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Abstract

Garbage collection is an integral component of Modula-2+, the principal
systems programming language at SRC. The initial Modula-2+ collector was a
concurrent reference-counting collector; it did not reclaim cyclic structures, and
the cost of assigning references 1o objects was relatively high.

I implemented three experimental collectors for Modula-2+ and tested them
to explore alternatives to the initial collector: first a simple concurrent mark-and-
sweep collector; then a modified concurrent mark-and-sweep collector that used
VM synchronization between the mutator and the collector; and then a concurrent
mostly-copying collector that also used VM synchronization.

These collectors had advantages and disadvantages compared to the initial
Modula-2+ collector. They reclaimed cyclic structures and tended to reduce
the cost of assignments, but they provoked VM thrashing far more readily and
sometimes produced noticeable interruptions of service. Forthis reason, we adopted
a combined reference-counting and mark-and-sweep collector for Modula-2+ at
SRC, in which the reference-counting collector reclaims most garbage and the
mark-and-sweep collector executes infrequently to reclaim cyclic garbage.
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1 Introduction

Most programming at Digital Equipment Corporation’s Systems Research Center
(SRC) is in Modula-2+ [9], an extension of Modula-2 [13]. The Modula-2+
language was developed at SRC to support our work in systems research and
implementation; its extensions include concurrency, exception handling, and
garbage collection.

The original Modula-2 did not support automatic garbage collection. If x is
a POINTER TO some type, new objects of that type could be allocated using the
built-in procedure NEW(x), but such objects had to be explicitly freed with the
built-in procedure DISPOSE(x). This low-level approach to storage reclamation
can cause excessive difficulty in many cases, especially in the construction of
large, integrated systems. For instance, if module A passes a pointer value to
module B for its use, which module can, or must, free the object? Determining
the right answer can be hard, and there might be no acceptable right answer.
And if mistakes are made, some objects might never be freed even though they
have become unreachable, causing a continuing “storage leak” as the garbage
accumulates. Worse, the objects may be freed while the pointers are still in use,
producing incorrect resuls.

To support garbage collection, Modula-2+ provides a REF type constructor in
addition to Modula-2’s POINTER TO constructor. REF objects reside on a garbage-
collected heap. While POINTER objects must be freed explicitly, REF objects are
automatically collected (and cannot be freed using DISPOSE). As with pointers, a
REF type may reference any other Modula-2+ type, including records or arrays that
contain other REFs. NIL is a distinguished value for REFs as for pointers.

Many operations that can be performed on pointers (e.g., assigning a pointer
the address of a variable; performing address arithmetic on pointers) are considered
“unsafe” and are disallowed on REFs. If a program uses only *“safe” constructs,
as checked at compile-time, it can be guaranteed not to exhibit a large class of
undesirable behavior at runtime, such as overwriting arbitrary storage locations.
The safe operations on REFs include allocation via NEW, assignment, comparison,
and dereferencing to read or write the referenced value. !

Other new features of Modula-2+ are based on REF types:

¢ The type REFANY is the union of all REF types. REF values are assignable
to REFANYs, and REFANYs may be examined at runtime to determine their
underlying REF type and value. REFANYs can be used to provide a simple

'All the Modula-2+ collectors described in this paper are written in Modula-2+, but use unsafe
constructs; they must be trusted not to exhibit undesirable behavior.



sort of dynamic polymorphism; for example, the Table module provides
hash tables whose keys and values are REFANYs, and which thereby can hold
mappings between any REF types.

e Object cleanup allows the module that implements a REF type to be notified
whenever the number of references to an object of that type goes below a
preset threshold. This might indicate that the only references to the object
are from within its implementation (e.g., from inside caches), and that these
can now be eliminated, allowing the object to be freed. Similarly, a file
system that implements open files as REF objects might close a file when its
reference count goes to zero.

o Pickles provide a form of persistent data storage for REF structures. A
heap structure consisting of objects linked by REFs can be written into a
byte-stream, called a pickle, then later read back in to form a copy of the
original structure. Sharing of objects within the structure is preserved. The
program into which the pickle is read need not be the same as that from
which it was written, if the types are the same.? The uses of pickles range
from font definitions to window layouts to dynamically linked machine code.

