
66

Composing Speci�cations

Mart��n Abadi and Leslie Lamport

October 10, 1990

Systems Research Center

DEC's business and technology objectives require a strong research program.

The Systems Research Center (SRC) and three other research laboratories

are committed to �lling that need.

SRC began recruiting its �rst research scientists in l984|their charter, to

advance the state of knowledge in all aspects of computer systems research.

Our current work includes exploring high-performance personal computing,

distributed computing, programming environments, system modelling tech-

niques, speci�cation technology, and tightly-coupled multiprocessors.

Our approach to both hardware and software research is to create and use

real systems so that we can investigate their properties fully. Complex

systems cannot be evaluated solely in the abstract. Based on this belief,

our strategy is to demonstrate the technical and practical feasibility of our

ideas by building prototypes and using them as daily tools. The experience

we gain is useful in the short term in enabling us to re�ne our designs, and

invaluable in the long term in helping us to advance the state of knowledge

about those systems. Most of the major advances in information systems

have come through this strategy, including time-sharing, the ArpaNet, and

distributed personal computing.

SRC also performs work of a more mathematical
avor which complements

our systems research. Some of this work is in established �elds of theoretical

computer science, such as the analysis of algorithms, computational geome-

try, and logics of programming. The rest of this work explores new ground

motivated by problems that arise in our systems research.

DEC has a strong commitment to communicating the results and experience

gained through pursuing these activities. The Company values the improved

understanding that comes with exposing and testing our ideas within the

research community. SRC will therefore report results in conferences, in

professional journals, and in our research report series. We will seek users

for our prototype systems among those with whom we have common research

interests, and we will encourage collaboration with university researchers.

Robert W. Taylor, Director

Composing Speci�cations

Mart��n Abadi and Leslie Lamport

October 10, 1990

A preliminary version of this report appeared in the proceedings of the REX

Workshop on Stepwise Re�nement of Distributed Systems, held at Mook,

the Netherlands, in May 1989 [dBdRR90].

c
Digital Equipment Corporation 1990

This work may not be copied or reproduced in whole or in part for any com-

mercial purpose. Permission to copy in whole or in part without payment

of fee is granted for nonpro�t educational and research purposes provided

that all such whole or partial copies include the following: a notice that

such copying is by permission of the Systems Research Center of Digital

Equipment Corporation in Palo Alto, California; an acknowledgment of the

authors and individual contributors to the work; and all applicable portions

of the copyright notice. Copying, reproducing, or republishing for any other

purpose shall require a license with payment of fee to the Systems Research

Center. All rights reserved.

iv

Authors' Abstract

A rigorous modular speci�cation method requires a proof rule asserting that

if each component behaves correctly in isolation, then it behaves correctly in

concert with other components. Such a rule is subtle because a component

need behave correctly only when its environment does, and each component

is part of the others' environments. We examine the precise distinction

between a system and its environment, and provide the requisite proof rule

when modules are speci�ed with safety and liveness properties.

v

Contents

1 Introduction 1

1.1 States versus Actions : 6

1.2 System versus Environment : : : : : : : : : : : : : : : : : : : 7

1.3 Specifying the System and its Environment : : : : : : : : : : 8

1.4 Composition and Proof : 9

1.5 Semantics versus Logic : 10

2 The Semantic Model 10

3 Realizability 14

3.1 Safety Properties : 14

3.2 Realizability of Arbitrary Properties : : : : : : : : : : : : : : 15

3.2.1 De�nitions : 15

3.2.2 Discussion of the De�nitions : : : : : : : : : : : : : : 17

3.2.3 Some Basic Propositions : : : : : : : : : : : : : : : : : 18

4 The Form of a Speci�cation 19

4.1 The Form of a Complete Program : : : : : : : : : : : : : : : 20

4.1.1 The Parts of a Complete Program : : : : : : : : : : : 20

4.1.2 The Progress Property : : : : : : : : : : : : : : : : : : 21

4.2 The Form of a Partial Program : : : : : : : : : : : : : : : : : 23

4.2.1 The Parts of a Partial Program : : : : : : : : : : : : : 23

4.2.2 Hiding the Internal State : : : : : : : : : : : : : : : : 26

4.3 The Normal Form of a Speci�cation : : : : : : : : : : : : : : 27

4.4 An Overly Normal Form : 30

5 Composing Speci�cations 31

5.1 The Composition of Speci�cations : : : : : : : : : : : : : : : 31

5.1.1 Assumptions about the States : : : : : : : : : : : : : : 32

5.1.2 Assumptions about the Agents : : : : : : : : : : : : : 33

5.2 Implementing One Speci�cation by Another : : : : : : : : : : 34

5.2.1 De�nition : 34

5.2.2 Proving That One Speci�cation Implements Another : 35

5.3 The Main Theorem : 38

5.3.1 A Precise Statement of the Composition Principle : : 38

5.3.2 The Hypotheses of the Theorem and Proposition : : : 41

5.3.3 The Hypotheses of the Proof Rule : : : : : : : : : : : 43

6 Concluding Remarks 46

vi

Appendix: Proofs 47

Proposition 1 : 51

Proposition 2 : 56

Proposition 3 : 56

Proposition 4 : 57

Proposition 5 : 57

Proposition 6 : 59

Proposition 7 : 61

Proposition 8 : 64

Proposition 9 : 65

Proposition 10 : 67

Theorem 1 : 69

Corollary : 72

Proposition 11 : 72

Proposition 12 : 74

Theorem 2 : 75

Acknowledgements 79

Glossary 81

References 85

Index 89

vii

1 Introduction

In the transition-axiom method, concurrent systems are speci�ed by com-

bining abstract programs and temporal logic [Lam89]. The method permits

a hierarchical approach in which the composition of lower-level speci�cations

is proved to implement a higher-level speci�cation. In [AL91], we described

how to prove that one speci�cation implements another. Here, we examine

how to compose speci�cations. We work at the semantic level, independent

of any particular speci�cation language or logic. Thus, our results can be

applied to a number of approaches besides the transition-axiom method|

for example, to Lam and Shankar's method of projections [LS84a], and to

the I/O automata of Lynch and Tuttle [LT87].

Composition makes sense only for systems that interact with their envi-

ronments. Such a system will behave properly only if its environment does.

A Pascal program may behave quite improperly if a read(x) statement re-

ceives from the I/O system a value not allowed by the type of x. A circuit

may exhibit bizarre behavior if, instead of a 0 or a 1, an input line provides

a \1/2"|that is, if the input line has an improper voltage level. A proper

speci�cation of an interactive system � asserts that the system guarantees

a propertyM only under the assumption that its environment satis�es some

property E.

The fundamental problem of composing speci�cations is to prove that a

composite system satis�es its speci�cation if all its components satisfy their

speci�cations. Consider a system � that is the composition of systems

�1, : : : , �n. We must prove that � guarantees a property M under an

environment assumption E, assuming that each � i satis�es a property Mi

under an environment assumption Ei. Observe that:

1. We expect � to guarantee M only because of the properties guaran-

teed by its components. Therefore, we must be able to infer that �

guarantees M from the assumption that each � i guarantees Mi.

2. The component �i guarantees Mi only under the assumption that

its environment satis�es Ei; and �i's environment consists of � 's

environment together with all the other components �j . We must

therefore be able to infer Ei from the environment assumption E and

the component guarantees Mj .

These observations lead to the following principle.

1

Composition Principle Let � be the composition of �1, : : : , �n, and

let the following conditions hold.

1. � guarantees M if each component �i guarantees Mi.

2. The environment assumption Ei of each component � i is satis�ed if

the environment of � satis�es E and every �j satis�es Mj.

3. Every component�i guaranteesMi under environment assumption Ei.

Then � guarantees M under environment assumption E.

The reasoning embodied by the Composition Principle is circular. To prove

that every Ei holds, we assume that everyMi holds; butMi holds only under

the assumption that Ei holds. So, it is not surprising that the principle is

not always valid. We will show that the principle is valid under suitably

weak hypotheses, and that it provides a satisfactory rule for composing

speci�cations.

Before embarking on a rigorous development of the Composition Princi-

ple, we consider some examples. We begin with partial-correctness speci�-

cations of sequential programs. The Hoare triple fPg�fQg can be viewed

as an assertion that � guarantees M under environment assumption E,

whereM asserts that� terminates only when Q is true, and E asserts that

� is started (by some action of the environment) only when P is true. The

Composition Principle is valid for such speci�cations, and it is the basis for

the standard composition rules of Hoare logic. For example, consider the

following rule, where � is the sequential composition �1;�2 of �1 and

�2.

P) P1; fP1g�1fQ1g; Q1) P2; fP2g�2fQ2g; Q2) Q

fPg�fQg

The hypotheses of this rule imply the three conditions of the Composition

Principle:

1. Q2) Q: If �2 guarantees M2, then � guarantees M .

2. P) P1: If the environment of � satis�es E, then the environment

assumption E1 of �1 is satis�ed.

Q1) P2: If �1 guaranteesM1, then the environment assumption E2

of �2 is satis�ed.

2

3. fPig�ifQig: � i guarantees Mi under environment assumption Ei.

The principle's conclusion, that � satis�es M under environment assump-

tion E, is the conclusion fPg�fQg of the proof rule.

We now consider reactive systems [HP85]. The interaction of a reac-

tive system with its environment cannot be expressed simply by pre- and

postconditions. For example, suppose the environment passes values to the

system through a register r. If reading and writing r are not atomic opera-

tions, then the system and its environment must obey a protocol to insure

the correct passing of values. If the environment does not obey the protocol,

then the system could read r while it is being written and obtain completely

arbitrary values|for example, values with incorrect types. The system can

therefore be expected to guarantee a propertyM only under the assumption

that the environment obeys a communication protocol, and such a protocol

cannot be speci�ed simply in terms of a precondition.

When we try to extend the Composition Principle beyond simple partial-

correctness properties, we �nd that its validity depends on the precise nature

of the properties being guaranteed and assumed. Consider the situation

depicted in Figure 1, where a split wire indicates that the same value is

sent to two di�erent destinations. Suppose �1 and �2 have the following

speci�cations.

� �1 guarantees that it never sends a \1" on out1, assuming that its

environment never sends it a \2" on in1.

� �2 guarantees that it never sends a \2" on out2, assuming that its

environment never sends it a \1" on in2.

System �1's guarantee M1, that it never sends a \1" on its output wire,

implies �2's assumption E2, that its environment never sends it a \1".

Similarly, �2's guarantee M2 implies �1's environment assumption E1.

Hence, condition 2 of the Composition Principle holds. We deduce from the

principle that if each component �i guarantees Mi under assumption Ei,

then their composition � guarantees the property M , that it never sends

a \1" on out1 and never sends a \2" on out2. (There is no environment

assumption E because � has no inputs, so its behavior is independent of

its environment.) This deduction is valid. For example, suppose �1 does

nothing unless it receives a \2" on in1, whereupon it sends a \1" on out1; and

�2 behaves symmetrically. Each� i then guaranteesMi under assumption

Ei, and the composite system � , which does nothing, guarantees M .

3

�

-

?

�
�1

in1

out1
-

�

6

�

�2

out2

in2

-

?

�

�

6

�
The Composition

of �1 and �2

out2

out1

Figure 1: Composing Systems

4

Now consider what happens if we modify these speci�cations by replacing

\never" with \eventually", obtaining:

� �1 guarantees that it eventually sends a \1" on out1, assuming that

its environment eventually sends it a \2" on in1.

� �2 guarantees that it eventually sends a \2" on out2, assuming that

its environment eventually sends it a \1" on in2.

Again, the property Mi guaranteed by each �i implies that the other's

environment assumption Ej is satis�ed. This time, the Composition Prin-

ciple leads to the conclusion that� guarantees eventually to send a \1" on

out1 and eventually to send a \2" on out2. This conclusion is invalid. The

two systems described above, which send the appropriate output only after

receiving the appropriate input, satisfy the modi�ed speci�cations. Their

composition, which does nothing, does not ful�ll the guarantee implied by

the Composition Principle.

Replacing \never" with \eventually" changed the guaranteesMi and the

environment assumptions Ei from safety properties to liveness properties.

Intuitively, a safety property asserts that something bad does not hap-

pen, while a liveness property asserts that something good eventually does

happen. (Safety and liveness are de�ned formally in Section 2.) For most

methods of describing and composing systems, the Composition Principle is

valid if all guarantees and assumptions are safety properties. Various spe-

cial cases of this result have appeared, in di�erent guises. Its most familiar

incarnation is in the inference rules for partial-correctness speci�cations; the

guarantees and assumptions of such speci�cations are safety properties. The

Composition Principle for safety properties is also embodied in a proof rule

of Misra and Chandy [MC81] for processes communicating by means of CSP

primitives.

Speci�cations that involve only safety properties are not very satisfy-

ing, since any safety property is satis�ed by a system that does noth-

ing. Liveness properties must be added to rule out trivial implementations.

Pnueli [Pnu84], considering a di�erent class of programs, gave a more gen-

eral proof rule than that of Misra and Chandy. Pnueli's rule handles liveness

properties, but unlike our Composition Principle, it requires an explicit in-

duction step. Stark [Sta85] proposed another general proof rule. Stark's

method handles liveness properties at the cost of requiring the discovery

of a set of auxiliary assertions that explicitly break the circularity of the

Composition Principle.

5

Our main result, Theorem 2 of Section 5.3, provides a formal statement

of the Composition Principle. Its main hypothesis is that the environment

assumptions are safety properties. The properties guaranteed by the system

and its components need not be safety properties; they can include liveness.

Theorem 1 of Section 4.3 shows that any speci�cation satisfying a certain

reasonable hypothesis is equivalent to a speci�cation whose environment as-

sumption is a safety property. These theorems are the fruit of a detailed

examination of the distinction between a system and its environment, pre-

sented in Sections 3 and 4.

Our Composition Principle is extremely general. It does not assume any

particular language or logic for writing speci�cations. It applies equally to

speci�cations of Ada programs, microcode, and digital circuits. Formalizing

our result in such generality requires concepts that may seem odd to readers

accustomed to language-based models of computation. The rest of Section 1

introduces these concepts and relates them to other approaches that some

readers may �nd more familiar. Precise de�nitions appear in Section 2.

A glossary of notation and conventions appears at the end.

1.1 States versus Actions

The popular approaches to speci�cation are based on either states or ac-

tions. In a state-based approach, an execution of a system is viewed as a

sequence of states, where a state is an assignment of values to some set of

components. An action-based approach views an execution as a sequence

of actions. These di�erent approaches are, in some sense, equivalent. An

action can be modeled as a state change, and a state can be modeled as an

equivalence class of sequences of actions. However, the two approaches have

traditionally taken very di�erent formal directions. State-based approaches

are often rooted in logic, a speci�cation being a formula in some logical

system. Action-based approaches have tended to use algebra, a speci�ca-

tion being an object that is manipulated algebraically. Milner's CCS is the

classic example of an algebraic formalism [Mil80].

State-based and action-based approaches also tend to di�er in practice.

To specify keyboard input using an action-based approach, the typing of a

single character might be represented as a single action. In a state-based

approach, it might have to be represented by two separate state changes:

the key is �rst depressed and then released. An action-based representation

often appears simpler|pressing a key is one action instead of two state

changes. But this simplicity can be deceptive. A speci�cation in which

6

typing a character is a single action does not provide for the real situation

in which a second key is depressed before the �rst is released. We have no

reason to expect actions to be simpler than states for accurately describing

real systems. We have found that a state-based approach forces a close

examination of how the real system is represented in the model, helping

to avoid oversimpli�cation. On the other hand, there are circumstances in

which oversimpli�ed models are useful.

We adopt a state-based approach and use the term \action" informally

to mean a state change.

1.2 System versus Environment

We view a speci�cation as a formal description of the interface between the

system and its environment. A state completely describes the state of the

interface at some instant.

It is necessary to distinguish actions performed by the system from ones

performed by the environment. For example, consider the speci�cation of

a clock circuit whose output is an increasing sequence of values; the circuit

does not change the clock value until the environment has acknowledged

reading it. The speci�cation might include state components clock and ack,

with a correct behavior consisting of a sequence of actions that alternately

increment clock and complement ack.

Now, consider an \anti-clock", which is a circuit that assumes its en-

vironment (the rest of the circuit) provides a clock. The anti-clock issues

acknowledgements and expects the environment to change the clock. The

clock and anti-clock both display the same sequence of states|that is, the

same sequence of clock and ack values|but they are obviously di�erent

systems. To distinguish them, we must specify not only what state changes

may occur, but also which state changes are performed by the system and

which by the environment.

An action-based formalism could simply partition the actions into system

and environment actions. Formalisms based on joint system/environment

actions require more subtle distinctions, such as between \internal" and \ex-

ternal" nondeterminism, or between the u and operators of CSP [Hoa85].

In a state-based formalism, the easiest way to distinguish system actions

from environment actions is to partition the state components into input and

output components and require that the values of an input and an output

component cannot both change at once. We can then declare that changes

to output components are performed by the system and changes to input

7

components are performed by the environment.

This method of partitioning the state components is not as
exible as we

would like. For example, we might want to specify an individual assignment

statement x := x + 1 as a system whose environment is the rest of the

program in which it appears. Since x can be modi�ed by other parts of the

program, it is both an input and an output component for this system. In

general, we want to allow module boundaries to be orthogonal to process

boundaries [Lam84], so modules need not communicate only by means of

simple input and output variables.

Instead of partitioning state components, we assume that each state

change is performed by some \agent" and partition the set of agents into

environment agents and system agents. A system execution is modeled as

a behavior, which is a sequence of alternating states and agents, each agent

being responsible for the change into the next state.

1.3 Specifying the System and its Environment

The speci�cation of a system � asserts that � guarantees a property M

under the assumption that its environment satis�es some property E. We

will formally de�ne a property to be a set of behaviors, so an execution of

� satis�es property P if and only if the behavior (a sequence of states and

agents) that represents the execution is an element of P . The speci�cation

of� is the property E)M , which is the set of all behaviors that are in M

or not in E. A behavior satis�es this speci�cation if it satis�es M or fails to

satisfy E. The system � satis�es the speci�cation E) M if all behaviors

representing executions of � are elements of E)M .

It is important to realize thatE is an assumption about the environment,

not a constraint placed on it. The environment cannot be constrained or

controlled by the system. The system cannot prevent the user from depress-

ing two keys at the same time. We can include in E the assumption that

the user does not press two keys at once, but this means that the system

guarantees to behave properly only if the user presses one key at a time.

A speci�cation that requires the user not to press two keys at once cannot

be implemented unless the system can control what the user does with his

�ngers. This distinction between assumption and requirement is central to

our results and is addressed formally in Section 3.

Our de�nition of a property as a set of behaviors means that we can

determine whether or not a system satis�es a speci�cation by examining

each possible system execution by itself, without having to examine the

8

set of all possible executions at once. For example, we can specify that the

system's average response time be less than one millisecond in any execution

containing at least 10,000 requests, where the average is over all responses

in a single execution. However, we cannot specify an average response time

where the average is over all possible executions.

1.4 Composition and Proof

In a modular speci�cation method, one proves that the composition of lower-

level systems implements a higher-level one. Section 5.2 explains how the

re�nement-mapping method described in [AL91] can be used to prove that

a speci�cation of the form E) M implements a higher-level speci�cation

of the same form.

In our approach, composition is conjunction. Therefore, the composition

of two systems with speci�cations E1) M1 and E2) M2 satis�es their

conjunction, (E1) M1) ^ (E2) M2). To prove that this composition

implements a speci�cation E) M , we �rst use the Composition Principle

to show that it satis�es the speci�cation E) M1 ^M2. We can then use

the method described in [AL91] to prove that E) M1 ^M2 implements

E)M .

Theorem 2 (our formal statement of the Composition Principle) and

Proposition 12 of Section 5.3 allow us to conclude that if E^M2 implies the

environment assumption E1, and E ^M1 implies the environment assump-

tion E2, then the composition of systems satisfying E1)M1 and E2)M2

is a system satisfying E)M1^M2. The circularity of such a deduction was

already observed in the examples based on Figure 1. Those examples had

E identically true, E1 =M2, and E2 = M1; and the Composition Principle

permitted us to deduce M1^M2 fromM1)M2 and M2)M1. Theorem 2

and Proposition 12 imply that this apparently absurd deduction is valid, the

major hypothesis being that E, E1, and E2 are safety properties. Theorem 1

of Section 4 shows that this is a reasonable hypothesis.

Our Composition Principle applies in cases where E) M excludes

behaviors allowed by the speci�cations Ei) Mi, so E) M cannot be

deduced logically from the properties Ei) Mi. The principle is sound

because the excluded behaviors do not correspond to executions produced

by any components satisfying Ei)Mi|for example, behaviors in which the

environment chooses to violate Ei only after the component has violatedMi.

Thus, the Composition Principle can be valid despite its apparent logical

circularity.

9

1.5 Semantics versus Logic

In the transition-axiom method, a speci�cation is a logical formula that

describes a set of behaviors. Instead of stating our results for the partic-

ular temporal logic on which transition axioms are based, we take a more

general semantic view in which a speci�cation is a set of behaviors. The

relation between logic and semantics is indicated by the following list of log-

ical formulas and their corresponding semantic objects. The symbols P and

Q denote formulas (logical view) and their corresponding sets of behaviors

(semantic view), and � denotes the set of all behaviors.

Logic Semantics Logic Semantics

:P �� P j= P P = �

P ^ Q P \ Q j= P) Q P � Q

P) Q (�� P) [Q

Our semantic model is described in the following section.

2 The Semantic Model

We now de�ne the semantic concepts on which our results are based. Most

of these concepts have appeared before, so they are described only brie
y;

the reader can consult the cited sources for more complete discussions.

States

A state is an element of a nonempty set S of states. Except where stated

otherwise, we assume that S is �xed. A state predicate, sometimes called an

S-predicate, is a subset of the set S of states.

We think of an element of S as representing the state, at some instant,

of the relevant universe|that is, of the interfaces of all the systems under

consideration. A speci�cation should describe only what is externally visible,

so elements of S represent only the state of the interfaces and not of any

internal mechanisms.

Agents

We assume a nonempty set A of agents. If � is a set of agents, then :�

denotes the set A � � of agents. An agent set � is a subset of A such

that neither � nor :� is empty. This terminology may seem confusing,

10

since an arbitrary set of agents is not the same as an agent set. The empty

set of agents ; and the full set of agents A turn out to be anomalous for

uninteresting technical reasons; sometimes we unobtrusively exclude these

anomalous cases by considering only agent sets.

