
67

Authentication and Delegation

with Smart-cards

M. Abadi, M. Burrows, C. Kaufman, B. Lampson

October 22, 1990, Revised July 30, 1992

Systems Research Center

DEC's business and technology objectives require a strong research program.

The Systems Research Center (SRC) and three other research laboratories

are committed to �lling that need.

SRC began recruiting its �rst research scientists in l984|their charter, to

advance the state of knowledge in all aspects of computer systems research.

Our current work includes exploring high-performance personal computing,

distributed computing, programming environments, system modelling tech-

niques, speci�cation technology, and tightly-coupled multiprocessors.

Our approach to both hardware and software research is to create and use

real systems so that we can investigate their properties fully. Complex

systems cannot be evaluated solely in the abstract. Based on this belief,

our strategy is to demonstrate the technical and practical feasibility of our

ideas by building prototypes and using them as daily tools. The experience

we gain is useful in the short term in enabling us to re�ne our designs, and

invaluable in the long term in helping us to advance the state of knowledge

about those systems. Most of the major advances in information systems

have come through this strategy, including time-sharing, the ArpaNet, and

distributed personal computing.

SRC also performs work of a more mathematical
avor which complements

our systems research. Some of this work is in established �elds of theoretical

computer science, such as the analysis of algorithms, computational geome-

try, and logics of programming. The rest of this work explores new ground

motivated by problems that arise in our systems research.

DEC has a strong commitment to communicating the results and experience

gained through pursuing these activities. The Company values the improved

understanding that comes with exposing and testing our ideas within the

research community. SRC will therefore report results in conferences, in

professional journals, and in our research report series. We will seek users

for our prototype systems among those with whom we have common research

interests, and we will encourage collaboration with university researchers.

Robert W. Taylor, Director

Authentication and Delegation with Smart-cards

M. Abadi, M. Burrows, C. Kaufman, B. Lampson

October 22, 1990, Revised July 30, 1992

i

C. Kaufman works at Telecommunications and Networks, Digital Equipment

Corporation, 550 King Street, Littleton, MA 01460.

c
Digital Equipment Corporation 1990

This work may not be copied or reproduced in whole or in part for any com-

mercial purpose. Permission to copy in whole or in part without payment

of fee is granted for nonpro�t educational and research purposes provided

that all such whole or partial copies include the following: a notice that

such copying is by permission of the Systems Research Center of Digital

Equipment Corporation in Palo Alto, California; an acknowledgment of the

authors and individual contributors to the work; and all applicable portions

of the copyright notice. Copying, reproducing, or republishing for any other

purpose shall require a license with payment of fee to the Systems Research

Center. All rights reserved.

ii

Authors' Abstract

The authentication of users in distributed systems poses special problems

because users lack the ability to encrypt and decrypt. The same problems

arise when users wish to delegate some of their authority to nodes, after

mutual authentication.

In most systems today, the user is forced to trust the node he wants

to use. In a more satisfactory design, the user carries a smart-card with

su�cient computing power to assist him; the card provides encryption and

decryption capabilities for authentication and delegation.

Authentication is relatively straightforward with a su�ciently powerful

smart-card. However, for practical reasons, protocols that place few de-

mands on smart-cards should be considered. These protocols are subtle,

as they rely on fairly complex trust relations between the principals in the

system (users, hosts, services). In this paper, we discuss a range of public-

key smart-card protocols, and analyze their assumptions and the guarantees

they o�er.

iii

Contents

1 Introduction 1

2 Notation 3

3 A protocol for ideal smart-cards 4

3.1 Discussion : 5

3.2 Notation and assumptions : 7

3.3 The protocol analyzed : 10

4 A more realistic smart-card protocol 12

4.1 Concessions in smart-card design : : : : : : : : : : : : : : : : 13

4.2 Notation and assumptions : 14

4.3 The protocol analyzed : 15

5 A protocol with trusted agents 17

5.1 Trusted agents : 17

5.2 Notation and assumptions : 18

5.3 The protocol analyzed : 19

6 Conclusions 20

Appendix 20

Acknowledgements 23

References 24

iv

1 Introduction

In a secure distributed environment, there is a need for users to prove their

identities to nodes, from mainframes to automatic teller machines. There

is also a need, though less recognized, for nodes to prove their identities to

users, as each user may trust di�erent nodes to di�erent extents. Further-

more, users must be able to delegate some of their authority to the nodes

that they trust.

Authentication protocols serve for these purposes, typically relying on

secrets and encryption (e.g., [2, 10, 11]). The authentication of users poses

special problems, because users lack the ability to encrypt and decrypt.

In the simplest approach to user authentication, the user owns a secret

(his password) that he gives to a node that he wishes to use. It is likely

that the password will be short and memorable, or that the user will need

to write it down. In either case, it may be easy for an attacker to discover

the user's password and hence obtain all his rights.

This weakness can be eliminated by introducing a simple card with a

small amount of read-only memory. Each user carries a card, and each card

contains a di�erent secret, which the node veri�es before granting access to

the user. The secret can be quite long, and hence hard to guess, but theft

of the card is a signi�cant danger.

A further improvement consists in introducing a Personal Identi�cation

Number (PIN), which the user types when he presents his card. Thus, theft

of the card alone no longer su�ces for a security breach. This scheme is

essentially that used by most Automated Teller Machines (ATMs).