Modula-2+ has been used at SRC to construct the Topaz software environment,
which contains well over one million lines of code; REF types are used heavily
throughout the system [4]. For example, in a measurement of initializing the Topaz
operating system (Taos), 11,205 REF objects were allocated, and 23 collections
were performed, after which 5,292 REF objects remained in use, comprising 190
different REF types, and occupying 571,444 bytes.

This paper outlines the initial design of the Modula-2+ collector, describes some
of the problems encountered in its use, presents a number of alternative designs
that were considered as replacements, and describes the one finally adopted.

2 The initial reference-counting collector

The initial Modula-2+ collector is a reference-counting (“RC”) collector. It is
similar to the RC collector described by Deutsch and Bobrow [5]; it was designed
by Paul Rovner and Butler Lampson of SRC based on their experience with the
Cedar system (8].

20f course, there are some restrictions; for instance, POINTERs and procedure-valued variables
cannot be pickled in this case.



A collector’s purpose is to free objects that will never again be accessed. Of
course, a practical collector must weaken this condition; it frees only those objects
that can never be accessed again, because they cannot be reached by any path of
references. An RC collector weakens the condition even further; it frees only those
objects to which there are no references at all. RC collectors maintain a “reference
count” for each object on the heap, which represents the number of references to
the object; when the count becomes zero, the object is inaccessible and can be
reclaimed. An assignment to a REF variable increments the reference count of the
variable’s new value, and decrements the count of the old value. RC collectors
cannot reclaim cyclic structures that become unreachable; these must be avoided.

Under Topaz, each process runs in a separate address space, as in Unix.> Each
address space has its own heap, and runs its own instance of the collector.

Unlike Unix, processes in Topaz may contain multiple independent threads
of control; Modula-2+ provides facilities for their creation and synchronization.
Taos, for instance, can easily contain hundreds of threads. The initial Modula-2+
collector is concurrent; it runs in its own thread. A concurrent collector can
provide greater interactiveness and throughput, especially since Modula-2+ and
Topaz are used on shared-memory multiprocessor computers like SRC’s Firefty
multiprocessor workstation, in which multiple threads can run at once [11]. Even
on a uniprocessor, a concurrent collector avoids interruption of service, and if the

processor utilization is bursty, it can run when the processor would otherwise be
idle.

2.1 Heap layout

In the initial Modula-2+ allocator, objects are considered either “small” or “large.”
Small objects are packed within (512-byte) pages, while large objects are allocated
an integral number of pages.

Each REF object appears on the heap preceded by one or two header words.
(Words are 32 bits long.) Small objects have one header word, as shown in
Figure 1. The header word contains:

* A 16-bit “typecode” for the object, corresponding to its REF type. Each
REF type in the program is assigned a 16-bit typecode during process
initialization; typecodes are unique within an address space.

e A 6-bit size field. There are 40 distinct small object sizes, ranging from 8
bytes to 4096 bytes, including headers; the size field holds an index in the
range [1..40].

*Unix is a registered rademark of AT&T Technologies.



EEM count | size |- typecode

on ZCL
cleanup enabled
RC overflow

-: unused

SN

Figure 1: A small object header

¢ A 5-bit reference count and a 1-bit overflow flag. Since reference counts are
usually small, a 5-bit field almost always suffices to hold the count. If the
actual count is larger, the overflow bit indicates that the excess is stored in
a separate hash table. Even when the total count is large, most increment
and decrement operations adjust only the 5-bit count in the object header,
because operations that would move the 5-bit count outside its range instead
reset it to the middle of its range; this means that at least 16 more increments
or decrements must pass before another such adjustment would be necessary.

e A 1-bit flag indicating whether object cleanup has been enabled. When
cleanup is enabled on an object, the cleanup threshold for its type is
temporarily subtracted from the object’s count. Then, when the object’s
count becomes zero, this means the actual count has reached the threshold;
the cleanup flag is turned off, the object’s count is reset to the threshold, and
the object is queued for its type-specific action.

¢ A 1-bit flag stating whether the object is on the zero-count list (the “ZCL”),
as described in Section 2.6.3.

e Two unused bits.