We think of the elements ofA as the entities responsible for changing the

state. A speci�cation describes what it means for a set of agents � to form

a correctly operating system|in other words, what it means for a behavior

to be correct when the agents in � are considered to form the system and

the agents in :� are considered to form the environment.

In describing a system, the particular agent that performs an action is

not important; what matters is whether the agent belongs to the system or

the environment. Thus, if we are dealing with a single speci�cation, we could

assume just two agents, a system agent and an environment agent, as was

done by Barringer, Kuiper, and Pnueli in [BKP86] and by us in [ALW89].

However, for composing speci�cations, one needs more general sets of agents,

as introduced in [Lam83a] (where agents were called \actions").

It may help the reader to think of the agents as elementary circuit com-

ponents or individual machine-language instructions. However, the actual

identity of the individual agents never matters.

Behaviors

A behavior pre�x is a sequence

s0
�1�! s1

�2�! s2
�3�! : : : (1)

where each si is a state and each �i is an agent, and the sequence is either

in�nite or else ends in a state sm for some m � 0. A behavior is an in�nite

behavior pre�x. If � is the behavior pre�x (1), then si(�) denotes si and

ai(�) denotes �i. For a behavior �, we let �jm denote the �nite pre�x of �

ending with the mth state sm(�), for m � 0. We sometimes use the term

S-behavior to indicate that the states in the behavior are elements of S.

A behavior represents a possible complete history of the relevant uni-

verse, starting at some appropriate time. As usual in state-based approaches,

we adopt an interleaving semantics, in which the evolution of the universe is

broken into atomic actions (state changes), and concurrent actions are con-

sidered to happen in some arbitrary order. A step si�1
�i�! si of a behavior

denotes an action in which agent �i changes the state of the universe from

si�1 to si. Steps in our formalism correspond to the actions of action-based

formalisms.

11

Stuttering-Equivalence

If � is any set of agents, then a �-stuttering step is a sequence s
�
�! s with

� 2 �. If � is a behavior pre�x, then \�� is de�ned to be the behavior pre�x

obtained from � by replacing every maximal (�nite or in�nite) sequence

s
�1�! s

�2�! s : : : of �-stuttering steps with the single state s. Two behavior

pre�xes � and � are said to be �-stuttering-equivalent, written � '� � , i� (if

and only if) \�� = \�� . When � equals A, we write � ' � instead of � 'A �

and stuttering-equivalent instead of A-stuttering-equivalent. If � is a �nite

behavior pre�x, then b� is de�ned to be some arbitrary behavior such that

b� ' � and b�jm = � for some m. (The precise choice of b�, which involves

choosing which agents perform the in�nite number of stuttering steps that

must be added to �, does not matter.)

A state describes the state of the entire relevant universe, and a stutter-

ing step does not change the state, so a stuttering step has no observable

e�ect. Therefore, two behaviors that are stuttering-equivalent should be

indistinguishable. A useful way to think about stuttering is to imagine

that a state in S describes only the observable parts of the universe, and

that there are also unobservable, internal state components of the various

objects that make up the universe. A stuttering step represents a step in

which some object changes only its internal state. As explained in [Lam83b]

and [Lam89], considering stuttering-equivalent behaviors to be equivalent

allows the hierarchical decomposition of speci�cations by re�ning the grain

of atomicity.

If � is a �nite behavior pre�x, then b� is obtained from � by adding an

in�nite number of stuttering steps. The behavior b� represents a history of

the universe in which all externally observable activity ceases after a �nite

number of steps. (For example, a computer that has halted continues to

take stuttering steps because its internal clock keeps ticking.)

Properties

A property P is a set of behaviors that is closed under stuttering-equivalence,

meaning that for any behaviors � and � , if � ' � then � 2 P i� � 2 P . We

sometimes call P an S-property to indicate that it is a set of S-behaviors. A

state predicate I is considered to be the property such that � 2 I i� s0(�) 2

I . For properties P and Q, we de�ne P) Q to be the property (:P) [Q,

where : denotes complementation in the set of all behaviors. In formulas,

) has lower precedence than \, so P \Q) R denotes (P \Q)) R.

12

A property P is a safety property i� it satis�es the following condition:

a behavior � is in P i� d�jm 2 P for all m � 0. A property P is a liveness

property i� every �nite behavior pre�x is a pre�x of a behavior in P . With

a standard topology on the set of behaviors, a property is a safety property

i� it is closed, and it is a liveness property i� it is dense [AS85]. It follows

from elementary results of topology that every property is the conjunction

of a safety property and a liveness property. The closure of a property P in

this topology, written P , is the smallest safety property containing P .

Property P is a safety property i� every behavior not in P has a �-

nite pre�x that is not in P . Hence, a safety property is one that is �nitely

refutable. For any state predicate I , the property I depends only on the

initial state, so it is a safety property. A property P is a liveness prop-

erty i� every �nite behavior pre�x can be completed to a behavior in P .

Hence, a liveness property is one that is never �nitely refutable. Alpern and

Schneider [AS85] discussed these de�nitions in more detail.

For properties P and Q, we de�ne P �. Q to be the set of all behaviors �

such that d�jm 2 P) Q for all m � 0. Thus, P �. Q is the safety property

asserting that Q cannot become false before P does. It follows from the

de�nition that Q � (P �. Q) � (P) Q), for any properties P and Q.

The speci�cation of a system is the property consisting of all behaviors

(histories of the relevant universe) in which the system is considered to

perform correctly.

�-Abstractness

If � is a set of agents, then two behaviors � and � are �-equivalent i�, for

all i � 0:

� si(�) = si(�)

� ai+1(�) 2 � i� ai+1(�) 2 �.

A set P of behaviors is �-abstract i�, for any behaviors � and � that are

�-equivalent, � 2 P i� � 2 P .

Two behaviors are �-equivalent i� they would be the same if we replaced

every agent in � by a single agent, and every agent not in � by a di�erent

single agent. A reasonable speci�cation of a system does not describe which

agent performs an action, only whether the action is performed by a system

or an environment agent. Thus, if � is the set of system agents, then the

speci�cation should not distinguish between �-equivalent behaviors, so it

should be a �-abstract property.

13

3 Realizability

A speci�cation of a system is a property P consisting of all behaviors in

which the system performs correctly. Whether a behavior is allowed by

the speci�cation may depend upon the environment's actions as well as

the system's actions. This dependence upon what the environment does is

unavoidable, since the system cannot be expected to perform in a prescribed

fashion if the environment does not behave correctly. However, the ability

to specify the environment as well as the system gives us the ability to write

speci�cations that constrain what the environment is allowed to do. Such

a speci�cation would require the system to control (or predict) what the

environment will do; it would be unimplementable because the environment

is precisely the part of the universe that the system cannot control.

A speci�cation should assert that the system performs properly if the

environment does; it should not assert that the environment performs prop-

erly. For example, assume that the environment is supposed to decrement

some state component x. A speci�cation (property) P asserting that the

environment must decrement x would not be implementable because given

any system, there is a possible universe containing the system whose be-

havior is not in P|namely one in which the environment never decrements

x. Hence, no system can satisfy the speci�cation P . A speci�cation of the

system should allow all behaviors in which the environment never decre-

ments x.

A speci�cation that is unimplementable because it constrains the en-

vironment's actions is called unrealizable. (A speci�cation may be unim-

plementable for other reasons that do not concern us here|for example,

because it requires the system to compute a noncomputable function.) We

now de�ne precisely what realizability means, and explore some of its im-

plications for speci�cations. The de�nitions are almost identical to the ones

in [AL91].

3.1 Safety Properties

A safety property is �nitely refutable, so if a behavior does not satisfy the

property, then we can tell who took the step that violated it. More precisely,

if P is a safety property and a behavior � is not in P , then there is some

number m � 0 such that d�jm is not in P . If m is the smallest such number,

then we can say that P was violated by the agent that performed the mth

step of �, assuming m > 0. A safety property is de�ned to constrain only

14

the system i� the property can be violated only by system agents.

We now formalize this de�nition. For any property P and behavior �,

let V (P; �) equal the smallest nonnegative integer m such that d�jm is not

in P . (We leave V (P; �) unde�ned if there is no such m.) If � is an agent

set, then a safety property P constrains at most � i� for all behaviors �, if

� =2 P then V (P; �) > 0 and aV (P;�)(�) 2 �.

3.2 Realizability of Arbitrary Properties

3.2.1 De�nitions

To understand the general concept of realizability, it helps to think of a be-

havior as the outcome of a two-person in�nite game played by the system

and the environment. The environment chooses the initial state, and then

the environment and the system alternate moves to produce the behavior,

with the environment taking the �rst move. An environment move consists

of adding any �nite number of steps performed by environment agents (pos-

sibly zero steps); a system move consists of doing nothing or adding one

step performed by a system agent. (A similar class of games was studied by

Morton Davis [Dav64].) The system wins the game i� the resulting behavior

pre�x satis�es the speci�cation or is �nite. (Our informal discussion is sim-

pli�ed by considering the system to win games with �nite outcomes, which

do not correspond to the in�nite behaviors of our formalism.) A speci�ca-

tion is said to be realizable i� the system has a winning strategy|that is, i�

the system can always win no matter what moves the environment makes.

A speci�cation is realizable if it has enough behaviors so that the system

can win even if the environment plays as well as it can. A speci�cation may

also contain behaviors that are outcomes of games in which the environment

had a chance to win but played badly and lost. A correct implementation

can never allow such behaviors to occur because it can't count on the en-

vironment playing badly. The realizable part of a speci�cation is de�ned to

consist only of those behaviors in which the environment never had a chance

to win. An implementation that satis�es the speci�cation can produce only

behaviors in the realizable part. Hence, two speci�cations have the same

implementations i� they have the same realizable parts. Two such speci�-

cations are said to be equirealizable. We can replace a speci�cation with an

equirealizable one without changing the class of real systems that are being

speci�ed.

The formal de�nitions of these concepts is based on the de�nition of

15

a strategy, which is a rule by which the system determines its next move.

More precisely, a strategy is a partial function that determines the system's

next step as a function of the behavior up to that point. It su�ces to

consider deterministic strategies, since the set of behaviors that result from

a nondeterministic strategy is the union of the sets of behaviors produced

by some set of deterministic strategies. In the following de�nitions, � is an

arbitrary agent set.

� A �-strategy f is a partial function from the set of �nite behavior

pre�xes to �� S. (Intuitively, f(�) = (�; s) means that, if the system

gets to move after play has produced �, then it adds
�
�! s. If f(�) is

unde�ned, then the system chooses not to move.)

� A �-outcome of a �-strategy f is a behavior � such that for all m > 0,

if am(�) 2 � then f(�jm�1) = (am(�); sm(�)). A �-outcome � is fair

i� am+1(�) 2 � or �jm is not in the domain of f for in�nitely many

values of m. (A �-outcome of f is one in which all the �-moves were

produced by the strategy f . It is fair i� it could have been obtained

by giving the system an in�nite number of chances to move.)

� If f is a �-strategy, then O�(f) is the set of all fair �-outcomes of f .

� The �-realizable part of a set P of behaviors, denoted R�(P), is the

union of all sets O�(f) such that f is a �-strategy and O�(f) � P .

(Intuitively, R�(P) is the set of fair outcomes that can be produced

by correct implementations of P .) We show in Proposition 1 below

that R�(P) is a property if P is.

� A property P is �-realizable i� R�(P) is nonempty. (A �-realizable

property is one that has a correct implementation.)

� Properties P and Q are �-equirealizable i� R�(P) = R�(Q). (Equire-

alizable properties have the same correct implementations.)

� A property P is �-receptive i� R�(P) = P . (A �-receptive property

includes only behaviors that can be produced by correct implementa-

tions.)

Stark studied a generalization of receptiveness, which he called local D-

consistency in his thesis [Sta84]. The special case corresponding to our

de�nition of receptiveness was not considered in the thesis, but did appear

in his unpublished thesis proposal. Dill independently developed the notion

16

of receptiveness and introduced its name [Dil88]. In [ALW89], a concept

of realizability was de�ned in which O�(f) included all outcomes, rather

than just fair ones. By eliminating unfair outcomes, we are preventing the

environment from ending the game by taking an in�nite number of steps in

a single move. Allowing such an in�nite move, in which the environment

prevents the system from ever taking another step, would produce a game

that does not correspond to the kind of autonomous system that we are

concerned with here. Our concept of realizability is similar but not identical

to fair realizability as de�ned in [ALW89]. The di�erence between these two

concepts is described below.

3.2.2 Discussion of the De�nitions

The set O�(f) is not in general a property; it can contain a behavior � and

not contain a behavior �0 that is stuttering-equivalent to �. Moreover, since

the strategy f chooses speci�c agents, the set O�(f) is not �-abstract. How-

ever, our de�nitions do insure that R� preserves invariance under stuttering

and �-abstractness.

Proposition 1 For every agent set �, if P is a property then R�(P) is a

property, and if P is �-abstract then R�(P) is �-abstract.

The proofs of this and of our other results appear in the appendix.

Our de�nition of strategies allows them to depend upon the presence or

absence of stuttering. In other words, if f is a �-strategy, then f(�) and f(�)

can be di�erent for two stuttering-equivalent pre�xes � and � . This seems

to contradict our assertion that stuttering-equivalent behaviors should be

indistinguishable. If we think of a stuttering step as representing an exter-

nally unobservable step of some object, then the system should certainly not

be able to detect stuttering actions performed by the environment. De�ne

f to be invariant under :�-stuttering i� � ':� � implies f(�) = f(�), for

all �nite behavior pre�xes � and � . It would be more natural to add to

the de�nition of a �-strategy f the requirement that f be invariant under

:�-stuttering. The following proposition shows that we could restrict our-

selves to such strategies, and could even add the further requirement that

the strategies be total functions.

Proposition 2 For any agent set � and any property P , let S�(P) be the

subset of R�(P) consisting of the union of all sets O�(f) contained in P

such that f is a total �-strategy that is invariant under :�-stuttering. Then

every behavior in R�(P) is stuttering-equivalent to a behavior in S�(P).

17

We could thus de�ne R�(P) to be the closure of S�(P) under stuttering-

equivalence. Taking this closure would be necessary even if one of the two

conditions|totality or invariance under :�-stuttering|were dropped from

the de�nition of S�(P). It is therefore more convenient to allow arbitrary

strategies in the de�nition of R�(P).

Although we could restrict ourselves to �-strategies that are invariant

under :�-stuttering, requiring strategies to be invariant under all stutter-

ing, as in the de�nition of \fair realizability" of [ALW89], would materially

change our de�nitions. A result in Stark's unpublished thesis proposal sug-

gests that this restriction would not change the de�nition of realizability; but

the following example shows that it would alter the de�nition of receptive-

ness. Let P be the property consisting of all behaviors containing in�nitely

many nonstuttering steps. With the de�nitions used here, P equals its �-

realizable part. With the de�nition in [ALW89], the \fairly �-realizable"

part of P would consist of only those behaviors containing in�nitely many

nonstuttering � steps. (This example demonstrates that a conjecture of

Broy et al. [BDDW91] is false.)

System stuttering steps represent ones in which the system changes only

its internal state, so allowing a �-strategy to depend upon �-stuttering steps

is equivalent to allowing the strategy to depend upon the system's internal

state. More precisely, suppose that the state includes some \variable" that

the property P does not depend on. Then adding the requirement that a

�-strategy be invariant under stuttering does not change the de�nition of

R�(P). (This can be proved by showing that if a �-strategy f is invariant

under :�-stuttering, then one can modify f to obtain an \equivalent" strat-

egy f 0 that is invariant under all stuttering; f 0 takes a step that changes

only the extra variable whenever f takes a stuttering step.) By allowing a

strategy to depend upon stuttering steps, we obviate the need to rely upon

internal state for our de�nitions.

3.2.3 Some Basic Propositions

We now state some results about realizability. The �rst asserts that R� is

monotonic.

Proposition 3 For any properties P and Q and any agent set �, if P � Q

then R�(P) � R�(Q).

The next proposition asserts that the realizable part of a property is

receptive.

18

Proposition 4 For any property P and agent set �, R�(R�(P)) = R�(P).

The next result provides a useful representation of the realizable part of

a property.

Proposition 5 For any property P and agent set �, R�(P) = R�(P)\ P .

The next result indicates that \constrains at most" and receptiveness

are essentially the same for safety properties.

Proposition 6 For any nonempty safety property P and any agent set �,

property P constrains at most � i� P is �-receptive.

Proposition 4 asserts that the �-realizable part R�(P) of a property P

is �-receptive. Hence, Proposition 6 implies that, if R�(P) is a nonempty

safety property, then it constrains at most �. The following result generalizes

this to the case when R�(P) is not a safety property.

Proposition 7 For any agent set �, if P is a �-realizable property then

R�(P) constrains at most �.

In general, the realizable part of a property is not expressible in terms

of simpler operations on properties. Proposition 6 describes a simple case

in which R�(P) equals P . Since true) Q and true �. Q both equal Q, the

following proposition generalizes the \only if" part of Proposition 6.

Proposition 8 Let � be an agent set, I a state predicate, P a safety prop-

erty that constrains at most :�, and Q a safety property that constrains at

most �. Then R�(I \ P) Q) equals I \ P �. Q.

4 The Form of a Speci�cation

Our Composition Principle applies only to speci�cations of the formE)M ,

where E is a safety property. In this section, we explain why speci�cations

can and should be written in this way. Before considering general spec-

i�cations, we �rst examine a particular class of speci�cations|programs.

A program is a speci�cation that is su�ciently detailed so a system that

satis�es it can be generated automatically. Typically, a system satisfying

the speci�cation is generated by compiling the program and executing the

resulting code on a computer.

19

4.1 The Form of a Complete Program

We start by considering complete programs. In formal models of complete

programs, there are no environment actions, only system actions. Input

occurs through initial values of variables or by executing a nondeterministic

input statement in the program. (An input statement is nondeterministic

because the program text and the execution of the program up to that

point do not determine the input value.) Thus, a complete program is a

speci�cation in which every agent in A is a system agent. Since we want

the speci�cation to be A-abstract, it does not matter what agents perform

the steps of a behavior, so we can ignore the agents and consider a behavior

to be a sequence of states.

4.1.1 The Parts of a Complete Program

A complete program is de�ned by four things:

set of states A state provides an \instantaneous picture" of the execution

status of the program. It is determined by such things as the values of

variables, the loci of control of processes, and the messages in transit|

the details depending upon the programming language.

initial predicate The initial predicate I is a state predicate that speci�es

the set of valid starting states of the program. Recall that the predi-

cate I (a set of states) is interpreted as the property consisting of all

behaviors whose starting state is in I .

next-state relation The next-state relation N is a set of pairs of states

that describes the state transitions allowed by the program, where

(s; t) 2 N i� executing one step of the program starting in state s

can produce the new state t. It is described explicitly by the program

text and the assumptions about what actions are considered to be

atomic. The next-state relation N determines a property TA(N),

de�ned by � 2 TA(N) i� si(�) = si+1(�) or (si(�); si+1(�)) 2 N , for

all i � 0. In other words, TA(N) is the set of all behaviors in which

each nonstuttering step is allowed by the next-state relation N .

progress property The next-state relation speci�es what state changes

may occur, but it does not require that any state changes actually do

occur. The progress property L speci�es what must occur. A common

20

type of progress property is one asserting that if some state change is

allowed by the next-state relation, then some state change must occur.

Formally, the program is the property I \ TA(N) \ L. Note that I and

TA(N), and hence I \ TA(N), are safety properties.

All assertional methods of reasoning about concurrent programs are

based on a description of the program in terms of a set of states, an ini-

tial predicate, and a next-state relation. By now, these methods should be

familiar enough that there is no need for us to discuss those parts of the

program. Progress properties are less well understood and merit further

consideration.

4.1.2 The Progress Property

Assertional methods that deal with liveness properties need some way of

specifying the program's progress property. The requirement that the pro-

gram be executable in practice constrains the type of progress property that

can be allowed. The initial state and the computer instructions executed by a

program are derived from the program's code, which speci�es the next-state

relation. The progress property should constrain the eventual scheduling of

instructions, but not which instructions are executed. For the program to

be executable in practice, the state transitions that it may perform must be

determined by the initial state and the next-state relation alone; they must

not be constrained by the progress property.

As an example, consider the simple next-state relation pictured in Fig-

ure 2, where the program state consists of the value of the single variable

x. Assume that the initial predicate asserts that x equals 0. The property

asserting that x = 3 holds at some time during execution, usually written

3(x = 3), is a liveness property. However, for the program to satisfy this

property, it must not make the state transition from x = 0 to x = 1 allowed

by the next-state relation. Thus, if 3(x = 3) were the program's progress

property, a compiler would have to deduce that the transition from x = 0

to x = 1, which is permitted by the next-state relation, must not occur.

The condition that the progress property L does not further constrain the

initial state or the next-state relation is expressed formally by the following

conditions, which are all equivalent.

� For every �nite behavior pre�x � with b� in I \ TA(N), there exists a

behavior � in I \ TA(N) \ L such that � is a pre�x of �.

� I \ TA(N) = I \ TA(N)\ L

21

&%
'$w

x = 0

&%
'$w

x = 2

&%
'$w

x = 1

H

H

H

H
Hj

�

�

�

�
�* &%

'$w

x = 3-

Figure 2: A simple next-state relation.

� If Q is any safety property, then I\TA(N)\L � Q i� I\TA(N) � Q.

The last condition asserts that the safety properties satis�ed by the pro-

gram are completely determined by the initial predicate and the next-state

relation; in other words, the progress property does not add any safety prop-

erties.

We de�ne a pair (M;P) of properties to be machine-closed i� M = P .

(The term \machine-closed" was introduced in [AL91].) Machine closure

of (M;P) means that P does not imply any safety properties not implied

by M . So, if L is a progress property, we expect the pair (I \ TA(N); I \

TA(N) \ L) to be machine-closed. When this condition is satis�ed, we

sometimes informally write that the progress property L or the program is

machine-closed. To our knowledge, all the progress assumptions that have

been proposed for programs are machine-closed.

A program's progress property is usually called a fairness condition.

There have been few attempts to give a general de�nition of fairness. Manna

and Pnueli [MP87] de�ne a class of \fairness" properties that is independent

of any next-state relation, but they provide no justi�cation for their termi-

nology. Apt, Francez, and Katz [AFK88] discuss three \fairness criteria";

one of them is machine-closure, which they call \feasibility".

Most of the progress properties that have been proposed can be stated

as fairness conditions on program actions|for example, the condition that

certain state transitions cannot be enabled forever without occurring. These

progress properties are not all generally considered to be fairness properties.

In particular, the property asserting that the entire program never stops

if some step can be executed is machine-closed, but multiprocess programs

22

satisfying only this progress assumption are generally called unfair. We

believe that machine-closure provides the proper de�nition of a progress

property, and that any distinction between fairness properties and progress

properties is probably language-dependent and not fundamental.