All of these approaches su�er from a serious
aw: the node must be

completely trusted, as it obtains all of the user's secrets. It is impossible

for a user to delegate only part of his authority, or to delegate his authority

for only a limited time. Moreover, a malicious node could remember the

user's secrets for future mischief. This threat seems important|consider,

for example, the users of public terminals in hotels.

A smart-card with su�cient computing power solves these problems.

The smart-card we envision has its own keyboard, display, clock, logic for

performing public-key encryption [5, 12], and can be electrically coupled to

the node.

Authentication would be relatively straightforward with this powerful

smart-card. The smart-card might operate only when fed a PIN, so an

attacker would need to steal the smart-card and to discover the user's PIN

in order to impersonate the user. The keyboard and display allow the user to

1

communicate directly with the smart-card, so that the node never sees the

password. Since the smart-card performs public-key encryption, no secrets

ever need be revealed to the node.

After authentication, the smart-card can sign timestamped certi�cates

to delegate part of the user's authority for a limited time. For example, the

smart-card could issue a certi�cate that allows the node to manipulate the

user's remote �les for the next hour. The timestamp provides protection

against replay attacks, and careful use of lifetimes can prevent mischief by

the node at a later time.

Unfortunately, no one is currently selling a smart-card of the type we

have described, though one may be available at some time in the future.

More realistic protocols that place weaker demands on smart-cards should

therefore be considered. Various compatible solutions can be implemented

with reduced degrees of security and user convenience. The protocols are

subtler, as they rely on more complex trust relations between the principals

(users, hosts, services) in the system.

Consider, for example, a smart-card with no clock. Such a smart-card

is attractive because it avoids the need for a battery. Unfortunately, the

smart-card can no longer generate timestamps for its certi�cates, and it

cannot check that other certi�cates have not expired. A variety of replay

attacks becomes possible, unless the card can obtain the time somehow.

To counter replay attacks e�ectively, the card may obtain the time from a

network time service, which must then be secure and trusted.

In this paper, we describe a range of public-key smart-card authentica-

tion protocols, with di�erent compromises between cost and security. The

protocols were developed in the context of the Digital Distributed System

Security Architecture [6]. Most previous work focuses on user authentica-

tion using shared-key cryptography, with little discussion of delegation (see,

for example, [3]). We believe that public-key cryptography is more suitable

than shared-key cryptography for authentication and delegation, and that

it is not prohibitively expensive when used wisely. The protocols considered

can be based on RSA encryption [12], but other algorithms (e.g., [7]) could

also be used.

We analyze the protocols with a logic of authentication. This is essen-

tially the logic of Burrows, Abadi, and Needham [1], with a simple extension

to handle secure and timely channels. It should be noted that our logical

account is not the only one possible. However, the formalism enables us

to describe the assumptions and the guarantees of each protocol, clarifying

the trust relations between principals. Moreover, a logical account helps in

2

avoiding certain security
aws commonly present in authentication proto-

cols [1].

In the next section, we summarize the notation of the logic; the logic

is discussed further in an Appendix. In later sections, we describe smart-

card authentication protocols, starting with those that require the more

ambitious smart-card designs and the weaker trust relations. We analyze

three cases in some detail; the reader can interpolate between these. The

informal descriptions (without the logic) are self-contained, and the formal

passages may be skipped in a �rst reading.

2 Notation

In the analysis of smart-card protocols, we apply a logic for describing the

beliefs of the principals in the course of authentication. Several sorts of

objects appear in the logic: principals, encryption keys, formulas, and com-

munication links. (The original logic does not discuss links.) In what follows,

the symbols P , Q, and R range over principals; X and Y range over for-

mulas; K ranges over encryption keys; L ranges over communication links.

The constructs that we use are listed below.

P believes X

P controls X : P has jurisdiction over X . The principal P is an authority

on X and should be trusted on this matter. For example, a

certi�cation authority may be trusted to provide the public keys

of principals.

P said X : P once said X . The principal P sent a message including X ,

either long ago or during the current run of the protocol. In any

case, P believed X when he sent the message.

P saidL X : P once said X on the communication link L.

P sees X : P sees X . A message containing X has been sent to P , who

can read and repeat X (possibly after doing some decryption).

P seesL X : P sees X on the communication link L.

fresh(X): X is fresh, that is, X has not been sent in a message at any

time before the current run of the protocol. This usually holds for

timestamps and for nonces|expressions invented for the purpose

of being fresh.

3

timely(L): The link L is a timely channel : all messages on link L are

known to have been sent recently.

K
7!P : P has K as a public key . The matching secret key (the inverse of

K, denoted K�1) will never be discovered by any principal except

P , or a principal trusted by P .

L

�P : The link L is a secure channel from P : all messages on link L are

known to have been sent by P , or a principal trusted by P .

P
X
*)Q: X is a secret that will never be known to anyone but P and Q,

and possibly to principals trusted by them. Only P and Q may

use X to prove their identities to one another. An example of a

shared secret is a password or a PIN.

fXgK: This represents the formula X encrypted under the key K.

hXi
Y
: This represents X combined with the formula Y ; it is intended

that Y be a secret, and that its presence prove the identity of

whoever utters hXi
Y
. In implementations, X may simply be con-

catenated with Y ; our notation highlights that Y plays a special

rôle, as proof of origin for X .

