
An Axiomatization of

Lamport's Temporal Logic of Actions

Mart��n Abadi

October 12, 1990

revised March 4, 1993

ii

A preliminary version of this report appeared in the proceedings of the
CONCUR '90 conference, held in Amsterdam, The Netherlands, in August
1990 [BK90].

c
Digital Equipment Corporation 1990; revised 1993

This work may not be copied or reproduced in whole or in part for any com-
mercial purpose. Permission to copy in whole or in part without payment
of fee is granted for nonpro�t educational and research purposes provided
that all such whole or partial copies include the following: a notice that
such copying is by permission of the Systems Research Center of Digital
Equipment Corporation in Palo Alto, California; an acknowledgment of the
authors and individual contributors to the work; and all applicable portions
of the copyright notice. Copying, reproducing, or republishing for any other
purpose shall require a license with payment of fee to the Systems Research
Center. All rights reserved.

iii

Author's Abstract

Lamport recently invented a temporal logic of actions suitable for expressing
concurrent programs and for reasoning about their computations. In this
logic, actions have syntactic representations, which can be combined and
analyzed. The basic construct for relating actions and computations is []; a
computation satis�es the formula [A] if either the computation has halted or
the �rst action in the computation is an A action. In addition, the language
includes the temporal operators 2 (\always") and 3 (\eventually"), and
thus it is easy to write both safety and liveness formulas.

However, the temporal logic of actions is not very expressive in some re-
spects (just expressive enough). One cannot de�ne the \next" and the \un-
til" operators of many previous temporal logics. This is actually a feature,
in that formulas with \until" are too often incomprehensible, and \next"
violates the important principle of invariance under stuttering.

A proof system for the logic of actions might be obtained by translating
into previous, richer formalisms. In this translation we forfeit the logic and
its advantages. A new suit of rules for temporal reasoning with actions is
therefore wanted. A complete axiomatization can provide some guidance in
choosing and understanding the rules used in practice, and in particular the
laws for reasoning about programs.

In this paper, we study a proof system for a propositional logic, ptla.
After an informal introduction, we de�ne the syntax and semantics of ptla
precisely, and then present our proof system and prove its completeness.

Contents

1 Introduction 1

2 An Example 2

3 The Syntax and Semantics of ptla 5

3.1 Syntax : 5
3.2 Semantics : 6

4 A Complete Proof System 7

4.1 The System : 7
4.2 Some Consequences of the Axioms : : : : : : : : : : : : : : : 9
4.3 Soundness and Completeness : : : : : : : : : : : : : : : : : : 9

5 Conclusions 16

Acknowledgements 16

References 17

vi

1 Introduction

Lamport recently invented a temporal logic of actions suitable for expressing
concurrent programs and for reasoning about their computations [Lam90].
In this logic, actions have syntactic representations, which can be combined
and analyzed. Lamport views an action as a state transition, and a com-
putation as a sequence of states. The basic construct for relating actions
and computations is []; a computation satis�es the formula [A] if either the
computation has halted or the �rst action in the computation is an A action.
The dual notation is hAi, which means that the computation has not halted
and that the �rst action is an A action. (Notice that [A] and hAi are formu-
las, and not modalities as in dynamic logic [Pra76] and in Hennessy-Milner
logic [HM85].) In addition, the language includes the temporal operators 2
(\always") and 3 (\eventually"), and thus it is easy to write both safety
and liveness properties [Pnu77].

However, the temporal logic of actions is not very expressive in some
respects (just expressive enough). One cannot de�ne the \next" and the
\until" operators of many previous temporal logics [Pnu81]. This is actually
deliberate; formulas with nested occurrences of \until" are too often incom-
prehensible, and \next" violates the principle of invariance under stuttering,
which is important for hierarchical and compositional reasoning [Lam89].

A proof system for the logic of actions might be obtained by translating
into previous, richer formalisms. In this translation we forfeit the logic and
two of its main advantages, understandable formulas and the possibility of
reducing many arguments to simple calculations on actions. A new suit of
rules for temporal reasoning with actions is therefore wanted. A complete
axiomatization can provide some guidance in choosing and understanding
the rules used in practice, and in particular the laws for reasoning about
programs. (A decision procedure is less often helpful in this respect.)

At least two kinds of complete proof systems are possible: a propositional
system and a �rst-order system. (In the �rst-order case, one can hope only
for relative or nonstandard completeness results, of course.) In this paper,
we study a proof system for a propositional temporal logic of actions, ptla.

