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Abstract

Aleliunas et al. [1] posed the following question: “The reachability problem
for undirected graphs can be solved in logspace and O (mn) time [m isthe number
of edgesand n isthe number of vertices] by aprobabilistic algorithm that simulates
arandom walk, or in linear time and space by a conventional deterministic graph
traversal algorithm. Is there a spectrum of time-space trade-offs between these
extremes?’ We answer this question in the affirmative for graphs with a linear
number of edges by presenting an algorithm that is faster than the random walk by
a factor essentially proportional to the size of its workspace. For denser graphs,
our algorithm is faster than the random walk but the speed-up factor is smaller.



1 Motivation and Results

We consider the problem of s-t connectivity on an undirected graph (USTCON). Given
a graph G with n vertices and m edges, and given two vertices s and t of G, we
are to decide if s and t are in the same connected component. We are interested in
space-bounded algorithmsfor USTCON, which isan important problem in the study of
space-bounded complexity classes [3, 9]. Throughout this paper, we assume that our
workspace takes the form of p registers, each capable of storing alogn-bit number.

There are two well-known approaches to solving USTCON: via a deterministic graph
search on G (e.g., depth-first search) and viaa simulation of arandom wak on G [1].
(The standard random walk on G is the stochastic process associated with a particle
moving from vertex to vertex according to the following rule: the probability of a
transition from vertex i, of degree d;, tovertex j is1/d; if {i, j} isanedgein Gand 0
otherwise.)

Thefirst approach can beimplemented torunintime O(m) using space O(n). Thelatter
requires space O(1), and has been shown to decide USTCON with one-sided error in
time O(mn) (i.e, if sandt arein the same connected component, the a gorithm outputs
Y ES with probability at least 0.5; if they are in different components, the agorithm
outputsNO). For both these al gorithms, the product of time and spaceis O(mn).

Given space that is insufficient for depth-first search, can we decide USTCON faster
than via a random walk? More precisely, given space p < n, can we bridge the gap
between the depth-first search and the random walk by devising an algorithm that runs
intime O(mn/ p)? Considering the time-space product achieved at the two extremes,
thisseems alikely conjecture.

In this paper we present an algorithm that runsin time O(m?log® n/ p). Therefore, for
linear-sized graphs (i.e., m = O(n)), it achieves the bound conjectured above within a
poly-log factor. For denser graphs, our a gorithm does not achieve the bound; but it is
faster than the random walk, at least, once p exceeds the average degree.

The basic idea of the new agorithmisto simulate a graph search, but only on a subset
of p vertices chosen independently at random according to the stationary distribution
of the random walk, together with the vertices s and t. (The stationary distribution of
therandomwak is, = d,/(2m) where d, isthe degree of vertex v.)

We refer to the p randomly chosen vertices as leaders. A single step in graph search
is replaced by a random walk of an appropriate length. Assuming that the graph
is connected, we show that for a certain constant k;, a set of p walks of length
1 = kim?In®n/p?, one from each leader, will visit every vertex in the graph with
high probability, and furthermore the walk from each leader reaches some other leader
thus proving that the two leaders are in the same component. With high probability all
leaders are proven connected within O(logn) trial walks from each leader.

In order to deal with the case when the graph is composed of several connected
components we repeat the procedure above O(logn) times with independent choices



of leaders and also add random walks from s and t. (See section 3 for a pseudo-
algol description.) We show that with high probability, at least one choice resultsin
sufficiently many leaders in the component of interest (which contains both s and t) to
ensure the success of the method. Thus we have an agorithm for USTCON with an
overall running time of O(m?log® n/ p). Notice that this a gorithm resembl es standard
search when p = n and the random walk when p = 0. (However, throughout this
paper we shall assume p > 0.)