Large objects have two header words, as shown in Figure 2. The second header



size | - pages [4EM count | size |- typecode

onZCL
cleanup enabled
RC overflow

: unused

EREN

Figure 2: A large object header

word is the same as for small objects, but the size field is set to a distinguished
“large” value. The first header word contains the number of 5 12-byte pages used
to store the object, and also contains a size field, in the same position as in the
second header word, and containing the same “large” value. This layout allows
the collector to scan forward through memory, distinguishing large object headers
from small object headers.

A REF value contains the 32-bit address of the word following the small or large
header; this is the first word of the object’s contents. A REFANY value contains
the same 32-bit address as a REF; the typecode stored with the object distinguishes
the underlying REF value. The value NIL is represented as the address 0. All REF
objects, and all REFs, are word-aligned in memory.

Each typecode has an associated “RC map,” which lists the locations of REFs
in objects of that type. The RC maps are used by the collector to walk heap
structures, as well as by the pickle mechanism and similar facilities. Because of
the potential complexity of RC maps (representing arrays, variant records, etc.),
the information is encoded in a small interpreted language.*

*Interpreting these “walk” procedures is sometimes a bottleneck; compiling them might be
preferable.



2.2 The allocator

Let a “node” be the storage for an object, whether the object is currently allocated
or free.

Small objects are allocated from free lists of nodes, one per size, and the
collector places the small objects it frees back onto the free lists. If an allocation
cannot be satisfied because the appropriate free list is empty (e.g., at startup, or
when the heap is growing, or when the collector has fallen behind in its work),
additional pages are acquired from virtual memory (“VM") and split into nodes of
the appropriate size, which are then placed onto the free list. Small nodes, once
created, are never split or coalesced into nodes of different sizes.

Large objects are allocated by a best-fit algorithm from a list of large nodes, or
from VM. When large objects are freed, they are returned to the free list. Once
created, large nodes also are never split or coalesced into nodes of different sizes.

When pickles are read in, their memory is allocated from VM. A pickle’s
byte-stream representation has the same relative layout as in memory (e.g., each
object is preceded by an object header); this makes pickle reading extremely fast.
The pickle machinery reads the pickle structure into the allocated space, relocates
the internal REFs and adjusts the typecodes, then tells the allocator to consider
these pages part of the heap. Unlike ordinary objects, objects inside pickles are
stored contiguously regardless of size (i.e., large objects are not page-aligned, and
small objects of different sizes may share the same page). When objects in pickles
are freed, they are placed on the small or large free list and the space is available
for future allocations for ordinary objects, although not for reading new pickles.

2.3 Overview

An RC collector is driven by the sequence of REF assignments performed by the
program (called the “mutator,” since it modifies the graph structure of the heap). In
the initial Modula-2+ collector, instead of updating the reference counts as part of
each assignment, the mutator simply logs the assignments in a “transaction queue”
(TQ): when the mutator performs a REF assignment, it pushes the old and the new
values onto the TQ . The collector updates the reference counts asynchronously
and frees objects as their counts become zero. Logging assignments (o the TQ
shifts work from the mutator to the collector, speeding the mutator significantly
while slowing the collector somewhat. This is an especially good tradeoff when
the collector runs concurrently with the mutator.

To speed REF assignments further, the initial collector distinguishes between
“shared”” and “local” REF variables.



¢ Shared REF variables may be shared among multiple threads. These include
global REF variables and those on the heap.

¢ Local REF variables are local to a thread, and are stored in the thread’s state:
on its stack or in its registers. Local REF variables include variables local to
procedure activations, and temporaries.

The set of global REF variables and the sets of local REF variables are all disjoint,
by definition; threads cannot directly access the local variables of other threads.

Only shared REF variables participate in reference counting. Assignments to
local REF variables are not reference-counted, and the code generated for their
assignment is therefore much faster. In fact, the code for local REF assignment is
the same as for any local one-word assignment; it requires no communication with
the collector. Because most REF assignments are to local variables (consider, for
example, searching down a linked list), this can produce a significant speedup in
the mutator, as only shared assignments must be logged in the TQ.

The collector runs in a separate thread. It receives blocks of TQ entries as they
become available from the mutator, and updates the appropriate reference counts.
It also frees objects whose reference counts become zero. Although the collector
runs behind the mutator and can determine only that an object was unreachable
at some point in the past, this is sufficient to ensure that it will have remained
unreachable.