1

In the next section, we introduce the logic of actions through an example
and discuss the underlying model very informally. We give precise de�nitions
of the syntax and semantics of ptla in Section 3. In Section 4, we present
our proof system and prove its completeness.

2 An Example

In this example, we use the logic of actions for describing a trivial com-
plete program with two processes. Process S repeatedly sends a boolean to
process R and then waits for a signal; process R repeatedly receives a value
from process S and then signals.

In a CSP-like notation, this program is:

[S :: � [[R ! true 2 R ! false] ; R ?ANY]] jj [R :: � [S ? x ;S !ANY]]

(Here ANY is used as in Occam, for synchronization without message-
passing [INM84]1.)

We take a program, such as this one, to denote the set of behaviors that
it generates. In the logic of actions, a behavior is a sequence of states. It
may help to view a state as a snapshot of a device that executes the program.
All that matters is that each program variable has a value at each state.

Formally, behaviors are described in terms of actions. An action is a
binary relation on program states. Intuitively, an action is the set of all
pairs of states s and t such that the action can change the state from s to t;
an action is enabled in s if it can change the state from s to t for some t. A
predicate on primed and unprimed program variables expresses an action.
For example, the action that negates the value of a variable y may be written
y0 � :y (or, equivalently, y � :y0, or (y^:y0)_ (:y^ y0)); y0 represents the
value of y after the action.

In the semantics, then, states are primitive, and actions are not; this
presents advantages and disadvantages in comparison with models with
primitive actions. At any rate, the two approaches are valid, and they can
provide the same sort of information (as one can translate between sequences
of states and sequences of events). The properties of programs discussed in
the logic of actions are interesting in either model.

Coming back to our example, we start the formal description of the
program by listing its variables. In addition to the variable x, the program

1Occam is a trade mark of the INMOS Group of Companies.

2

has two implicit control variables lS and lR, one for each process; a device
executing the programwould keep track of the values of these three variables.
The boolean lS is true when control is at the send command in process S,
and false when control is at the receive command in process S. The boolean
lR is true when control is at the receive command in process R, and false
when control is at the send command in process R. Thus, a state should
assign values to x, lS , and lR.

Next we de�ne an action for each communication event. The sending of
true can change a state where lS and lR hold to a state where :lS , :lR, and
x hold. Hence, for the sending of true , we write:2

At
�

= lS ^ :l
0

S ^ lR ^ :l
0

R ^ x0

A similar formula expresses the sending of false:

Af
�

= lS ^ :l
0

S ^ lR ^ :l
0

R ^ :x
0

The nondeterministic composition of these two actions is represented as a
disjunction:

A
�

= At _ Af

The other basic action of the program is the acknowledgement:

Ack
�

= :lS ^ l
0

S ^ :lR ^ l
0

R ^ (x0 � x)

Thanks to the use of control variables, disjunction represents sequential com-
position, in addition to nondeterministic composition.3 Thus, the sequential
composition of A and Ack is represented as a disjunction:

N
�

= A _ Ack

The action N is the next-state relation of the complete program. A compu-
tation of the program, started from an arbitrary state, satis�es 2[N].

The program is enabled (that is, it can make progress) only when lS and
lR have the same value. We de�ne:

Enabled(N)
�

= (lS � lR)

2The symbol
�

= means equals by de�nition.
3In Lamport's interleaving model, the action that corresponds to the parallel compo-

sition of two processes is the union of the actions that correspond to the processes, so

disjunction represents parallel composition as well.

3

The formula 2[N] allows some computations that are immediately dead-
locked, when started in a state where Enabled(N) does not hold. To restrict
attention to the computations that start from the expected initial states, we
de�ne the predicate Init:

Init
�

= lS ^ lR

A computation satis�es Init ^ 2[N] if it is a computation of the program
that starts in a state where Init holds. One can prove formally that none of
these computations deadlocks:

Init ^2[N]) 2Enabled(N)

It is still possible for a computation that satis�es Init and 2[N] to halt,
because we have not yet made liveness assumptions (both Init and 2[N]
are safety formulas). The assumption of weak fairness for N su�ces to
guarantee continued progress. Weak fairness for N says that if N is always
enabled after a certain point then eventually N takes place:

WF(N)
�

= 2(2Enabled(N)) 3hNi)

The desired progress property follows:

