIL = NL;

eref eref_alloc(void) {
ensures fresh(*result);

}
void eref_free(eref er) {
requires er !'= erefNL;

nodi fies *er;
ensures trashed(*er);

}
void eref_set(eref er, enployee e) {
requires er != erefNL;
nodi fies *er;
ensures (*er)' = eg;
}
enpl oyee eref _get(eref er) {
requires er != erefNL;
ensures result = (*er)”;
}

Figure21: eref.lcl’simplied interface

inexpensively whether two objects are the same, to handle data structures whose size
varies dynamically, etc.

There are some operations on pointers that are not available for ref types. Thereis
no arithmetic on ref types. Although LCL allows the use of * and - > on ref typesin
specifications, LCLint won't allow their use on ref typesin client code. Instead, clients
must use the functions exported by the interface.

Though ref typesare more limited than pointer types, using them has some advantages:

e It providesa leve of abstraction. The implementor can change the implemen-
tation, e.g., from a pointer to an index into an array, without worrying about
invalidating client code.

o It dlows private storage management, even if the chosen representation is a
pointer. For example, a compacting storage manager can be written, since all
access must be viafunctionsin the module.

e It is more general, allowing references to data that is in another address space,
on another machine, on a disk, etc.
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#i ncl ude "bool . h"
#i ncl ude "enpl oyee. h"

extern eref eref_alloc(void)

extern void eref_free(eref er)

extern void eref_set(eref er, enployee e)
extern enpl oyee eref _get(eref er)

extern int eref_sprint(char s[], eref er)
extern void eref_initMd(void)

Figure 22: eref.lh

#i f !defined(eref_h_expanded)
#define eref_h_expanded

#define eref _maxPrintSize (enpl oyee_nmaxPrintSize + 27)
#i ncl ude "enpl oyee. h"
typedef int eref;

/* Private type defs used in macros. */
typedef enum {used, avail} eref_status
typedef struct {enployee * conts;

eref _status * status

int size

int index;} eref_ERP

extern eref _ERP eref_Pool ;
#i nclude "eref.|h"

#define erefNIL (-1)

#define eref_free(er) (eref_Pool.status[er]
#define eref_set(er, e) (eref_Pool.conts[er]
#define eref_get(er) (eref_Pool.conts[er])
#endi f

avail)

Figure 23: eref.h

Figure 22 contains the .Ih-file generated by LCL from eref.Icl. Notice that it includes
prototypesfor theimplicit functions.

Figures 23 and 24 contain an implementation of eref. Itisnot a particularly interesting
implementation, but it does show that thereisconsi derable freedom inimplementing ref
types. The only constraints are that the top-level representation (int here) is assignable
and comparable (using ==), and that implementations of the exported functions meet
their specifications. Because the implementation variable eref_Pool is used in three
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macro definitions, C requires it to be declared extern in eref.h, even though clients of
eref are not supposed to reference it—or even know about its existence, sinceit doesn’t
appear in eref.lcl.

#i ncl ude <stdio. h>
#i ncl ude "eref.h"

eref ERP eref_Pool ; /* private */
static bool needslnit = TRUE, /* private */

eref eref_alloc(void) {

int i, res;

int * tnp;

for (i=0;
(eref _Pool .status[i] == used) && (i < eref_Pool.size);
i ++);

res = i;

eref _Pool . status[res] = used;

if (res == eref_Pool .size - 1) {

eref _Pool .conts =

(enpl oyee *) realloc(eref_Pool.conts,

2*eref _Pool . si ze*si zeof (enpl oyee) ) ;

eref _Pool .status =

(eref _status *) reall oc(eref_Pool . status,

2*eref _Pool . si ze*si zeof (eref _status));
eref _Pool . si ze = 2*eref _Pool . si ze;
for (i =res+l; i < eref_Pool.size; i++)
eref _Pool .status[i] = avail;
}

return (eref) res;

int eref_sprint(char s[], eref er) {
int len;
(void) sprintf(s, "eref: 9%. Enployee: ", (int) er);
len = strlen(s);
return len + enpl oyee_sprint (& s[len]), eref_get(er));

}
Figure 24: eref.c, part 1
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voi d eref _initMd(void) {
int i;
const int size = 2;

/* So that initMod will be idenpotent */
if (needslnit == FALSE) return;
needslnit = FALSE;

bool _i ni t Mod();
enpl oyee_i ni t Mod();
eref _Pool .conts = (enployee *) nalloc(size*sizeof (enpl oyee));
eref _Pool .status =
(eref _status *) mall oc(size*sizeof (eref_status));
eref _Pool . size = size;
eref _Pool .i ndex = 0;
for (i =0; i < size; i++) eref_Pool.status[i] = avail;

Figure 24: eref.c, part 2
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3.7 Erc

Figure 27 specifies functions operating on an abstract type, erc (for employee ref
collection), that contains erefs. An ercisbasicaly a bag with a pair of functions that
make it possibleto iterate over itselements. It isused in theimplementation of empset
and dbase.