3 A protocol for ideal smart-cards

We start with a description of how user authentication would work given

the ultimate smart-card, with its own keyboard, display, clock, and logic

for performing public-key encryption. Other schemes are best thought of in

terms of their di�erences from this scheme.

We assume that a distributed name service is available. The name service

contains certi�cates with information about which nodes each user should

trust and which public keys belong to which agents. A certi�cate is a state-

ment that has been signed by a principal. Often, certi�cates are signed by

a widely trusted service, known as a certi�cation authority. A certi�cate

typically includes a timestamp, with its time of issue, and sometimes an

explicit lifetime, which limits its validity. The certi�cation authority need

not be on-line; the name service need not be trusted.

We also assume that principals know the time accurately enough to check

the validity of certi�cates and to detect the replay of timestamped messages.

A trusted time service is one way of achieving this.

4

We �rst describe the protocol informally, and then more formally.

3.1 Discussion

For the sake of concreteness, let us imagine that a user wants to prove his

identity to a workstation. Moreover, the user wishes to allow the workstation

to access �les on his behalf.

1. The user sits down at the workstation and presents his smart-card.

The smart-card is willing to give certain information, including the

name of the user, to anyone.

2. The workstation now authenticates itself to the smart-card. Given the

name of the user, the workstation can retrieve all the certi�cates the

smart-card needs to determine that it is allowed to delegate authority

to the workstation; it forwards these to the smart-card. The worksta-

tion also generates a new public key and a matching secret key; we

refer to these keys as delegation keys. It sends the public key and a

timestamp to the smart-card, signed with its own secret key.

3. The smart-card examines the information presented by the worksta-

tion, verifying the signatures and lifetimes on all of the certi�cates.

At this point, the smart-card knows the public key of the workstation

and that the workstation can be trusted to act on behalf of the user.

The smart-card shows that it is satis�ed on its display and requests

the user's PIN. In addition, it might give the identity of the worksta-

tion, or at least an indication, such as a group nickname. It might

also provide some means to identify the workstation's display, such as

a name or location.

4. Now the user has some evidence of the workstation's identity. The

user responds by entering a PIN into the keyboard of the smart-card,

thus authorizing the use of this workstation.

5. The entry of the correct PIN indicates that the genuine user is present,

rather than some smart-card thief. Hence, the card constructs and

signs a delegation certi�cate. This delegation certi�cate authorizes

anyone who can demonstrate knowledge of the secret delegation key

to act on behalf of the user for a limited period of time. It sends that

certi�cate to the workstation.

5

6. The workstation veri�es that the delegation certi�cate is signed with

the card's secret key and contains the public delegation key. At this

point, the workstation has authenticated the user, in the sense that

it knows that whoever is at the keyboard has a particular public key.

The workstation has enough information to consult an access control

list and to determine whether it should provide its services to this

user. Moreover, the delegation certi�cate enables the workstation to

convince another node, such as a �le server, that the workstation acts

on behalf of the user.

This completes the authentication process. The workstation now knows

the user's identity. It can prove that it acts on the user's behalf by presenting

the delegation certi�cate and proving that it knows the secret delegation

key. The user also knows something about the workstation|perhaps its

name, but at least that the workstation can be trusted, according to the

certi�cation authority.

For authentication, it does not su�ce for the user and the workstation to

know each other's names. They must also know that they are communicating

via a particular keyboard and a particular display, and for example that no

malicious principal is interposed between the user and the workstation. An

implementation of this protocol should provide this guarantee.

An important variation on this scheme has to do with rôles. A user may

need and want di�erent privileges when he acts as member of a research

group and as manager, for example. A user may also want di�erent privileges

depending on his trust of the systems that act on his behalf. Software and

hardware trusted in one rôle should be prevented from gaining privileges

reserved for another rôle. One way of providing this capability is to issue

multiple smart-cards to the user, one for each rôle. A more satisfactory

solution is to have a single smart-card support multiple rôles. By typing

at the card's keyboard, the user could select a rôle, to be mentioned in the

delegation certi�cate. In addition, the smart-card could restrict the rôles

available, to save the user from misplaced trust in unsafe environments.

For the purposes of a logical analysis, it would be adequate to conceive

of the user in each of his rôles as a di�erent user. For simplicity, we do not

discuss rôles further in this paper.

3.2 Notation and assumptions

The notation used in the remainder of this section is as follows:

6

� S is the certi�cation authority, W the workstation, C the smart-card,

U the user, and F a �le server (or any other node) that the workstation

contacts on behalf of the user;

� Ks, Kw, and Kc are the public keys of S, W , and C, respectively;

� Kd is the public delegation key, generated by W ;

� PIN is U 's personal identi�cation number;

� Tw, Tc, Ts, T
0

s, and T
00

s are timestamps;

� Ic is the smart-card's keyboard (input to the card);

� Oc is the smart-card's display (output from the card);

� Iw is the workstation's keyboard (input to the workstation); and

� Ow is the workstation's display (output from the workstation).

The name C is useful only in connecting U with Kc, and need not be present

in an implementation. Similarly, the names for Iw and Ow will quite likely

be related to one another, and toW . For example, if Iw and Ow are referred

to by location, then the names could be identical.

In order to analyze the protocol with the logic, we have to state its

assumptions and describe it more formally. We leave the description of the

protocol to the next subsection, and now proceed to discuss its assumptions.