There are three facts that must be proven in order to show that this algorithm works.
The first is to show that a set of p random walks of length t;, one from each of
the randomly chosen leaders, visits al the vertices of a connected graph with high
probability. Otherwisean adversary could chooses andt among thosevertices unlikely
tobevisited fromtheleadersand conceivably foil thea gorithm. Inother words, weneed
to derive a bound on the expected time required by p parallel and independent random
walksto cover the graph, a problem of interest in itsown right. Typically, results about
graph coverage rely heavily on the long-run behavior of the corresponding Markov
chain and its convergence to alimit distribution. Here we must prove something about
short-term behavior of the Markov chain and coverage of local neighborhoods in a
graph.

Thesecond fact to proveisthat if sandt areinthe same component then they arelinked
up through the leaders in a small number of trials from each leader if enough leaders
are chosen within the component. Coverage of the graph as described above does not
suffice to prove this because s and t may be visited by different walks. Indeed, al the
verticesin G could be visited by the walks even with s and t in different components.

The third fact isto show that, with high probability, within O(log n) choices of the set
of leaders, the component containing s and t gets enough leaders at least once.

To aid the intuition of the reader, let us consider the case when G is a simple path
on n vertices. For p leaders chosen at random, the maximum gap between two
leaders is no more than ninn/p with high probability; the expected time to cover
this maximum gap is ®(n? log® n/ p?). Hence O(logn) trials (random walks of length
O(n?log? n/ p?) from each leader) will amost surely cover al the gaps between them
for atotal of ®(n?log®n/ p) steps. Extending this technique to even 3-regular graphs
requiresconsiderably more complicated machinery and thegeneral bound isweaker. (In
particular, the walks need to have length O(n?log® n/ p?) and we need to try O(logn)
choicesfor leaders.)

Our main results are:

Theorem 1 Let G be a connected, undirected graph with n vertices and m edges.
Let L beasubset of pverticeschosen at randomaccording to the stationary distribution.
Let S,(t) denote the set of vertices seen ina randomwalk of lengtht starting at v. The
randomvariable Cy, is defined by

Cp=inf{t : [ JS®) =V},

leL



that is C, isthetime needed for p parallel randomwalksto visit all the verticesin the

graph. Then
m?log®n

Theorem 2 Thereisanalgorithmthat, givenan undirected graph G withn vertices,
m edges, and given two vertices s and t of G, decides USTCON with one-sided error
using space pandtime O(m? log® n/ p). If sandt areinthesameconnected component,
the algorithmoutputs YES with probability 1 — O(n~1), otherwise it outputs NO.

Remarks:

e The upper bound ontheparalé cover timegivenin Theorem 1isan overestimate
by at most an O(logn) factor, at least for linear-size graphs. Thisiseasily seen
from the path graph example.

e The algorithm mentioned in Theorem 2 runsin time that iswithin alog® n factor
of our target time-bound of O(mn/ p) for linear-sized graphs. The polylog factor
arises from less than optima bounds used in the analysis of our probabilistic
algorithm. However, the case of the path graph considered above shows that for
our algorithm thisfactor is at least log® n.

2 CoveringaGraph with p random walks

Inthissection we derive an upper bound onthetimetaken by p parallel and independent
walksto cover the graph (Theorem 1).

We denote by {v, w} the undirected edge between vertices v and w and by [v, w] its
directed version. For the purposes of the proof, we need to look at the random walk
intwo ways: first, as a Markov chain X; where each state isa vertex in G (the vertex
process); second, as a Markov chain Y; where each state is a directed edge (the edge
process). The transition rule for the vertex process is that if X; = v, then X411 is
equally likely to be any of the neighbors of vertex v. The edge process is defined by
Yy = [Xi—1, X¢], t > 1. The stationary distribution of the vertex process, denoted 7,
isgiven by 7, = d,/(2m) where d, is the degree of the vertex v, and the stationary
distribution of the edge process, denoted ', isgiven by {, ,; = 1/(2m).