4.2 The Form of a Partial Program

A partial program is part of a larger program. It may be a single process

in a CSP program, or a single assignment statement in a Pascal program.

It should be possible to implement the partial program independently of

the rest of the program, which constitutes its environment. Such an im-

plementation might be very ine�cient|as, for example, if each assignment

statement of a Pascal program were compiled independently without know-

ing the types of the variables|but it should be possible. Actions may be

taken either by the partial program or by the rest of the program, which

constitutes the partial program's environment.

4.2.1 The Parts of a Partial Program

The following modi�cations of the parts that de�ne a program are needed

to handle partial programs.

set of states The complete state cannot be determined from the text of

the partial program. For example, there is no way of knowing what

variables are introduced in other parts of the complete program. There

are two ways to de�ne the set of states S for a partial program.

� S is the set of states de�ned by the complete program. Since the

complete program is not known, S is not known, so the meaning

of the partial program depends upon a �xed but unknown set of

states.

� S includes all possible program variables and other state compo-

nents. The meaning of the partial program is de�ned in terms of

a known set of states, but it is a very \large" set of states, since

it must accommodate all possible complete programs.

Both approaches lead to equivalent formalisms. Here, we �nd the �rst

assumption most convenient, and we take S to be the unknown set

of states of the larger program. The partial program modi�es only

those components of the state explicitly mentioned; the environment

can modify any part of the state.

23

agent set We use agents to distinguish the actions performed by the partial

program from the ones performed by its environment. Program steps

are taken by agents in �, environment steps by agents in :�. We

don't care which agents in � or in :� take the steps, so it su�ces to

distinguish only � steps and :� steps.

initial predicate In our \realization game", the environment chooses the

initial state. The initial condition must therefore become part of the

environment speci�cation, so it disappears from the program.

next-state relation The next-state relation N now constrains only the

state transitions performed by the program, not the ones performed

by the environment. It describes the property TA�(N), which is de-

�ned by � 2 TA�(N) i� ai+1(�) 2 � implies si(�) = si+1(�) or

(si(�); si+1(�)) 2 N , for all i � 0. The next-state relation must be de-

�ned in such a way that any part of the state not explicitly mentioned

is left unchanged.

This leaves the question of what is the appropriate modi�cation to the

machine-closure condition for progress properties. Recall that machine-

closure was derived from the requirement that a complete program be imple-

mentable in practice. Ignoring the initial predicate, machine-closure asserts

that any �nite execution satisfying the next-state relation can be completed

to an execution satisfying the next-state relation and the progress property.

We similarly require that the partial program be implementable in practice,

except now we have the additional requirement that it be implementable

without knowing its environment. In other words, the implementation must

work regardless of what the environment does. We therefore require that

given any �nite behavior pre�x in which the program's actions satisfy the

next-state relation, there is a strategy that the program can play from that

point on and \win"|that is, produce a behavior satisfying the next-state

relation and the progress property.

The formal expression of this condition is statement (a) in the following

proposition, when TA�(N) is substituted for M . Statement (b) is a useful

variant of (a), and (c) is a reformulation of (a) in terms of topology and

receptiveness.

Proposition 9 For any agent set �, safety property M , and arbitrary prop-

erty L, the following three conditions are equivalent:

(a) For every �nite behavior � such that b� 2M , there exist a �-strategy f

with O�(f) �M \ L and a behavior � 2 O�(f) with � a pre�x of �.

24

(b) For every �nite behavior � such that b� 2 M , there exist a �-strategy

f with O�(f) � M \ L and a behavior � 2 O�(f) with � stuttering-

equivalent to a pre�x of �.

(c) The pair (M; M \ L) is machine-closed, and M \ L is �-receptive.

We de�ne a pair of properties (M;P) to be �-machine-realizable i� it is

machine-closed and P is �-receptive. The generalization to partial pro-

grams of the machine-closure condition on a progress property L is that

the pair (TA�(N); TA�(N) \ L) be �-machine-realizable, where N is the

program's next-state relation. In this case, we say informally that L is

machine-realizable.

To illustrate the di�erence between progress properties of partial and

complete programs, let LA be the property asserting that if some program

action A is in�nitely often enabled, then that action must occur in�nitely

often. More formally, let A be a subset of the next-state relation N , de�ne

A to be enabled in a state s i� there exists a state t with (s; t) 2 A, and

de�ne LA to be the property such that � 2 LA i� either A is enabled in

state si(�) for only �nitely many values of i, or else (si(�); si+1(�)) 2 A for

in�nitely many values of i. The property LA is the usual strong fairness

requirement for action A. Strong fairness is a reasonable progress property

for a complete program, since it is machine-closed.

Now, suppose that LA is the progress property of a partial program.

When playing the \realization game", the environment can play in�nitely

many moves in which it adds two states|one in which A is enabled followed

by one in which it is not enabled. (Such environment moves are \legal"

because the partial program's safety property TA�(N) allows any steps by

the environment.) The program never has a chance to take anA step because

it never gets to play a move when A is enabled. Thus, the resulting outcome

does not satisfy the property LA, so LA is not a machine-realizable progress

property. In fact, it is not even realizable. This losing outcome corresponds

to a physical situation in which the environment changes the state so fast

that A never stays enabled long enough for the program to react in time to

perform an A action.

To obtain a machine-realizable progress property, let N 0 be a next-state

relation asserting that A is never disabled. Formally, (s; t) 2 N 0 i� A is

not enabled in s or is enabled in t. The property TA:�(N
0) asserts that

the environment never disables A. The progress property TA:�(N
0)) LA

is machine-realizable. In the realization game, the environment loses if it

ever disables A, since doing so ensures that TA:�(N
0) will be false, making

25

TA:�(N
0)) LA true. The program can therefore always win the game by

taking an A step whenever it gets to move with A enabled.

4.2.2 Hiding the Internal State

Another important concept introduced when considering partial programs

is hiding. Variables and other state components that are local to the partial

program should be hidden|meaning that they are modi�ed only by the

program and do not con
ict with similarly-named components in the envi-

ronment. In our approach, hiding is e�ected by existential quanti�cation

over state components.

Existential Quanti�cation Existential quanti�cation is de�ned formally

as follows. LetX denote a set of values, let �S and �X denote the projection

functions from S�X to S and X, respectively, and let x be an abbreviation

for �X. We extend �S to a mapping from S�X-behaviors to S-behaviors by

letting �S(�) be the behavior such that, ai(�S(�)) = ai(�) and si(�S(�)) =

�S(si(�)) for all i. For any S �X-property P , we de�ne 9x : P to be the

S-property such that � is in 9x : P i� there exists an S �X-behavior �0 in

P with �S(�
0) ' �.

Intuitively, S�X is a set of states in which S is the externally observable

component and X is the component internal to the program. The property

9x : P is obtained from P by hiding the x-component. We use the notation

\9x" for this hiding operator because it obeys the logical rules of existential

quanti�cation when properties are expressed as formulas in an appropriate

logic [Lam90]. As usual, 9 binds more weakly than other operators.

Hiding with Existential Quanti�cation Let N be the next-state rela-

tion of the program and L its progress property. When there is an internal

state component, N is a set of pairs of elements of S�X|in other words,

a subset of (S � X) � (S � X)|and L is an S � X-property. Formally,

the program is the property 9x : P \ TA�(N) \ L, where P is the S �X-

property asserting that the x-component of the state has the correct initial

value and is not changed by the environment. The correct initial value of the

state's x-component is speci�ed by an initial S�X-predicate Ix. (Remember

that the initial value of the S-component is described by the environment

speci�cation.) The assertion that the environment leaves the x-component

unchanged is TA:�(Ux), where Ux is the next-state relation consisting of all

26

pairs ((s; x); (s0; x0)) such that x = x0. The program is then the property

9x : Ix \ TA:�(Ux)\ TA�(N) \ L (2)

Since we want the program to be machine-realizable, it is natural to ask

under what conditions the speci�cation (2) is machine-realizable. Machine-

realizability is de�ned for a pair of properties (M;P), where M is the pro-

gram's safety property and P is the complete speci�cation, which in this

case equals (2). We expect the safety property M to be

9x : Ix \ TA:�(Ux) \ TA�(N) (3)

This is not always a safety property, but it turns out to be a safety property

for ordinary speci�cations written in a \reasonable" way|meaning that the

next-state relation is not using the internal state component x to encode

progress properties. For the precise condition under which (3) is a safety

property, see Proposition 2 of [AL91]. A su�cient condition for (M;P) to

be �-machine-realizable is given by the following result.

Proposition 10 Let � be an agent set, let x be the projection function from

S �X to X, and let Ix be an S �X-predicate, N a next-state relation on

S � X, and L an S � X-property. Let M equal (3) and let P equal (2).

Assume that:

(a) For all s 2 S there exists x 2 X such that (s; x) 2 Ix.

(b) The pair (TA�(N), TA�(N) \ (Ix \ TA:�(Ux)) L)) is �-machine-

realizable.

(c) M is a safety property.

Then (M;P) is �-machine-realizable.

This proposition remains valid if, in hypothesis (b), TA�(N) is replaced

by (Ix\TA:�(Ux)) �. TA�(N), which equalsR�(Ux) TA�(N)) by Propo-

sition 8.

4.3 The Normal Form of a Speci�cation

The speci�cation of a system is written as a property of the form E) M ,

asserting that the system guarantees property M under the assumption

that the environment satis�es property E. In the transition-axiom ap-

proach [Lam83a, Lam89], E andM are written as abstract partial programs,

27

using next-state relations and progress properties. Since the environment

makes the �rst move in our realization game, the initial predicate must be

included with E; the abstract program M has no initial predicate|except

on its internal, hidden state. (Intuitively, we are assuming that the system

has control of the initial values only of its internal state, not of the externally

visible state.) We therefore write our speci�cation in the canonical form

I \ ES \EL) MS \ML (4)

where I is an initial predicate, ES is a safety property constraining only :�,

and MS is a safety property constraining only �.

If the system property M were written as an executable program, then

we would expect the pair (MS ;MS\ML) to be machine-realizable. However,

M is an abstract program that is meant to specify what the system is allowed

to do, not how it does it. Requiring the abstract program to be executable

in practice|that is, capable of being transformed into executable code by a

real compiler|is too restrictive, leading to overly complex and overly restric-

tive speci�cations. It is not clear whether requiring the abstract program to

be executable in principle|that is, to be machine-realizable|is too restric-

tive. If (MS ; MS \ML) is not machine-realizable, then it allows behaviors

that cannot be achieved in practice. Most of the speci�cations we have

seen are machine-realizable. But allowing unachievable behaviors causes no

harm, as long as the speci�cation is realizable. Allowing some unachievable

behaviors may yield a simpler speci�cation. For example, the simplicity of

the speci�cation of a serializable database in [Lam89] results from its not

being machine-closed, hence not machine-realizable. We have too little ex-

perience writing speci�cations to know if this example is an anomaly or if

others will arise. We therefore do not assume machine-realizability of the

pair (MS ; MS \ML).

The situation is di�erent for the environment property E. Progress as-

sumptions about the environment seem to be unusual. A speci�cation usu-

ally requires that the system eventually do something after the environment

has taken some action, but seldom does it assume that the environment

must take that action. Thus, EL should generally be identically true, so the

pair (ES ; ES) will be :�-machine-realizable if ES constrains at most :�.

In a transition-axiom speci�cation, ES has the form TA:�(N), which does

constrain at most :�.

Even if a speci�cation does include a nontrivial progress assumption EL

about the environment, we believe that it may be reasonable to require

28

the pair (ES ; ES \ EL) to be :�-machine-realizable. The intent of the

speci�cation E)M is that the system should win the realization game by

makingM true, not by making E false. The machine-realizability condition

means that so long as the environment maintains ES , it can ensure that

ES \ EL will be true; hence, the system can never win by forcing E to be

false. A speci�cation in which (ES ; ES \ EL) is not :�-machine-realizable

seems likely to be incorrect, in the sense that it does not capture the intent

of its author.

If the environment assumption is machine-realizable, then there is no

need for an environment progress assumption because the property EL can

be incorporated into the system's progress property. This is stated formally

by the following theorem.

Theorem 1 If I is a state predicate, (ES; ES\EL) is :�-machine-realizable,

MS is a safety property, and ML is any property, then

I \ ES \EL) MS \ML

and

I \ ES) MS \ (EL)ML)

are �-equirealizable.

The abstract programs describing the system and the environment may

contain hidden, internal state components, in which case the speci�cation

involves existential quanti�cation. We now consider how Theorem 1 can be

applied in the presence of quanti�cation.

Since environment speci�cations tend to be simple, we suspect that vari-

ables internal to the environment can usually be con�ned to ES , allowing

E to be written as (9x : ES) \ EL, so the theorem can be applied. In

any case, the following approach can always be used to eliminate existen-

tial quanti�cation from E. The laws of ordinary predicate logic imply that,

if x is not free in M or P , then P) ((9x : E)) M) is equivalent to

P) 8x : (E) M), which in turn is valid i� P) (E) M) is valid.

Similar reasoning about quanti�cation over state components allows us to

replace (9x : E)) M by E) M , if we require that no implementation P

use x. (Implementation is discussed in Section 5.2.)

Existential quanti�cation in the system's description M is handled by

the following generalization of Theorem 1, in which the S-predicate EL is

identi�ed with the S�X-predicate ��1
S
(EL).

29

Corollary Let � be any agent set, let x be the projection function from

S �X to X, let I be an S-predicate, let (ES ; ES \ EL) be a :�-machine-

realizable pair of S-properties, and let MS and ML be S�X-properties such

that 9x :MS is a safety property. Then

I \ES \ EL) 9x :MS \ML

and

I \ES) 9x :MS \ (EL)ML)

are �-equirealizable.

4.4 An Overly Normal Form

Theorem 1 permits us to take a speci�cation of the form (4) and move the

environment's progress property to the right of the implication. But, can

we always write the speci�cation in the form (4) in the �rst place? The

answer is that not only can we, but we don't even need the left-hand side

of the implication. Propositions 5 and 7 imply that the realizable part

of any realizable property P can be written as MS \ML, where MS is a

safety property that constrains only �. (Just take MS to be R�(P) and

ML to be P .) In fact, we can choose the pair (MS ; MS \ML) to be �-

machine-realizable. (The �-machine-realizability of (R�(P); P) follows from

Propositions 4 and 5.)

We can go still further in �nding a representation of the realizable part

of a property. It can be shown that any safety property that constrains at

most � can be written in the form

9x : Ix \ TA:�(Ux) \ TA�(N)

for some initial predicate Ix satisfying hypothesis (a) of Proposition 10

and some next-state relation N . (This result is a simple generalization

of Proposition 3 of [AL91].) Thus, the �-realizable part of any property

P can be written in the form 9x : MS \ ML, where MS has the form

Ix \ TA:�(Ux) \ TA�(N) and the pair (9x : MS ; 9x : MS \ ML) is �-

machine-realizable.

The ability to write a speci�cation in this form seems to imply that

there is no need to write an explicit assumption about the environment.

Why write a speci�cation of the form E) M when we can simply write

M? One answer is that separating the environment assumption E from the

30

guaranteeM allows us to take advantage of the Composition Principle. An-

other answer lies in the practical matter of what the speci�cation looks like.

If we eliminate the explicit environment assumption, then that assumption

appears implicitly in the property M describing the system. Instead of M

describing only the behavior of the system when the environment behaves

correctly, M must also allow arbitrary behavior when the environment be-

haves incorrectly. Eliminating E makes M too complicated, and it is not a

practical alternative to writing speci�cations in the form E)M .

To be useful, a speci�cation must be understandable. Theorems that

assert the existence of a speci�cation in a certain form are of no practical

interest because they prove only that the speci�cation exists, not that it is

understandable. On the other hand, a result like Theorem 1 that provides

a simple way to rewrite an existing speci�cation can be of practical interest

because the rewritten speci�cation will be understandable if the original

one is.

Although it seems impractical in general to write E) M without an

explicit environment assumption, it is practical if M is a safety property.

In this case, Proposition 8 shows that E) M is equivalent to the system

guarantee E �. M . In fact, this is precisely the form of speci�cation that

has been used to develop composition principles for safety properties [MC81,

Pnu84].

5 Composing Speci�cations

Our main result is a formal statement of the Composition Principle stated

informally in the introduction. Before stating this result, we must explain

how speci�cations are composed and what it means for one speci�cation

to implement another. For convenience, we restrict our attention to the

composition of two systems. The generalization to an arbitrary number of

systems is straightforward, and is described after the statement of our main

theorem.

5.1 The Composition of Speci�cations

Consider two systems �1 and �2, and their composition, shown schemati-

cally in Figure 3. The \wires" inp, mid , and out denote state components,

and �1 and �2 are the systems' agent sets. If S1 and S2 are the speci�-

cations of the two systems, what is the speci�cation of their composition?

Each Si is the property consisting of all histories of the universe (behaviors)

31

�1 �1
inp mid

�2 �2
mid out

The Composition

of �1 and �2

�1
inp mid

�2
out

Figure 3: The composition of two systems.

in which component i functions correctly. A history of the universe is one in

which both components function correctly i� it is in both S1 and S2. Thus,

the speci�cation of the composition of the two systems is simply S1 \ S2.

This simple semantics of composition as intersection rests on the two basic

assumptions, discussed below, that �1 and �2 refer to the same states,

and that �1 and �2 are disjoint.

5.1.1 Assumptions about the States

In composing the two systems�1 and�2 of Figure 3, we combined the two

\wires" labeled mid into a single \wire". When two speci�cations are written

as logical formulas, a state-component variable like mid that appears in

both formulas is considered to represent the same state component. In some

situations, this use of names to identify state components in the two systems

is natural|for example, if the \systems" are the assignment statements

mid := inp + 1 and out := 2 � mid . In other situations, there may be no

connection between the names used in the two speci�cations, so renaming

is necessary. For example, if the systems are circuits, �1's wire labeled

mid might have been labeled out , and �2's wire labeled mid might have

been labeled inp. In that case, the speci�cation of the composite system in

Figure 3 would be S1j
out
mid \ S2j

inp
mid , where S1j

out
mid is obtained by substituting

mid for out in the formula for S1.

It is this kind of renaming that allows us to make do with the sin-

gle operator \ for composing properties instead of having a multitude of

di�erent composition operators. For example, two programming-language

statements can be combined by parallel composition or by sequential com-

position (\;"). Simple intersection of their speci�cations provides parallel

composition; sequential composition is obtained by �rst renaming compo-

nents of their control states in such a way that control is at the end of one

32

statement i� it is at the beginning of the other, then taking the intersection

of the resulting speci�cations.

Even with the proper choice of state-component names, we can write

the composition as the intersection S1 \ S2 only if S1 and S2 are both S-

properties|that is, only if they have the same set of states S. But looking at

the two systems separately, we would not expect out to be a state component

of �1 or inp to be a state component of �2. The two speci�cations might

have to be modi�ed to use the same set of states. This would be done by

expanding S1's state to include an out component, modifying S1 to prohibit

�1 agents from changing out , and allowing :�1 agents to change out freely|

making the analogous change to S2 too.

The simplicity of representing all forms of composition as intersection

is therefore somewhat illusory. We need renaming and state expansion as

well. (By adopting the approach mentioned in Section 4.2.1 of having a

single universal set of states, state expansion can be avoided at the expense

of additional renaming.) Moreover, we might want some state components

of the composed system to be hidden|for example, the component mid in

Figure 3. This requires the use of existential quanti�cation, as described

in Section 4.2.2. Still, we feel that the ability to reduce composition to the

well-understood operation of intersection|or, in the corresponding logical

view, to conjunction|is a signi�cant bene�t of our approach.

5.1.2 Assumptions about the Agents

In drawing Figure 3, we have made a subtle assumption about the agent

sets �1 and �2. Suppose we want to compose two copies of the �1 without

renaming, so the inp state components of the two copies would be iden-

ti�ed (the two inp \wires" would be connected), as would the mid state

components. The discussion so far might lead one to write the resulting

speci�cation as S1 \ S1. But this is obviously wrong, since S1 \ S1 equals

S1. The simple intersection of S1 with itself, without renaming, yields a

speci�cation of system �1, not of the composition of two separate copies of

�1.

A property S speci�es what it means for a particular agent set � to

perform correctly. Making a separate copy of S means replacing � by a

di�erent agent set. Let Sj�
�i

denote the property obtained by substituting

�i for � in the formula describing S. The property Sj�
�1
\ Sj�

�2
speci�es a

system in which the agent sets �1 and �2 each behave like the agent set � in

the speci�cation S|in other words, a system in which each �i is a separate

33

copy of the original system �.

By drawing separate, nonoverlapping boxes for �1 and �2 in Figure 3,

we have tacitly assumed that their agent sets �1 and �2 are disjoint. As we

have seen in the extreme case when S1 equals S2, the intersection S1\S2 does

not represent the expected composition of separate systems unless �1 \ �2
is the empty set of agents.

5.2 Implementing One Speci�cation by Another

5.2.1 De�nition

A system's speci�cation S describes the set of all behaviors in which the

system is considered to behave correctly. For a system speci�ed by S 0 to

satisfy speci�cation S, every behavior it allows must be in S. Thus, the

system speci�ed by S0 satis�es the speci�cation S if S0 � S. Eliminating the

phrase \the system speci�ed by", we can say that speci�cation S0 implements

S if S0 � S.

While su�cient, the condition S0 � S is stronger than strictly necessary

for S0 to implement S. We view S0 as a prescription for building an im-

plementation, and we say that S0 implements S i� every real system built

according to the speci�cation S0 satis�es S. It is not necessary for every

behavior in S0 to be in S, just for every behavior that can be generated by

a real implementation of S0 to be in S. The set of behaviors that can be

generated by a real implementation of S0 is included in the realizable part

of S0, so we de�ne S0 implements S to mean R�(S
0) � S.

We expect \implements" to be transitive, meaning that if S 00 implements

S0, and S0 implements S, then S00 implements S. Proving transitivity re-

quires showing that R�(S
00) � S0 and R�(S

0) � S imply R�(S
00) � S. This

implication is valid because, by Propositions 3 and 4, R�(S
00) � S0 implies

R�(S
00) � R�(S

0).

We now return to the composition of systems. Let S1 and S2 be speci�ca-

tions of systems with agent sets �1 and �2, respectively. Any real implemen-

tation that satis�es Si will satisfy R�i
(Si), so combining an implementation

of S1 with an implementation of S2 produces a system whose set of behaviors

is contained in R�1
(S1) \ R�2

(S2). Thus, to prove that the composition of

a system speci�ed by S1 and one speci�ed by S2 implements a speci�cation

S, it su�ces to prove

R�1
(S1) \R�2

(S2) � S (5)

34

If (5) holds, then the following proposition allows us to infer the stronger

result R�1
(S1) \R�2

(S2) � R�1[�2(S).