The assumptions naturally fall into several classes:

Assumptions about timestamps: the smart-card, the workstation, and

the �le server believe that certain timestamps were generated recently:

1. C believes fresh(Ts); C believes fresh(T 0

s
);

C believes fresh(Tw);

2. W believes fresh(Tc); W believes fresh(T 00

s);

3. F believes fresh(Tc); F believes fresh(T 00

s).

Assumptions about keys and secrets:

1. S believes
Kc
7!C; S believes

Kw
7!W : the certi�cation authority be-

lieves the smart-card's public key is Kc, and the workstation's public

key is Kw;

7

2. C believes
Ks
7!S: the smart-card believes the certi�cation authority's

public key is Ks;

3. C believes C
PIN
*) U : the smart-card believes that PIN is a secret

shared with the user;

4. W believes
Ks

7!S: the workstation believes the certi�cation author-

ity's public key is Ks;

5. W believes
Kd
7!U : the workstation believes that Kd is a good key for

U (probably because W has constructed the key);

6. F believes
Ks
7!S: the �le server believes the certi�cation authority's

public key is Ks.

Assumptions about channels:

1. W believes
Ow

�W : the workstation believes that the display is a se-

cure channel from it;

2. U believes
Oc

�C; U believes timely(Oc): the user believes that

the smart-card's display is a secure and timely channel from the smart-

card;

3. U believes
Iw

�U : the user believes that the workstation's keyboard is

a secure channel from him;

4. C believes timely(Ic): the smart-card believes that its keypad is a

timely channel.

Assumptions about trust:

1. U believes 8K:(W controls
K
7!U): the user believes that the work-

station can choose an appropriate public key; intuitively, the user is

willing to delegate to this workstation;

2. S believes U controls 8K:(W controls
K
7!U): the certi�cation au-

thority trusts the user to decide whether to trust this workstation in

the choice of a key; intuitively, W is believed to be a safe workstation

for the user to delegate to;

8

3. S believes 8X:(C controls U believes X): the certi�cation author-

ity trusts the smart-card to relay the user's beliefs;

4. S believes 8K:(C controls
K
7!U): the certi�cation authority trusts

the smart-card to set a key for the user;

5. U believes W controls
Ow

�W : the user trusts the workstation when

it says that the display Ow is a channel from it;

6. U believes 8W:(C controls W believes
Ow

�W): the user trusts his

card to pass on beliefs of the workstation;

7. W believes U controls
Iw

�U : the workstation trusts the user when

he claims to be at the keyboard.

In addition, there are a few assumptions about trust in the server; for the

sake of brevity, we assume that every principal trusts the server completely.

Some of the assumptions are rather strong, and could be weakened. In

particular, the assumption

W believes U controls
Iw

�U

is a simpli�cation of the more accurate \the workstation trusts whoever

claims to be at its keyboard to identify himself properly through the smart-

card ." Our simple logic is unable to express this satisfactorily in a single

formula.

3.3 The protocol analyzed

Now we discuss the protocol in detail, and show that it establishes channels

(the keyboard and the display) between the user and the workstation, and

that it provides a delegation key that the workstation can use on behalf of

the user in dealing with other nodes:

U believes
Ow

�W; W believes
Iw

�U; F believes
Kd
7!U

Step by step, we can follow the evolution of the beliefs of the participants,

from the initial assumptions to these conclusions. We summarize the major

deductions, and at the same time we explain the messages in the protocol.

9

The reasoning deals with an idealized version of the protocol, in which

messages are replaced by formulas of the logic. These formulas should be be-

lieved by the principals that send them. An implementation of the protocol

need not transmit these formulas literally; any unambiguous bit representa-

tion will do, and one is typically obvious from the context.

The transmission of certi�cates is represented explicitly. We do not

show the exact routes these follow, however, as the routes do not a�ect the

properties of the protocol|they are merely an implementation choice. In

practice, one would expect certi�cates to be cached, so that they do not

need to be transmitted or checked repeatedly.

1. W ! C: f
Kd

7!U;
Ow

�W; TwgK�1w

The workstation asserts that it has a public key Kd for the user and

that the display Ow is a secure channel from W .

2. S ! C: f
Kw

7!W; TsgK�1s
;

fU controls 8K:(W controls
K
7!U); T 0

sgK�1s

The certi�cation authority provides the public key of the workstation

to the smart-card. At this point, the smart-card can decrypt and

attribute the previous message, as well as check the freshness of the

timestamp Tw. The certi�cation authority also states that the user can

let this workstation choose a delegation key. The smart-card trusts the

certi�cation authority; in the logic, we obtain:

C believes
Kw

7!W; C believes U controls 8K:(W controls
K
7!U)

and then also

C believes W believes
Ow

�W

3. C ! U : W believes
Ow

�W on Oc

On its display, the card provides the name of the workstation to the

user; the card also gives enough information for the user to check

whether the display in front of him is W 's. More precisely, the smart-

card states that W believes that Ow is its display (formally, that Ow

is a secure channel from W). Since the user trusts the smart-card on

this matter and it knows that the smart-card's display is both secure

and timely, it believes the card's assertion. We can now derive:

U believes
Ow

�W

10

because the user trusts W on
Ow

�W . Thus, the workstation has au-

thenticated itself to the user.

4. U ! C: h8K:(W controls
K
7!U);

Iw

�Ui
PIN

on Ic
If the user wishes to proceed, he enters his PIN on the card's keypad.