Let N,(u, T) (respectively N,([u, w], T)) be the number of visits to the vertex u
(respectively traversalsof [u, w]) inarandomwalk of length T startingat v. Let S,(T)
(respectively E, (T)) be the set of vertices (edges) visited in arandom walk of length
T starting at v. Finaly, let H, (u) (respectively H,([u, w]) be the first time the vertex
u (the edge [u, w]) is encountered by a random walk starting from v. For &l of these
random variables, a replacement of the subscript v with the subscript 7 (respectively



[v, w]) denotes a random walk starting at the stationary distribution (respectively the
directed edge [v, w]).

Lemma3 Let G be a connected, undirected graph on n vertices. Consider a
random walk of length ¢ starting from the stationary distribution. Then for every
directed edge [v, w],

E(Nﬂ (v, ], r))
1+ E(Nuur (v, 0, 0))

Pr([v, w] € E; (r)) >

Proof: Clearly

E(Nﬂ (v, w], r)) = Z Pr(Hﬂ ([v, w]) = t) (1+ E(N[v,w]([v, w], T — t)))

1<t<rt

Pr(Hn (v, w)) < r) (1+ E(N[v,w] (v, w], T))) )

IA

But Pr(Hn ([v,w]) < T) = Pr([v, w] € E; (r)),yielding thelemma. O

Lemma4 Let G be a connected, undirected graph with n vertices and m edges.
Then, for every directed edge [v, w],

E(N[v,w] (v, w], r)) < % + kov/T InN,
where ky is an absolute constant.

Proof: We consider the edge process ;. From standard resultsin renewal theory [8]
we obtain that

E(N[v,w] (v, wl, r)) = f, (r + E(HY[U,,”] (v, w]))). (1)

Clearly
E (Moo wD) = E(Hx, @) + E(Hy (v, wD). @

Let d(x, y) bethedistance (the length of the shortest path) between two vertices x and
yin G. Let c be asufficiently large constant.

We first bound E(me (,)(v)> using the fact that d(X,,(t), w) isnot likely to be more
than cv/t Inn. By thelaw of total probability

E(Hx, @) =



Oﬁrﬁcsz(me(r)(v) | d(Xy,(7),v) = r) Pr(d(Xw(f), V) = r)

+E(Hx. 0 ®) [ d(Xu(@), ») > ov/zTnn) @
x Pf(d(xw(t), v) > eVt Inn).

Sinced(X,(t), v) < 1+ d(X,(t), w), we obtain from the main result of [4] that

Pr(d(Xu(®), v) > cvznn) = Pr(d(X,(0), w) = cv/zInn)
: 2
< > 2(ﬂ>2exp(_d(w’ X) )
x:d(w,x)>cv/7Inn Tw 2t
3 cZzInn 1
= e (_ 20 ) <5 (4)

for a sufficiently large c.

For any two vertices x and y in the same component we can apply the bound implicitly
provenin [1]

E(H(y) = md(x, y). (®)
Plugging equation (5) and equation (4) in equation (3) we obtain that
E(me m(v)) <em/zinn+1 (6)
Turning to the second term of the right side of equation (2), we observe that

E(H, (v, w]) < 2m+ 1, ™

because the expected time to return to v given that v was left through an edge other
than [v, w] isa most 2m/(d, — 1) and the expected number of returns to v before
exiting through [v, w] isd, — 1. (The former fact followsfrom 2m/d, = E(H,(v)) >
(d, — 1)/d, - E(H, | v not left via[v, w]).)

Combining equations (6), (7), and (2), we obtain that
E(HY[UYW](,)([U, w])) <cmvrtinn+2m+ 2

Finally, from equation (1), because 7, ,,; = 1/(2m) for any edge [v, w]

E(N[v,w] ([va w]a T)) < L + %C\/ zlnn —+ O(l)

~ 2m
From here, the Lemma followswith an appropriatevalueforc. O



Lemma5 Let G be a connected, undirected graph with n vertices and m edges.
Let L be a set of p vertices (called leaders) in G chosen independently according to
the stationary distribution. For every constant ¢; > O there exists a constant ¢, such
that for every directed edge [v, w] a set of p walks of length c,m? In® n/ p?, one from
each of the leaders, satisfies