Of course, the optimization for local REF assignments complicates the col-
lector’s task, since it does not have complete information on the mutator’s REF
assignments, and therefore can only maintain lower bounds on the reference counts.
Objects with a lower bound of zero may or may not be accessible. During cach
collection, therefore, the collector must examine the states of the mutator threads,
as described in the next section, scanning for local REFs 10 fill in the missing infor-
mation; the collector can then decide which objects really do have zero reference
counts, and therefore should be freed. The collector scans thread states one at a
time, keeping each stopped only briefly; this helps minimize any interruption of
service.

24 Shared REF assignments

The code for shared REF assignment is outlined in Figure 3. The main path of the
code is actually written in assembler, to speed the average case. (Even if the code
were written in Modula-2+, it would have to be more circumlocutional than shown:;
for example, it cannot really have REFANY parameters, since the assignment to 1hs
would recursively invoke Assign.)



PROCEDURE Assign(VAR 1hs: REFANY; rhs: REFANY);
BEGIN
LOCK mutex DO
tq~.lhs := lhs;
tq~.rhs := rhs;
increment tq;
IF tq block is full THEN
notify collector of full tq block;
tq := nexttq block;
END;
lhs := rhs;
END;
END Assign;

Figure 3: The code for shared REF assignment

Not only does the communication with the collector require mutual exclusion,
but the assignment itself (“lhs := rhs”) must also be protected by the mutex to
ensure that the old lhs values listed in the TQ are accurate. If this were not done,
a pair of simultaneous assignments to the same shared REF variable could result
in the original value being logged twice as a lhs, and each of the two new values
being logged as a rhs, resulting in one reference count being too low and another
too high. The latter would result in a storage leak; the former could result in an
object being freed while still in use.

2.5 Shared vs. local counts

Since only shared REF variables have their assignments counted, the reference
count associated with an object can be considered as its “shared” count, as opposed
to its “true” count. The true count equals the shared count plus the “local”
count, which is not stored. The collector reconstructs the local counts, once each
collection, by scanning all the threads’ states and noting local REF variables. If an
object’s shared count is zero, and its local count is also zero, then its true count is
zero and it can be freed.’

Because all that matters about a REF’s local count is whether it is zero or
non-zero, the collector needs to determinc only whether a given REF value appears
in any thread’s state. The collector can even be conservative in this scan; it
need not distinguish between REF and non-REF values in thread states. This

5As discussed in Section 2.6.4, some additional complexity arises because the thread states are
scanned at different times; while one thread is stopped to be scanned, the others continue to run.



PROCEDURE Collector();
BEGIN
LOoP
wait for next TQ block;
scan thread states, determining local counts;
process TQ block, updating shared counts ;
return TQ block to the free pool;
adjust shared counts ;

Jree objects with zero shared count and zero local count;
END;
END Collector;

Figure 4: The concurrent reference-counting collector (overview)

simplifies the scan, since it eliminates the need for close interdependency with the
compiler-generated code. Although the conservative scan can cause the accidental
retention of some REF objects, this is not found to be a problem in practice.

2.6 The collector

The collector thread runs the procedure Collector outlined in Figure 4; its phases
are described below.

2.6.1 Wait for next TQ block

The collector thread waits for the current TQ block to fill up before processing its
entries; each TQ block contains 16,384 pairs. (The allocator also sends the current
TQ block to the collector whenever 40,000 bytes of storage have been allocated,
thereby forcing a collection.) The TQ block holds information on the shared REF
assignments up to some time; call the time of the last assignment to. After the
objects’ counts are incremented and decremented, they will represent the shared
counts at ¢g.

2.6.2 Scan thread states

After the TQ block is obtained, the collector scans each thread state to determine
local counts. Each mutator thread in tum is stopped; its state is extracted; the
thread is restarted; its state is scanned for REFs. Since the collector stops only one
thread at a time, and only for a very short time, this does not cause a noticeable
interruption to the mutator.



The collector must hold the mutex to stop a thread. This requirement avoids the
possibility of examining a thread that was stopped in the middie of an assignment.