Proposition 11 For any disjoint pair of agent sets �1 and �2, and any

properties P1 and P2, the property R�1
(P1)\ R�2

(P2) is �1 [�2-receptive.

Proposition 11 implies that R�1
(S1) \ R�2

(S2) � R�1[�2(S1 \ S2).

This in turn implies that condition (5) is weaker than R�1[�2(S1\S2) � S,

which is what we would have to prove to show that S1 \ S2 implements S.

The hypothesis that �1 and �2 are disjoint is necessary in Proposition 11.

In particular, the conclusion does not hold if �1 = �2, because the intersec-

tion of two �-receptive properties is not necessarily �-receptive.

5.2.2 Proving That One Speci�cation Implements Another

We now comment brie
y on how one can prove in practice that a speci�-

cation S0 of the form E0) M 0 implements a speci�cation S of the form

E) M . If S0 is not �-receptive (equal to its realizable part), then deriv-

ing an explicit formula for R�(S
0) is likely to be very di�cult. (If it were

easy, then we would have written R�(S
0) instead of S0 in the �rst place.)

Therefore, unless we can apply some general theorem|like Theorem 2 of

Section 5.3 below|to prove that S0 implements S, we will have to prove

that S0 � S.

Speci�cation S0 has environment assumption E0, while S has environ-

ment assumption E. If the system speci�ed by S0 is to satisfy the speci-

�cation S, it must do so assuming only that the environment satis�es E.

Therefore, E0 must be equal to or weaker than E|that is, we must have

E � E0. Since E � E0 implies (E0) M 0) � (E) M 0), if the implementa-

tion satis�es E0) M 0 then it also satis�es E) M 0. Therefore, it su�ces

to prove (E)M) � (E)M 0).

By elementary set theory, (E) M 0) � (E) M) is equivalent to E \

M 0 � E\M .1 WhereasE)M consists of all behaviors in which the system

behaves correctly in the face of arbitrary environment behavior, E \ M

consists of only those behaviors in which both the environment and system

behave correctly. In the transition-axiom approach, E is an abstract partial

program describing the environment and M is an abstract partial program

describing the system, so E \ M de�nes the complete program obtained

by composing these two partial programs. Similarly, E \ M 0 describes a

1This equivalence was pointed out to us by Amir Pnueli.

35

complete program. Therefore, proving E \M 0 � E \M requires proving

that one complete program implements another.

Proving that one program implements another is a problem that has been

addressed extensively in earlier work. The basic transition-axiom approach

is described in [Lam89], and a formal basis along with a completeness result

can be found in [AL91]. We brie
y sketch this approach.

The speci�cation E \M can be written in the form

9x : I \ TA:�(NE) \ TA�(NM) \ L

where I is an initial predicate, NE and NM are next-state relations describ-

ing the environment and system actions, respectively, and L is a progress

property|all with set of states S � X. (Here, X consists of the system's

internal state components; as we observed in Section 4.3, we can make the

environment's internal variables visible.) We can write I as a logical formula

on the state variables, NE and NM as relations between old and new state

values, and L as a formula in some temporal logic. Similarly, E\M 0 can be

written in the form 9y : I 0\TA:�(N
0
E
)\TA�(N

0
M
)\L0, with a set of inter-

nal states Y. Moreover, NE and N 0
E
will be essentially the same relations,

depending only on the externally visible state (including the environment's

internal state components). To prove that E \M 0 implements E \M , we

construct a re�nement mapping f from S �Y to S �X that satis�es the

following four conditions.

1. f preserves the S-component. In other words, for all (s; y) 2 S �Y,

there is some x 2 X such that f(s; y) = (s; x).

In practice, a set of states is de�ned by a collection of state com-

ponents. Let e1; : : : ; em denote the components de�ning S, so an

element s of S is an m-tuple (e1(s); : : : ; em(s)); let x1; : : : ; xn and

y1; : : : ; yp denote the similar components de�ning X and Y. To spec-

ify the re�nement mapping f , one must de�ne functions f1; : : : ; fn
such that f(s; y) = (s; (f1(s; y); : : : ; fn(s; y))). The fj can be de-

scribed by formulas having the components ei and yk as free variables.

For example, the formula e1 + 4y2 denotes the function g such that

g(s; y) = e1(s) + 4y2(y).

2. f takes initial states to initial states. The formal condition is f(I 0) � I .

To explain what this condition means in practice, we �rst make the

following de�nition. For any formula H with free variables e1; : : : ; em

36

and x1; : : : ; xn, de�ne f
�(H) to be the formula obtained by substitut-

ing fj for xj , for j = 1; : : : ; n. This de�nes f�(H) to be a formula

with free variables e1; : : : ; em and y1; : : : ; yp. The semantic condition

f(I 0) � I is expressed in the logical framework as j= I 0) f�(I), which

is a formula \about" the implementation. In most cases, this condition

is easy to check.

3. f maps N 0
M

steps into NM steps or stuttering steps. Formally, we

require that if (s; y) is any state reachable from a state in I 0 by

a sequence of N 0
E
and N 0

M
steps, then ((s; y); (t; z)) 2 N 0

M
implies

(f(s; y); f(t; z)) 2 NM or f(s; y) = f(t; z).

In practice, verifying this condition involves �nding an S�Y-predicate

P such that I � P and P is left invariant byN 0
E
andN 0

M
, meaning that

(s; y) 2 P and ((s; y); (t; z)) 2 N 0
E
[N 0

M
imply (t; z) 2 P . One then

proves old:P^N 0
M
) f�(NM_I), where old:P is the formula asserting

that P is true in the �rst state of a step, and I is the identity relation.

Finding an invariant P and proving its invariance is exactly what one

does in a proof by the Owicki-Gries method [LS84b, OG76], so the

method for proving this condition generalizes the standard method for

proving invariance properties of concurrent programs.

4. f maps behaviors that satisfy I 0 \ TA:�(N
0
E
) \ TA�(N

0
M
) \ L0 into

behaviors that satisfy L. The formal condition is f(I 0 \ TA:�(N
0
E
) \

TA�(N
0
M
) \ L0) � L.

Translated into the logical framework, the formula to be veri�ed be-

comes I 0^TA:�(N
0
E
)^TA�(N

0
M
)^L0) f�(L). This formula asserts

that the abstract program described by I 0^TA:�(N
0
E
)^TA�(N

0
M
)^L0

satis�es the property f�(L), which is generally a liveness property.

Thus, veri�cation of this condition is tantamount to proving that a pro-

gram satis�es a liveness property, which can be done with the method

of [OL82] when L and L0 are expressed as temporal logic formulas.

Condition 3 is weaker in two ways than the corresponding condition R3

in the de�nition of a re�nement mapping in [AL91]. First, condition 3

applies only to � steps, while condition R3 applies to all steps. The weaker

condition is su�cient because :� steps, which are taken by the environment,

are essentially the same in both E \M 0 and E \M . (The formalism of

[AL91] did not include agents and made no distinction between system and

environment steps.) Second, condition 3 applies only to steps taken from a

37

reachable state, while R3 applies to steps taken from any state. The weaker

condition was not needed in [AL91], where history variables were used to

eliminate unreachable states.

Theorem 2 of [AL91] asserts the existence of a re�nement mapping under

certain reasonable assumptions about the speci�cations, providing a com-

pleteness theorem for the proof method. In general, obtaining the re�nement

mapping may require adding two auxiliary variables to the lower-level spec-

i�cation: a history variable used to record past actions, and a prophecy

variable used to predict future ones. Our limited experience indicates that

prophecy variables are almost never needed and, with condition 3 rather

than R3, history variables are seldom needed. Although our experience

with this method for verifying concurrent systems is limited, we have good

reason to believe that these mappings can be constructed in practice, be-

cause re�nement mappings are essentially abstraction functions of the kind

that have been used for years to prove that one data type implements an-

other [Hoa72].

5.3 The Main Theorem

5.3.1 A Precise Statement of the Composition Principle

Having discussed composition and implementation, we come to the prob-

lem of proving that the composition of speci�cations S1 and S2 imple-

ments a speci�cation S. As we observed in (5) of Section 5.2, we must

prove R�1
(S1) \ R�2

(S2) � S. One might attempt to prove this with the

re�nement-mapping method of Section 5.2.2. Since we cannot expect to

construct the realizable part of a speci�cation, we would have to prove the

stronger result that S1\S2 implements S. However, S has the form E)M

and each Si has the form Ei)Mi. The re�nement-mapping method proves

that a speci�cation of the form E) M 0 implements E) M , but S1 \ S2
is not in this form. A simple re�nement mapping won't work; we need the

Composition Principle.

We now restate the Composition Principle, for the case n = 2, in terms

of our formal de�nitions. The principle's premises are that system � is

the composition of systems �1 and �2, the speci�cation of � is E) M ,

and the speci�cation of each � i is Ei) Mi. As we have already indi-

cated, E, E1, and E2 must be safety properties. Also needed are some addi-

tional assumptions that are natural consequences of our method of writing

speci�cations|assumptions that we disregard for now, but add as hypothe-

38

ses of the theorem and discuss afterwards. The hypotheses of the principle

consist of three conditions:

1. � guarantees M if each component �i guarantees Mi.

Formally, this condition asserts that M1 \M2 � M . It can be sat-

is�ed automatically by taking M to be M1 \M2. We can therefore

simplify the Composition Principle by eliminating M , and letting the

conclusion assert that � satis�es E) M1 \M2. To show that �

satis�es the speci�cation E) M , one proves that E) M1 \ M2

implements E)M , using the re�nement-mapping method described

in Section 5.2.2.

2. The environment assumption Ei of each component � i is satis�ed if

the environment of � satis�es E and every �j satis�es Mj.

This condition asserts that E\M1\M2 � E1 and E\M1\M2 � E2,

two assertions that can be combined as E \M1 \M2 � E1 \E2.

3. Every component�i guaranteesMi under environment assumption Ei.

This condition simply asserts that each component � i satis�es its

speci�cation Ei)Mi.

The Composition Principle's conclusion asserts that � satis�es the speci�-

cation E) M1 \M2. (Remember that we have replaced M by M1 \M2.)

When the principle is formulated in terms of speci�cations rather than sys-

tems, condition 3 disappears and the conclusion states that the composition

of the components' speci�cations implements the system's speci�cation. The

Composition Principle then becomes the proof rule:

E \M1 \M2 � E1 \E2

R�1
(E1)M1) \R�2

(E2)M2) � E)M1 \M2

(6)

Unfortunately, this rule is not valid. To obtain a valid rule, we must replace

its hypothesis with a stronger one.

Rule (6) appears unreasonably circular because it allows one to assume

Mi in proving the environment assumption Ei that is necessary for compo-

nent � i to guarantee Mi. This suggests that we strengthen the hypothesis

by disallowing the use of Mi in proving Ei, obtaining the rule:

E \M2 � E1; E \M1 � E2

R�1
(E1)M1) \R�2

(E2)M2) � E)M1 \M2

(7)

39

This rule is indeed valid. However, it would be wrong to attribute the

invalidity of (6) to simple circularity. Rule (7) is also circular, and it would

be incorrect without the additional assumptions that we have been ignoring.

For example, suppose we could take E1 = E2 = M1 = M2 = P for some

safety property P . Both hypotheses of (7) then reduce to the tautology E\

P � P ; and each Ei)Mi becomes P) P , an identically true speci�cation

satis�ed by any system. Rule (7) would then yield the ridiculous conclusion

that the composition of any two systems satis�es the speci�cation E) P .

Not only is (7) valid despite its circularity, but there is an even stronger

valid rule that looks just as circular as (6). The way to strengthen (7) is

suggested by a closer examination of its hypotheses. The �rst hypothesis

asserts that E and M2 imply E1. Property E1 is assumed to be a safety

property, and any safety property that is implied by M2 is implied by M2.

We would therefore expect E\M2 to imply E1 only if E\M2 does. Similarly,

E \M1 should imply E2 only if E \M1 does. Proposition 12 shows that

the following inference rules are indeed valid|again, under certain natural

assumptions.
E \M2 � E1

E \M2 � E1

E \M1 � E2

E \M1 � E2

(8)

We can thus replace M1 and M2 by their closures in the hypotheses of (7).

But we can do even more. In the hypothesis, we can actually assume both

M1 and M2 when proving E1 and E2. In other words, rule (6) is valid if,

in the hypothesis, we replace M1 and M2 by M1 and M2. Thus, one can

assume Mi when proving the assumption Ei that is necessary for �i to

guarantee Mi.

We now state our precise results. The hypotheses of the proposition and

the theorem are discussed later. The proposition asserts the �rst rule of (8);

the second rule is obtained by the obvious substitutions. In the theorem, we

have strengthened the proof rule's conclusion by replacing E) M1 \M2

with its realizable part.

Proposition 12 If �1, �2, and �1 [�2 are agent sets and E, E1, and M2

are properties such that:

1. E = I \ P where

(a) I is a state predicate.

(b) P is a safety property that constrains at most :(�1 [�2).

2. E1 is a safety property.

40

3. �1 \ �2 = ;

4. M2 is a �2-abstract property.

Then the rule of inference

E \M2 � E1

E \M2 � E1

is sound.

Theorem 2 If �1, �2, and �1 [�2 are agent sets and E, E1, E2, M1, and

M2 are properties such that:

1. E = I \ P , E1 = I1 \ P1, and E2 = I2 \ P2, where

(a) I, I1, and I2 are state predicates.

(b) P , P1, and P2 are safety properties that constrain at most

:(�1 [�2), :�1, and :�2, respectively.

2. M1 and M2 constrain at most �1 and �2, respectively.

3. �1 \ �2 = ;

Then the rule of inference

E \M1 \M2 � E1 \ E2

R�1
(E1)M1)\ R�2

(E2) M2) � R�1[�2(E)M1 \M2)

is sound.

The theorem handles the composition of two systems. It has an obvious

generalization to the composition of n systems, for any n � 2.

E \M1 \ : : :\Mn � E1 \ : : :\En

R�1
(E1)M1) \ : : :\ R�n

(En)Mn)

� R�1[:::[�n(E)M1 \ : : :\Mn)

This rule can be derived from the theorem by using Proposition 11.

41

5.3.2 The Hypotheses of the Theorem and Proposition

We now discuss the theorem's three numbered hypotheses|which imply

the �rst three hypotheses of the proposition|and the proposition's fourth

hypothesis.

1. It is not hard to show that any safety property E0 can be written

as I 0 \ P 0, where I 0 is a state predicate and P 0 is a safety property

that constrains at most �, for some set of agents �. If E0 speci�es

the environment of a system with agent set �, then � should equal

:�. Therefore, hypothesis 1 will be satis�ed if the environment as-

sumptions E, E1, and E2 are safety properties. Theorem 1 allows us

to rewrite a speci�cation so its environment assumption is a safety

property.

Observe that a system implemented by components with agent sets

�1 and �2 should have �1 [�2 as its agent set. But, the higher-

level speci�cation E) M we are ultimately trying to verify may be

written in terms of an agent set � rather than �1[�2. In this case, we

must perform a renaming operation, substituting �1 [�2 for �, before

applying the theorem.

2. In the transition-axiom approach, each Mi has the form

9x : Ix \ TA:�(Ux) \ TA�(N)\ L

and we expect Mi to equal 9x : Ix \ TA:�i(Ux) \ TA�i
(N), in which

case hypothesis 2 is satis�ed.

3. As we mentioned in Section 5.1.2, this hypothesis means that the

two components are distinct. They need be distinct only at the cur-

rent level of abstraction; their implementations could contain common

parts. For example, the two components might specify distinct pro-

gram procedures, while their implementations both invoke a common

subprocedure. We can consider the subprocedure to be executed by

di�erent agents depending upon which procedure invoked it. Alterna-

tively, we can generalize our notion of implementation to allow renam-

ing of agents. In practice, this hypothesis seems to be a petty nuisance

of the formalism, not a real concern.

4. When we write M2 directly, either as an abstract program or by any

sort of logical formula, individual agents are not mentioned. The only

42

reference to agents is through the symbol \�2", soM2 is automatically

�2-abstract.

5.3.3 The Hypotheses of the Proof Rule

We now show how one veri�es the hypothesis E \M1 \M2 � E1 \ E2

of the theorem's proof rule, using the systems �1 and �2 of Figure 3 as a

generic example.

Each of the \wires" inp, mid , and out will have an associated protocol

that the systems on its two ends are expected to obey. For each wire w,

let Iw be the initial condition for the wire, let Lw
�
be the property asserting

that the agent set � correctly executes the protocol for the system on the

left side of the wire, and let Rw

�
be the corresponding property for the right

side of the wire.

For example, suppose the state component mid consists of a register r

and two booleans rdy and ack , and that the following popular hardware

protocol is used to pass values from a sender on the left to a receiver on the

right. (Initially, the values of rdy and ack are equal.)

send : begin loop receive: begin loop

await rdy = ack ; await rdy 6= ack ;

write r; read r;

rdy := :rdy ack := :ack

end loop end loop

Let Nsend and Nreceive be the next-state relations of the sender's and re-

ceiver's programs. For this protocol, Imid is the initial predicate rdy = ack ,

the property Lmid
�

equals TA�(Nsend), and R
mid
�

equals TA�(Nreceive). Data

is properly transferred from �1 to �2 across mid in every behavior satis-

fying the property Imid \ Lmid
�1

\ Rmid
�2

.

We will not assume any particular protocols for inp, mid , and out . How-

ever, we can ignore any liveness properties the protocols might require, since

these properties cannot appear in the environment assumptions. Therefore,

we assume that Lw
�
and Rw

�
are safety properties, for each wire w.

In addition to specifying the mechanism by which values are sent over

wire w, the protocol properties Lw
�
and Rw

�
can also specify what values

are sent. Thus, it is reasonable to suppose that these protocol properties

include any assumptions that a system makes about its environment. A

system's environment assumption then asserts that the environment obeys

its side of the protocol for each wire over which the system and environment

43

communicate. The initial conditions for these wires must also be part of the

environment assumption, since the environment is responsible for the initial

values of all externally visible components. For the composition in Figure 3,

we then get the following environment assumptions.

E1 = I inp \ Linp
:�1

\ Imid \Rmid
:�1

E2 = Imid \ Lmid
:�2

\ Iout \Rout
:�2

E = I inp \ L
inp

:(�1[�2)
\ Imid \ TA:(�1[�2)(Umid) \ Iout \ Rout

:(�1[�2)

We have included in E the assumption that the composite system's envi-

ronment does not a�ect mid .

We cannot prove the hypothesis of the theorem without knowing some-

thing about �1, �2, and the wires. The assumptions we will make, and

their justi�cations, are listed below.

A1. For any wire w and agent sets �1 and �2:

(a) TA�1
(Uw) \ L

w

�2
� Lw

�1[�2

(b) TA�1
(Uw) \R

w

�2
� Rw

�1[�2

Property Lw
�2

asserts that agents in �2 obey the left-side protocol for

wire w. Actions that do not a�ect the wire cannot disobey the proto-

col. Hence, if agents in �2 obey the protocol and agents in �1 do not

a�ect w, then agents in �1 [�2 obey the protocol. Part (a) can be

derived formally from three assumptions: (i) Lw
�1[�2

equals Lw
�2
j�2
�1[�2

(the property obtained by substituting �1 [�2 for �2 in L
w

�2
), (ii) Lw

�2

constrains at most �2, and (iii) Lw
�2

depends only on the w-component

of the state. Part (b) has a similar justi�cation.

A2. (a) M1 � TA�1
(Uout)

(b) M2 � TA�2
(Uinp)

Figure 3 assumes that �1 does not a�ect out and �2 does not a�ect

inp. Formally, these assumptions are M1 � TA�1
(Uout) and M2 �

TA�1
(Uinp), which imply A2 because TA�1

(Uout) and TA�2
(Uinp) are

safety properties.

A3. M1 \M2 � Lmid
�1

\Rmid
�2

For the composite system to work properly, �1 and �2 must cooper-

ate to guarantee that the protocol condition Lmid
�1

\ Rmid
�2

is satis�ed.

Hence, M1\M2 must be a subset of L
mid
�1

\Rmid
�2

. Since Lmid
�1

\Rmid
�2

is

44

a safety property, we expect it to contain M1 \M2 only if it contains

M1 \M2. This is an expectation, not a logical necessity. If we could

always deduce A3 from M1 \M2 � Lmid
�1

\ Rmid
�2

, then proof rule (6)

would be valid.

With these assumptions, we can verify E \ M1 \M2 � E1 \ E2, the

hypothesis of the theorem's proof rule. We prove that E \M1 \M2 is a

subset of E1; proving that it is a subset of E2 is similar. Since E1 is the

conjunction of four properties, there are four inclusions to verify.

1. E \M1 \M2 � I inp

Proof : The de�nition of E implies that it is a subset of I inp .

2. E \M1 \M2 � Linp
:�1

Proof : This is proved by the following sequence of steps.

2.1. M2 � TA�2
(Uinp)

Proof : By A2(b).

2.2. E � L
inp

:(�1[�2)

Proof : By de�nition of E.

2.3. E \M2 � Linp
:�1

Proof : By 2.1, 2.2, and A1(a), substituting �2 for �1 and :(�1 [�2)

for �2, since the hypothesis that �1 and �2 are disjoint implies �2 [

:(�1 [�2) = :�1.

3. E \M1 \M2 � Imid

Proof : By de�nition of E.

4. E \M1 \M2 � Rmid
:�1

4.1. M1 \M2 � Rmid
�2

Proof : By A3.

4.2. E � TA:(�1[�2)
(Umid)

Proof : By de�nition of E.

4.3. E \M1 \M2 � Rmid
:�1

Proof : By 4.1, 4.2, and A1(b), substituting :(�1[�2) for �1 and �2
for �2, using the disjointness of �1 and �2.

This completes our justi�cation of the hypothesis E\M1\M2 � E1\E2

for the composition of Figure 3. It was based on assumptions derived from

the �gure, with no assumptions about what �1 and �2 are supposed to

do. This example is therefore quite general, since mid represents all state

components involved in communication between �1 and�2, while inp and

out represent the state components with which �1 and �2 interact with

45

the rest of their environments. The only real assumption implicit in the �g-

ure is that the composite system's environment does not modify any state

component that is accessed by both�1 and�2. Removing this assumption

means that communication over mid involves a three-party protocol, requir-

ing an additional property Tmid
�

to be satis�ed by the third party. (This

would be represented pictorially by adding a third end to wire mid that is

not connected to anything in Figure 3.) Correct transfer of data over wire

mid then requires Lmid
�1

\ Rmid
�2

\ Tmid
:(�1[�2)

to hold. Our argument can be

modi�ed to handle the more general case.