(Init^2[N] ^WF(N))) (23lR ^23:lR ^23lS ^ 23:lS)

A further requirement is that true and false are chosen fairly. Strong
fairness for At says that if the transmission of true is enabled in�nitely often
(that is, lS^ lR holds in�nitely often), then the transmission of true happens
eventually. Hence we set:

Enabled(At)
�

= lS ^ lR

SF(At)
�

= 2(23Enabled(At)) 3hAti)

and strong fairness for Af is written similarly:

Enabled(Af)
�

= lS ^ lR

SF(Af)
�

= 2(23Enabled(Af)) 3hAfi)

Under these strong-fairness assumptions, the program guarantees that the
value of x is in�nitely often true and in�nitely often false:

(Init^2[N]^WF(N)^ SF(At) ^ SF(Af))) (23x^23:x)

4

In introducing the logic through this example we have only exercised the
notation, and not reasoned within it formally. The traditional approaches
to safety and liveness veri�cation are adequate for proving the properties
that we have claimed in the example. Lamport has formalized these tra-
ditional approaches within the logic, and has exploited them in the study
of moderately substantial algorithms (in particular with the general logic,
mentioned in Section 5).

3 The Syntax and Semantics of ptla

In this section, we give a precise de�nition of the syntax and semantics
of a propositional temporal logic of actions, ptla. This logic, although
not introduced in [Lam90], is a formalization of Lamport's approach in a
propositional setting.

3.1 Syntax

We have a countably in�nite collection of proposition symbols P0; P1; P2; : : :

and a countably in�nite collection of action symbols A0; A1; A2; : : : .

A state predicate is a boolean combination of proposition symbols. (We
use the boolean connectives false, :, and ^, and view the connectives _,),
and � as abbreviations.) If P is a state predicate, then P 0 is a primed state

predicate. An action is a boolean combination of state predicates, primed
state predicates, and action symbols; thus, in particular, a state predicate is
an action. This repertoire of actions is richer than that allowed in Hennessy-
Milner logic (where only action symbols are considered); on the other hand,
the regular expressions and the context-free grammars of dynamic logic do
not seem necessary here.

A formula of the logic is:

� a state predicate;

� [A], where A is an action;

� a boolean combination of formulas; or

� 2F , where F is a formula.

We also write hAi for :[:A], and 3F for :2:F .

5

Throughout, we use the letters O, P , Q, and R for state predicates, A
and B for actions, and F and G for arbitrary formulas.

Lamport's logic also includes action formulas, for example of the form
A = B. For simplicity, we do not allow these formulas, as it is possible to
use paraphrases, such as 2([A] = [B]) for A = B.

The primitive action symbols A0, A1, A2, : : : were not needed in the ex-
ample of Section 2, and hence some motivation for them is in order. Often an
action cannot be expressed as a boolean combination of state predicates and
primed state predicates, because we have not been given a full speci�cation
of the action, or because the action is essentially �rst-order, as x0 = x + 1.
In these cases, having action symbols enables us to name the action and
exploit any known propositional facts about it. For example, if A0 stands
for x0 = x + 1, P0 for x = 0, and P1 for x = 1, then P 0

1 is x0 = 1, and we
can write and use P0 ^ A0) P 0

1; alternatively, 2[P0 ^ A0) P 0

1] achieves
the same e�ect.

3.2 Semantics

The semantics of the temporal logic of actions resembles those for other
linear-time temporal logics. The novelties concern the meaning of the for-
mulas of the form [A].

An interpretation is a pair (S; I) where

� S is a non-empty set; an element of S is called a state, and S is called
a state space;

� I is a pair of mappings I� and I�, which assign to each proposition
symbol a subset of S and to each action symbol a subset of S � S,
respectively; intuitively, I�(Pi) is the set of states where Pi is true,
and I�(Ai) is the set of pairs of states related by Ai.

Sometimes we omit mention of S, and simply refer to I as the interpretation.
We extend the mapping I� to all state predicates, by setting:

I�(false)
�

= ;

I�(:P)
�

= S� I�(P)

I�(P ^ Q)
�

= I�(P) \ I�(Q)

Then we extend the mapping I� to all actions, by setting:

I�(P)
�

= I�(P)� S

6

I�(P
0)

�

= S � I�(P)

I�(:A)
�

= S � S� I�(A)

I�(A ^ B)
�

= I�(A) \ I�(B)

A behavior over S is an in�nite sequence of elements of S. If � is the
behavior s0; s1; s2; : : :, we denote si by �i and si; si+1; si+2; : : : by �+i. We
say that � is halted if �0 = �i for all i. If � is not halted, we write �(�) for
the least i such that �0 6= �i.