Pr([v, w] € U E.(cszInSn/pz)> >1-— 1 )

C1
leL n

Proof: For p = O(logn) the conclusion is obvious. For larger p we start from
Pr([o.w] ¢ | JB®) = []Pr([o. w] ¢ B @),
leL leL

and, since each vertex | is chosen according to the stationary distribution, Lemma 3
givesusaboundonPr([v, w] ¢ E(7)). By Lemma4and becauseE(Nﬂ (v, wl, r)) =
7/2m, there exists a constant ¢z > 0 such that

Pr([v, vl ¢ JE®) = (1— GV )p,

et m+/Inn

providedthat = O(m?logn). Now taking r = com?In®n/p? yieldstheresult. O

Theorem 6 Let G = (V, E) bea connected, undirected graph with n vertices and
m edges. Let L bea subset of p vertices chosen at random according to the stationary
distribution. Let S,(t) denote the set of vertices seen in a random walk of length t
starting at v. The randomvariable Cy, is defined by

Cp=inf{t : [ JS®) =V},
leL

that is C, isthetime needed for p parallel randomwalksto visit all the verticesin the
graph. Then

m?log®n
E(Cp) = O(T)‘

Proof: Corollary of the previouslemma. O

Infact Lemma 5 impliesthe stronger result that the time needed for p paralel random
walksto traverse every edgeinthegraphis O(m?log®n/ p?).

3 AnAlgorithm for USTCON in O(p) Space

We now present the algorithm for USTCON using O(p) space. As a subroutine, we
use a standard Union/Find algorithm.



algorithm stConn;
begin
(* ke, ks, and ky are suitably large constants *)
do ks Inn times begin
Let L beaset of p dements of V, chosen independently
at random according to the stationary distribution;
L:=L s t};
Construct a perfect hash function for the elements of L;
for everyl in L do Set(l) :=1;
do ks Inn times begin
for every | in L do begin
Takearandomwalk X;(T) of lengthkym? In® n/ p?
froml;
At each step, if X(T) € L then
Union(Find(X (t)), Find(l));
end;
end;
if Find(s) = Find(t)
then return (“YES: s and t are connected”)
end ;
return (“NO: sandt don’t seem to be connected”) end .

Theorem 7 ThealgorithmstConnrunsintime O(m?log® n/ p) using space O(p).

Proof: Choosing a random set of p vertices according to the stationary distribution
can bedonein O(m) stepsusing O(plogn) random bitsand O(p) space. Constructing
a perfect hash function for storing L requires expected time O(p) [6]. If the unions
are weighted and each union causes path compression on all elements of the set, then
each find has cost O(1). Since a most O(n) non-trivia unions are performed, the
cost of al the unionsis O(nlogn). Performing al O(logn) random walks of length
O(m?log®n/ p?) takes time O(m? log* n/ p?) per leader for atota of O(m?log*n/ p)
time. Since thisis aso the total number of finds and lookups performed, thisis the
running time of each execution of the outermost loop. O

Notethat thisalgorithmiseasily paralelizableusing p processorsand O(p) space. The
parallel hashing scheme described in [7] can be used to implement aparallel version of
thisalgorithm that runs on p processors, n¢ < p < n*~¢, e > 0, that are connected by
abounded degree network. Briefly, storing the leader set using parallel hashing allows
for the p processors to execute parallel unionsand paralld findsintime O(p<’) for any
€’ > 0, and consequently the random walks from each of the leaders can be executed
inparallel. The resulting parallel implementation of the stConn algorithm runsin time
O(m2+e// pZ)



4 TheCorrectness of stConn

Because our algorithm has one-sided error, it suffices to analyze its correctness in the
case when s and t are in the same component of G. If G is actually connected, the
results of section 2 show that, in one pass through the inner loop of stConn, every
edge is traversed with high probability. From this, it is possible to deduce that every
leader either discovers or is discovered by some other leader. As mentioned earlier,
however, thisis not enough to prove that s and t become linked by a chain of leaders
after O(logn) passes throughthisinner loop, since it may bethat certain leadersalways
discover each other. Therest of thissection showsthat s andt will be“linked up” with
high probability by the algorithm.