6 Concluding Remarks

We have approached the problem of composing speci�cations from a purely

semantic point of view. A formal speci�cation method can use a language

and logic based on this semantics. Our Theorem 2 would appear as a proof

rule in the logic. We have touched lightly on logical issues in our discussion,

mentioning what form some logical formulas might take. Some concluding

remarks about language and logic are in order.

The semantic form of our speci�cations suggests the general style of a

speci�cation language. Safety properties are expressed by describing a next-

state relation, and progress properties are expressed either directly in some

form of temporal logic, or with fairness conditions that can be translated

into temporal logic.

There are obvious desiderata for a speci�cation language: it should be

expressive, readable, concise, etc. There are also more precise attributes

that the speci�cation logic must have. Clearly, we want all the sets of

behaviors expressed to be properties, meaning that they are closed under

stuttering-equivalence. Another simple attribute of a logic is explicitness,

meaning that whether or not a behavior satis�es a formula F depends only

on the values assumed during the behavior by the state components that are

free variables of F . Explicitness is necessary if existential quanti�cation is

to have its expected meaning, but it poses a surprisingly serious constraint

on how speci�cations are written. For example, consider a formula F that

speci�es the assignment statement x := x + 1. If this formula is to assert

that executing the assignment statement does not change y, then explicit-

ness requires that y (and every other variable that is not changed) be free

variables of F . A practical language must allow one to write the formula F

so that y is a free variable of F even though it does not appear in the text.

46

Closure under stuttering-equivalence and explicitness may seem esoteric

to readers accustomed to popular, simple semantics of programs. In a typical

semantics, the formula specifying a program is satis�ed only by behaviors

in which each step corresponds to the execution of a program action|for

example, this is the natural way to write a semantics using the \next-time"

temporal operator. However, composition cannot be conjunction in such a

semantics. For example, consider two completely noninteracting programs,

with separate sets of variables, described by formulas F and G. A behavior of

their composition is obtained by interleaving actions from the two programs.

But such an interleaved behavior does not satisfy F , since it contains steps

that do not represent actions of that program, nor does it satisfy G. Thus,

the composition of the two programs is not described by the formula F ^

G. Closure under stuttering-equivalence and explicitness are needed for

composition to be conjunction even in the trivial case of noninteracting

programs.

Many styles of speci�cation have been proposed, ranging from abstract

axioms in a speci�c logic to abstract programs in a speci�c language. Most

of these styles can be adapted to our semantics, so they can make use of

our results. However, these speci�cation styles have usually been based on

a particular semantic theory, and that underlying theory might have to be

modi�ed. Thus, one can still specify properties with CSP programs, but the

traditional failure-set semantics of CSP [Hoa85] would have to be revisited.

We are now investigating a transition-axiom method based on the temporal

logic of actions [Lam90].

Appendix: Proofs

This appendix contains the proofs of all propositions and theorems stated above.
Also included are lemmas, which are used in the proofs but which are not mentioned
in the main text. The proofs have been carried out to an excruciating level of detail,
in a hierarchical style that is explained below. The reader may feel that we have
given long, tedious proofs of obvious assertions. However, what he has not seen are
the many equally obvious assertions that we discovered to be wrong only by trying
to write similarly long, tedious proofs. We believe very strongly that reasoning
must be carried out to this level of detail to avoid mistakes. Without these detailed
proofs, we would have little con�dence in the correctness of our results.

The proofs employ the following de�nitions and notations.

� We make all functions total by de�ning f(x) to equal ? when x is not in the
domain of f .

47

� If � is a �nite behavior pre�x, � an agent, and s a state, then � � (�; s) is the

behavior pre�x obtained by concatenating
�
�! s to the end of �.

� The length of a �nite behavior pre�x �, denoted j�j, is de�ned by js0
�1
�!

: : :
�m
�! smj = m.

� We extend the de�nition of �jm, previously de�ned only for a behavior �, in
the obvious way when � is a �nite behavior pre�x and 0 � m � j�j. (Thus
�j0 is a pre�x of length 0, consisting of a single state.)

� For a �nite behavior pre�x �, the state �s is de�ned to equal sj�j(�); and,
when j�j > 0, the agent �a is de�ned to equal aj�j(�).

� A mapping f from behavior pre�xes to behavior pre�xes is monotone i� for
all behavior pre�xes � and � , if � is a pre�x of � then f(�) is pre�x of f(�).
Observe that if f is monotone, then limm!1 f(�jm) exists for any behavior
�.

� If f is a �-strategy, then a �nite behavior pre�x � is said to end according to
�; f i� (i) j�j = 0, or (ii) �a =2 �, or (iii) f(�jj�j�1) = (�a; �s). Note that a
behavior � is a �-outcome of f i� every �nite pre�x of � ends according to
�; f .

� If f is a �-strategy, then a �nite behavior pre�x � is said to be a partial
�-outcome of f i� every pre�x of � (including � itself) ends according to �; f .

The proofs are written in a hierarchical style. A structured proof consists of a
preamble followed by a sequence of statements, each with its own proof. A proof
that uses a case split will have a separate proof for each case.

The preamble describes the assumptions that are to be made, the desired con-
clusion, and why this conclusion implies the result to be proved. It may also contain
an informal description of the proof. The proof statement or statements that assert
the preamble's desired conclusion are indicated by boxed statement numbers. The
preamble is omitted if the assumptions and conclusion are obvious.

A su�ciently simple proof is not structured, being written in the customary
paragraph style. Some proof statements serve only to make de�nitions and require
no proof.

Lemma 1 For any agent set �, if (i) f is a �-strategy, (ii) � 2 O�(f), and
(iii) �0 ' �, then there exists a �-strategy f 0 such that (iv) �0 2 O�(f

0) and
(v) every behavior in O�(f

0) is stuttering-equivalent to some behavior in O�(f).

Proof of Lemma 1

We assume � is an agent set, f a �-strategy, � 2 O�(f), and �0 ' �; and we
construct the required f 0. We will de�ne f 0 so it \tries to produce" �0 if that is
still possible; otherwise it tries to act like f . This means that f 0 has to switch
from trying to produce �0 to acting like f if the environment causes the behavior

48

to diverge from �0. Our formal de�nition will be driven by the need for f 0 to make
this switch smoothly. We will �rst de�ne a mapping � on behavior pre�xes such
that � maps pre�xes of �0 to pre�xes of �, and �(�) is stuttering-equivalent to �
for any behavior pre�x �. We will then de�ne f 0(�) to equal f(�(�)) if � is not a
pre�x of �0.

1. For any �nite behavior pre�x �, de�ne the �nite behavior pre�x �(�) inductively
as follows.

if j�j = 0 then �(�) = �

if � = � � (�; s) then if � is a pre�x of �0

then �(�) is the smallest pre�x of �
that is stuttering-equivalent to �

else �(�) = �(�) � (�; s)

2. For any �nite behavior pre�x � that is not a pre�x of �0, �(�) = �(�jk) �
(ak+1(�); sk+1(�)) � � � (�a; �s), where k is the smallest natural number such that
�jk+1 is not a pre�x of �0.

Proof : From 1, by a simple induction on j�j � k.

3. For any behavior � , de�ne �(�) as follows.

if � = �0 then �(�) = �

else �(�) = limm!1 �(� jm)

Then �(�) is a behavior.

Proof : If � = �0, then �(�) is a behavior because � is. If � 6= �0, then 2 implies
that limm!1 �(� jm) exists and is in�nite.

4. �(�) ' � for any behavior � .

Proof : If � = �0, then the result follows from 3 and the hypothesis that
�0 ' �. If � 6= �0, then 2 and 3 imply �(�) = �(� jk) � (ak+1(�); sk+1(�)) �
(ak+2(�); sk+2(�)) � � �, where � jk is a pre�x of �0 or k = 0. The result now
follows from 1, which implies �(� jk) ' � jk.

5. For any �nite behavior pre�x �, de�ne f 0(�) as follows.

if � = �0jk then if ak+1(�
0) 2 � then f 0(�) = (ak+1(�

0); sk+1(�
0))

else f 0(�) = ?

if � is not a pre�x of �0 then f 0(�) = f(�(�))

Then f 0 is a �-strategy.

Proof : Follows from the hypothesis that f is a �-strategy.

6. �0 2 O�(f
0)

Proof : It follows from the de�nition of f 0 that �0 is a �-outcome of f 0. It is
a fair outcome because ak+1(�

0) =2 � implies f 0(�0jk) = ?, so if there are only
�nitely many � actions in �0, then f 0 is unde�ned on in�nitely many pre�xes of
�0.

7. If � is a fair �-outcome of f 0, then �(�) is a fair �-outcome of f .

Proof : If � = �0, then �(�) = �, and � is a fair �-outcome of f by hypothesis.
We assume that � is a fair �-outcome of f 0 and � 6= �0, and we prove that �(�)
is a fair �-outcome of f .

49

7.1. Choose k to be the largest natural number j such that � jj = �0jj, or �1 if
there is no such j. Let l equal j�(� jk)j if k � 0, or �1 if k = �1. For all i � 0:
(i) if k � 0 then �(�)jl+i = �(� jk) � (ak+1(�); sk+1(�)) � � � (ak+i(�); sk+i(�)),
and (ii) if k = �1 then �(�)ji = � ji.

Proof : The existence of k follows from the hypothesis that � 6= �0. Case (i)
follows by induction on i from 2 and 3. Case (ii) follows from 1, 2 (where
the k of step 2 is 0), and 3.

7.2. f(�(�)jl+i) = f 0(� jk+i) for all i > 0.

Proof : By 7.1 and 5.

7.3. Every �nite pre�x of �(�) ends according to �; f .

Proof : Let m be any natural number. We show that �(�)jm ends according
to �; f . The proof is split into three cases.

Case 7.3A. m � l

In this case, k � 0. We have �(�)jm is a pre�x of �(�)jl, which equals �(� jk)
(by de�nition of l in 7.1, since k � 0), which in turn is a pre�x of �. Hence,
�(�)jm ends according to �; f by the assumption that � is in O�(f).

Case 7.3B. m = 1 + l

If m = 0, then the result is trivial because any sequence of length 0 ends
according to �; f . Assume m > 0, so m = 1 + l implies that l � 0, which
implies k � 0. If am(�(�)) 2 :�, then the result is trivial. It therefore
su�ces to prove am(�(�)) 2 :�. Intuitively, this holds because only the en-
vironment can make the behavior diverge from �0. Formally, we assume that
am(�(�)) 2 � and prove � jk+1 = �0jk+1, which contradicts the de�nition of
k in 7.1.

7.3B.1. am(�(�)) = ak+1(�)

Proof : By 7.1 and the assumption that m = 1 + l.

7.3B.2. f 0(� jk) = (ak+1(�); sk+1(�))

Proof : By 7.3B.1 and the assumptions that am(�(�)) 2 � and that
� is a �-outcome of f 0.

7.3B.3. f 0(� jk) = (ak+1(�
0); sk+1(�

0))

Proof : By 5 (the de�nition of f 0), since � jk is a pre�x of �0 and
7.3B.2 implies that f 0(� jk) is de�ned.

7.3B.4. � jk+1 = �0jk+1

Proof : By 7.3B.2 and 7.3B.3, since � jk = �0jk by 7.1.

Case 7.3C. m > 1 + l

7.3C.1. �(�)jm = �(�)jm�1 � (ak+m�l(�); sk+m�l(�))

Proof : By applying 7.1 twice, substituting m � l � 1 and m� l for
i.

7.3C.2. f(�(�)jm�1) = f 0(� jk+m�l�1).

Proof : By 7.2 with m� l� 1 substituted for i, since the hypothesis
m > 1 + l implies i > 0.

7.3C.3. �(�)jm ends according to �; f .

50

Proof : By 7.3C.1, 7.3C.2, and the hypothesis that � is a �-outcome
of f 0.

7.4. �(�) is a fair �-outcome of f .
Proof : By 7.3, �(�) is a �-outcome of f . We now show that it is fair. By
7.1, �(�) has in�nitely many � actions i� � does. By 7.2, f is unde�ned on
in�nitely many pre�xes of �(�) i� f 0 is unde�ned on in�nitely many pre�xes
of � . Hence, �(�) is fair because � is assumed to be a fair �-outcome of f 0.

8. Every behavior in O�(f
0) is stuttering-equivalent to a behavior in O�(f).

Proof : By 4 and 7.
End proof of Lemma 1

Lemma 2 For any agent set �, if (i) f is a �-strategy, (ii) � 2 O�(f), and (iii) �0

is �-equivalent to �, then there exists a �-strategy f 0 such that (iv) �0 2 O�(f
0) and

(v) every behavior in O�(f
0) is �-equivalent to some behavior in O�(f).

Proof of Lemma 2

The proof is almost identical to that of Lemma 1, except with ' replaced by �-
equivalence. The de�nition of � in step 1 becomes:

if j�j = 0 then �(�) = �

if � = � � (�; s) then if � is a pre�x of �0

then �(�) is the pre�x of �
of the same length as �

else �(�) = �(�) � (�; s)

The proof becomes a bit simpler because l equals k in step 7.1. We omit the details.
End Proof of Lemma 2

Proposition 1 For every agent set �, if P is a property then R�(P) is a property,
and if P is �-abstract then R�(P) is �-abstract.

Proof of Proposition 1

The �rst part of the proposition, that if P is a property then R�(P) is also a
property, follows immediately from Lemma 1 and the de�nitions. The second part,
that if P is �-abstract then R�(P) is also �-abstract, follows from Lemma 2.
End Proof of Proposition 1

Lemma 3 For any agent set �, if (i) f is a �-strategy and (ii) � 2 O�(f), then
there exists a behavior �0 and a total �-strategy f 0 that is invariant under :�-
stuttering such that (iii) �0 ' �, (iv) �0 2 O�(f

0), and (v) every behavior in O�(f
0)

is stuttering-equivalent to a behavior in O�(f).

Proof of Lemma 3

We assume that f is a �-strategy and � 2 O�(f), and we will construct the required
f 0 and �0. Instead of using � and f directly, for technical reasons we will construct
a new behavior � in step 1 by adding an in�nite number of :�-stuttering steps to

51

�, and will use Lemma 1 to obtain a strategy g that produces �. The behavior �0

will be obtained (in step 8) by replacing :�-stuttering steps in � by �-stuttering
steps. We will construct f 0 (in step 5) so it tries to produce �0 and, failing that,
to simulate g. To make f 0 total, we will de�ne it to stutter when g would be
unde�ned. This requires f 0 to interpret �-stuttering steps produced in this way as
if they were :�-stuttering steps|an interpretation performed by the mapping �,
de�ned in step 3. The behavior pre�x �(�) will be obtained from � by replacing
�-stuttering steps with :�-stuttering steps if either that will lead to a pre�x of
�, or those �-stuttering steps were produced by f 0 because g was unde�ned. To
make f 0 invariant under :�-stuttering, we will de�ne f 0 in terms of �, the mapping
obtained by removing :�-stuttering steps and then applying �.

1. Choose a behavior � such that � ' � and � contains in�nitely many :�-
stuttering steps, and choose a �-strategy g such that � 2 O�(g) and every
behavior in O�(g) is stuttering-equivalent to a behavior in O�(f).

Proof : The existence of � follows from the assumption that � is an agent set, so
:� is nonempty. The existence of g follows from Lemma 1.

2. Choose agents �� in � and �:� in :�.

Proof : Since � is an agent set, � and :� are nonempty.

3. For any �nite behavior pre�x �, de�ne �(�) as follows.

if j�j = 0 then �(�) = �

if � = � � (�; s)
then if (�(�) = �jk) ^ (s = �s = sk(�) = sk+1(�)) ^

(� 2 �) ^ (ak+1(�) 2 :�)
where k = j�(�)j
then �(�) = �jk+1
else if (s = �s) ^ (� 2 �) ^ (g(�(�)) = ?)

then �(�) = �(�) � (�:�; s)
else �(�) = �(�) � (�; s)

For any behavior � , de�ne �(�) to equal limm!1 �(� jm).

Proof : The mapping � is monotone on �nite behavior pre�xes, so the limit
exists.

4. For any any behavior pre�x � , let �(�) = �(\:�(�)). Then � ' �(�).

Proof : By de�nition, \:�� ' � . It follows from 3 (the de�nition of �) by
induction on the length of � that �(�) ' � for any �nite behavior pre�x �. Since
�(�) equals limm!1 �(� jm) (by 3), this implies that �(�) ' � for any behavior
� . Hence, �(�) ' � .

5. For any �nite behavior pre�x �, de�ne f 0(�) as follows.

if (�(�) = �jk) ^ (sk+1(�) = sk(�)) ^ (ak+1(�) 2 :�)
where k = j�(�)j, or
g(�(�)) = ?

then f 0(�) = (��; �s)
else f 0(�) = g(�(�))

Then f 0 is a total �-strategy that is invariant under :� stuttering.

52

Proof : Since g is a �-strategy and �� is in �, it follows that f 0 is a �-strategy.
Since � ':� � i� \:�� = \:��, the de�nitions of � (in step 4) and f 0 imply that
f 0 is invariant under :�-stuttering. By de�nition, f 0 is a total function.

6. �(�) 2 O�(g) for any behavior � 2 O�(f
0).

Proof : We assume � 2 O�(f
0) and prove �(�) 2 O�(g). It is simpler to prove

�(�) 2 O�(g) if � has no :�-stuttering steps. We will therefore prove \:�� 2
O�(g) (step 6.6) and then observe (in the proof of 6.7) that �(�) equals �(\:��).
The proof of �(\:��) 2 O�(g) is an intricate exercise in verifying that our
de�nitions of � and f 0 work properly.

6.1. For any behavior pre�x , j�()j = j j, and if = \:� then �() = �().

Proof : First, assume that is �nite. A simple induction on j j shows that
� is length-preserving. If = \:� , then 4 (the de�nition of �) implies
�() = �(). The case of in�nite follows from the �nite case by taking
limits.

6.2. Let � be a �nite behavior pre�x with � = \:�� and let m equal j�j. If
�(�) = � � (�; s) and � 2 �, then
(a) � = am(�) and s = sm(�),
(b) � = �(�jm�1), and
(c) if sm(�) = sm�1(�), then neither (i) � = �jm�1, sm(�) = sm�1(�), and
am(�) 2 :�, nor (ii) g(�) = ? holds.

Proof : We assume � = \:��, �(�) = � � (�; s), and � 2 �, and we prove
(a){(c).

6.2.1. For any �nite �, (i) �(�)s = �s, and (ii) if �(�)a 2 � then �(�)a = �a.

Proof : By 3.

6.2.2. � = am(�) and s = sm(�).

Proof : By 6.2.1, since 6.1 implies �(�) = �(�).

6.2.3. � = �(�jm�1)

Proof : By 6.1, � � (�; s) = �(�), and 3 (the de�nition of �) implies
that �(�) = �(�jm�1) � (
; t) for some
 and t.

6.2.4. If sm(�) = sm�1(�), then it is not the case that: (i) � = �jm�1,
(ii) sm(�) = sm�1(�), and (iii) am(�) 2 :�.

Proof : We assume (i){(iii) and (iv) sm(�) = sm�1(�), and we obtain
a contradiction. Let � equal �jm�1. Then � equals �(�) by 6.2.3, and
s = �s = sm�1(�) by (i), (iv), and 6.2.1. Applying 3 with m � 1
substituted for k, using 6.1 (to infer j�(�jm�1)j = m � 1) and the
assumption that � 2 �, yields �(�) = �jm. Hence, � = am(�), which
by (iii) contradicts the assumption � 2 �.

6.2.5. If sm(�) = sm�1(�), then g(�) 6= ?.

Proof : We assume (i) sm(�) = sm�1(�) and (ii) g(�) = ?, and we
obtain a contradiction. Let � = �jm�1. Then � equals �(�) by 6.2.3,
so s = �s by 6.2.1 and (i). By 6.2.4 and 3 (the de�nition of �), we
see that (ii), s = �s, and the hypothesis � 2 � imply �(�)a = �:�.
This contradicts the hypothesis that �, which equals �(�)a, is in �.

53

6.3. For any �nite behavior pre�x �, if � = \:�� and � ends according to �; f 0,
then �(�) ends according to �; g.

Proof : We assume that � = \:�� and � ends according to �; f 0, and we
prove that �(�) ends according to �; g. Since this is trivial if j�(�)j = 0 or
�(�)a 2 :�, it su�ces to assume that �(�) = � � (�; s) with � 2 � and prove
that (�; s) = g(�). Let m equal j�j.

6.3.1. (�; s) = f 0(�jm�1)

Proof : By 6.2(a) and the hypothesis that � ends according to �; f 0.

6.3.2. � = �(�jm�1)

Proof : By 6.1 and 6.2(b).

6.3.3. f 0(�jm�1) = g(�(�jm�1))

Proof : We assume f 0(�jm�1) 6= g(�(�jm�1)) and obtain a contra-
diction. Substituting �jm�1 for � in 5 shows that if f 0(�jm�1) 6=
g(�(�jm�1)) then f

0(�jm�1) = (��; sm�1(�)). Hence, 6.3.1 and 6.2(a)
imply sm(�) = sm�1(�). Substituting �jm�1 for � in 5 again, and us-
ing 6.1 to infer j�(�jm�1)j = m� 1, then shows that 6.3.2 and 6.2(c)
imply f 0(�jm�1) = g(�(�jm�1)), which is the required contradiction.

6.3.4. (�; s) = g(�).

Proof : By 6.3.1{6.3.3.

6.4. (a) am(�) 2 � for in�nitely many values of m, and (b) \:�� 2 O�(f
0).

Proof : Part (a) follows from the hypothesis that � 2 O�(f
0), since f 0 is a

total function. This implies that \:�� is a behavior. Since f 0 is invariant
under :�-stuttering, � is an outcome of f 0 i� \:�� is. The behavior \:�� is
a fair outcome because (a) implies that it contains in�nitely many � actions.

6.5. �(\:��) is a �-outcome of g.

Proof : The de�nition of \:� implies that � = \:�� for every pre�x � of
\:�� . By monotonicity of � and 6.1, every pre�x of �(\:��) equals �(\:��)
for some �nite pre�x � of � . The result then follows from 6.4(b) and 6.3.

6.6. �(\:��) 2 O�(g)

Proof : Let denote \:�� . By 6.5, it su�ces to prove that am(�()) 2 � or
g(�()jm) = ?, for in�nitely many values of m. Since � 2 O�(g), we may
assume that �() 6= �.