Thus, the user indicates that he trusts the workstation to choose a key

and that he is at the keyboard Iw . He uses his personal identi�cation

number to convince the smart-card of his identity. We can prove:

C believes 8K:(W controls
K
7!U); C believes U believes

Iw

�U

Using S's certi�cates and W 's claims, we can also obtain:

C believes
Kd
7!U

5. C ! W : fU believes
Iw

�U; TcgK�1c

The smart-card communicates to the workstation that the user believes

he is at the keyboard. In an implementation where U and Iw are clear

from context, it su�ces for C to send a signed message to W , such as

the delegation certi�cate below.

6. S ! W : f
Kc

7!C; 8X:(C controls U believes X); T 00

s gK�1s

The certi�cation authority gives the smart-card's public key to the

workstation, and connects this key to U . At this point, the workstation

can decrypt the previous message and check its timestamp. With a

few applications of the logical postulates, we prove:

W believes
Iw

�U

This statement means that the workstation believes that the user is

at its keyboard, and hence that the user has authenticated himself to

the workstation.

7. C ! F : f
Kd
7!U; TcgK�1c

The smart-card certi�es that Kd is a delegation key for the user.

8. S ! F : f
Kc
7!C; 8K:(C controls

K
7!U); T 00

s gK�1s

The certi�cation authority gives the smart-card's key to the �le server.

At this point, the �le server can decrypt the certi�cate from the smart-

card and check the timestamp in it. Furthermore, the certi�cation

11

authority asserts that the card can set a key for the user, and the �le

server trusts the certi�cation authority in this matter as well. Hence,

we obtain:

F believes
Kd
7!U

Informally, the �le server has accepted the delegation key generated

by the workstation, and thus the workstation can act on the user's

behalf.

After this message sequence, the �le server F has not heard about W .

All the responsibility for checking the suitability of W rests on the user and

the smart-card. This is not entirely unreasonable, as we are assuming a

powerful smart-card. In the next section, we describe protocols where F

participates in this checking.

4 A more realistic smart-card protocol

The smart-card design required for the protocol of the previous section is

rather ambitious with today's technology. In this section, we consider a

protocol that requires much less from the smart-card. Another one appears

in the next section.

4.1 Concessions in smart-card design

The �rst feature to eliminate is the clock on the card. Having a clock on

the card is particularly di�cult because it requires a battery. The clock

could be eliminated by having the user enter the time; it is equivalent, but

much more practical, to have the workstation supply the time to the card

and the user verify it on the display. This solution is not as convenient or

as secure (the user will probably not check very carefully), but it works.

There are two threats if the smart-card has an incorrect notion of time.

First, the card could be tricked into signing a delegation certi�cate for some

time far in the future and the workstation could then impersonate the user

without the smart-card being physically present. Second, a workstation

whose certi�cate has expired at some time in the past could convince the

smart-card the certi�cate is still valid.

Another feature we could eliminate is the keyboard on the card. It may

be quite di�cult to make a small, mechanically strong keyboard that can be

reached even when the card has been connected to a reader. The user could

instead enter his PIN on the workstation's keyboard, which could forward

12

the PIN in a message to the card. The danger here, though not a particularly

worrisome one, is that a misbehaving workstation could capture the PIN.

The workstation could give the PIN to someone who subsequently steals

the card, or the workstation could use the PIN more than once on a single

insertion of the card to obtain the delegation of more rôles than the user

intended. These threats can be avoided entirely by having the card display

a nonce secret and having the user \modify" it into the PIN with a series

of `+' and `nextdigit' operations sent via the workstation keyboard. We can

view this nonce secret as an encryption key (or a one-time pad) that the

card supplies to the user to establish a secure channel that the workstation

cannot read or write. In this way, PIN entry goes through the keyboard but

is not subject to replay.

A similar concession is to remove the display from the card, instead of

the keyboard. In this case, it is straightforward for the user to enter the

PIN, but it is much harder for the smart-card to identify the workstation to

the user. A single LED is a partial substitute for a display.

A �nal compromise consists in limiting the smart-card's ability to en-

crypt and decrypt. We consider the extreme case where the smart-card signs

one message but is not able to decrypt. In this case, it is desirable to provide

a secure channel from the workstation (such as a secure card reader).

In the remainder of this section, we study a protocol where the smart-

card has a display, but has neither a clock nor a keyboard, and has reduced

encryption capabilities. (We leave to the reader the derivation and analysis

of variants.)

These concessions in smart-card design may leave the user at the mercy

of the workstation. It is therefore desirable to transfer some trust from the

workstation to other principals in the distributed environment.

The simplest choice is to give a more prominent rôle to the principals

that check delegation certi�cates, such as the �le server F . Thus, F takes

into accountW 's identity before accepting a delegation key for U . Moreover,

F may grant some requests fromW on behalf of U , and not others (as in the

general approach to delegation of [8]). The user obtains no real guarantee of

the identity of the workstation, since the card cannot decrypt. However, the

user can be sure that his authority is not delegated inappropriately, because

of the check performed by F . This is the approach we adopt in the following

protocol.

In the next section, we discuss a more elaborate design, where dedicated

trusted agents assist the smart-card in the process of delegation.