Any word on the stack or in a register that is a plausible REF (e.g., which
points to a word address inside the heap) is collected into a hashed bit-table for
later use. The use of an inexact hash table makes the scan even more conservative;
an inaccessible object may still seem to be present in a thread state, and would
therefore not be freed. The collector uses different hash function parameters each
collection to avoid perpetuating such a coincidence.

The thread states have all been scanned by ¢; each scan was performed at
some time between ¢ and ;.

2.6.3 Process TQ block

The collector now decrements and increments the shared reference counts of the
REFs appearing in the TQ block. For each pair (lhs, rhs), it increments the rhs’s
reference count and decrements the lhs’s.® When a shared count becomes zero, the
REF is placed in a zero-count list (“ZCL”) unless it is already present, as indicated
in the object’s header.” The shared counts are now accurate as of o, and all objects
that have zero shared count at {¢ will be present in the ZCL.

After the TQ block has been processed it is retumed to the free pool.

2.6.4 Adjust shared counts

The task of the concurrent collector is to free objects that had zero shared count
and zero local count at some point in the past. The collector knows which shared
counts were zero at to, but does not know the local counts at that time.

When an object’s true count becomes zero, it is unreachable, and its count can
never again become non-zero. Therefore, an object’s shared count can increase
from zero to non-zero only if its local count is non-zero at that time. Similarly, an
object’s local co:int can increase from zero to non-zero only if its shared count is
non-zero at that time.

81f the 1hs or rhs is NIL, the corresponding decrement or increment is skipped; there is no header
for NIL, and NIL is never freed. All REF variables in the mutator are initialized to NIL. Certain other
literal REF values can also appear in Modula-2+ programs. These are stored as constants and their
reference counts also are not decremented or incremented. They are never freed.

"When an object is allocated, it has zero reference count, and should therefore appear in the ZCL.
This is achieved by creating the object with a count of 1, then issuing a TQ pair with a lhs containing
a REF to the object, and a rhs of NIL. Processing this ZCL pair decrements the object’s count to zero,
and thereby places it on the ZCL.

10



Consider an object with zero shared count at o, and imagine that, when the
threads were scanned between to and ¢4, the object did not appear in any thread
state. Could the object have non-zero local count at ¢;? Only if it had non-zero
shared count at some intermediate point, which can be the case only if the object is
a ths in (some block in) the TQ at some point between ¢y and ¢;. Could the object
have non-zero shared count at ¢,? Again, only ifit is a rhs in the TQ at some point
between ¢g and ;.

Therefore, if the object has zero shared count at ¢y, and does not appear in any
thread state scanned between ¢y and t;, and does not appear as a rhs in the TQ
between {o and ¢y, then it had zero shared count and local count at t1. It therefore
will always have zero shared count and local count, and can safely be freed.

The “adjust” phase of the collector performs the “increment” operations from
the TQ in the time range [to, t1], incrementing the shared counts of each rhs. {t
suffices to choose ¢; to be the current time.) After this phase, the shared count
stored with each object will be zero iff its shared count was uniformly zero between
to and t,.® This allows the collector to free objects with zero shared count and
zero local count. Since the collector will have preprocessed some increments from
the TQ after ¢y, it must skip these increments in the next cycle.

2.6.5 Freeobjects

Finally, each object on the ZCL is examined and one of four actions is taken:

e If the shared reference count stored with the object is non-zero, the object
is removed from the list. The shared count was once zero, but later became
non-zero.

¢ Else, if object cleanup is enabled on the object, then the object is removed
from the list; its count is reset and it is queued for cleanup. Note that object
cleanup is defined in terms of objects’ shared counts, since their local counts
are unknown.

¢ Else, if the object appeared in some thread state, the object is left on the list,
to maintain the invariant that all objects with zero shared count appear on
the ZCL. The object will not be freed this collection, but may be freed in a
future collection.

*The Deutsch-Bobrow collector did not need an adjust phase, since it was not real-time; the
mutator was stopped during collection, as if to = ¢;. In the Cedar collector, all threads were stopped
atonce while their states were copied, so to = 1 again.

11



e Else, the object is removed from the list and freed. Freeing an object
decrements the reference counts of any other objects it references. This can
expand the ZCL; objects added to the list are processed in this collection to
avoid freeing only one element of a linked list per collection.?