6.6.1. �()jk = �(jk) for any natural number k.

Proof : By 3, which asserts that �() = limm!1 �(jm), and 6.1.

6.6.2. Choose k such that �()jk is not a pre�x of �.

Proof : The existence of k follows from the hypothesis that �() 6= �.

6.6.3. For all m > k, if am() 2 � then am(�()) 2 � or g(�()jm�1) = ?.

Proof : Substituting jm for � in 3 yields

if �(jm�1) = �jk ^ : : :

then : : :

else if g(�(jm�1)) = ? ^ : : :

then : : :

else �(jm) = : : : � (am(); : : :)

54

By 6.6.1 and 6.6.2, m > k implies �(jm�1) is not a pre�x of �.
Hence, �(jm)a = am() or g(�(jm�1)) = ?. But 6.6.1 implies
�(jm)a = am(�()) and g(�(jm�1)) = g(�()jm�1). Hence,
am() 2 � implies am(�()) 2 � or g(�()jm�1) = ?. The result
now follows from 6.1, which implies that �() = �().

6.6.4. am() 2 � for in�nitely many values of m.

Proof : By 6.4(a), since = \:�� and \:� preserves actions in �.

6.6.5. am(�()) 2 � or g(�()jm) = ?, for in�nitely many values of m.

Proof : By 6.6.3 and 6.6.4, since Am _ Bm holds for in�nitely many
values of m i� Am holds for in�nitely many values of m or Bm holds
for in�nitely many values of m.

6.7. �(�) 2 O�(g)

Proof : By 6.6, since �(\:��) = �(�) by 4 (the de�nition of �) and the
idempotence of \:�.

7. For any behavior � 2 O�(f
0), there exists a behavior � 2 O�(f) such that � ' � .

Proof : By 6, � 2 O�(f
0) implies �(�) 2 O�(g). By 1, there exists a behavior �

in O�(g) such that �(�) ' �. By 4, � ' �(�). The transitivity of ' then yields
� ' �.

8. There exists a behavior �0 2 O�(f
0) such that �0 ' �.

Proof : We will construct �0 from � by replacing :�-stuttering steps with �-
stuttering steps. The proof that �0 is a �-outcome of f 0 is a matter of checking
the de�nitions of � and f 0. Fairness will follow from having chosen � with
in�nitely many :�-stuttering steps.

8.1. De�ne �0 as follows. For all k � 0,

sk(�
0) = sk(�)

if ak+1(�) 2 :� ^ sk+1(�) = sk(�)
then ak+1(�

0) = ��
else ak+1(�

0) = ak+1(�)

8.2. \:�(�
0
jk) = �0jk for all k � 0.

Proof : By the de�nition 8.1, �0 has no :�-stuttering steps.

8.3. �(�0jk) = �jk for all k � 0.

Proof : The proof is by induction on k. The result is obvious for k = 0. We
assume it true for k and prove it for k + 1. We consider two cases:

Case 8.3A. ak+1(�
0) 6= ak+1(�)

8.3A.1. ak+1(�
0) 2 �, ak+1(�) 2 :�, and sk+1(�) = sk(�).

Proof : By the de�nition of �0 and the assumption that ak+1(�
0) 6=

ak+1(�).

8.3A.2. sk+1(�
0) = sk(�

0).

Proof : By 8.1 (the de�nition of �0) and 8.3A.1, since sm(�
0) =

sm(�) for all m.

8.3A.3. �(�0jk+1) = �jk+1
Proof : By the induction hypothesis, 8.1, 8.3A.1, 8.3A.2, and 3 (the
de�nition of �).

55

Case 8.3B. ak+1(�
0) = ak+1(�)

We assume that �(�0jk+1) 6= �jk+1 and obtain a contradiction.
8.3B.1. ak+1(�

0) 2 � and g(�(�0jk)) = ?.
Proof : By the induction hypothesis, 8.1 (which implies sk+1(�) =
sk+1(�

0)), the assumption that �(�0jk+1) 6= �jk+1, and 3 (the de�-
nition of �).

8.3B.2. ak+1(�) 2 � and g(�jk) = ?.
Proof : By 8.3B.1, the hypothesis that ak+1(�

0) = ak+1(�), and the
induction hypothesis that �(�0jk) = �jk.

8.3B.3. Contradiction.
Proof : 8.3B.2 and the hypothesis that � is a �-outcome of g.

8.4. �(�0jk) = �jk for all k � 0.
Proof : By 8.2, 8.3, and 4 (the de�nition of �).

8.5. �0 ' �

Proof : 8.2, 8.3, and the de�nition of � imply � = �(�0). Step 4 asserts
�0 ' �(�0), so �0 ' �. By 1, � ' �, so �0 ' � follows from the transitivity
of '.

8.6. �0 2 O�(f
0)

Proof : Since � contains an in�nite number of :�-stuttering steps (by 1), 8.1
(the de�nition of �0) implies that am(�

0) 2 � for in�nitely many values ofm.
Therefore, to show that �0 2 O�(f

0), it su�ces to assume that am+1(�
0) 2 �

and prove that (am+1(�
0); sm+1(�

0)) = f 0(�0jm). We consider two cases.
Case 8.6A. am+1(�

0) 6= am+1(�)
8.6A.1. am+1(�) 2 :�, sm+1(�) = sm(�), and am+1(�

0) = ��.
Proof : By 8.1 (the de�nition of �0).

8.6A.2. f 0(�0jm) = (am+1(�
0); sm+1(�

0)).
Proof : By 8.6A.1, 8.4, 8.1 (which implies sm(�

0) = sm(�) and
sm+1(�

0) = sm+1(�)), and the de�nition of f 0.
Case 8.6B. am+1(�

0) = am+1(�)
8.6B.1. g(�jm) = (am+1(�); sm+1(�))

Proof : Since am+1(�
0) is assumed to be in �, and � is a �-outcome

of g.
8.6B.2. f 0(�0jm) = g(�(�0jm))

Proof : By de�nition of f 0, since am+1(�) 2 � by hypothesis,
g(�jm) 6= ? by 8.6B.1, and �0jm = �jm by 8.4.

8.6B.3. f 0(�0jm) = (am+1(�
0); sm+1(�

0))
Proof : By 8.6B.1, 8.6B.2, 8.1, 8.4, and the assumption am+1(�

0) =
am+1(�).

End Proof of Lemma 3

Proposition 2 For any agent set � and any property P , let S�(P) be the subset
of R�(P) consisting of the union of all sets O�(f) contained in P such that f is
a total �-strategy that is invariant under :�-stuttering. Then every behavior in
R�(P) is stuttering-equivalent to a behavior in S�(P).

56

Proof of Proposition 2

This is an immediate consequence of Lemma 3.
End Proof of Proposition 2

Proposition 3 For any properties P and Q and any agent set �, if P � Q then
R�(P) � R�(Q).

Proof of Proposition 3

We assume P � Q and � 2 R�(P), and we prove � 2 R�(Q).
1. Choose a �-strategy f such that � 2 O�(f) � P .

Proof : The existence of f follows from the de�nition of R�(P).
2. � 2 O�(f) � Q

Proof : 1 and the hypothesis P � Q.
3. � 2 R�(Q)

Proof : By 2 and the de�nition of R�(Q).
End Proof of Proposition 3

Proposition 4 For any property P and agent set �, R�(R�(P)) = R�(P).

Proof of Proposition 4

We assume that P is a property and � is an agent set, and we prove R�(R�(P)) =
R�(P). The set R�(P) consists of all outcomes of winning strategies when the
system is trying to produce an outcome in P . Any such strategy is also a winning
strategy when the system is trying to produce an outcome in R�(P), so R�(R�(P))
must equal R�(P). The formal proof is as follows.

1. R�(R�(P)) � R�(P)
Proof : By Proposition 3, since R�(P) � P .

2. R�(P) � R�(R�(P))
Proof : We assume that � 2 R�(P) and prove that � 2 R�(R�(P)).
2.1. Choose a �-strategy f such that � 2 O�(f) � P .

Proof : f exists by de�nition of R�(P).
2.2. O�(f) � R�(P)

Proof : By de�nition of R�(P).
2.3. � 2 R�(R�(P))

Proof : By de�nition of R�(R�(P)), since O�(f) � R�(P) by 2.2 and
� 2 O�(f) by 2.1.

End Proof of Proposition 4

Proposition 5 For any property P and agent set �, R�(P) = R�(P)\ P .

Proof of Proposition 5

1. R�(P) � R�(P) \ P

Proof : R�(P) is included both in R�(P) (by the de�nition of closure) and in
P (by the de�nition of R�).

57

2. R�(P) \ P � R�(P)

Proof : We assume � 2 R�(P) \ P and prove � 2 R�(P). By de�nition of
R�(P), it su�ces to prove that there exists a �-strategy f such that � 2 O�(f)
and O�(f) � P . To construct f , we will choose a sequence �i of behaviors
in R�(P) having � as their limit, and strategies gi that produce the �i. We
will de�ne f so it tries to produce �. As it does so, it is acting like gi for all
su�ciently large i. When f can no longer produce �, it continues to act like
one of the gi.

2.1. For all i � 0, choose a behavior �i in R�(P) such that �ji is a pre�x of �i.

Proof : The �i exist by de�nition of closure, since � 2 R�(P)

2.2. For all i � 0, choose a �-strategy gi such that �ji is a pre�x of a fair
outcome of gi and O�(gi) � P .

Proof : By 2.1, there exist �-strategies gi with �i 2 O�(gi) � P in 2.1.

2.3. De�ne the �-strategy f as follows.

if � = �jj for some j
then if aj+1(�) 2 � then f(�) = (aj+1(�); sj+1(�))

else f(�) = ?

else f(�) = gi(�), where i is the smallest integer
such that �ji 6= �ji

Proof : f is a �-strategy since each gi is (by 2.2).

2.4. � 2 O�(f)

Proof : By 2.3, if am(�) 2 � then f(�jm�1) = (am(�); sm(�)), for all
m > 0. Thus � is a �-outcome of f . Furthermore, 2.3 implies that f(�jm)
is unde�ned if am+1(�) 2 :�, so � is fair.

2.5. For all � 2 O�(f), if � 6= � then � 2 O�(gi) for some i.

Proof : Assume � 2 O�(f) and � 6= �. Let i be the smallest integer such
that � ji 6= �ji. We show that � 2 O�(gi).

2.5.1. For all j � i, f(� jj) = gi(� jj).

Proof : By de�nition of i, if j � i then �jj 6= � jj. The result then
follows from 2.3 (the de�nition of f).

2.5.2. � is a �-outcome of gi.

Proof : We must show that for all j � 0, if aj+1(�) 2 � then gi(� jj) =
(aj+1(�); sj+1(�)). We split the proof into two cases.

Case 2.5.2A. j < i

2.5.2A.1. �jj = � jj
Proof : By the hypothesis that j < i and the de�nition of
i.

2.5.2A.2. (aj+1(�); sj+1(�)) = (aj+1(�); sj+1(�))

Proof : By 2.5.2A.1, 2.3, and the hypotheses that � is a
�-outcome of f and aj+1(�) 2 �.

2.5.2A.3. �jj+1 is a pre�x of �ji.

Proof : By hypothesis that j < i.

2.5.2A.4. gi(�jj) = (aj+1(�); sj+1(�))

58

Proof : 2.5.2A.2 and the assumption aj+1(�) 2 � imply
aj+1(�) 2 �. The result then follows from 2.5.2A.3 and
2.2, which asserts that �ji is a partial �-outcome of gi.

2.5.2A.5. gi(� jj) = (aj+1(�); sj+1(�))
Proof : By 2.5.2A.1, 2.5.2A.2, and 2.5.2A.4.

Case 2.5.2B. j � i

2.5.1 and the two hypotheses � 2 O�(f) and aj+1(�) 2 � imply
gi(� jj) = (aj+1(�); sj+1(�)).

2.5.3. � is a fair �-outcome of gi.
Proof : 2.5.2 asserts that � is a �-outcome of gi, and fairness follows
from 2.5.1 and the assumption that � is a fair outcome of f .

2.6. O�(f) � P

Proof : We assume � 2 O�(f) and prove that � 2 P . This is immediate if
� = �, because � is in P by hypothesis. If � 6= �, it follows from 2.5 and
2.2.

End Proof of Proposition 5

Proposition 6 For any nonempty safety property P and any agent set �, property
P constrains at most � i� P = R�(P).

Proof of Proposition 6

We assume that P is a nonempty safety property and � is an agent set. Since
R�(P) � P by de�nition of R�(P), it su�ces to prove that P � R�(P) i� P

constrains at most �.
1. If P constrains at most �, then P � R�(P).

Proof : We assume that � is any behavior in P and construct a �-strategy f

such that � 2 O�(f) and O�(f) � P . We will de�ne f so it tries to produce
the outcome � and does nothing if this is no longer possible. Since P is a safety
property, doing nothing cannot violate P .
1.1. For any �nite behavior pre�x �, de�ne f(�) by

if � = �jm and am+1(�) 2 �, for some m
then f(�) = (am+1(�); sm+1(�))
else f(�) = ?

Then f is a �-strategy.
Proof : f is obviously a �-strategy.

1.2. � 2 O�(f)
Proof : It is immediate from 1.1 (the de�nition of f) that � is a �-outcome
of f . It is a fair �-outcome because am+1(�) 2 :� implies that f(�jm) = ?.

1.3. O�(f) � P

Proof : We assume that � is an arbitrary behavior in O�(f) but not in P
and derive a contradiction.
1.3.1. Let m be the smallest integer such that d� jm =2 P .

Proof : m exists because P is a safety property and, by hypothesis,
� =2 P .

59

1.3.2. m > 0 and am(�) 2 �.

Proof : By 1.3.1 and the hypothesis that P constrains at most �.

1.3.3. f(� jm�1) = (am(�); sm(�))

Proof : By 1.3.2 and the hypothesis that � is a �-outcome of f .

1.3.4. (am(�); sm(�)) = (am(�); sm(�))

Proof : By 1.3.3 and 1.1 (the de�nition of f).

1.3.5. � jm�1 = �jm�1
Proof : By 1.3.3, since 1.1 (the de�nition of f) implies � is in the
domain of f i� � is a pre�x of �.

1.3.6. d� jm =d�jm
Proof : By 1.3.4 and 1.3.5.

1.3.7. d�jm 2 P

Proof : By the hypotheses that P is a safety property and � 2 P .

1.3.8. Contradiction.

Proof : 1.3.1, 1.3.6, and 1.3.7.

2. If P � R�(P), then P constrains at most �.

Proof : We assume that P does not constrain at most � and prove that there
exists a behavior in P that is not in R�(P). The behavior will be one in which
the environment could have taken a step that would have violated P , but chose
not to. Thus, the behavior cannot be produced by a winning strategy for �.

2.1. Choose � =2 P and m � 0 such that d�jm =2 P and either (i) m = 0 or

(ii) d�jm�1 2 P and am(�) =2 �.

Proof : Such a � exists by the assumption that P does not constrain at
most �.

2.2. If m = 0 then R�(P) = ;.

Proof : We assume m = 0 and prove that R�(P) = ;. The proof involves
showing that if there is some initial state in which the system loses, then
it has no winning strategy.

2.2.1. For any behavior � , if s0(�) = s0(�) then � =2 P .

Proof : 2.1 and the hypothesis m = 0 imply c�j0 =2 P . Hence, s0(�) =

s0(�) implies c� j0 =2 P , which implies � =2 P because P is a safety
property.

2.2.2. For any state s and any �-strategy f , there exists a behavior � 2
O�(f) such that s0(�) = s.

Proof : Let s be any state and let � be any agent not in �. De�ne
� inductively by letting s0(�) = s and for i > 0, if � ji�1 is in the
domain of f , then (ai(�); si(�)) = f(� ji�1), otherwise ai(�) = � and
si(�) = si�1(�).

2.2.3. R�(P) = ;

Proof : 2.2.1 and 2.2.2 imply that there exists no �-strategy f with
O�(f) � P .

2.3. If m > 0, then d�jm�1 is in P but not in R�(P).

60

Proof : Assume m > 0, so d�jm�1 2 P by 2.1. Let f be any �-strategy with
d�jm�1 2 O�(f). We prove that there exists a behavior � in O�(f) that is

not in P . We will take � to be an outcome in which �jm�1 is produced and
then the environment adds (am(�); sm(�)).

2.3.1. Let � be any agent in :�, and let � be the behavior such that
� jm = �jm and, for all i > m, if � ji�1 is in the domain of f , then
(ai(�); si(�)) = f(� ji�1), otherwise ai(�) = � and si(�) = si�1(�).

2.3.2. � 2 O�(f)
Proof : To prove that � is a �-outcome of f , we must show that for
all i > 0, if ai(�) 2 � then (ai(�); si(�)) = f(� ji�1). For i < m, this

follows because � ji = �ji (by 2.3.1) and d�jm�1 is a �-outcome of f
(by hypothesis). For i = m�1, it follows because am(�) =2 � (by 2.1
and the assumption that m > 0). For i > m, it follows immediately
from the de�nition of � . Fairness follows from the de�nition of � .

2.3.3. � =2 P

Proof : d�jm =2 P by 2.1 (the choice of �), and � jm = �jm by 2.3.1

(the de�nition of �), so d� jm =2 P . Since P is a safety property, this
implies � =2 P .

2.4. There exists a behavior in P that is not in R�(P).
Proof : If m > 0, this follows from 2.3. If m = 0, it follows from 2.2 and
the hypothesis that P is nonempty.

End Proof of Proposition 6

Proposition 7 For any agent set �, if P is a �-realizable property then R�(P)
constrains at most �.

Proof of Proposition 7

1. For any property Q, if Q is a safety property then R�(Q) is a safety property.

Proof : By Proposition 5, R�(Q) = R�(Q) \ Q. The conjunction of safety
properties is a safety property (since safety properties are closed sets), so R�(Q)
is a safety property.

2. R�(R�(P)) = R�(P)

2.1. R�(R�(P)) � R�(P)

Proof : By de�nition of R�.

2.2. R�(P) � R�(R�(P))

2.2.1. R�(R�(P)) � R�(R�(P))

Proof : By monotonicity of R; since Q � Q for any property Q.

2.2.2. R�(P) � R�(R�(P))
Proof : By 2.2.1 and Proposition 4.

2.2.3. R�(R�(P)) is a closed set.
Proof : By 1.

2.2.4. R�(P) � R�(R�(P))

61

Proof : By 2.2.2 and 2.2.3, since R�(P) is by de�nition the smallest
closed set containing R�(P).

3. R�(P) constrains at most �.
Proof : By 2, Proposition 6, and the hypothesis that P is �-realizable, so R�(P)
is nonempty.

End Proof of Proposition 7

Lemma 4 Let � be an agent set, and let E and M be properties such that:

1. E = I \ P , where

(a) I is a state predicate.

(b) P is a safety property that constrains at most :�.

2. M constrains at most �.

For any behavior � and i � 0, if � 2 R�(E) M) and c�ji =2 M , then i > 0 and
d�ji�1 =2 E.

Proof of Lemma 4

Proof : We assume � 2 R�(E) M) and c�ji =2 M , and we prove that i > 0 and
d�ji�1 =2 E.

1. i > 0

Proof : By the assumption c�ji =2M , the hypothesis that M constrains at most
�, and the de�nition of constrains at most.

2. For all j � 0, if c�jj =2M then c�jj =2 E.

Proof : We assume c�jj =2 M and c�jj 2 E, and obtain a contradiction. We will
�rst construct a behavior � that equals � for its �rst j steps, after which it
follows a strategy that puts it in E)M , taking :�-stuttering steps whenever
the strategy is unde�ned. We will then construct � by changing those :�-
stuttering steps to �-stuttering steps. This � will not be in M because �

violates M by its jth step, and it will be in E because it will not have any :�
steps that can violate E, so � =2 (E) M). This will lead to a contradiction

because � 2 (E)M) and � ' � .
2.1. Choose a behavior � such that:

(a) � jj = �jj
(b) � 2 (E)M)
(c) ak+1(�) 2 :� implies sk+1(�) = sk(�), for all k � j.

2.1.1. Choose a �-strategy f such that � 2 O�(f) � (E)M).
Proof : f exists by the assumption � 2 R�(E)M) and the de�ni-
tion of R�.

2.1.2. Choose �:� 2 :� and de�ne � by � jj = �jj and, for all k � j:
if f(� jk) 6= ? then (ak+1(�); sk+1(�)) = f(� jk)

else (ak+1(�); sk+1(�)) = (�:�; sk(�))

62

Proof : �:� exists by the assumption that � is an agent set, which
implies that :� is nonempty.

2.1.3. � jj = �jj
Proof : By 2.1.2 (the de�nition of �).

2.1.4. � 2 O�(f)

Proof : To show that � is a �-outcome of f , we must show that � jk
ends according to f for all k � 0. For k < j, this follows from 2.1.1
and 2.1.3. For k � j, it follows from 2.1.2. The outcome � is fair
because 2.1.2 implies that, for all k � j, the strategy f is unde�ned
on � jk i� ak+1(�) 2 :�.

2.1.5. � 2 (E)M)
Proof : From 2.1.1 (the choice of f) and 2.1.4.

2.1.6. ak+1(�) 2 :� implies sk+1(�) = sk(�), for all k � j.
Proof : By 2.1.2 (the de�nition of �) and 2.1.1, which asserts that f
is a �-strategy.

2.2. Choose a behavior � such that:

(a) �jj = �jj
(b) � ' �

(c) ak+1(�) 2 �, for all k � j.

2.2.1. Choose �� 2 � and de�ne � by �jj = � jj and, for all k � j:
sk+1(�) = sk(�)
if sk+1(�) 6= sk(�) then ak+1(�) = ak+1(�)

else ak+1(�) = ��
Proof : �� exists by the assumption that � is an agent set and there-
fore nonempty.

2.2.2. �jj = � jj
Proof : By 2.2.1 and 2.1(a).

2.2.3. � ' �

Proof : By 2.2.1, since � is obtained from � by changing only agents
on stuttering steps.

2.2.4. ak+1(�) 2 �, for all k � j.
Proof : By 2.2.1 (the de�nition of �) and 2.1(c).

2.3. � 2 E

2.3.1. c�jj 2 E

Proof : By 2.2(a) and the assumption c�jj 2 E.
2.3.2. � 2 I

Proof : By 2.3.1 and the hypotheses that I is a state predicate and
E = I \ P .

2.3.3. � 2 P

Proof : By 2.3.1, 2.2(c), and the hypotheses that P constrains at
most :� and E = I \ P .