The iteration functions add some complexity to the specification. This shows up most
notably in erc.Id, Figure 25. The partitioned by clause indicates that erc values can be
viewed as pairs of bags; the relevant portionsof bag.ld are given in Figure 26, and the
completetrait appears in Appendix B, Figure 43. The operator val maps an erc to the
bag of erefs that have been inserted (and not deleted). The operator wereYielded maps
an erc to the bag of vaues that have been marked as yielded (by the yield operator).
The derived operator toYield maps an erc to the bag of valuesthat remain to beyielded.
These operators are used in the specification of thefunctionserc_iterStart and erc_yield.

erc: trait
i ncl udes bag(eref, erefBag)

i ntroduces
{ }: ->erc
add, yield, delete: eref, erc -> erc
val, wereYielded, toYield: erc -> erefBag
_\in __: eref, erc -> Bool

asserts
erc generated by { }, add, yield
erc partitioned by val, wereYiel ded

forall ic: erc, e, el: eref
val({ }) =={ };
val (add(e, ic)) == insert(e, val(ic));
val (yield(e, ic)) == val(ic)
val (delete(e, ic)) == delete(e, val(ic));

wereYielded({ }) == { };
wer eYi el ded(add(e, ic)) == wereYielded(ic);

wereYi el ded(yield(e, ic)) == insert(e, wereYielded(ic));
wer eYi el ded(del ete(e, ic)) == delete(e, wereYielded(ic));
toYield(ic) == val(ic) - wereYielded(ic);

e\inic == e \in val(ic)

Figure 25: erc.ld

37



bag(Elem Bag): trait
i ntroduces

{1} ->

insert,

_\in __

Bag
delete: Elem Bag -> Bag
El em Bag -> Boo

{_}: Elem-> Bag
__\union __, __ - __: Bag, Bag -> Bag

% ...

asserts

Bag generated by { }, insert
Bag partitioned by \in, delete

forall

{e}

e, el: Elem b, bl: Bag

== insert(e, { });

delete(e, { }) =={ };
delete(e, insert(el, b)) ==

if e =el then b else insert(el, delete(e, b));

not(e \in { });

e \in insert(el, b) == e =el \/ e \in b;

b \union { } == b;

b \union insert(e, bl) == insert(e, b) \union bi;
b-{} =0

b - insert(e, bl) == delete(e, b - bl)

% ...

Figure 26: bag.ld fragment

Typicaly, client code that uses these functionswill be of the form,

eref er;

erc s;
for(er
er
er

}

erc_iterStart(s);
= erefNIL;
erc_yield(s)) {
Body of |oop that does sonething with each er froms.

If thebody of theloopwere guaranteed not to changetheerc being iterated over, boththe
specification and the implementation of erc could be considerably simplified. However,
such arestrictionisnot usualy reasonable. Allowing for modificationswithinthe body
of the loop raises severa questions about the semantics of the functions, among them,

o If an element isinserted in the erc within the body of the loop will it be yielded?

o If, withinthe body of theloop, an e ement gets deleted beforeit has been yielded
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does it get yielded?

o If, within the body of the loop, an element gets yielded, deleted and then
reinserted, doesit get yielded again?

The answers, according to this specification, are Yes, No, and Yes, respectively.

Again, theimplementation is deferred to Appendix A, Figures 33 and 34.

3.8 Ereftab

Ereftab, Figures 28 and 29, is the last module in our example. It is used to create a
one-to-one mapping from employeesto erefs. 1t makes it unnecessary to store multiple
copies of the same empl oyee record within the implementation of empset.

Theintended use of ereftab_insert isto put an employeeinthe table only after alookup

inmports eref;
abstract type erc
uses erc, sprint(erc, char[])

void erc_init(erc *c) {
nodi fi es *c;
ensures (*c)' ={ };
}

void erc_clear(erc *c) {
nodi fies *c;
ensures (*c)' ={ };
}

void erc_insert(erc *c, eref er) {
nodi fies *c;
ensures (*c)' = add(er, (*c)")
}

bool erc_delete(erc *c, eref er) {
nodi fies *c;
ensures result = er \in (*c)~

/\ (*c)' = delete(er, (*c)")

}

bool erc_menber (eref er, erc *c) {
ensures result = er \in (*c)~;

}

Figure27: erclcl, part 1
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eref erc_iterStart(erc *c) {
nodi fi es *c;
ensures if val((*c)") {1}
then result erefNIL /\ unchanged(*c)
else result \in val ((*c)")
/\ val ((*c)’) = val((*c)")
/\ wereYielded((*c)') = {result}

}
eref erc_yield(erc *c) {
nodi fies *c;
ensures if toYield((*c)") ={ }
then result = erefNIL /\ unchanged(*c)
else result \in toYield((*c)")
/\ (*c)' = yield(result, (*c)")
}
void erc_join(erc *cl, erc *c2) {
nodi fies *cl
ensures val ((*c1)’) = val ((*cl)") \union val ((*c2)")
/\ wereYielded((*cl)') ={ }
}
int erc_sprint(char s[], erc *c) {
requi res maxln-
dex(s) >= (size(val ((*c)”)) * eref_naxPrintSize)

nodi fies s;

ensures isSprint(s’, (*c)")
/\ result =lenStr(s’)
I\ re-

sult <= (size(val ((*c)")) * eref_maxPrintSize);

}
void erc_initMd(void) {
ensures true

void erc_final (erc *c) {
nodi fies *c;
ensures trashed(*c);

}

Figure27: erclcl, part 2
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has failed to find an eref for that employee. The requires clause of ereftab_insert
formalizes this property, and allows the implementation not to duplicate atest that has
just been made by the client.