13

4.2 Notation and assumptions

Some additional notation is needed:

� Kcu is a short secret nonce generated by the card, to protect the entry

of the user's PIN|as the notation suggests, we view the secret as an

encryption key for the PIN;

� Lr is the smart-card reader; and

� fTbgK�1
b

is a timestamp signed by B, a trusted time service; B is

trusted never to sign a timestamp for a time in the future; W obtains

the certi�ed timestamp by whatever means, and may check Tb.

The following are the main novelties in the initial assumptions; we omit

a full list. In these, it is convenient to use the name W 0 for the workstation

that controls the channel Lr (with any luck, of course,W
0 is the intendedW).

We need this notation because the user must reason about the workstation

behind Lr before believing it is W .

1. C believes
Lr

�W 0; C believes timely(Lr): the smart-card believes

that the smart-card reader provides a timely, secure channel to the

workstation W 0;

2. C believes C
Kcu

$ U; C believes fresh(C
Kcu

$ U): the smart-card has

a secret, to be used to hide the PIN from the workstation; this secret

is a nonce, and hence its mention in a message proves the freshness of

this message.

3. U believes W 0 controls
Ow

�W : the user trusts the workstation be-

hind the smart-card reader to give its name correctly, asserting that

the display is a secure channel from W|the user may reject outra-

geous names, though; this assumption is strong, since the user gets no

real guarantee of the workstation's identity;

4. F believes fresh(fTbgK�1
b

): the �le server believes in the timeliness

of the certi�ed timestamp; B's signature convinces F of the validity

of Tb, even though C does not have a clock, because B is trusted not

to sign future timestamps.

14

4.3 The protocol analyzed

The protocol presented here achieves the same properties as the one for

ultimate smart-cards, namely,

U believes
Ow

�W; W believes
Iw

�U; F believes
Kd
7!U

This amounts to mutual authentication and delegation. However, stronger

assumptions are required here, particularly for the �rst conclusion.

The messages and the deductions can be explained thus:

1. W ! C:
Ow

�W on Lr
The workstation names itself and its display.

2. C ! U : W 0 believes
Ow

�W; C
Kcu

$U on Oc

The card passes the workstation's message on to the user. It also

provides a one-time pad Kcu. Notice that the user has no assurance

that the named workstation is actually the workstation in front of him.

However, he can be sure that he is delegating authority only to the

machine named. The user simply trusts the workstation to give its

name correctly. Thus, we have:

U believes
Ow

�W

3. U ! C: f
Iw

�U; 8K:(W controls
K
7!U); C

Kcu

$ UgKcu

The user enters his PIN. The PIN is not entered directly; instead, the

user types a sequence of keys which modify the displayed value Kcu

until the PIN is displayed. Thus, the user asserts that he is at the

keyboard, and gives jurisdiction to the workstation over the choice of

a key. The key Kcu appears inside the message as proof of timeliness.

(In an implementation, the use of Kcu as a one-time pad su�ces as

proof of timeliness.)

4. C ! W : fU believes
Iw

�U; fTbgK�1
b

g
K
�1

c

As in the previous protocol, the smart-card communicates to the work-

station that the user believes he is at the keyboard. The certi�ed

timestamp, which may have been obtained via W , is included as proof

of timeliness.

15

5. S ! W : f
Kc
7!C; 8X:(C controls U believes X); T 00

s gK�1s

The certi�cation authority provides the smart-card's public key to the

workstation and certi�es that the smart-card is allowed to transmit the

user's beliefs. At this point the workstation can interpret the previous

message. As in the previous protocol, the user has authenticated to

the workstation:

W believes
Iw

�U

6. C ! F : fU believes W controls
Kd
7!U; fTbgK�1

b

g
K
�1
c

In this delegation certi�cate, the smart-card asserts that the user has

delegated to the workstation: it says that the user believes that the

workstation has jurisdiction over setting Kd as his delegation key. The

certi�cate includes fTbgK�1
b

as proof of timeliness.

7. W ! F : f
Kd
7!U; fTbgK�1

b

g
K
�1
w

The workstation asserts that Kd is a delegation key for U .

8. S ! F : f
Kw
7!W; TsgK�1s

;

f8K:(U controls W controls
K
7!U); T 0

s
g
K
�1

s

;

f
Kc
7!C; 8X:(C controls U believes X); T 00

s gK�1s

The certi�cation authority provides the public keys of the smart-card

and the workstation. It certi�es that the user can delegate to this

workstation, and that the smart-card is allowed to transmit the user's

beliefs. Using the previous messages, we obtain the desired delegation

result:

F believes
Kd
7!U

It is not strictly necessary to include the key Kd in the delegation certi�-

cate, as we have. However, the mention of the key makes it simple for the

workstation to renounce delegated powers when they are no longer needed,

by forgetting the matching secret key K�1

d
. Thus, the user is protected

against future compromise of the workstation, even if the delegation certi�-

cate has a long lifetime.

As usual, the number of messages can be reduced by caching commonly

used certi�cates. Furthermore, the smart-card need perform only one signing

operation, and this can be done while the user enters his PIN. Hence the

card need not be particularly fast. The total complexity of the protocol has

increased slightly, but the demands on the smart-card have decreased. This

protocol, or similar ones, may well be practical.

16

5 A protocol with trusted agents

An alternative approach to reducing the demands on the smart-card is based

on the use of trusted agents. We discuss this solution here.