A model is a triple (S; I; �), where (S; I) is an interpretation and � is
a behavior over S. We de�ne the satisfaction relation between models and
formulas inductively, as follows:

(S; I; �) j= Pj
�

= �0 2 I�(Pj)

(S; I; �) j= [A]
�

= either � is halted or (�0; ��(�)) 2 I�(A)

(S; I; �) j= false
�

= false

(S; I; �) j= :F
�

= (S; I; �) 6j= F

(S; I; �) j= F ^G
�

= (S; I; �) j= F and (S; I; �) j= G

(S; I; �) j= 2F
�

= for all i, (S; I; �+i) j= F

For example, (S; I; �) j= [false] if and only if � is halted.
The formula F is satis�able if there exist (S; I; �) such that (S; I; �) j= F .

The formula F is valid if (S; I; �) j= F for all (S; I; �); we write this j= F .

4 A Complete Proof System

In the �rst subsection we give our axioms, and then we list some of their
consequences. Finally, we prove the completeness of the axioms.

4.1 The System

The temporal logic of actions is an extension of the common temporal logic
with the single modality 2. Accordingly, we are going to base our axiom-
atization on a usual one, a system known as D (in [HC68]) or S4.3Dum
(in [Gol87]). The axioms and rules for D are:

1. ` 2(F) G)) (2F) 2G)

7

2. ` 2F) F

3. ` 2F) 22F

4. ` 2(2F) G)_ 2(2G) F)

5. ` 2(2(F) 2F)) F)) (32F) F)

6. If ` F then ` 2F .

7. If F is an instance of a propositional tautology then ` F .

8. If ` F and ` F) G then ` G.

Axiom 4 is a classical way to express that time is linear|that any two in-
stants in the future are ordered. Axiom 5, indirectly attributed to Geach
in [HC68], is a simpli�cation of the original 2(2(F) 2F)) F))
(32F) 2F), due to Dummett and Lemmon; Axiom 5 expresses the dis-
creteness of time.

We introduce some axioms about actions:

9. ` [false]) [A]

10. ` :[false]) [P] � P

11. ` :[false]) [:A] � :[A]

12. ` [A ^B] � [A] ^ [B]

13. ` [(:P)0] � [:P 0]

14. ` [(P ^Q)0] � [P 0 ^Q0]

15. ` 2P) [P 0]

16. ` 2(P) (([P 0] ^G) _2G))) (([P 0] ^G)) 2G)

Axiom 16 can be paraphrased as follows: suppose that whenever P holds
either G holds and P survives the next state change, or G is true forever;
thus, G holds for as long as P holds, and becomes true forever if P stops
holding; hence, if G is true initially and P is true after the �rst state change
then G is always true. All the other axioms are rather straightforward.

Our axiomatization could perhaps be simpli�ed. It is worth recalling,
however, that a less expressive logic does not always have a simpler proof
system. For instance, the system for temporal logic with \next" is simpler
than D [GPSS80], yet the \next" modality increases the expressiveness of the
logic and its complexity (from coNP-complete to PSPACE-complete [SC85]).

8

4.2 Some Consequences of the Axioms

Some interesting consequences of the axioms are important in our complete-
ness proof. We list and explain a few here.

� ` [false]) (F � 2F) ^ (F � 3F)
The formula expresses that once the computation has halted, all facts
are permanent, meaning that F , 2F , and 3F are equivalent for all F .

� ` hP 0i) 3P

In words, if the computation has not halted and the next action is P 0,
then P holds eventually. This formula embodies the simplest method
for proving liveness properties.

� ` P ^2(P) [P 0])) 2P

This predictable induction principle follows directly from Axiom 16,
when we instantiate G to P .

� ` [P 0] ^3G) G _3(P ^3G)
The theorem is another consequence of Axiom 16. It says if the action
P 0 is about to take place (unless the computation halts) and G must
hold eventually, then either G is true now, or P holds eventually and
G holds later.

� ` (P ^3G^2(P ^3G) [P 0]))) 3(P ^G)
This is the dual to Axiom 16.