The implementation of ereftab is unremarkable, and is not presented.

imports enpl oyee, eref;
abstract type ereftab
uses ereftab, sprint(ereftab, char[])

void ereftab_init(ereftab *t) {
nodi fies *t;
ensures (*t)’' = enpty;
}

eref ereftab_insert(ereftab *t, enployee e) {
requires getERef((*t)", e) = erefNL;
nodi fies *t;
ensures (*t)’' = add((*t)", e, result) /\ fresh(*result);
}

bool ereftab_delete(ereftab *t, eref er) {
nodi fies *t, *er;

ensures result = in((*t)", er)
I\ (if result
then (*t)’ = delete((*t)", er) /\ trashed(*er)

el se unchanged(*t, *er));

Figure 28: ereftab.Icl, part 1
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eref ereftab_| ookup(enpl oyee e, ereftab *t) {
ensures result = getERef((*t)"~, e);
}
int ereftab_sprint(char s[], ereftab *t) {
requires mexlndex(s) >= (size((*t)") * eref_nmaxPrintSize);

nodi fies s;
ensures isSprint(s’, (*t)")
/\ result =lenStr(s’)

/\ result <= (size((*t)") * eref_nmaxPrintSize);

void ereftab_final (ereftab *t) ({
nodi fies *t, reach((*t)");
ensures trashed(*t)
/\ \forall e:enployee
((getERef ((*t)", e) != erefNL)
=> trashed(*getERef ((*t)", €)));
}
void ereftab_initMd(void) {
ensures true;

}

Figure 28: ereftab.Icl, part 2
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ereftab: trait
i ncl udes integer

i ntroduces
enpty: -> ereftab
add: ereftab, enployee, eref -> ereftab
delete: ereftab, eref -> ereftab
get ERef: ereftab, enployee -> eref
erefNIL: -> eref
in: ereftab, eref -> bool
size: ereftab -> int

asserts
ereftab generated by enpty, add
ereftab partitioned by getERef

forall e, el: enployee, er, erl: eref, t: ereftab
del ete(enpty, er) == enpty;
del ete(add(t, e, er), erl) ==
if er = erl thent else add(delete(t, erl), e, er);

in(enpty, er) == fal se;
in(add(t, e, er), erl) ==er =erl \/ in(t, er);

get ERef (enpty, el) == erefNL;
get ERef (add(t, e, er), el) ==
if e =el then er else getERef(t, el);
size(enmpty) == 0;
size(add(t, e, er)) == 1 + (if in(t, er) then O else 1)

Figure 29: ereftab.ldl
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typedef struct _elen{eref val; struct _elem *next;} ercEl em
t ypedef ercEl em * ercSet;
typedef struct {ercSet vals; ercSet nextY; ercSet prevY;} erc;

Figure 30: erc's representation

typedef erc enpset; /* This is in enpset.h */

ereftab known; /* This is in enpset.c */
Figure 31: empset’s representation

3.9 Noteson theimplementations

Appendix A contains implementations of the interfaces erc, empset, and dbase. We
include them not because they are intrinsically interesting, but for completeness. Here
wetake opportunity to make some comments about therel ationshi p of the specifications
to these implementations.

Inwriting specifications, the emphasisisentirely on ease of understanding. Code should
be reasonably easy to understand, but efficiency must aso be considered. Consider,
for example, the representation for ercs, Figure 30. Though the specification iswritten
asif an erc consists of apair of bags, the implementation uses a single linked list and
three pointersinto it. The pointer val pointsto the head of the list, prevY to the most
recently yielded element, and nextY to the element to beyielded next. Withinerc.c, erc
istreated as an exposed type, that is, erc values are treated as structs. LCLint will allow
this exposure within the implementation of an interface, even though it will generate
an error message if client code attemptsto treat an erc as a struct.

Theimplementation of empset usesan erc to represent an empset, Figure31. Itasouses
a non-exported module-level variable, known, of type ereftab, declared in empset.c.
Knownisused to avoid al ocating space for the same employee multipletimes. Thefirst
time an employeeisinserted into any empset it isa so inserted into known and a newly
allocated eref is inserted into the erc. On subsequent inserts of the same employee
into any empset, the old eref is reused. This auxiliary data structure is shared by the
implementation of all objects of type empset, but thissharing is not visibleto clients.

The implementation of dbase is considerably longer than that of the other modules
specified here. It isaso somewhat different in structure. Unlike empset.h and erc.h,
dbase.h contains no typedef (though it does inherit typedefs, of exposed type, from
dbase.lh). Thisis because dbaselcl exports no abstract types and the implementation
of dbase doesn’'t use any macros that depend on locally defined types. Information
pertinent to compiling only the implementationitself isrestricted to dbase.c, Figure 32.
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#define first ERC nMERS
#defi ne | ast ERC f NON
#define nunERCS (lastERC - firstERC + 1)

typedef enum {nMERS, fMIRS, mNON, fNON\} enpl oyeeKi nds;
erc db[ nunERCS] ;

/* Invariant: The data base is partitioned by
val (db[ "VGRS] ), val (db[ mNON]), val (db[fMGRS]), val (db[fNON]) */

bool initDone = FALSE;

Figure 32: dbase.c fragment

Theprivatevariablesd and initNeeded from dbase.lcl areimplemented by the variables
db and initDone, in dbasec. We chose different names for the variables in the
implementation to emphasize that there is no necessary correspondence between
modul e-level variablesappearing in theimplementation and privatevariabl esappearing
inthespecification. Itispurely accidental that both of our private specification variables
correspond to single implementation variables; one of our earlier implementations of
the interface used four distinct ercs to represent d.