Theorem 8 Let G be a connected, undirected graph with n vertices and m edges.
Let L be a set of p leaders, each chosen at random according to the stationary
distribution. Then for any ¢c; > O thereisa constant ¢, > 0 such that

1

Pr(L N S @M In°n/p?) # 0) > 1— .,

where S, ,,1(T) denotes the set of distinct vertices visited in a T step random walk
gtarting at [v, w].

Proof: Theproof isvery similartothat of Lemmab. Asbeforethecase p = O(logn)
istrivial.
Let e be adirected edge chosen uniformly at random. By a proof virtually identical to

that of Lemma 3, EIN
( [v,w] (e, T))
) 2 T E(Nete 1))

Obvioudly, if e is chosen uniformly at random then

Pr(e (S E[v,w

T
E(N[v,w] (e, T)) = %

By Lemma 4
E(Ne(e. 7)) < 5= +ke/zInn.

Hence, for e chosen uniformly at random, there exists a constant c; such that

Inn
Pr(e € Ep(C2m?In®n/p?)) > G

providedthat P = Q(logn).

In order to choose a leader according to the stationary distribution, one can choose a
directed edge e uniformly at random and let the leader be the head of e. Since the



probability of reaching a leader is greater than the probability of traversing the edge
chosen to determineit, we obtain that

Pr(L N Su.ui(€m?In®n/p?) = #) =(1 — Pr(e ¢ Ep,,uj(cm’In®n/p?))P < ni
for asufficiently largec,. O

Corollary 9 Let G bea connected, undirected graph with n vertices and m edges.
Let L bea set of p leaders chosen at random according to the stationary distribution.
Then for any ¢; > 0 thereisa constant ¢, > 0 such that

Pr(L N Ss(com?Inn/p?) # 0) > 1 — e

and
Pr(L N S(cm?In®n/p? £ ¥) > 1 — =
Od

Let L beany set of p leaders. We say the set L is good if for an absolute constant k;
the following two properties hold:

1. Theprobabilitythat aset of pindependent randomwalksof lengthk;m? In®n/ p?,
one from each leader in L, traverses every edgein Gisat least 1 — 1/n3.

2. For every edge [v, w] € G, the probability that a random walk of length
kym? In® n/ p? starting from [v, w] visits some leader in L isat least 1 — 1/n>.

Lemma10 Let G be a connected, undirected graph with n vertices and m edges.
Let L be a set of p leaders chosen uniformly at random according to the stationary
distribution. Then Pr(L is good) > 1— 1/n.

Proof: Say that a set of random walks, one from each of the leaders, is unsuccessful
for [v, w] if [v, w] is not visited by any of them. Lettingc; = 6 inLemma5, we
seethat at most 1/n? of the possible leader sets can have probability greater than 1/n3
of yielding unsuccessful random walks for any fixed [v, w]. Similarly, lettingc; = 6
in Theorem 8, we see that at most 1/n° of the possible leader sets have probability
greater than 1/n3 of remaining undiscovered in a random walk of length = from any
fixed edge [v, w]. The probability that aleader set is not good is bounded by the sum
of the probabilitiesthat it isn't good because it violates properties 1 or 2. Since there
areless than n?/2 edges, the probability that aleader setisbadisboundedby 1/n. O

Lemmall Let G be a connected, undirected graph with n vertices and m edges.
Let L be a set of p leaders chosen uniformly at random according to the stationary



distribution. Suppose that L isa good set of leaders. Let A and B be a partition of
L into two nonempty subsets. Consider a randomwalk of length 27 from each of the
leadersin L. Then the probability that some leader in Aisvisited from someleader in
B or vice versa isgreater than 1/18.