4.3 Soundness and Completeness

Theorem 1 (Soundness and Completeness) j= F , ` F

A simple induction on proofs shows that if ` F then j= 2F . It follows
that if ` F then j= F ; thus, ` is sound. The other direction of the claim
(completeness) is more delicate, and the rest of this section is devoted to it.

Before embarking on the proof, we should recall a classical completeness
theorem for D. The theorem says that if a formula G is not provable then
:G has a model. In fact, a model can be obtained from a structure of a very
special form, known as a balloon. A balloon consists of a sequence of states
s0; s1; s2; : : : ; sm, the string, and a set of states ft0; t1; t2; : : : ; tng, the bag.
(Without loss of generality, the states can be taken to be all distinct.) An

9

interpretation gives values over these states to all the proposition symbols
in G. With this interpretation, any sequence

s0; : : : ; sm; ti0 ; : : : ; tik ; : : :

provides a model for :G, if all of 0; : : : ; n occur in i0; : : : ; ik; : : : in�nitely
often. Thus, a model is obtained from the balloon by linearizing the bag in
any way whatsoever. This and similar constructions appear in [Gol87].

A formula holds at a state s in a behavior if it holds in the su�xes of
the behavior that start with s. A formula holds at a state s in a balloon if
it holds at s in all linearizations of the balloon. In both cases, we may also
say that s satis�es the formula.

The basic strategy of our completeness proof is as follows. For every G,
let G� be the formula obtained from G by replacing each subformula of the
form [A] with a fresh proposition symbol; thus, ()� is a translation into a
classical temporal formalism, with no actions. Assume that 6` F ; we want
to show that 6j= F . That is, we want to �nd a model (S; I; �) that satis�es
:F . If 6` F then 6` (X) F), where X is any formula provable in ptla

(we will specify the choice of X below). A fortiori, (X) F) cannot be
derived using only the D axioms; because D does not have axioms about
actions, it follows that (X) F)� cannot be derived in D. Thus, by the
completeness of D, there must be a balloon B and an interpretation that
satisfy :(X) F)�. Obviously, X� and :F � are also satis�ed. The balloon
and the interpretation will be useful in constructing a model for :F .

It is straightforward to choose X so that the proposition symbols that
occur in F also occur in :(X) F)�; hence the interpretation that satis�es
:(X) F)� over B must assign truth values to these proposition symbols.
Naturally, if the proposition symbol [A]� is mentioned in our completeness
argument then it will occur in X� (otherwise we could not say much about
[A]�); therefore, the interpretation must also assign a truth value to [A]�.
These properties of the interpretation will serve in de�ning the desired I .

In the course of the proof, we rely on the fact that each state in B satis�es
certain theorems of ptla, or rather their translation under ()�. The number
of theorems needed is �nite, and their choice depends only on the choice of
F . (It su�ces to consider instances of Axioms 9 to 16 for subexpressions
of :F , and some simple boolean combinations of these, sometimes with
primes.) We take for X the conjunction of all formulas 2T , where T is one
of these necessary theorems. For all practical purposes, from now on, we
may pretend that we have all the theorems of ptla at our disposal.

10

For example, the proof of Proposition 1 uses that if Pj occurs in F then
one of [P 0

j]
� and [(:Pj)0]� holds in each state in B. To justify this claim, we

point out that ` [P 0

j]_ [(:Pj)
0], and we implicitly include 2([P 0

j] _ [(:Pj)
0])

in X . Since B satis�es X�, every state in B satis�es ([P 0

j] _ [(:Pj)0])�, and
hence one of [P 0

j]
� and [(:Pj)0]�.

After these preliminaries, we are ready to start the necessary model
construction.

Let P0; : : : ; Pk be a list of all the proposition symbols that occur in F .
An assignment is a conjunction Q0 ^ : : : ^ Qk such that each Qi is either
Pi or :Pi. Given a state s in B, there exists a unique assignment Os that
holds in s.

A state of B that satis�es [false]� is called a halting state. We have:

Proposition 1 For every state s there exists an assignment Rs such that

[R0

s]
� holds in s. Moreover, Rs is unique if and only if s is not a halting

state.