The correctness of the implementations of the functions in dbase.c depends upon the
mai ntenance of arepresentationinvariant. That thisholdscan be shown by aninductive
argument:

e Itisestablished by dbase initMod,

e For each function specified in dbase.lcl, if the invariant and the requires clause
hold on entry, the invariant will hold upon termination. In discharging this step
of the proof, it is necessary to examine even those functions whose specification
does not alow them to modify d, since they might still modify the representation
of d.

The implementation of dbaseincludes severa functionsthat do not appear in dbase.lcl
and therefore are not accessible to clients. It would be acceptable for these functions
to break the invariant temporarily (though, infact, they don’t).

4 Summary

We have tried to present enough information to allow the C programmer to begin to
use LCL. Our example specifications demonstrate most features of the language. Our
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example implementationsillustrate a style of C programming in which specifications
are used to establish firewalls between modules.

People writing client programs need look only at the specifications to discover what
they need to know about the functional behavior of the modules that they use. This
saves them the trouble of examining the code (which, even given our rather smplistic
implementations, is considerably longer than the specifications). Furthermore, it
increases the likelihood of client programs continuing to work despite changes to
the implementations of of modules that they are built on.

LCL 1.0 is not sufficiently expressive to to specify all reasonable modules that one
might implement in C. For example, thereisno provision made for function parameters
and no treatment of concurrency. We expect to address both of thesein afutureversion.

Despitethese omissions, wefedl that LCL 1.0isready for practical use. Many modules
of most programs can bewell-specified using LCL. TheLSL and LCL checkers, though
till under devel opment, have proved extremely useful inearly trials. We don’t yet have
an LCLint. However, hand simulations of the checks planned for LCLint indicate that
such atool, combined with careful specifications, can uncover alarge number of typical
errors.
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A Implementations

This appendix contains the implementations of the interfaces erc, empset, and dbase.
We present them not because they are intrinsically interesting, but for compl eteness.

#i f !defined(erc_h_expanded)

#defi ne erc_h_expanded

#i nclude "eref. h"

typedef struct _elen{eref val; struct _elem*next;} ercEl em
typedef ercElem* ercSet;

typedef struct {ercSet vals; ercSet nextY; ercSet prevY;} erc
#i nclude "erc.|h"

#define erc_initMd( ) do {bool _initMd(); enployee_inithd();\

eref _initvbd();} while (0)
#endi f

Figure 33: erc.h
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#i ncl ude "erc. h"
#define ercSet Enpty ((ercSet) 0)

void erc_init(erc *c) {
c->vals = ercSet Enpty;
c->nextY = ercSet Enpty;
c->prevY = ercSet Enpty;

}

void erc_final (erc *c) {
ercSet elem
ercSet prevEl em

if (c->vals == ercSetEnpty) return;
elem = c->val s;
while (el em>next != ercSet Enpty) {
prevEl em = el em
el em = el em >next;
free(prevEl em;

}
free(elem;
}
void erc_clear(erc *c) {
erc_final (c);
erc_init(c);

void erc_insert(erc *c, eref er) {
ercSet newkl em

newkl em = (ercElem*) mal | oc(sizeof (ercE em);
newkl em >val = er;

newkl em >next = c->nextY,

if (c->prevY != ercSetEnpty) (c->prevY)->next = newkl em
if (c->vals == c->nextY) c->vals = newkl em

c->nextY = newkl em

Figure 34: erc.c, part 1
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bool erc_nenber (eref er, erc *c) {
ercSet tnpc;

tnpc = c->vals;

while (tnpc != ercSetEnpty) {
if (tnpc->val == er) return TRUE;
tmpc = tnpc->next;

return FALSE;

}

bool erc_delete(erc *c, eref er) {
ercSet elem
ercSet prevEl em

if (c->vals == ercSetEnpty) return FALSE;

el em = c->val s;

if (elem>val == er) {
if (c->nextY == c->vals) c->nextY
if (c->prevY == c->vals) c->prevY
c->val s = el em >next;
free(elem;
return TRUE;

}
while (el em>next != ercSet Enpty) {

prevEl em = el em

el em = el em >next;

if (elem>val == er) {
if (c->nextY == elenm c->nextY
if (c->prevY == elenm c->prevY
prevEl em >next = el em >next;
free(elem;
return TRUE;

}

}
return FALSE;
}

el em >next ;
er cSet Enpt y;

el em >next ;
prevEl em

Figure 34: erc.c, part 2
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eref erc_iterStart(erc *c) {
c->nextY = c->vals;
c->prevY = ercSet Enpty;
return erc_yield(c);

}

eref erc_yield(erc *c) {
eref res;
if (c->nextY == ercSetEnpty) return eref N L;
res = (c->nextY)->val;
c->prevY = c->nextY;
c->nextY = (c->nextY)->next;
return res;

}

void erc_join(erc *cl, erc *c2) {
ercSet tnpc2;

tnpc2 = c2->vals;

while (tnpc2 !'= ercSet Enpty) {
erc_insert(cl, tnpc2->val);
tnpc2 = tnpc2->next;

}
}
int erc_sprint(char s[], erc *c) {
int |en;
ercSet tnpc;
tnpc = c->vals;
len = 0;
while (tnpc != ercSet Enpty) {
if (tnpc->val !'= erefNIL) {
len += enpl oyee_sprint (& s[len]), eref_get(tnpc->val));
s[len] ="'\n";
| en++;
}
tnpc = tnpc->next;
}
s[len] ="'\0";
return |en;