2.7 Problems

The initial Modula-2+ collector exhibits a number of practical shortcomings.

2.7.1 Cyclic structures

Since the collector is an RC collector, it will not free cyclic structures (e.g.,
doubly-linked lists). Programmers must be aware of cyclic structures that are
created, and arrange to break the cyclic links when the structures are discarded. For
example, the programmer could provide a “close” operation on objects containing
cyclic structures; closing an object would break its cyclic links. This approach
obviously eliminates some of the benefit of automatic collection.

In some cases, object cleanup can be used to determine when there are no
references to a structure from outside, at which time the structure’s internal cyclic
links can be broken automatically.

When programmers allow cyclic structures to become unreachable, storage
leaks can occur and unreclaimed garbage can accumulate on the heap. Although
such storage leaks can be avoided by programmers, a collector that reclaimed
cyclic structures automatically would be preferable to the initial collector.

2.7.2 The cost of shared REF assignment

The cost of shared REF assignment is relatively high. On a Firefly workstation,
each of whose processors executes about 1.5 million VAX instructions per second,
an assignment takes approximately 15 psec. In the normal case, the code executed
includes 10 instructions, as shown in Figure 3, plus linkage to and from the library
routine that performs the assignment; the non-normal case increases the average
time somewhat. In comparison, similar scalar assignments, including local REF
assignments, require only 1 instruction. The high cost of shared REF assignments

9This means that a collection could take an unbounded amount of time, depending on the amount
of the heap that has become unreachable. Non-concurmrent RC collectors sometimes leave the
recursion until a node is about to be reallocated; this reduces the time per collection, but increases
the cost of allocation, leaving the total amount of work unchanged. The initial Modula-2 + collector
chooses to reduce the time per allocation by increasing the time in the collector; this seems reasonable
with a concurrent collector.
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acquire mutex; # | instruction

enqueue lhs, rhs; #4 instructions
if end of TQ, extend;  # I instruction
ths :=rhs; # 1 instruction
release mutex; # 3 instructions

Figure 5: Instruction count for shared REF assignment

sometimes causes programmers to avoid using REFs in cases where they would
otherwise be preferred.

2.7.3 Storage fragmentation

Once storage is split into nodes of a certain size, it is never again split or coalesced
into nodes of another size. This can cause fragmentation when a program’s usage
patterns shift during its execution; such fragmentation increases VM utilization.

2.74 Working-set size

There is no attempt to allocate related objects close to each other in VM. Since
objects are returned to the free lists in the order in which their reference counts
become zero, and since the free lists are not kept sorted, we would expect the order
of the free lists to tend toward randomness, so that allocations will eventually range
randomly over the heap, as will the mutator’s actions. We would therefore expect
that the collector’s access pattem over the heap would also be largely random (e.g.,
while adjusting reference counts).

Additionally, since scanning mutator thread states requires reading the stack of
every mutator thread, this suggests that the stacks will remain effectively pinned in
real memory, even if some portions of the stacks have not recently been accessed

by the mutator themselves, and even if some mutator threads have not run at all
recently.

2.7.5 Control strategy

Another way to view a collector’s job is that it helps keep the mutator from
thrashing. The collectorneed never run at all in a VM system—if the address space
can grow large enough—but then the heap would eventually grow quite large, as
would the working-set size, and the program would thrash. When the collector
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runs and reclaims storage, it reduces both the program’s memory needs and its
working-set size.

There is a certain optimum rate at which the collector should run to maximize
the program’s speed. If the collector runs too infrequently, it fails to restrain the
heap size, and paging slows the program. If the collector runs too frequently, it
interrupts the program too often, taking resources from it. However, it is uncertain
how the collector can dynamically determine a rate that is close to optimum for a
given mutator.

The initial Modula-2+ collector initiates one collection per 16,384 TQ pairs,
or whenever 40,000 bytes have been allocated. It is unclear that these numbers
are optimal or close to optimal. The collector also allows the mutator to request a
collection, but this facility is rarely used.