Proof To prove the existence of Rs, we �rst notice that ` [P 0

j]_ [(:Pj)
0]

for each proposition symbol Pj , and hence s must satisfy at least one of
[P 0

j]
� and [(:Pj)

0]�. Therefore, let Qj be one of Pj and :Pj such that [Q0

j]
�

holds at s. If Rs is the conjunction of all these Qj 's, then [R0

s]
� holds at

s, because the axioms yield ` [Q0

0] ^ : : : ^ [Q0

k] � [(Q0 ^ : : : ^ Qk)
0]. If s

is not halting then Rs is unique because ` :[false]) [:P 0

i] � :[P 0

i] and
` [:P 0

i] � [(:Pi)
0]. If s is a halting state then Rs could be any assignment,

since both ` [false]) [P 0

i] and ` [false]) [(:Pi)0].

Given a state s which is not halting, we say that t follows s in B if:

� t is the �rst state in the string strictly after s such that Ot = Rs, if
such exists;

� else, t is a state in the bag and Ot = Rs, if such exists;

� else, t = s if Os = Rs.

Proposition 2 If s is not halting, then some t follows s.

Proof The axioms yield ` [R0

s]^:[false]) 3Rs, so s must satisfy this
formula. Thus, Rs must hold at a state in the string strictly after s, or at a
state in the bag, or at s itself.

We proceed to construct the desired behavior � inductively.

11

� Let �0 be the �rst state in the string of the balloon, or an arbitrary
state in the bag if the string is empty.

� If �i is a halting state, let �i+1 = �i.

� If �i is not a halting state, let �i+1 be a state that follows �i. If possible,
always pick a state that has not been visited previously. Otherwise,
pick the state �rst visited the longest time ago, and start cycling.

The behavior � ends with a cycle. It may be that this cycle is of length
one while the single state s in the cycle does not satisfy [false]�. In this
case, we modify � trivially: we make a copy ŝ of s and have � cycle between
these two di�erent states. (Of course, s and ŝ are di�erent only formally, as
they satisfy the same formulas.) This modi�cation is convenient in giving
a proper meaning to [false]. We do not discuss this minor point in the
construction further, and leave the obvious details to the reader.

Let S be the balloon obtained by discarding from B all states not in
�. More precisely, the bag of S is the set of states that occur in the cyclic
part of �, and the string of S is the remaining states of �, ordered in the
order of their occurrence. The bag of S may be a subset of the bag of B.
It may happen, however, that the bag of S consists of a single state s from
the string of B (or s and ŝ); this is in the case where either s is halting or s
is the last state to satisfy Rs.

Next we show that :F � still holds in S. We strengthen the claim, to
mention every state and every subformula of :F �. However, it is not claimed
that all of the theorems compiled in X still hold at each state in S; this claim
is not needed.

Proposition 3 If G� is a subformula of :F � and s is a state in S, then
G� holds at s in S if and only if G� holds at s in B. In particular, all

linearizations of S satisfy :F �.

Proof The proof proceeds by induction on the structure of the subfor-
mula of :F �. As is common in proofs of this sort, the only delicate argument
is that subformulas of the form 3G� that hold at s in B also hold at s in
S. (Intuitively, this is because S is a \subballoon" of B.) The argument
that subformulas of the form 2G� that hold at s in S also hold at s in B is
exactly dual. All other arguments are trivial.

Within the main induction, we perform an auxiliary induction on the
distance from the state considered to S's bag.

12

As a base case, we prove the claim for the states in S's bag. There are
several subcases:

� If S's bag is a singleton fsg, then s must satisfy [false]�, by construc-
tion of �. Since ` [false]) G � 3G, if 3G� holds at s in B then G�

holds at s in B. By induction hypothesis, G� holds at s in S, and by
temporal reasoning 3G� holds at s in S.

� If S's bag is a pair fs; ŝg, then it must be that s is not a halting
state, and that Rs holds in no state after s in B's string (if any)
and in no state in B's bag other than s. Furthermore, Os = Rs.
Therefore, s satis�es Rs ^ 2(Rs) [R0

s])
� in B, and hence also 2Rs,

since ` Rs ^ 2(Rs) [R0

s])) 2Rs. Assume that s satis�es 3G� in
B. By temporal reasoning, s satis�es 3(Rs ^ G�) in B. But s is the
last state in B that satis�es Rs, and so it must be that s satis�es G�.
By induction hypothesis, G� holds at s in S as well, and by temporal
reasoning 3G� holds at s in S.