Figure 34: erc.c, part 3
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#i f !defined(enpset_h_expanded)
#defi ne enpset _h_expanded

#i ncl ude "eref.h"

#i ncl ude "erc. h"

#i ncl ude "ereftab. h"

typedef erc enpset

#i ncl ude "enpset.|h"

#define enpset_init(s) erc_init(s)

#define enpset _final (s) erc_final(s)
#endi f

Figure 35: empset.h
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#i ncl ude "enpset.h"
ereftab known; /* Table of enpl oyees that have been put in sets */

eref _enpset_get(enpl oyee e, erc *s) {

eref er;
enpl oyee el;
for(er = erc_iterStart(s); er != erefNIL; er = erc_yield(s)) {

el = eref _get(er);
if ((el.ssNum== e.ssNum && (el.gen == e.gen) &&

(el.j == e.j) && strcnp(el.nanme, e.nane)) return er;
}
return eref NI L;
}
voi d enpset _cl ear (enpset *s) {
eref er;
for(er = erc_iterStart(s); er != erefNIL; er = erc_yield(s))
eref _free(er);
erc_clear(s);
}
bool enpset_insert(enpset *s, enployee e) {
eref er;
er = _enpset_get(e, S);
if (er '=erefNIL) return FALSE;
er = ereftab_| ookup(e, &known);
if (er == erefNIL) er = ereftab_insert(&nown, e);
erc_insert(s, er);
return TRUE;
}
voi d enpset _i nsert Uni que(enpset *s, enployee e) {
eref er;

er = ereftab_| ookup(e, &known);
if (er == erefNIL) er = ereftab_insert(&nown, e);
erc_insert(s, er);

}

Figure 36: empset.c, part 1
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bool enpset_del et e(enpset *s, enployee e) {
eref er;

er = _enpset_get(e, S);
if (er == erefNIL) return FALSE;
erc_del ete(s, er);
return TRUE;
}
enpset *enpset_uni on(enpset *sl1, enpset *s2) {
erc *em
eref er;

em= (erc *) malloc(sizeof(erc));
erc_init(em;
erc_join(em sl1);

for (er = erc_iterStart(s2); er !=erefNIL; er = erc_yield(s2))
enpset _insert(em eref_get(er));
return em

}
enpset *enpset _di sj oi nt Uni on(enpset *sl1, enpset *s2) {
erc *em

em= (erc *) malloc(sizeof(erc));
erc_init(em;
erc_join(em sl1);
erc_join(em s2);
return em

}

voi d enpset _i ntersect(enpset *sl1, enpset *s2) {
eref erl, er2;

for (erl = erc_iterStart(sl); erl !=erefNIL; erl = erc_yield(sl))
for (er2 = erc_iterStart(s2); er2 !=erefNIL; er2 = erc_yield(s2))
if ((erl ==-er2) || eref_get(erl).ssNum== eref_get(er2).ssNunm {
erc_del ete(sl, erl);
return;

Figure 36: empset.c, part 2
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int enpset_size(enpset *s) {
int size;
eref er;

size = 0;
for(er = erc_iterStart(s); er !=erefNIL; er = erc_yield(s))
size ++;
return (size);
}
bool enpset_nenber (enpl oyee e, enpset *s) {
enpl oyee el;

return _enpset_get(e, s) != erefNL;

}

bool enpset_subset (enpset *sl, enpset *s2) {
enpl oyee e;

eref er;

for (er = erc_iterStart(sl); er !=erefNIL; er = erc_yield(sl))
if (enpset_nenber(eref_get(er), s2) == FALSE) return FALSE;

return TRUE;

}

enpl oyee enpset _choose(enpset *s) {
return eref _get(erc_iterStart(s));

}
int enpset_sprint(char s[], enpset *es) {

int len;

eref er;

len = 0;

for (er = erc_iterStart(es); er !=erefNlL; er = erc_yield(es)) {
I en += enpl oyee_sprint (& s[len]), eref_get(er));
s[len] ="'\n";
| en++;
}

s[len] ="'\0";

Figure 36: empset.c, part 3

voi d enpset _initMd(void) {
bool _i ni t Mod();
enpl oyee_i ni t Mod();
eref _initMd();
erc_initMd();
ereftab_initMd();
ereftab_init(&nown);

Figure 36: empset.c, part 4
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#i f !defined(dbase_h_expanded)
#defi ne dbase_h_expanded

#i ncl ude "eref.h"
#i nclude "erc. h"

#i ncl ude "dbase. | h"
#endi f

Figure 37: dbase.h

#i ncl ude <string. h>
#i ncl ude "dbase. h"

#define first ERC mVGRS

#defi ne | ast ERC f nNONMGRS

#define nunERCS (lastERC - firstERC + 1)

typedef enum {mMGRS, fmMGERS, MNONMGRS, f nNONMGRS} enpl oyeeKi nds;
erc db[ numERCS] ;

/* Invariant: The data base is partitioned by

val (db[ ™MGRS] ), val (db[ mNON]), val (db[fMGRS]), and val (db[fNON]) */

bool initDone = FALSE;

voi d dbase_i ni t Mod(void) {
int i;

if (initDone) return;

bool _i ni t Mod();

enpl oyee_i ni t Mod();

eref _initMd();

erc_initMd();

enpset _i nit Mod();

for (i =firstERC, i <= lastERC, i ++)
erc_init(&db[i]));

initbDone = TRUE;