Proof: (Unless stated otherwise, al edges referred to in this proof are directed.) We
assignto each edgeinthegraphtwolabels: a“To” labdl T anda“From” label F. These
labels are subsets of the set {A, B}. By definition, A € T(e) (respectively B € T (e))
if the probability that e is visited by awalk of length t emanating from each leader in
A (respectively walks from leadersin B) is greater than 1/3. Analogoudly, A € F(e)
(respectively B € F(e)) if the probability that some leader in A (respectively B) is
visited in arandom walk of length ¢ starting fromeisat least 1/3.

Properties 1 and 2 of good leader sets imply that for each edge neither label is empty.
We now consider four cases:

1. Thereissome edge [v, w] with A € F([v, w]) and B € T ([v, w]) or vice versa

Then with probability 1/3 edge [v, w] is visited by one of the random walks of
length 7 originating in A and with probability 1/3 aleader in B isvisited in the
remaining at least  steps. Hence, with probability at least 1/9 aleader in B is
visited from aleader in A.

After eliminating this case the only remaining possibility is that for every edge
F(lv, wD = T([v, wD) = {A} or F([v, w])) = T([v, w]) = {B}

2. Thereis some undirected edge {v, w} such that F([v, w]) = T([v, w]) = {A},
and F([w, v]) = T([w, v]) = {B}.

Then with probability > 1/3, [v, w] is visited by one of the walks of length ©
originating in A and hence the vertex v is visited by one of these walks with
probability at least 1/3. Sincealeader in B isvisited from[w, v] in T stepswith
probability > 1/3, aleader in B isvisited from v in ¢ stepswith proability > 1/3.
Hence with probability at least 1/9 aleader in B isvisited from aleader in A.

3. Nolabe inthe graph contains A or no label in the graph contains B.

Without loss of generdlity, consider the first of the two conditions. Then every
edge directed towards leaders in A, has a “To” label of B. Therefore, with
probability 1/3, each such edge isvisited by one of therandom walks of length ¢
originatingat B and aleader in Aisimmediately visited. Hence, with proability
at least 1/3, aleader in Aisvisited from aleader in B.

4. For every undirected edge {v, w}, we have either T([v, w]) = F(v, w]) =
T(w,v]) = F(w,v]) = {A} or we have T([v,w]) = F(v,w]) =
T(w,v]) = F([w, v]) = {B}

Since case 3 does not hold and the graph is connected, there must be a vertex v
that is simultaneoudy the endpoint of some all-A labeled edge and some al-B

10



labeled edge. Assume without lossof generality that at least 1/2 of theundirected
edges with one endpoint at v have all their labels equal to B. Then since some
edge[w, v] hasan A T-label, with probability at least 1/3 v isvisitedinthefirst
steps of the randomwalksoriginatingat A. Since the majority of edgesleaving v
havea B F-label, with probability at |east 1/2 one of these edgeswill betraversed
and then with probability at least 1/3, aleader in B will be reached during the
remaining at least ¢ steps. Hence with probability at least 1/18 aleader in B is
visited from aleader in A.

O

We say that a subset of leaders forms a component, if during some prior phase of
the algorithm, they have all been connected up with one another. During a particul ar
phase, we say that acomponent C is successful if it discovers some other component or
some other component discoversit. The previous lemma proves, that if the leader set
is good, every component has probability at least 1/18 of being successful. The next
lemma shows that the number of separate components decreases exponentialy with the
number of phases.

Lemmal12 Let G be a connected, undirected graph with n vertices and m edges.
Let L be a set of p leaders chosen uniformly at random according to the stationary
distribution. Supposethat L isa good leader set. Let N; be the number of components
after theith phase. Then there exist constants« and g8, withO < «, 8 < 1, such that if
N; > 1then

Pr(Niz1 > BNi) < a.