� Otherwise, S's bag is a subset of B's bag, and not a singleton. In
particular, there is no halting state in the bag. Let R be the disjunction
of all Ot for t in S's bag. By construction of �, all states in B's bag
that satisfy R are also in S's bag|the point being that � makes the
biggest cycle possible. In B, it must be that each of the states in S's
bag satis�es 2(R) [R0])�. This formula simply says that all states
in B's bag that are also in S's bag must be followed by another state
in S's bag. Moreover, we have that ` R ^ 2(R) [R0])) 2R. This
yields that each state s in S's bag satis�es 2R in B's bag. Let 3G�

hold at s in B's bag. Then, by temporal reasoning, 3(R ^ G�) holds
at s in B's bag. In other words, G� holds at some state t in B, and
t satis�es R. Since t satis�es R, it must also be in S's bag. Thus,
by induction hypothesis, t also satis�es G� in S, and hence s satis�es
3G� in S.

Next we consider the states in S's string. We assume the claim has been
proved for all states at distance no bigger than n from S's bag; we consider
the state s at distance n + 1. Suppose that s satis�es 3G� in B and that s
is in S's string. Since ` [R0

s]^3G) G_3(Rs^3G), either G
� must hold

at s, or 3G� must hold at the state that follows s, in B. In the former case,
the complexity of the formula considered has decreased. In the latter case,
the complexity of the formula considered has remained the same but we are

13

closer to S's bag, since s is a state in S's string and t follows s. In either
case, the induction hypothesis immediately yields the desired result.

Since all linearizations of B satisfy :F �, we conclude that all lineariza-
tions of S satisfy :F �.

The �nal step in our proof is constructing an interpretation (S; I) and
checking that (S; I; �) satis�es :F .

We take S to be the set of states in B that occur in �.

Each proposition symbol Pi that occurs in F has a value at each state
in the balloon. We take I�(Pi) to be the set of states of � where this value
is true. Similarly, if Ai is an action symbol in F , then the proposition
symbol [Ai]

� has a value at each state in the balloon (because it occurs in
(X) F)�). We take I�(Ai) to be the set of pairs of states (s; t) such that
[Ai]

� is true in s. Two slight oddities should be noticed here. The �rst one
is that we are interpreting an action symbol much as a proposition symbol
(the second component of the pair, t, plays no role). The second one is that
if [false]� holds in s then (s; t) 2 I�(Ai), somewhat arbitrarily.

All remaining proposition symbols and action symbols can be interpreted
at will, as they do not a�ect the meaning of F .

In order to show that (S; I; �) j= :F , we prove a stronger proposition:

Proposition 4 If G is a subformula of :F and s is a state in �, then G

holds at s in � if and only if G� holds at s in S. In particular, � satis�es

:F .

Proof The proof is by induction on the structure of G. The only
nontrivial case is for formulas of the form [A]. In this case, we consider
separately the subcases where [false]� holds at s in S and where it does not.
In both subcases, we use that some of the theorems compiled in X hold at
s in S; this is true because the theorems hold at s in B and because they
are free of 2 and 3.

If [false]� holds at s, then [A]� holds at s for every A of interest, since
` [false]) [A]. Also, if [false]� holds at s, the construction of � yields that
� loops at s, thus [false] holds at s in �; therefore, [A] holds at s in � for
every A, by de�nition of the semantics of []. Thus, [A]� holds at s in S, and
[A] holds at s in �.

If [false]� does not hold at s, then we can use the axioms to decom-
pose A into a boolean combination of proposition symbols, primed propo-
sition symbols, and action symbols. More precisely, consider the following

14

primitive-recursive function d:

d([Pi])
�

= [Pi]

d([P 0

i])
�

= [P 0

i]

d([Ai])
�

= [Ai]

d([false])
�

= false

d([:A])
�

= :d([A])

d([A^ B])
�

= d([A])^ d([B])

d([(:P)0])
�

= d([:P 0])

d([(P ^Q)0])
�

= d([P 0 ^ Q0])

One can derive by induction that [A] and d([A]) are provably equivalent for
every A:

` :[false]) [A] � d([A])

and this is also valid, of course:

j= :[false]) [A] � d([A])

Therefore, it su�ces to consider [A] in the cases where A is false, a propo-
sition symbol, a primed proposition symbol, or an action symbol:

� A = false: We have that s satis�es :[false]� in S. By construction, �
does not fall into a loop in s (though it may loop between s and ŝ).
Therefore, s satis�es :[false] in �.