}
eref _dbase_ercKeyGet(erc *c, int key) {
eref er;
for (er = erc_iterStart(c); er !'=erefNlL; er = erc_yield(c))
if (eref_get(er).ssNum== key) return er;
return erefNL;
}

Figure 38: dbase.c, part 1
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eref _dbase_keyGet (i nt key) {
int i;
eref er;

for (i = firstERC i <= lastERC i++) {
er = (_dbase_ercKeyGet (& db[i]), key));

if (er '=erefNIL) return er;
}
return erefNL;
}
int _dbase_addEnpl s(erc *c, int |, int h, enpset *s) {
eref er;
enpl oyee e;
int numAdded;
numAdded = 0;
for (er = erc_iterStart(c); er != erefNIL; er = erc_yield(c)) {
e = eref_get(er);
if ((e.salary >=1) & (e.salary <= h)) {
enpset _i nsert Uni que(s, e);
numAdded ++;
}
}
return numAdded;
}

dbase_status hire(enpl oyee e) {
if (e.gen == gender _ANY) return gender ERR
if (e.j == job_ANY) return j obERR;
if (e.salary < 0) return sal ERR;
if (_dbase_keyGet(e.ssNun) != eref NIL) return dupl ERR;
uncheckedHire(e);
return dbase_OK;

}

Figure 38: dbase.c, part 2
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voi d uncheckedHi re(enpl oyee e) {
eref er;

er = eref_alloc();
eref_set(er, e);
if (e.gen == MALE)
if (e.j ==
erc_insert (& db[ mMVGRS] ), er);
el se erc_insert (& db[ MNONMCRS] ), er);
else if (e.j == MR
erc_insert (& db[fmMCRS]), er);
el se erc_insert (& db[fnNONMGRS] ), er);
}

bool fire(int ssNum {
int i;
eref er;

for (i = firstERC, i <= lastERC i++)
for(er = erc_iterStart (& db[i]));
er = erefNL;
er = erc_yield(&db[i])))
if (eref_get(er).ssNum== ssNunm) {
erc_del ete(&(db[i]), er);
return TRUE;

return FALSE;
}

Figure 38: dbase.c, part 3
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bool promote(int ssNun) {

}

eref er;
enpl oyee e;
gender g;

g = MALE;

er = _dbase_ercKeyGet (& db[ mMNONMGRS] ), ssNum);

if (er == erefNIL) {
er = _dbase_ercKeyGet (&(db[ f MNONMCRS] ), ssNum);
if (er == erefNIL) return FALSE;
g = FEMALE;

-

e = eref_get(er);

e.j = MR

eref_set(er, e);

if (g == MALE) {
erc_del et e( & db[ MNONMGRS] ), er);
erc_insert (& db[ mMVGRS] ), er);
}

el se {
erc_del et e( & db[ f TNONMGRS] ), er);
erc_insert (& db[fmMGRS] ), er);

return TRUE;

bool setSalary(int ssNum int sal) {

eref er;
enpl oyee e;

er = _dbase_keyGet (ssNum ;

if (er == erefNIL) return FALSE;
e = eref_get(er);

e.salary = sal;

eref _set(er, e);

Figure 38: dbase.c, part 4
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int query(dbase_q q, enpset *s) {

eref er;
enpl oyee e;
int numAdded;
gender g;
job j;
int |, h;
int i;
9 =209
I =4q.1];
I=q.l;
= q.h;
switch(g) {
case gender _ANY:
switch(j) {
case j ob_ANY:
numAdded = O;
for (i = firstERC, i <= lastERC i++)
numAdded += _dbase_addEmpl s(&(db[i]), |, h, s);
return numAdded;
case MGR
numAdded = _dbase_addEnpl s(&(db[ MMGRS] ), |, h, s);
numAdded += _dbase_addEnmpl s(& db[ fmMMCRS] ), |, h, s);
return numAdded;
case NONMGR:
numAdded = _dbase_addEnpl s(&(db[ MNONMCGRS] ), |, h, s);
numAdded += _dbase_addEnpl s(&(db[ f MNONMERS] ), |, h, s);
return numAdded;
}

Figure 38: dbase.c, part 5
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/* Inmpl enentation of query, continued */

case MALE:
switch(j) {
case j ob_ANY:
numAdded = _dbase_addEnpl s(&(db[ MMGRS] ), |, h, s);
numAdded += _dbase_addEnpl s( & db[ MNONMGRS] ), |, h, s);
return numAdded;
case MCR
return _dbase_addEnpl s(& db[ MMCRS]), I, h, s);
case NONMGR:
return _dbase_addEnpl s( & db[ MNONMGRS] ), |, h, s);
}
case FEMALE:
switch(j) {
case j ob_ANY:
numAdded = _dbase_addEnpl s(&(db[ fnMGRS] ), |, h, s);
numAdded += _dbase_addEnpl s(&(db[ f MNONMERS] ), |, h, s);
return numAdded;
case MCR
return _dbase_addEnpl s(& db[fmM3RS]), |, h, s);
case NONMGR:
return _dbase_addEnpl s( & db[ f MNONMGRS] ), |, h, s);
}
}
}
int dbase_sprint(char s[]) {
int len;
int i;