Proof: Plainly, Ni; equals N; minus the number of nonredundant links formed in
phasei. Sincethe number of such linksformed in phasei exceeds one half the number
of successful components, and the previous lemma shows that the probability that a
component is successful isat least 1/18,

1
E (number of linksformed in phasei) > 218 N;.

Hence,
1
E(Nif1) <(1- %)Ni

and so thereis apositive constant 8 < 1 such that
Pr(Ni;1 > BN) < a.

O

Lemma13 Let G be a connected, undirected graph with n vertices and m edges.
Let L be a set of p leaders chosen uniformly at random according to the stationary

1



distribution. Supposethat L isa good leader set. Let N; be the number of components
after theith phase. Then for any constant ¢; > 0, thereisa constant ¢, > 0 such that

1
F’r(chInn >1) < o
n 1

Proof: We say that a phase issuccessful if Niy1 < BN;. Sincetheleader set isfixed
and good, successive phases are independent (the random walks are independent), and
by the previouslemma, phasei has probability greater than 1 —« of being successful for
each i. But the probability that N, inn is greater than oneisbounded by the probability
that there are fewer than Iny,g n successful phases out of ¢, Inn phases. Thisinturnis
bound by the probability that there are fewer than Iny,g n successes in ¢, Inn Bernoulli
trialswith probability greater than 1 — « of success, which by Chernoff’sbound isless
than 1/n, for appropriately chosenc,. O

Theorem 14 The algorithmstConn decides USTCON using space O(p) and time
O((m?log® n)/ p) withone-sided error. If sandt areinthe same connected component,
the algorithm fails to output YES with probability O(n™); if s and t are in different
components, it outputs NO.

Proof: If the graph consists of a single connected component, then we need only
consider one execution of the outer loop of the algorithm, wherein the algorithm can
fail to output YES when it should if either the leader set is not good, or the leader set
isgood, but the number of components did not reduce to 1. By Lemma 10, the former
has probability at most 1/n and by Lemma 13 the | atter, when choosing the constant ks
appropriately, has probability at most 1/n and so the theorem followsin this case.

Theother caseiswhen s and t arein asinglecomponent C containing fi verticesand m
edges. If m?/p? > mA, then in ks Inn random walks of length kym? In® n/ p? starting
from s, the vertex t will be seen with overwhelming probability, since the expected
cover time of the component is bounded by mn.

Otherwise, if m?/p? < mn, the algorithm can fail to output YES when it should if
either none of the ¢y Inn selections of leaders include enough leaders that are in the
component C or if some selection of leaders includes enough leaders in C, but the
associated random walks do not succeed in connecting s tot. For the latter case, we
observe that, in each of the cyInn executions of the outer loop of the agorithm, the
expected number of leadersthat are chosen from C is p = pm/m. If O(p) leadersare
indeed chosen from C, then since

csm?Indn g2 In®n
theanalysisgivenfor asingleconnected graph on fi verticesand m edgeswith p leaders

yieldsafailure probability of O(A~1). To bound the probability that none of the leader
selections are good, we note that the probability that fewer than p/2 leaders are chosen

3
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from C is bounded by exp(—(prh)/f) < c, for some constant ¢ < 1. Therefore, the
probability that less than p/2 leaders are chosen from C in every one of the ks Inn
executionsof the outermost loopisbounded by O(n~1), for asufficiently large constant

ke O

5 Open problems

Can the bound on the parallel cover time given in Theorem 1 be improved? Note that
we bound the cover time for all vertices by bounding the cover time for al edges. Itis
not clear that thisis necessary.

Theorem 2 shows that for p dightly larger than the average degree m/n, our algo-
rithm runs faster than the random wak. Devising an agorithm that runs in time
O(mnlog* n/ p) is perhaps the most interesting open problem.

There is no fundamenta reason why our upper bound is the best possible. We thus
hope that thiswork will spark interest in proving a time-space tradeoff for USTCON,
even in a restricted model of space-bounded computation such as the JAGs of Cook
and Rackoff [5]. For arestricted version of the JAG model, Beame et al. [2] have
shown that space p impliestime ©(n?/(plogn)) for bounded-degree graphs.
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