The initial Modula-2+ collector does not always seem to collect at the right
rate. It has been observed that the heap can sometimes grow without bound for
unknown reasons, even though the number of reachable objects remains roughly
constant. The probability that this will occur is small, but it does seem to happen
with certain long-lived servers. One possible cause is that the problem starts when
the collector temporarily falls behind the mutator, possibly due to increased paging
activity when real memory grows tight. When this happens, the heap size grows,
the mutator thrashes, and the collector thrashes even more, making it fall further
behind. This problem is addressed by artificially limiting the number of TQ blocks
that can be outstanding between the mutator and the collector; if the collector falls
too far behind the mutator, the mutator will block as the collector catches up. This
form of control is better than none, but it seems to occur too late. An carlier
collector speedup would be preferable.

3 The experimental collectors

A number of experimental collectors were implemented for Modula-2+ to study
how best to overcome the problems of the initial collector. The experimental
collectors included various mark-and-sweep collectors and copying collectors, all
of which reclaim cyclic structures. The experimental collectors also tended to
reduce the average cost of shared REF assignment.

All the experimental collectors were concurrent. Each was implemented in
two stages: the first stage produced a non-concurrent version of the collector, and
the second stage enhanced it to be concurrent. Three of the concurrent collectors
implemented are presented here.
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3.1 A mark-and-sweep collector

The first experimental collector was a concurrent mark-and-sweep (“M&S”)
collector. An M&S collector has two phases.

¢ In the mark phase, the heap is traced, starting at the “roots,” which include
all objects directly reachable from the mutator (i.e., the referents of globals
and thread states). As the heap is traced, all reachable objects are marked.

¢ In the sweep phase, all unmarked objects are freed.

Unlike an RC collector, an M&S collector can reclaim unreachable cyclic
structures. It makes its decision on which objects to reclaim based on global
properties of the heap, not just local properties.

3.1.1 Heap layout; the allocator

The experimental M&S collector tested a binary-buddy allocation scheme. With a
binary-buddy allocator, a node of size 2", including header, must lie on an address
that is a multiple of 2". A free node of size 2"*! may be split into two free nodes
of size 2", and two adjacent free nodes of size 2™ may be coalesced into a free node
of size 2"*! if they start at an address that is a multiple of 2"*1. The ability of
the binary-buddy allocator to split and coalesce free nodes contrasts with the less
flexible allocation strategy of the initial allocator; it would be expected to decrease
external fragmentation, albeit at the cost of increasing internal fragmentation.
Object headers are stored as shown in Figure 6. A header contains:

* A 5-bitsize field holding the log; of the size in bytes. There is no distinction
between small and large objects.

¢ A2-bitcolor field: A, gray, B, or free. As described in Section 3.1.2, objects
are colored white, gray, or black; colors A and B take turns meaning white
and black. Unallocated nodes are colored free.

* A 1-bit field indicating whether cleanup is enabled for the object.

* A 2-bit reference count for the object, used when cleanup is enabled.
Although the M&S collector does not normally maintain reference counts, it
must count references to objects that have cleanup enabled, since cleanup is
defined in terms of a conceptual reference count.

This field can be small because cleanup thresholds are small. When an object
has cleanup enabled, the collector counts all shared references to the object
that it sees during a collection, stopping if the count exceeds the threshold.
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size | - |clglN]| - typecode

color

cleanup enabled
abbrev. reference count
-: unused

Figure 6: An object header under the experimental storage layout

All objects with cleanup enabled arc considered as roots in the experimental
collector. Even if they would otherwise be unreachable, they will not be
freed, but will be queued for cleanup, at which point they will be reachable.

For implementation simplicity, pickles are not reclaimed. Their contents are
treated as roots.

3.1.2 Overview

The experimental M&S collector follows the three-color model used in the Dijkstra-
Lamport concurrent M&S collector {6]. Each object has a “color,” either white,
gray, or black. (Colors A and B take tumns being the collector’s white and black.)
Normally, all objects are black; allocating an object colors it black. In particular,
at the start of a collection, all objects are black.

First, the interpretations of colors A and B as white and black are switched, so
that all black objects become white.

Next, the objects directly reachable from the mutator’s roots are “shaded™
they are marked at least gray on the whitc-to-gray-to-black progression. In this
case, since these objects were originally white, they are marked gray.

Then, while any objects are gray, one is selected; all objects that it references
are shaded (i.e., the white objects it references are marked gray); and the object
itself is marked black.
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When no gray objects remain, all objects are either white or black; the white
objects are unreachable by the mutator.