(void) sprintf(&s[0]), "Enployees:\n");

len = strlen(&(s[0]));

for (i = firstERC i <= lastERC, i++) {
len += erc_sprint(&s[len]), & db[i]));

s[len] ="'\n";
s[len++] ="'\0";
return |en;

Figure 38: dbase.c, part 6
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table: trait

i ncl udes cardi nal

i ntroduces
enpty: -> Tab
insert: Tab, Ind, Val -> Tab
__\in _: Ind, Tab -> Bool
eval: Tab, Ind -> Val
i sSEnpty: Tab -> Bool
size: Tab -> Card

asserts forall i, il: Ind, v: Val, t: Tab
eval (insert(t, i, v), il) ==
if i =il then v else eval (t, il);
not (i \in enpty);
i \ininsert(t, i1, v) ==1i =il\/ i \int;
size(enmpty) == 0;
size(insert(t, i, v)) ==

if i \int then size(t) else size(t) + 1
Figure 39: tableld

B LSL for LCL users

LSL gpecifications define two kinds of symbols, operators and sorts. The notions
of operator and sort are closely related to the C notions of function and type, but
it is important not to confuse them. When discussing LSL specifications, we will
consistently use the words operator and sort. When talking about C constructs, we will
use the words function and type.

An operator is what mathematicians call a “function symbol”: it stands for a tota
mapping from a cross product of values (the domain of the operator) to a vaue (the
range of the operator). Sorts stand for digjoint sets of values, and are used to indicate
the domains and ranges of operators.

The trait is the basic unit of specification in LSL. A trait introduces operators and
specifies their properties. Sometimes the collection of operators will correspond to an
abstract datatype. Frequently, however, it isuseful to define propertiesthat do not fully
characterize atype.

Figure 39 showsatrait that specifiesaclass of tablesthat storevauesinindexed places.
Itissimilar to the specificationsin many “agebraic” specification languages.

The specification beginsby including another specification, cardinal. Thisspecification,
which can be found in an LSL handbook, suppliesinformation about the operators +,
0, and 1, which are used in defining the operatorsintroduced in table.

The introduces clause declares a set of operators, each with its signature (the sorts of
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container: trait
i ntroduces
new. -> C
insert: Elem C-> C
asserts C generated by new, insert

Figure 40: container.ld

itsdomain and range). These signatures are used to sort-check termsin much the same
way as function calls are type-checked in programming languages.

The body of the specification (following asserts) contains equations between terms
containing operators and variables. The first equation resembles a recursive function
definition, since the operator eval appears on both the left and right sides. However, it
does not fully define eval; it states a relation that must hold among eval, add, and the
builtinoperator if then else. Thefourth and fifth equationstogether define the operator
sizerelativeto the operators 0, 1, and +.

The set of theorems that can be proved about the terms defined in atrait is caled its
theory. It is an infinite set of formulas in first-order logic with equality. (The ==
symbol used in LSL equations has the same semantics as=. It isused only to introduce
another level of precedence intothelanguage.) Thetheory containsthetrait’sequations
and everything that follows from them, but nothing else. The theory associated with
table contains equalities and disequalitiesthat can be proved by substitution of equals
for equals. There is no metarule implying that terms that are not provably equal
are unequal, nor is there one implying that terms that are not provably unequa are
equal. For example, neither the formula add(add(t, i, v), i1, v) = add(add(t, i1, v), i, v)
nor the formula not(add(add(t, i, v), i1, v) = add(add(t, i1, v), i, v)) isintable stheory.
Shortly, we will discuss LSL constructs for non-equational rules; they can be used to
generate stronger (larger) theories.

The next series of examples defines a number of properties that can be combined in
different ways to define traits that correspond to familiar abstract data types.

The trait container, Figure 40, abstracts the common properties of data structures that
contain elements, such as sets, bags, queues, stacks, and strings. container is useful
both as a starting point for specifications of many different data structures and as an
assumption when defining generic operators over such data structures.

Thegenerated by clause in container asserts that each value of sort C can be constructed
from new by repeated applications of insert. This assertion is carried along when
container is used in other traits, even if they introduce additional operators with range
C. Theorems proved by induction over new and insert remain theoremsin the theories
associated with al such traits.

ThetraitlinearContainer, Figure41, includescontainer. It constrainsoperatorsinherited
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linearContainer: trait

i ncl udes cont ai ner

i ntroduces
i senpty: C -> Bool
next: C -> Elem
rest: C->C

asserts
C partitioned by next, rest, isEnpty
forall c: C, e: Elem

i SEnpty(new) ;

not (i sEnpty(insert(e, ¢)));
next (insert(e, new)) == e;
rest(insert(e, new)) == new

inplies converts isEnpty

Figure41: linearContainer.ldl

from container (new and insert) as well as the additiona operators it introduces.
The partitioned by clause indicates that next, rest, and isEmpty form a complete
set of observers for sort C: for any terms ¢1 and £2 of sort C, if the equalities
next(t!) == next(t2), rest(t!)==rest(t2), and isEmpty(t!) ==isEmpty(t2) al
hold, then so does the equality t1 == 12 .

The converts clause adds nothing to the theory of the trait. Instead, it supplies some
checkable redundancy, claiming that this trait fully defines isEmpty by providing
equations that alow any variable-free term to be converted to an equivalent term
that doesn’t contain isEmpty. This can be proved by induction over new and insert,
because of the generated by clause inherited from container.