5.1 Trusted agents

An on-line trusted agent can relieve the smart-card from the elaborate rit-

uals of generating timestamps and verifying certi�cates. As this trusted

agent can check that W is a suitable workstation for U , this burden is re-

moved from principals such as F . Moreover, a trusted agent simpli�es the

process of revocation for a compromised workstation|a trusted agent may

be a convenient place for a workstation black list. The workstation and the

trusted agents can check on one another.

As we envision them, these trusted agents are dedicated, physically pro-

tected machines. There would be a large number of trusted agents widely

dispersed. Each trusted agent assists a community of users under a single

domain or management. Any such arrangement reduces availability (when

all replicas are down or inaccessible, the user cannot work) and lessens se-

curity (the agents are an attractive target).

If the smart-card can execute only the DES algorithm [4], then the

trusted agent will get access to the user's private key during the login pro-

cess. It can still be arranged that compromise of a trusted agent will not

permit the impersonation of all users who trust it|only of those who use it

while it is compromised.

If the smart-card can perform the RSA signing operation, a protocol

can be obtained whereby the trusted agent cannot impersonate the user.

The compromise of a trusted agent does not destroy security per se. In

the solution explored in the rest of this section, the smart-card will sign

anything the workstation gives it, but no one will believe anything signed

by the smart-card without a certi�cate from a suitable trusted agent. As

in the previous protocol, the user obtains no real guarantee of the identity

of the workstation, since the card cannot decrypt. However, the user can

be sure that his authority is not delegated inappropriately, because of the

check performed by the trusted agent.

5.2 Notation and assumptions

Let A be a trusted agent,Ka his public key, and Ta a timestamp he generates.

17

The most important new assumptions are:

1. S believes 8K8W:(A controls W believes
K
7!U);

S believes 8K8W:(A controls U controls W controls
K
7!U): the

certi�cation authority believes that the user is in the domain of the

trusted agent A; the formulas represent consequences of this belief.

2. A believes 8K:(U controls W controls
K
7!U): the trusted agent A

believes that U can delegate to W .

We treat A as di�erent from B, the trusted time provider, although A

and B could obviously be implemented by a single node.

5.3 The protocol analyzed

Many of the messages are identical to those of the previous protocol. We

discuss only the changes.

1. W ! A: f
Kd
7!U; TwgK�1w

The workstation asserts that Kd is a delegation key for U .

2. S ! A: f
Kw
7!W; TsgK�1s

The trusted agent consults a certi�cate that contains W 's key.

3. W ! C:
Ow

�W on Lr

4. C ! U : W 0 believes
Ow

�W; C
Kcu
$U on Oc

5. U ! C: f
Iw

�U; 8K:(W controls
K
7!U); C

Kcu

$ UgKcu

6. C ! W : fU believes
Iw

�U; fTbgK�1
b

g
K
�1

c

7. A! F : fW believes
Kd
7!U; U controls W controls

Kd
7!U; TagK�1a

The trusted agent checks that the workstation is a reasonable machine

for the user to trust. It signs a certi�cate to that e�ect, including the

delegation key for the subsequent session. The trusted agent states

that W has chosen Kd, and that U can let W use Kd as a delegation

key.

18

8. C ! F : fU believes W controls
Kd
7!U; fTbgK�1

b

g
K
�1

c

The �le server checks that values of U and W match those in the

previous message. This check ensures that both the user and the

trusted agent refer to the same workstation.

9. S ! F : f
Ka

7!A; T 0

sgK�1s

f8K8W:(A controls W believes
K
7!U);

8K8W:(A controls U controls W controls
K
7!U); T 00

s gK�1s

f
Kc

7!C; 8X:(C controls U believes X); T 000

s gK�1s

The �le server obtains certi�cates for A and C.

The result is the usual one: mutual authentication and delegation.

6 Conclusions

Authentication protocols that use smart-cards are a signi�cant improvement

over those that use simple passwords. We have described a few smart-card

protocols and the guarantees they o�er. We feel that the use of a formalism

has helped us elucidate and compare some of the subtle trust relations that

underly these protocols.

A trade-o� is inevitable, between the trust that the user needs to place

in the environment, and the power, cost, and size of his smart-card. Each

of the protocols|and there are others|has its own problems and addresses

speci�c threats, with speci�c technological requirements.

Appendix: The logic

In the analysis of smart-card protocols, we apply a logic of authentication.

The notation is as given in Section 2; here we give a few of the main rules of

inference and brie
y explain how to use them. The logic is presented in [1];

a Kripke semantics is currently being developed by M. Tuttle and M. Abadi.

Rules of inference

We manipulate formulas of the logic with rules of inference, such as the

following.

19

� The jurisdiction rule re
ects that if P believes that Q is an authority

on X then P trusts Q on the truth of X :

P believes Q controls X; P believes Q believes X

P believes X

� The public-key message-meaning rule concerns the interpretation of

encrypted messages:

P believes
K
7!Q; P sees fXgK�1

P believes Q said X

That is, if P believes that the key K is Q's public key and P sees X

encrypted under K's inverse, then P believes that Q once said X .