2.3.4. � 2 E
Proof : By 2.3.2 and 2.3.3, since E = I \ P by hypothesis.

63

2.4. � =2M

2.4.1. c�jj =2M

Proof : 2.2(a) and the assumption c�jj =2M .
2.4.2. � =2M

Proof : By 2.4.1, since M is a safety property.
2.4.3. � =2M

Proof : By 2.4.2, since M � M .
2.5. � =2 (E)M)

Proof : By 2.3 and 2.4.
2.6. � =2 (E)M)

Proof : By 2.2(b), 2.5, and the hypothesis that E and M are properties.

2.7. Contradiction.
Proof : By 2.6 and 2.1(b).

3. d�ji�1 =2 E

Proof : Let j be the smallest natural number such that c�jj =2M . The hypothesis
c�ji =2M implies j � i. We now consider two cases.
Case 3A. j < i

3A.1. c�jk =2M , for all k � j.

Proof : c�jk =2M by de�nition of j, and M is a safety property.

3A.2. d�ji�1 =2M
Proof : By 3A.1 and the assumption j < i.

3A.3. d�ji�1 =2 E
Proof : By 3A.2 and 2.

Case 3B. j = i

3B.1. d�ji�1 2M
Proof : By de�nition of j and the assumption j = i, since i > 0 by 1.

3B.2. ai(�) 2 �

Proof : By 3B.1, the assumption c�ji =2 M , and the hypothesis that M
constrains at most �.

3B.3. c�ji =2 E

Proof : By 2 and the assumption c�ji =2M .

3B.4. d�ji�1 =2 E

Proof : By 3B.2, 3B.3, and the hypothesis that E constrains at most :�.
End Proof of Lemma 4

Proposition 8 Let � be an agent set, I a state predicate, P a safety property that
constrains at most :�, and Q a safety property that constrains at most �. Then
R�(I \ P) Q) equals I \ P �. Q.

Proof of Proposition 8

1. R�(I \ P) Q) � (I \ P �. Q)

64

Proof : We assume that there exists a behavior � such that � 2 R�(I \P) Q)
and � =2 (I \ P �. Q), and we obtain a contradiction.

1.1. Let i be the smallest integer such that c�ji =2 (I \ P �. Q).

Proof : i exists by the hypothesis � =2 (I \ P �. Q) and the de�nition of
I \ P �. Q.

1.2. c�ji =2 Q

Proof : By 1.1.

1.3. d�ji�1 2 P

Proof : By 1.1, which implies c�ji 2 P , since P is a safety property and
(�ji)ji�1 equals �ji�1.

1.4. Contradiction.

Proof : By 1.2, 1.3, the hypothesis � 2 R�(I \ P) Q), and Lemma 4
(substituting Q for M).

2. (I \ P �. Q) � R�(I \ P) Q)

2.1. (I \ P �. Q) � (I \ P) Q)

Proof : By de�nition of (I \ P �. Q)

2.2. R�(I \ P �. Q) � R�(I \P) Q)

Proof : By 2.1 and Proposition 3.

2.3. I \ P �. Q constrains at most �.

Proof : I \P �. Q is a safety property and Q � (I \P �. Q) by de�nition
of I \ P �. Q. Since Q constrains at most � by hypothesis, any safety
property containing Q also constrains at most �.

2.4. I \ P �. Q is nonempty.

Proof : Q is nonempty by the hypothesis that it constrains at most �, and
Q is a subset of I \ P �. Q.

2.5. R�(I \ P �. Q) = I \ P �. Q

Proof : By 2.3, 2.4, and Proposition 6.

2.6. (I \ P �. Q) � R�(I \ P) Q)

Proof : By 2.2 and 2.5.

End Proof of Proposition 8

Proposition 9 For any agent set �, safety property M , and arbitrary property L,
the following three conditions are equivalent:

(a) For every �nite behavior � such that b� 2 M , there exist a �-strategy f with
O�(f) �M \ L and a behavior � 2 O�(f) with � a pre�x of �.

(b) For every �nite behavior � such that b� 2 M , there exist a �-strategy f with
O�(f) � M \ L and a behavior � 2 O�(f) with � stuttering-equivalent to a
pre�x of �.

(c) The pair (M; M \ L) is machine-closed, and M \ L is �-receptive.

65

Proof of Proposition 9

It is obvious that (a) implies (b). We prove that (b) implies (c), and that (c) implies
(a). We �rst assume that (b) holds and prove (c).

1. M � R�(M \ L)

Proof : We assume � 2M and prove that � 2 R�(M \L). By de�nition of the
topology, it su�ces to assume that i > 0 and prove that there exists a behavior
� 2 R�(M \ L) such that �ji ' � jj, for some j.

1.1. c�ji 2M

Proof : Since M is closed by hypothesis, and the de�nition of the topology.

1.2. Choose a �-strategy f with O�(f) �M \L and a behavior � 2 O�(f) such
that �ji ' � jj for some j.

Proof : By (b) and 1.1, substituting �ji for � and � for � in (b).

1.3. � 2 R�(M \ L) and �ji ' � jj, for some j.

Proof : By 1.2, since O�(f) � M \ L implies O�(f) � R�(M \ L) by
de�nition of R�.

2. The pair (M;M \ L) is machine-closed.

Proof : We must prove that M =M \L.

2.1. M \L �M

2.1.1. M \ L �M

Proof : By monotonicity of closure.

2.1.2. M =M

Proof : By hypothesis, M is a safety property.

2.1.3. M \ L �M

Proof : By 2.1.1 and 2.1.2.

2.2. R�(M \ L) �M \ L

Proof : Since R�(U) � U for any property U , and closure is monotone.

2.3. M � M \ L

Proof : By 1 and 2.2.

3. M \ L is �-receptive.

Proof : By de�nition, we must prove that M \ L = R�(M \ L).

3.1. M \ L � R�(M \ L)

Proof : By 1.

3.2. R�(M \ L) \M \ L =M \ L

Proof : By 3.1.

3.3. R�(M \ L) = R�(M \ L) \M \ L

Proof : By Proposition 5.

3.4. M \ L = R�(M \ L)

Proof : By 3.2 and 3.3.

We now assume that (c) holds and prove (a). Let � be a �nite behavior with b� 2M .
We must �nd a �-strategy f with O�(f) �M \ L and a behavior � 2 O�(f) with
� a pre�x of �.

1. Choose � 2M \ L such that � is a pre�x of �.

66

Proof : � exists by the machine-closure hypothesis (M =M \ L).
2. � 2 R�(M \ L)

Proof : By 1 and the hypothesis that M \ L is receptive.

3. There exists a �-strategy f such that � 2 O�(f) and O�(f) �M \ L.
Proof : By 2 and the de�nition of R�(M \ L).

End Proof of Proposition 9

Proposition 10 Let � be an agent set, let x be the projection function from S�X

to X, and let Ix be an S�X-predicate, N a next-state relation on S�X, and L
an S�X-property. Let M equal (3) and let P equal (2). Assume that:

(a) For all s 2 S there exists x 2 X such that (s; x) 2 Ix.

(b) The pair (TA�(N), TA�(N)\(Ix\TA:�(Ux)) L)) is �-machine-realizable.

(c) M is a safety property.

Then (M;P) is �-machine-realizable.

Proof of Proposition 10

By part (b) of Proposition 9, it su�ces to assume that � is a �nite behavior pre�x
such that b� 2 9x : Ix \ TA:�(Ux) \ TA�(N) and to construct a �-strategy f

such that O�(f) is a subset of 9x : Ix \ TA:�(Ux) \ TA�(N) \ L, and a behavior
� 2 O�(f) such that � ' �jj for some j. To construct f and �, we will �rst choose
a strategy g whose outcomes all lie in TA�(N) \ (Ix \ TA:�(Ux)) L) and a
behavior � produced by g whose projection (by �S) has � as a pre�x. We will then
de�ne an \inverse projection" 	 from S-behaviors to S�X-behaviors whose image
contains �, and will de�ne f to be g composed with 	 and � to be the projection
of �.

1. Choose � 2 Ix \ TA:�(Ux) \ TA�(N) such that �S (�) ' b�.

Proof : The existence of � follows from the hypothesis that b� 2 9x : Ix \
TA:�(Ux) \ TA�(N) and the de�nition of existential quanti�cation.

2. Choose j such that �S(�jj) ' �.

Proof : j exists by 1, which asserts that �S(�) ' b�.
3. Choose a �-strategy g such that O�(g) � TA�(N) \ (Ix \ TA:�(Ux)) L) and
�jj is a partial �-outcome of g.

Proof : By hypothesis (b), the de�nition of machine-realizability, and part (a) of
Proposition 9 (with �jj substituted for �).

4. Choose a behavior � 2 O�(g) such that � jj = �jj and � 2 Ix \ TA:�(Ux) \
TA�(N) \ L.

4.1. De�ne � inductively as follows, where �:� is any element of :�.
if i � j then ai(�) = ai(�) and si(�) = si(�)

if i > j then if g(� ji�1) = ?

then (ai(�); si(�)) = (�:�; si�1(�))
else (ai(�); si(�)) = g(� ji�1)

67

Then � jj = �jj and � 2 O�(g).

Proof : By construction, � jj = �jj. Since �jj is a partial �-outcome of g (by
3), the de�nition of � implies that � is a �-outcome. It is a fair �-outcome
because, for all i > j, ai(�) 2 :� i� g(� ji�1) = ?.

4.2. � 2 Ix \ TA:�(Ux) \ TA�(N) \ L

Proof : By 4.1 and 3, � 2 O�(g) � TA�(N) \ (Ix \ TA:�(Ux)) L). It
therefore su�ces to prove that � 2 Ix \ TA:�(Ux), which means proving
that (i) s0(�) 2 Ix and (ii) ai(�) 2 :� implies �X(si�1(�)) = �X(si(�)).
But (i) holds because s0(�) = s0(�) and s0(�) 2 Ix by 1. Condition
(ii) follows for i � j by 1, since � jj = �jj by 4.1. For i > j, (ii) follows
immediately from the de�nition of � .

5. Choose a monotone mapping 	 from behavior pre�xes with state space S to
behavior pre�xes with state space S�X such that

(a) For any �nite behavior pre�x �

(i) �S((�)) = �

(ii) s0((�)) 2 Ix

(iii) For all i > 0, if ai((�)) 2 :� then (si�1((�)); si((�))) 2 Ux.

(iv) For any agent � and state s in S, if �S(g((�))) = (�; s), then
	(� � (�; s)) = 	(�) � g((�)).

(b) 	(�) = limm!1 	(�jm) for any behavior �.

(c) 	(�S(� ji)) = � ji, for all i � 0.

Proof : We de�ne 	(�) for any �nite behavior pre�x � by induction on j�j as
follows.

if j�j = 0
then if s0(�) = �S(s0(�))

then s0((�)) = s0(�)
else s0((�)) = (s0(�); x) for any x with (s0(�); x) 2 Ix.

if � = � � (�; s)
then if � 2 :�

then 	(�) = 	(�) � (�; (s;�X((�)s)))
else if (�; s) = �S(g((�)))

then 	(�) = 	(�) � g((�))
else 	(�) = 	(�) � (�; (s; x)) for any x in X.

Note that in the case j�j = 0, the x chosen in the else clause exists by hypothesis
(a) of the Proposition. We take (b) as the de�nition of 	 for behaviors. The
monotonicity of 	 is immediate from the de�nition, so the limit in (b) exists.
Property (a)(ii) follows from the case j�j = 0 in the de�nition of 	(�). Properties
(a)(i), (a)(iii), and (a)(iv) follow from the de�nition of 	 by induction on j�j.
The proof of (c) is by induction on i. For i = 0, it follows immediately from the
de�nition of 	. For the induction step, we assume � ji = � ji�1 � (�; (s; x)) and
	(�S(� ji�1)) = � ji�1 and prove 	(�S(� ji)) = � ji. If � 2 �, then this follows

68

from the de�nition of 	 because � 2 O�(g) (by 4). If � =2 �, then it follows from
the de�nition of 	 because � 2 TA:�(Ux) (also by 4).

6. For any �nite behavior pre�x � with states inS, de�ne f(�) to equal �S(g((�))),
where �S is extended to a mapping from A� (S�X) to A� S in the obvious
way. Then f is a �-strategy, and � 2 O�(f) implies 	(�) 2 O�(g).

6.1. �a = 	(�)a, for any �nite behavior pre�x �.
Proof : By 5(a)(i) and the de�nition of �S.

6.2. f is a �-strategy.
Proof : By 6.1, since g is a �-strategy (by 3).

6.3. For any �nite behavior pre�x �, if � ends according to �; f then 	(�) ends
according to �; g.
Proof : If �a 2 :�, then this follows from 6.1. If �a 2 �, then it follows
from 5(a)(iv).

6.4. If � 2 O�(f) then 	(�) 2 O�(g).
Proof : Assume that � 2 O�(f). Since � is a �-outcome of f , 6.3 implies
that 	(�) is a �-outcome of g. Since f(�) = ? i� g((�)) = ?, 6.1 and the
fairness of � implies that 	(�) is also fair.

7. If � 2 O�(f) then 	(�) 2 Ix \ TA:�(Ux) \ TA�(N) \ L.

Proof : By 3 and 6, 	(�) 2 TA�(N) \ (Ix \ TA:�(Ux)) L). By 5(a)(ii) and
5(a)(iii), 	(�) 2 Ix \ TA:�(Ux).

8. O�(f) � 9x : Ix \ TA:�(Ux) \ TA�(N) \ L
Proof : By de�nition of existential quanti�cation, it su�ces to prove that for
every behavior � 2 O�(f) there exists a behavior �

0
2 Ix\TA:�(Ux)\TA�(N)\

L such that �S(�
0) = �. By 5(a)(i) and 7, we can let �0 equal 	(�).

9. Let � = �S(�). Then � 2 O�(f) and � ' �jj.

9.1. f(�ji) = �S(g(� ji)), for all i � 0.
Proof : By 5(c) and 6 (the de�nition of f).

9.2. For all i � 0, if ai+1(�) 2 � then �ji+1 = �ji � f(�ji).

Proof : By 4, � 2 O�(g). Therefore, 5(a)(i) implies that if ai+1(�) 2 � then
� ji+1 = � ji � g(� ji). Hence, �S(� ji+1), which by de�nition equals �ji+1, is
equal to �S(� ji � g(� ji)). The desired result now follows from 9.1.

9.3. � 2 O�(f)
Proof : By 9.2, � is a �-outcome of f . Since 4 asserts that � is a fair �-
outcome of g, fairness of � follows from 5(a)(i), 5(c), and 6, which imply
that ai(�) 2 � i� ai(�) 2 � and that f(�ji) is de�ned i� g(� ji) is.

9.4. � ' �jj
Proof : By 2, 4 (which asserts � jj = �jj), and the de�nition of �.

End Proof of Proposition 10

Theorem 1 If I is a state predicate, (ES ; ES \EL) is :�-machine-realizable, MS

is a safety property, and ML is any property, then

I \ES \EL) MS \ML

69

and

I \ES) MS \ (EL)ML)

are �-equirealizable.

Proof of Theorem 1

We assume that I is a state predicate, (ES ; ES \EL) is :�-machine-realizable,MS

is a safety property, and ML is any property, and we prove

R�(I \ES \EL)MS \ML) = R�(I \ES)MS \ (EL)ML))

1. R�(I \ES)MS \ (EL)ML)) � R�(I \ES \EL)MS \ML)

Proof : By Proposition 3, since (I \ES)MS \ (EL)ML)) � (I \ES \EL)

MS \ML) by propositional reasoning.

2. R�(I \ES \EL)MS \ML) � R�(I \ES)MS \ (EL)ML))

Proof : Let f be a �-strategy such that O�(f) � (I \ES \EL)MS \ML); we
must prove that O�(f) � (I \ES)MS \ (EL)ML)). We assume � 2 O�(f)
and prove that � 2 (I \ ES) MS \ (EL) ML)). We do this by assuming
� =2 (I \ES)MS \ (EL)ML)) and obtaining a contradiction.

The proof rests on the observation that the hypotheses imply � 2 I \ ES ,
� =2MS , and � =2 EL. Since MS is a safety property, � must violate it at some
�nite point, while it is still possible for the environment to satisfy EL. The
contradiction is obtained by playing the strategy f , from the point at which �
violates MS , against an environment strategy h (constructed in step 2.4) that
achieves ES \EL (producing the behavior � of step 2.5). For technical reasons,
we replace � and f in this argument with a behavior � ' � and a total strategy
g, obtained from Lemma 3.

2.1. Choose a total �-strategy g and a behavior � such that � ' �, � 2 O�(g),
and every behavior in O�(g) is stuttering-equivalent to a behavior inO�(f).
Proof : g and � exist by Lemma 3.

2.2. � 2 I \ES, � =2MS , and � =2 EL.

2.2.1. � =2 (I \ES)MS \ (EL)ML))
Proof : � ' � by 2.1 (the de�nition of �), � =2 (I\ES)MS\(EL)

ML)) by hypothesis, and properties are by de�nition closed under
stuttering-equivalence.

2.2.2. � 2 (I \ES \EL)MS \ML)
Proof : � ' � by 2.1, � 2 (I \ ES \ EL) MS \ML) since � 2

O�(f) � (I \ES \EL) MS \ML) by hypothesis, and properties
are closed under stuttering-equivalence.

2.2.3. � 2 I \ES , � =2MS , and � =2 EL.

Proof : From 2.2.1 and 2.2.2, by propositional reasoning.

2.3. Choose i � 0 such that c� ji =2MS .
Proof : Such an i exists because MS is a safety property by hypothesis and
� =2MS by 2.2.

70

2.4. Choose a :�-strategy h and a behavior 2 O:�(h) such that ji = � ji
and O:�(h) � ES \EL.

Proof : The existence of h and follows from 2.2, the hypothesis that
(ES; ES \EL) is :�-machine-realizable, and Proposition 9.

2.5. Choose a behavior � such that

(a) �ji = � ji

(b) � 2 O�(g)

(c) � 2 O:�(h)

Proof : De�ne � by �ji = ji and, for all j � i,

if j is odd or h(�jj) is unde�ned
then (aj+1(�); sj+1(�)) = g(�jj)
else (aj+1(�); sj+1(�)) = h(�jj)

2.5.1. � is a behavior

Proof : g is total by 2.1.

2.5.2. �ji = � ji
Proof : By 2.4 and the de�nition of �.

2.5.3. � is a �-outcome of g.

Proof : We must prove that if aj+1(�) 2 � then g(�jj) =
(aj+1(�); sj+1(�)). For j < i, this holds because �ji = � ji by 2.5.2,
and � 2 O�(g) by 2.1. For j � i, it holds by the de�nition of � and
2.4, which asserts that h is a :�-strategy.

2.5.4. � 2 O�(g)

Proof : � is an outcome by 2.5.3. It is fair because, by de�nition,
� has in�nitely many steps of the form g(�jj), which are � steps
because g is a �-strategy (by 2.1).

2.5.5. � is a :�-outcome of h.

Proof : We must prove that if aj+1(�) 2 :� then h(�jj) =
(aj+1(�); sj+1(�)). For j < i, this holds because �ji = ji by de�-
nition of �, and 2 O:�(h) by 2.4. For j � i, it holds by de�nition
of � and 2.1, which asserts that g is a �-strategy.

2.5.6. � 2 O:�(h)

Proof : � is an outcome by 2.5.5. It is fair because, by de�nition
of �, either h(�jj) is unde�ned in�nitely often or else an in�nite
number of steps of � are of the form h(�jj), which are :� steps
because 2.4 asserts that h is a :�-strategy.

2.6. � =2MS

Proof : c�ji = c� ji by 2.5(a), c� ji =2 MS by 2.3, and MS is a safety property
by hypothesis.

2.7. � 2 (I \ES \EL)MS \ML)

Proof : 2.5(b) asserts that � 2 O�(g), so 2.1 implies that � is stuttering-
equivalent to an element of O�(f). Hence � 2 (I \ES \EL)MS \ML)
because O�(f) � (I \ES \EL)MS \ML) by hypothesis, and properties
are closed under stuttering-equivalence.

71

2.8. � 2 I \ES \EL

Proof : � is in I because � 2 I by 2.2, s0(�) = s0(�) by 2.5(a), and I is
a state predicate by hypothesis. It is in ES \ EL because � 2 O:�(h) by
2.5(c), and O:�(h) � ES \EL by 2.4.

2.9. Contradiction.
Proof : 2.7 and 2.8 imply � 2MS \ML, which contradicts 2.6.

End Proof of Theorem 1

Corollary Let � be any agent set, let x be the projection function from S�X to
X, let I be an S-predicate, let (ES ; ES \ EL) be a :�-machine-realizable pair of
S-properties, and let MS and ML be S�X-properties such that 9x :MS is a safety
property. Then

I \ES \EL) 9x :MS \ML

and
I \ES) 9x :MS \ (EL)ML)

are �-equirealizable.

Proof of Corollary

Substituting 9x :MS for MS and 9x :MS \ML for ML in Theorem 1 shows that

I \ES \EL) 9x :MS \ML

and
I \ES) ((9x :MS) \ 9x : (EL)MS \ML))

are �-equirealizable. Since EL does not depend on the x component, it follows
from the de�nition of existential quanti�cation and simple logical deduction that
(9x :MS) \ 9x : (EL)MS \ML) equals 9x :MS \ (EL)ML).
End Proof of Corollary

Proposition 11 For any disjoint pair of agent sets �1 and �2, and any properties
P1 and P2, the property R�1 (P1) \R�2 (P2) is �1 [�2-receptive.

Proof of Proposition 11

By de�nition of receptiveness, it su�ces to assume � 2 O�i(fi) � R�i (Pi) for
i = 1; 2, where the fi are �i-strategies, and to construct a �1 [�2-strategy g such
that � 2 O�1[�2 (g) � O�1(f1) \O�2 (f2). We will de�ne g to be the strategy that
begins by trying to generate �, and when that is no longer possible, performs either
an f1 or an f2 step, alternating between the two when it can do either.
1. For any �nite behavior pre�x �, de�ne g(�) as follows (where max; equals �1).

if � = �jj, for some j � 0
then if aj+1(�) 2 �1 [�2

then g(�) = (aj+1(�); sj+1(�))
else g(�) = ?

72

else if (f2(�) = ?) _ ((f1(�) 6= ?) ^ (0 < n) ^ (an(�) 2 �2));
where n = maxfk � j�j : ak(�) 2 �1 [�2g

then g(�) = f1(�)
else g(�) = f2(�)

Then g is a �1 [�2-strategy.

Proof : g is a �1 [�2-strategy because each fi is a �i-strategy.