� A = Pi: Since ` :[false]) [Pi] � Pi, we have that s satis�es [Pi]
�

in S if and only if s satis�es Pi in S. Since j= :[false]) [Pi] � Pi,
similarly, s satis�es [Pi] in � if and only if s satis�es Pi in �. Finally,
the de�nition of I� yields that s satis�es Pi in S exactly when s satis�es
Pi in �.

� A = P 0

i : If s satis�es [P
0

i]
� in S, then Pi is one of the conjuncts in the

assignment Rs. In the construction of �, the state immediately after
s must satisfy Rs, and hence Pi. Therefore, the semantics yields that
s satis�es [P 0

i] in �. Conversely, suppose that s does not satisfy [P 0

i]
�

in S; then :Pi is one of the conjuncts in the assignment Rs. In the
construction of �, the state immediately after s must satisfy Rs, and
hence :Pi. Therefore, the semantics yields that s satis�es [(:Pi)0] and
not [P 0

i] in �.

15

� A = Ai: The de�nition of I� is designed to make this case trivial.

We derive that (S; I; �) j= :F , as a special case.

This concludes the completeness proof. It follows from the proof that
ptla possesses a �nite model property, and hence it is decidable. In fact, it
seems likely that the validity problem for ptla is decidable in polynomial
space.

5 Conclusions

We have presented a complete proof system for a propositional temporal
logic of actions, ptla. Lamport has considered extensions of the basic tem-
poral logic of actions, and it seems worthwhile to search for axiomatizations
of some of them as well.

The simplest extension consists in adding formulas of the form [A]P0;:::;Pn
to the logic; this yields the general temporal logic of actions. Roughly,
[A]P0;:::;Pn says that the action A will take place the next time that one of
P0, : : : , Pn changes value. A further extension consists in adding existential
quanti�cation over propositions, for hiding internal state. These extensions
make it possible to formulate proofs that a program implements another pro-
gram, and lead to a simple compositional semantics for concurrent systems.
As the logic becomes more powerful, however, it becomes more di�cult to
choose appropriate proof principles. A complete axiomatization might help
in this choice.

Acknowledgements

Leslie Lamport encouraged this work, and helped in describing his logic and
in de�ning ptla. Rajeev Alur, Cynthia Hibbard, and Jim Saxe suggested
improvements in the exposition. Bryan Olivier suggested the current version
of Axiom 16, strengthening a previous one which was probably
awed.

16

References

[BK90] J. C. M. Baeten and J. W. Klop, editors. CONCUR `90, Theories

of Concurrency: Uni�cation and Extension, volume 458 of Lecture
Notes in Computer Science, Berlin, 1990. Springer-Verlag.

[Gol87] Robert Goldblatt. Logics of Time and Computation. Number 7 in
CSLI Lecture Notes. CSLI, Stanford, California, 1987.

[GPSS80] D. Gabbay, A. Pnueli, S. Shelah, and Y. Stavi. On the temporal
analysis of fairness. In Seventh Annual ACM Symposium on Prin-

ciples of Programming Languages, pages 163{173. ACM, January
1980.

[HC68] G. E. Hughes and M. J. Cresswell. An Introduction to Modal Logic.
Methuen Inc., New York, 1968.

[HM85] Matthew Hennessy and Robin Milner. Algebraic laws for nonde-
terminism and concurrency. Journal of the ACM, 32(1):137{161,
January 1985.

[INM84] INMOS. Occam Programming Manual. Prentice-Hall, Inc., Engle-
wood Cli�s, New Jersey, 1984.

[Lam89] Leslie Lamport. A simple approach to specifying concurrent sys-
tems. Communications of the ACM, 32(1):32{45, January 1989.

[Lam90] Leslie Lamport. A temporal logic of actions. Research Report 57,
Digital Equipment Corporation, Systems Research Center, April
1990.

[Pnu77] A. Pnueli. The temporal logic of programs. In Proceedings of the

18th Symposium on the Foundations of Computer Science. IEEE,
November 1977.

[Pnu81] A. Pnueli. The temporal semantics of concurrent programs. The-
oretical Computer Science, 13:45{60, 1981.

[Pra76] Vaughan R. Pratt. Semantical considerations on Floyd-Hoare logic.
In 17th Symposium on Foundations of Computer Science, pages
109{121. IEEE, October 1976.

17

[SC85] A. P. Sistla and E. M. Clarke. The complexity of propositional
linear temporal logic. Journal of the ACM, 32(3):733{749, July
1985.

18