� A similar message-meaning rule applies to links:

P believes
L

�Q; P seesL X

P believes Q saidL X

� A nonce-veri�cation rule expresses the check that a part of a message

is recent, and hence that the sender still believes in the message:

P believes fresh(X); P believes Q said X

P believes Q believes X

That is, if P believes thatX could have been uttered only recently and

that Q once said X , then P believes that Q has said X recently, and

hence that Q believes X . A variant of this rule is sometimes useful:

P believes fresh(Y); P believes Q said (X; Y)

P believes Q believes X

For the sake of simplicity, we use this rule only when X is cleartext,

that is, it has no subformulas of the form fY gK . A similar remark

applies to all other rules that introduce the believes operator.

� Another way to guarantee timeliness is by using timely communication

links:

P believes timely(L); P believes Q saidL X

P believes Q believes X

20

On quanti�ers in delegations

Delegation statements usually mention one or more variables. For example,

the user U may let the workstationW generate an arbitrary delegation key.

We can express this as

U believes W controls
K
7!U

Here the key K is universally quanti�ed, and we can make explicit this

quanti�cation by writing

U believes 8K:(W controls
K
7!U)

For complex delegation statements, it is generally necessary to write

quanti�ers explicitly in order to avoid ambiguities. In some previous works

on the logic, this need was not recognized, as in fact it did not arise. (There

were no nested jurisdiction statements.) This need does arise in the proofs

above.

Our formal manipulation of quanti�ers is quite straightforward. All we

use is the ability to instantiate variables in jurisdiction statements, as re-

ected by the rule

P believes 8V1 : : :Vn:(Q controls X)

P believes Q0 controls X 0

where Q0 controls X 0 is the result of simultaneously instantiating all of the

variables V1; : : : ; Vn in Q controls X .

Protocol analysis

Authentication protocols are typically described by listing their messages in

the form

P ! Q : message

This denotes that P sends the message to Q. Occasionally, it is stated that

the message follows a particular route, such as a secure channel.

The message is presented in an informal notation designed to suggest

the bit-string that a particular concrete implementation would use. In the

interest of formal analysis, we rewrite each message as a logical formula. For

instance, the protocol step

A! F : Ka on link L1

21

may tell F , who knows that L1 is a secure channel from A, that Ka is A's

public key. This step should then be idealized as

A! F :
Ka

7!A on L1

We annotate idealized protocols with logical formulas, much as in a proof

in Hoare logic ([H]). We write formulas before the �rst message and after

each message. The main rules for deriving legal annotations are:

� if X holds before the message P ! Q : Y then both X and Q sees Y

hold afterwards;

� if X holds before the message P ! Q : Y on L then both X and

Q seesL Y hold afterwards;

� if Y can be derived from X by the logical postulates then Y holds

whenever X holds.

An annotation of a protocol is like a sequence of comments about the beliefs

of principals and what they see in the course of authentication, from initial

assumptions to conclusions.

Acknowledgements

Jim Saxe invented the method for entering a PIN by modifying a nonce

with a series of `+' and `nextdigit' operations. Dorothy Denning and Roger

Needham read drafts of this paper. Cynthia Hibbard provided comments

on the presentation.

22

References

[1] M. Burrows, M. Abadi, and R.M. Needham. A Logic of Authentication,

Proceedings of the Royal Society of London A Vol. 426, 1989, pp. 233{

271. A preliminary version appeared as Digital Equipment Corporation

Systems Research Center report No. 39, February 1989.

[2] CCITT. CCITT Blue Book, Recommendation X.509 and ISO 9594-8:

The Directory-Authentication Framework. Geneva, March 1988.

[3] D. Chaum and I. Schaum�uller-Bichl, editors. Smart Card 2000: The

Future of IC Cards. Proceedings of the IFIP WG 11.6 International

Conference on Smart Card 2000: The Future of IC Cards, Laxenburg,

Austria, October, 1987. North-Holland, Amsterdam, 1989.

[4] National Bureau of Standards. Data Encryption Standard. Fed. In-

form. Processing Standards Pub. 46. Washington DC, January 1977.

[5] W. Di�e and M. Hellman. New Directions in Cryptography. IEEE

Transactions on Information Theory IT-22, No. 6, November, 1976,

pp. 644{654.

[6] M. Gasser, A. Goldstein, C. Kaufman, B. Lampson. The Digital Dis-

tributed System Security Architecture. Proceedings of the 1989 Na-

tional Computer Security Conference, Baltimore, 1989, pp. 305-319.

[7] U. Feige, A. Fiat, A. Shamir. Zero Knowledge Proofs of Identity. Pro-

ceedings of the Nineteenth Annual ACM Symposium on Theory of Com-

puting, New York, 1987, pp. 210{217.

[8] M. Gasser, E. McDermott. An Architecture for Practical Delegation in

a Distributed System. Proceedings of the 1990 IEEE Symposium on

Security and Privacy, Oakland, 1990, pp. 20{30.

[9] C.A.R. Hoare. An Axiomatic Basis for Computer Programming, CACM

Vol. 12, No. 10, October 1969, pp. 576{580.

[10] S.P. Miller, C. Neuman, J.I. Schiller, and J.H. Saltzer. Kerberos Au-

thentication and Authorization System. Project Athena Technical Plan

Section E.2.1, MIT, July 1987.

23

[11] R.M. Needham and M.D. Schroeder. Using Encryption for Authentica-

tion in Large Networks of Computers. CACM Vol. 21, No. 12, December

1978, pp. 993{999.

[12] R.L. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining

Digital Signatures and Public-key Cryptosystems, Communications of

the ACM Vol. 21, No. 2, February 1978, pp. 120-126.

24