2. � 2 O�1[�2 (g)

Proof : It is immediate from 1 (the de�nition of g) that � is a �1 [�2-outcome
of g.

3. O�1[�2 (g) � O�1(f1) \O�2(f2)

Proof : We assume � 2 O�1[�2 (g) and i 2 f1; 2g, and we prove that � 2 O�i(fi).
Since � 2 O�1 (f1) \O�2(f2) by hypothesis, we may assume that � 6= �.

3.1. � is a �i-outcome of fi.

Proof : It su�ces to assume that aj+1(�) 2 �i and prove that fi(� jj) =
(aj+1(�); sj+1(�)). There are two cases.

Case 3.1A. � jj = �jj
In this case, the desired result follows from the hypothesis that � 2 O�i(fi).

Case 3.1B. � jj 6= �jj
Since � is a �1 [�2-outcome of g by hypothesis, and aj+1(�) 2 �i implies
aj+1(�) 2 �1 [�2, it su�ces to prove that if g(� jj) = (�; s) with � 2 �i,
then fi(� jj) = g(� jj). The desired equality follows from 1, the assumption
that � jj 6= �jj, and the hypothesis that �1 and �2 are disjoint.

3.2. � 2 O�i (fi)

Proof : 3.1 asserts that � is a �i-outcome of fi, so we need only prove that
it is a fair outcome. We assume that � has only �nitely many �i steps and
prove that fi(� jj) is unde�ned for in�nitely many values of j � 0.

Case 3.2A. aj(�) 2 �1 [�2 for only �nitely many j � 0.
In this case, the hypothesis � 2 O�1[�2 (g) implies that g(� jj) is unde�ned
for in�nitely many j. By 1, if � is not a pre�x of �, then g(�) is unde�ned
i� both f1(�) and f2(�) are unde�ned. Hence, g(� jj) unde�ned for in�nitely
many j and the assumption � 6= � imply that fi(� jj) must be unde�ned for
in�nitely many values of j.

Case 3.2B. aj(�) 2 �1 [�2 for in�nitely many j � 0.

3.2B.1. Choose l � 0 such that for all j � l,

(a) If aj(�) 2 �1 [�2 then (i) aj(�) =2 �i, and (ii) n > 0 implies
an(�) =2 �i, where n = maxfk � j � 1 : ak(�) 2 �1 [�2g.

(b) � jj�1 6= �jj�1

Proof : We can choose l satisfying (a) by the assumptions that � has
only �nitely many �i steps and that aj(�) 2 �1 [�2 for in�nitely
many j � 0. Since � 6= �, we can choose l large enough so that (b)
also holds.

3.2B.2. For all j � l, if aj(�) 2 �1 [�2, then fi(� jj�1) = ?.

73

Proof : Assume j � l and aj(�) 2 �1 [�2. Since � 2 O�1[�2 (g), we
have g(� jj�1) = (aj(�); sj(�)). Since aj(�) =2 �i by 3.2B.1(a), and
fi is a �i-strategy, we infer g(� jj�1) 6= fi(� jj�1). In the de�nition of
g(�) in 1, if � is not a pre�x of � and n � 0 implies an(�) =2 �i, then
g(�) 6= fi(�) implies fi(�) = ?. Hence, 3.2B.1 implies fi(� jj�1) =
?.

3.2B.3. fi(� jj) is unde�ned for in�nitely many j � l.
Proof : By 3.2B.2, fi(� jj) is unde�ned for all j � l with aj(�) 2
�1 [�2, and by hypothesis, there are in�nitely many such j.

End Proof of Proposition 11

Proposition 12 If �1, �2, and �1 [�2 are agent sets and E, E1, and M2 are
properties such that:

1. E = I \ P where

(a) I is a state predicate.

(b) P is a safety property that constrains at most :(�1 [�2).

2. E1 is a safety property.

3. �1 \ �2 = ;

4. M2 is a �2-abstract property.

Then the rule of inference
E \M2 � E1

E \M2 � E1

is sound.

Proof of Proposition 12

Proof : We assume E \M2 � E1 and prove E \M2 � E1. We do this by assuming
the existence of a behavior � in E\M2 but not in E1, and obtaining a contradiction.
We will obtain the contradiction by constructing a behavior in E \M2 that is not
in E1. We will �rst construct a behavior � in M2 by continuing � from the point
at which it violates the safety property E1. We will then modify � by replacing

agents in :(�1 [�2) with agents in �1 to obtain a behavior � that will still be in
M2 (because M2 is �2-abstract), in E (because only :(�1 [�2) steps can violate
E), but not in E1.

1. Choose i � 0 such that c�ji 2 E \M2 and c�ji 62 E1.
Proof : Since E1 is a safety property and � 62 E1, there exists an i such that
c�ji 62 E1. Since E andM2 are safety properties, E\M2 is also a safety property.

Hence, the assumption � 2 E \M2 implies c�ji 2 E \M2.
2. Choose a behavior � in M2 such that �ji = �ji.

Proof : � exists by 1, which asserts � 2M2, and the de�nition of closure.
3. Choose � 2 �1 and let � be the behavior such that, for all k � 0:

74

sk(�) = sk(�)
if (k + 1 � i) _ (ak+1(�) 2 (�1 [�2)) then ak+1(�) = ak+1(�)

else ak+1(�) = �

Then � is �2-equivalent to �.

Proof : � is the same as � except that some agents not in �1 [�2 have been
replaced by �, an agent in �1. Since �1 and �2 are disjoint by hypothesis 3, � is
�2-equivalent to �.

4. � ji = �ji
Proof : By 2 and 3, which implies �ji = � ji.

5. � 2 E \M2

5.1. � 2 I

Proof : 1 and 4 imply c� ji 2 I, since E � I; and I is a state predicate by
hypothesis 1(a).

5.2. � 2 P

5.2.1. ak(�) 2 (�1 [�2), for all k � i.

Proof : By 3.

5.2.2. c� ji 2 P

Proof : By 1 and 4, since E � P .

5.2.3. � 2 P

Proof : By 5.2.1, 5.2.2, and hypothesis 1(b), which asserts that P
constrains at most :(�1 [�2).

5.3. � 2M2

Proof : � 2M2 by 2, � is �2-equivalent to � by 3, and M2 is �2-abstract by
hypothesis 4.

5.4. � 2 E \M2

Proof : By 5.1, 5.2, and 5.3, since E equals I \ P .

6. � 62 E1

Proof : 1 and 4 imply c� ji 62 E1, and E1 is a safety property by hypothesis 2.

7. Contradiction.

Proof : 5, 6, and the hypothesis E \M2 � E1.

End Proof of Proposition 12

Theorem 2 If �1, �2, and �1[�2 are agent sets and E, E1, E2, M1, and M2 are
properties such that:

1. E = I \ P , E1 = I1 \ P1, and E2 = I2 \ P2, where

(a) I, I1, and I2 are state predicates.

(b) P , P1, and P2 are safety properties that constrain at most
:(�1 [�2), :�1, and :�2, respectively.

2. M1 and M2 constrain at most �1 and �2, respectively.

3. �1 \ �2 = ;

75

Then the rule of inference

E \M1 \M2 � E1 \E2

R�1 (E1)M1) \R�2 (E2)M2) � R�1[�2(E)M1 \M2)

is sound.

Proof of Theorem 2

Proof : We assume the hypotheses of the theorem, and we prove the soundness of
the inference rule by assuming its hypothesis and deducing its conclusion.
1. R�1(E1)M1) \R�2(E2)M2) � (E)M1 \M2).

Proof : We assume � 2 R�1 (E1) M1) \ R�2(E2) M2) and � =2 (E)

M1 \M2), and we obtain a contradiction.

1.1. � =2 E1 \E2

1.1.1. Choose j 2 f1; 2g such that � =2Mj .

Proof : The assumption � =2 (E) M1 \M2) implies � =2 M1 or
� =2M2.

1.1.2. � 2 (Ej)Mj)

Proof : By the assumption � 2 R�1 (E1)M1)\R�2(E2)M2) and
the de�nition of R�j .

1.1.3. � =2 Ej

Proof : By 1.1.1 and 1.1.2.

1.1.4. � =2 E1 \E2

Proof : By 1.1.3.

1.2. Let i be the smallest natural number such that c�ji =2 E1 \E2.

Proof : Such an i exists by 1.1, because hypothesis 1 implies that E1 \ E2

is a safety property.

1.3. c�ji =2 E \M1 \M2

Proof : By 1.2 and the assumption that the hypothesis of the inference rule
holds.

1.4. c�ji 2 E
Proof : The assumption � =2 (E) M1 \M2) implies � 2 E, and E is a
safety property.

1.5. c�ji =2M1 \M2

Proof : By 1.3 and 1.4.

1.6. i > 0 and d�ji�1 =2 E1 \E2.

Proof : By 1.5, there exists j 2 f1; 2g such that c�ji =2 Mj . Hypotheses 1
and 2 of the theorem, and the assumption � 2 R�j (Ej) Mj) then allow
us to apply Lemma 4, substituting �j , Ij, Pj, and Mj for �, I, P , and M ,

to conclude i > 0 and d�ji�1 =2 Ej.
1.7. Contradiction.

Proof : By 1.6 and the choice of i in 1.2.

2. R�1(E1)M1) \R�2(E2)M2) � R�1[�2 (E)M1 \M2)

76

Proof : By 1, Proposition 3, and Proposition 11, which we can apply by hypoth-
esis 3.

End Proof of Theorem 2

77

78

Acknowledgements

Greg Nelson and Cynthia Hibbard provided useful comments on the original

version of this article. Eugene Stark sent us his thesis proposal and pointed

out the correspondence between our de�nitions and the ones in his thesis.

79

80

Glossary

ai(�): The i
th agent of behavior �.

f , g, h: Strategies, except in Section 5.2.2, where f is a re�nement mapping.

inp, mid , out: State components from the example in Figure 3.

si(�): The i
th state of behavior �.

s, t: States.

x, y: Internal state components.

A: The set of all agents.

E: An environment assumption (a property).

ES, EL: Safety and liveness parts of E (in Section 4.3).

I: A state predicate.

Ix: An initial condition for an internal state component x.

I: The identity next-state relation.

L: A progress property.

M : A system guarantee (a property).

MS, ML: Safety and liveness parts of M (in Section 4.3).

N : A next-state relation.

NE, NM : Next-state relations of an environment and a system.

O�(f): The set of behaviors generated by �-strategy f .

P , Q: Sets of behaviors|usually properties.

R�(P): The �-realizable part of P .

S: A speci�cation.

S: The set of all states.

81

TA(N): The property de�ned by the next-state relation N of a complete

program.

TA�(N): The property asserting that every �-step satis�es the next-state

relation N .

Ux: The next-state relation asserting that state component x is unchanged.

V (P; �): The step number of the �rst step at which behavior � violates

property P .

X, Y: Sets of internal states.

�, �: Agents.

��: An agent in �.

�: A set of agents, usually an agent set.

�, �, �: Behavior pre�xes, usually �nite.

�, �, � , �: Behavior pre�xes, usually in�nite.

 : A behavior pre�x (�nite or in�nite).

�, �: Mappings on behavior pre�xes.

�: A system (not a formally de�ned concept).

�S: The projection mapping onto the external states.

�X The projection mapping onto the internal states.

9x: Existential quanti�cation over a state component x.

s
�
�! t: A step performed by agent �.

P : The closure of P (the smallest safety property containing P).

P) Q: The property consisting of all behaviors that are in Q or not in P .

P �. Q: The property asserting that Q holds as long as P does.

Sjx
y
: The result of substituting x for y in the formula for S.

82

� � (�; s): The �nite behavior pre�x obtained by concatenating
�
�! s to the

end of �.

�a: The last agent of �.

�s: The last state of �.

j�j: The length of �.

b�: The behavior obtained by extending the �nite behavior pre�x � with

stuttering steps.

�jn: The �nite behavior pre�x consisting of the �rst n steps of �.

\��: The behavior pre�x obtained by removing �-stuttering steps from �.

': Stuttering-equivalence.

'�: �-stuttering-equivalence.

fPg�fQg: A Hoare triple.

f(�) = ?: Asserts that � is not in the domain of f .

83

84

References

[AFK88] Krzysztof R. Apt, Nissim Francez, and Shmuel Katz. Apprais-

ing fairness in languages for distributed programming. Dis-

tributed Computing, 2:226{241, 1988.

[AL91] Mart��n Abadi and Leslie Lamport. The existence of re�nement

mappings. Theoretical Computer Science, 82(2):253{284, May

1991.

[ALW89] Mart��n Abadi, Leslie Lamport, and Pierre Wolper. Realiz-

able and unrealizable speci�cations of reactive systems. In

G. Ausiello, M. Dezani-Ciancaglini, and S. Ronchi Della Rocca,

editors, Automata, Languages and Programming, volume 372

of Lecture Notes in Computer Science, pages 1{17. Springer-

Verlag, July 1989.

[AS85] Bowen Alpern and Fred B. Schneider. De�ning liveness. Infor-

mation Processing Letters, 21(4):181{185, October 1985.

[BDDW91] Manfred Broy, Frank Dederichs, Claus Dendorfer, and Rainer

Weber. Characterizing the behaviour of reactive systems by

trace sets. In Eike Best and Grzegorz Rozenberg, editors, 3rd

Workshop on Concurrency and Compositionality, volume 191

of GMD-Studien, pages 47{56, Saint Augustin, Germany, 1991.

GMD. Extended abstract.

[BKP86] Howard Barringer, Ruurd Kuiper, and Amir Pnueli. A really

abstract concurrent model and its temporal logic. In Thirteenth

Annual ACM Symposium on Principles of Programming Lan-

guages, pages 173{183. ACM, January 1986.

[Dav64] Morton Davis. In�nite games of perfect information. In

M. Dresher, L. S. Shapley, and A. W. Tucker, editors, Advances

in game theory, volume 52 of Annals of Mathematics Studies,

pages 85{101. Princeton University Press, Princeton, New Jer-

sey, 1964.

[dBdRR90] J. W. de Bakker, W.-P. de Roever, and G. Rozenberg, edi-

tors. Stepwise Re�nement of Distributed Systems: Models, For-

malisms, Correctness, volume 430 of Lecture Notes in Computer

Science, Berlin, 1990. Springer-Verlag.

85

[Dil88] David L. Dill. Trace Theory for Automatic Hierarchical Ver-

i�cation of Speed-Independent Circuits. PhD thesis, Carnegie

Mellon University, February 1988.

[Hoa72] C. A. R. Hoare. Proof of correctness of data representations.

Acta Informatica, 1:271{281, 1972.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Series in

Computer Science. Prentice-Hall International, London, 1985.

[HP85] David Harel and Amir Pnueli. On the development of reactive

systems. In K. R. Apt, editor, Logics and models of concur-

rent systems, volume F13 of NATO ASI Series, pages 477{498.

Springer-Verlag, 1985.

[Lam83a] Leslie Lamport. Specifying concurrent program modules.

ACM Transactions on Programming Languages and Systems,

5(2):190{222, April 1983.

[Lam83b] Leslie Lamport. What good is temporal logic? In R. E. A. Ma-

son, editor, Information Processing 83: Proceedings of the IFIP

9th World Congress, pages 657{668, Paris, September 1983.

IFIP, North Holland.

[Lam84] Leslie Lamport. Solved problems, unsolved problems and non-

problems in concurrency. In Jayadev Misra, editor, Proceedings

of the Third Annual ACM Symposium on Principles of Dis-

tributed Computing, pages 1{11, New York, August 1984. ACM.

Invited address presented at 1983 Symposium.

[Lam89] Leslie Lamport. A simple approach to specifying concurrent

systems. Communications of the ACM, 32(1):32{45, January

1989.

[Lam90] Leslie Lamport. A temporal logic of actions. research re-

port 57, Digital Equipment Corporation, Systems Research

Center, April 1990. A revised version to appear.

[LS84a] Simon S. Lam and A. Udaya Shankar. Protocol veri�cation

via projections. IEEE Transactions on Software Engineering,

SE-10(4):325{342, July 1984.

86

[LS84b] Leslie Lamport and Fred B. Schneider. The \Hoare logic" of

CSP, and all that. ACM Transactions on Programming Lan-

guages and Systems, 6(2):281{296, April 1984.

[LT87] Nancy Lynch and Mark Tuttle. Hierarchical correctness proofs

for distributed algorithms. In Proceedings of the Sixth Sympo-

sium on the Principles of Distributed Computing, pages 137{

151. ACM, August 1987.

[MC81] Jayadev Misra and K. Mani Chandy. Proofs of networks of

processes. IEEE Transactions on Software Engineering, SE-

7(4):417{426, July 1981.

[Mil80] R. Milner. A Calculus of Communicating Systems, volume 92

of Lecture Notes in Computer Science. Springer-Verlag, Berlin,

Heidelberg, New York, 1980.

[MP87] Zohar Manna and Amir Pnueli. A hierarchy of temporal proper-

ties. Technical Report STAN-CS-87-1186, Department of Com-

puter Science, Stanford University, October 1987.

[OG76] Susan Owicki and David Gries. Verifying properties of paral-

lel programs: An axiomatic approach. Communications of the

ACM, 19(5):279{284, May 1976.

[OL82] Susan Owicki and Leslie Lamport. Proving liveness properties

of concurrent programs. ACM Transactions on Programming

Languages and Systems, 4(3):455{495, July 1982.

[Pnu84] Amir Pnueli. In transition from global to modular temporal

reasoning about programs. In Krzysztof R. Apt, editor, Logics

and Models of Concurrent Systems, NATO ASI Series, pages

123{144. Springer-Verlag, October 1984.

[Sta84] Eugene W. Stark. Foundations of a theory of Speci�cation for

Distributed Systems. PhD thesis, M. I. T., August 1984.

[Sta85] Eugene W. Stark. A proof technique for rely/guarantee proper-

ties. In S. N. Maheshwari, editor, Foundations of Software Tech-

nology and Theoretical Computer Science, volume 206 of Lec-

ture Notes in Computer Science, pages 369{391, Berlin, 1985.

Springer-Verlag.

87

88

Index

P , 13

Sjx
y
, 32, 33

', 12

'�, 12

�S, 26

�X, 26

?, 47

� (concatenation), 48

), 8, 12

�., 13

j�j, 48

\��, 12

�jm, 11

�a, 48

�s, 48

b�, 12

�-abstract, 13

�-equirealizable, 16

�-equivalent, 13

�-machine-realizable, 25

�-outcome, 16

partial, 48

�-realizable, 16

�-realizable part, 16

�-receptive, 16

�-strategy, 16

�-stuttering step, 12

�-stuttering-equivalence, 12

A, 10

ai(�), 11

abstraction functions, 38

actions

atomic, 11

joint, 7

system versus environment, 7,

14

temporal logic of, 47

versus agents, 11

versus states, 6

Ada, 6

agent set, 10

disjointness of, 42

of a partial program, 24

agents, 8, 10, 33

system versus environment, 8

Alpern, Bowen, 13

Apt, Krzysztof R., 22

assumption, environment, 1

auxiliary variables, 38

Barringer, Howard, 11

behavior, 8, 11

behavior pre�x, 11

Broy, Manfred, 18

case, 48

CCS, 6

Chandy, K. Mani, 5

circular reasoning, 2, 9, 39, 91

closed set, 13

closure, 13

Composition Principle

for safety properties, 5

for sequential programs, 2

informal statement, 2

Pnueli's, 5

Stark's, 5

theorem, 41

concatenation, 48

conjunction, composition as, 9, 33,

47

89

constrains at most, 15

CSP, 5, 7, 23, 47

Davis, Morton, 15

dense set, 13

Dill, David L., 16

end according to, 48

equirealizable, 15, 16

existential quanti�cation, 26

and explicitness, 46

explicitness, 46

failure-set semantics, 47

fair realizability, 17

fairness, 22

strong, 25

feasibility, 22

Francez, Nissim, 22

game, realization, 15

guarantee, system, 1

hiding, 26

history variables, 38

Hoare logic, 2

Hoare triple, 2

I, 37

I/O automata, 1

identity relation, 37

implements, 34

transitivity of, 34

initial predicate

of a complete program, 20

of a partial program, 24

initial state, 13

and re�nement mapping, 36

chosen by environment, 15

inp, 31

interleaving, 11, 47

invariant, 37

invariant under stuttering, 17

Katz, Shmuel, 22

Kuiper, Ruurd, 11

Lam, Simon S., 1

length of a behavior pre�x, 48

liveness property, 5, 13

Lynch, Nancy, 1

machine-closed, 22

machine-realizable, 25

Manna, Zohar, 22

mid , 31

Milner, Robin, 6

Misra, Jayadev, 5

monotone, 48

monotonicity of R�, 18

moves of realization game, 15

NE , 36

NM , 36

next-state relation

and re�nement mapping, 37

of a complete program, 20

of a partial program, 24

nondeterminism, external and in-

ternal, 7

normal form, 27, 30

O�(f), 16

out , 31

outcome, 15, 16

fair, 16

Owicki-Gries method, 37

parallel composition, 32

partial correctness, 2

90

Pascal, 1, 23

Pnueli, Amir, 5, 11, 22, 35

postconditions, 3

preamble, 48

preconditions, 3

program

abstract, 1, 27, 47

complete, 20

partial, 23

semantics of, 47

sequential, 2

progress property, 20, 21, 24

projection

functions, 26

method of, 1

proof style, explanation of, 48

property, 8, 12

invariance, 37

liveness, 5, 13

safety, 5, 13

prophecy variables, 38

protocol, 3, 43

R�, 16

reactive systems, 3

realizable, 15, 16

realizable part, 15, 16

realization game, 15

reasoning, circular, see circular rea-

soning

receptive, 16

re�nement mapping, 36

renaming, 32, 42

S, 10

si(�), 11

S-predicate, 10

safety property, 5, 13

Schneider, Fred B., 13

sequential composition, 2, 32

sequential program, 2

Shankar, A. Udaya, 1

Stark, Eugene W., 5, 16, 18

state component

and re�nement mapping, 36

externally observable, 26

internal, 12, 26, 29

state predicate, 10

as property, 12

is safety property, 13

states, 6, 10, see initial state, 32

internal, 12, 18, 26, 28, 36

of a complete program, 20

of a partial program, 23

reachable, 37

universal set of, 23, 33

versus actions, 6

step, 11

stuttering, see stuttering step

strategy, 16

stuttering step, 12

as internal action, 17

stuttering-equivalence, 12

and logic, 46

and strategies, 17

TA(N), 20

TA�(N), 24

topology, 13

transition-axiom method, 1, 10, 27

Tuttle, Mark, 1

Ux, 26

V (P; �), 15

X, 26

x, 26

Y, 36

91