The axioms for next and rest are intentionally weak (defining their meanings only for
single-element containers) so that linearContainer can be specialized to define stacks,
gueues, priority queues, lists, vectors, strings, etc.

InFigure42, trait priorityQueuespecializeslinearContai ner by adding another operator,
\ in, and by further constraining next, rest, and insert. The assumes clauseindicatesthat
whenever priorityQueue is used there must be atotal order on Elem. (The reference
totalOrder(Elemfor T) means the trait totalOrder, which can be found in an LSL
handbook, with each occurrence of the sort T replaced by the sort Elem.)

Trait priorityQueue’ sfirstimplicationisatheoremthat can be proved using theinduction
ruleinherited from container. 1t may be helpful in reasoning about priorityQueue and
may help readers solidify their understanding of thetrait.

The second implication claimsthat the trait defines next and rest (except when applied
to new), isEmpty, and \ in. The exempting clause indicates that the lack of equations
defining next(new) and rest(new) isintentional. The axiomsthat convert isSEmpty are
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priorityQueue: trait
assunes total Oder(Elemfor T)
includes |inearContainer(Q for O
introduces __ \in __: Elem Q -> Bool
asserts forall e, el: Elem q: Q
next (insert(e, q)) ==
if g =newthen e
else if next(g) < e then next(q) else eg;
rest(insert(e, q)) ==
if g = new then new
else if next(q) < e then insert(e, rest(q)) else q;
not(e \in new;
e \in insert(el, q) == e =el1 \/ el\ing
inplies
forall g Q e Eleme \in q => not(e < next(q))
converts next, rest, isEnpty, \in
exenpting next(new), rest(new

Figure 42: priorityQueue.ld

inherited from linearContainer.

Trait priorityQueueis atypica example of the kind of trait used in the specification of
LCL interfaces that export abstract data types. In such a trait there is a distinguished
sort (in thiscase, Q). The operators can be categorized as generators, extensions, and
observers. A set of generators produces al the values of the distinguished sort. The
remaining operatorswhose rangeisthe distinguished sort are extensions. The operators
whose domain includes the distinguished sort and whose range is some other sort are
observers. For example, in priorityQueue, new and insert form a generator set, rest is
an extension, next, isEmpty, and \ in are observers, and next, rest, and isEmpty form a
partitioning set.

A good heuristic for generating enough equations to adequately define an abstract data
typeisto write an equation defining the result of applying each observer or extension
to each generator. This heuristic suggests writing equations for

next ( new)

rest (new)

i SEmpt y( new)

e \in new
next (i nsert(e, q))
rest(insert(e, q))

i sEmpty(insert(e, q))
e \in insert(e, Q)
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bag(Elem Bag): trait
includes container(Bag for C, { } for new,
i ntroduces
delete: Elem Bag -> Bag
__\in __: Elem Bag -> Bool
count: Elem Bag -> Card
{_}: Elem-> Bag
_ _\union _, __ - _: Bag, Bag -> Bag
nunkEl ens: Bag -> Card
asserts
Bag generated by {}, insert
Bag partitioned by count
Bag partitioned by \in, delete
forall e, el: Elem b, bl: Bag
delete(e, { }) == { };
del ete(e, insert(el, b)) ==

if e =el then b else in-

sert(el, delete(e, b));
not(e \in { });

cardi nal

e \in insert(el, b) == e =el \/ e \in b;

count(e, {}) == 0;
count (e, insert(el, b)) ==

count(e, b) + (if e = el then 1 else 0);

{e} == insert(e, {});

count (e, b \union bl) == count(e, b) + count(e,
nunkl ems({}) == O;
nunkl ens(insert(e, b)) ==
nunkEl ems(b) + (if e \in b then 0 else 1)
inplies
forall e, el, e2: Elem b: Bag
insert(el, insert(e2, b)) == insert(e2, insert(el,
e \in b == count(e, b) >0

Figure 43: bag.ld

The trait priorityQueue contains explicit equations for four of the eight, and inherits
equations for two more from linearContainer. The remaining two terms, next(new)

and rest(new), are explicitly exempted.

Figure 43, bag.Id, contains another specialization of container. It is quite different

from linearContai ner, because the order of insertionisirrelevant.

The theories associated with priorityQueue and bag say quite abit about the properties
of these data structures, which have some things in common and some important
differences. Itisinstructiveto note some of the thingsthat have not yet been specified

about these data structures.
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o We have not specified how they are to be represented.
o We have not given the algorithmsto manipul ate them.
e We have not said what functions are to be provided to operate on them.

o We have not specified how errors are to be handled.

Thefirst two decisions are in the province of the implementation. The third and fourth
are recorded in interface specifications.

The examples in thisappendix (like al simple examples) give a somewhat misleading
picture of the process of developing specifications. We amost never define new
abstractions starting from first principles. We expect LSL traits to be the principal
reusable units in Larch specifications. Reuse reduces the need for invention, helps
to avoid previoudy discovered pitfalls and to benefit from past improvements, and
improves communication by standardizing notation.

LSL handbooks are collections of abstractions that experienced specifiers have found
to be useful. The creation and refinement of these handbooks represent an intellectual
capital investment that will yield dividends in future applications. Handbooks for
particular application domains will provide more specialized traits useful in their
domains. Handbook traitswill frequently supply more operators than are needed for a
particular specification; thisisnot aproblem for either the specifier or theimplementor,
since the operators are not part of the interface and don’'t have to be implemented.
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