To finish, the heap is swept to reclaim all white objects. At this point, all
objects are black, and the collector can start a new collection or wait until one is
needed.

The non-concurrent M&S collector follows this outline directly. In the
concurrent version, though, the mutator can modify the heap structure while the
collector is tracing it. This could keep the collector from marking some parts of the
heap that were in fact reachable by the mutator. For instance, the mutator might
happen to set some objects’ REF fields to NIL just before the collector traced them,
then set them back immediately afterwards; the referents would remain unshaded,
and part of the heap would not be traced.

To ensure that the collector has enough information to mark all reachable
objects, the concurrent M&S collector depends on a transaction queue, as used
with the initial RC collector; the mutator logs shared REF assignments to the TQ,
and the collector reads the TQ to ensure that it does not miss marking some portion
of the heap. As with the initial collector, local REF assignments are not logged, so
the concurrent collector must scan thread states as part of each collection.

3.1.3 The non-concurrent collector

The non-concurrent version of the collector is outlined in Figure 7. The collector
runs in its own thread to simplify its structure, but all other threads are stopped
while it is active.

When the mark phase begins, all objects are white, and all objects reachable
by the mutator can be reached via some path of objects starting from the roots.

ShadeFromRoots shades the REF objects referenced from globals and from
thread states. As in the initial collector, the thread scan is conservative; any word
in the thread state that might be a REF is treated as one. Here, though, treating a
word as a REF involves setting its object’s color to gray, so the collector must be
certain that possible REFs really do contain the addresses of REF objects. With a
binary-buddy allocator, this can be done in time logarithmic in the heap size.

ShadeFromRoots establishes the mark phase’s invariant:

Invariant 1 Any white object that is reachable by the mutator can be reached via
some “chain” : a path of white objects starting from a gray object.

(This is the same invariant as for the Dijkstra-Lamport concurrent M&S
collector, and is proven similarly.)
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PROCEDURE Collector(); PROCEDURE ShadeFromRoots();

BEGIN BEGIN
LOOP for each global REF value DO
wait until collection is needed; Shade (the REF) ;
LOCK mutex DO stop all threads; END; END;
interchange white and black; for each mutator thread DO
(* mark phase *) for each possible local REF in its state DO
ShadeFromRoots () ; Shade(the REF) ;
WHILE there are gray objects DO END;
pick a gray object; END;
Shade (its REFs) ; END ShadeFromRoots;
mark it black;
END;

(* sweep phase *)
for each object DO
IF the object is white THEN free it; END;
END;
start all threads;
END;
END Collector;

Figure 7: The non-concurrent mark-and-sweep collector (overview)

e This invariant clearly holds at the beginning of the main loop of the mark
phase, since all objects are white or gray.

e The body of the loop maintains the invariant:

— Shading a white object has no effect on the invariant. Consider a
reachable white object. Shading the object itself does not affect the
invariant for that object, since it is no longer white. Shading a member
of its chain simply creates a shorter chain which still maintains the
invariant. Finally, shading an unrelated white object does not affect the
invariant.

By definition, shading a gray or a black object has no effect.

— If a gray object has no white successors, marking it black has no effect
on the invariant, since it cannot be the head of a chain.

— The collector’s actions in the trace loop consist solely of shading objects
and of marking gray objects black that have no white successors.
Therefore, its actions must maintain the invariant.

Object colors always proceed forward in the white-gray-black progression,
never backwards. Since each cycle of the loop changes one object from gray to
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black, the loop will eventually terminate. At that time, the invariant still holds, and
there are no gray objects, so no white objects are reachable.

With the non-concurrent M&S collector, black objects never contain REFs for
white objects. This will not be the case with the concurrent collector described in
Section 3.1.4.

Boehm and Weiser [2] describe a similar M&S collector in which the locations
of REFs are not known in objects. Their collector treats all words in objects as
potential REFs, treating them conservatively in the same way that this collector
treats words in thread states.

The sweep phase simply reclaims all white objects. If an object with cleanup
enabled has a count below the threshold, it is queued for cleanup. All counts are
cleared during the sweep phase, preparing for the next collection.

3.1.4 The concurrent collector

The concurrent version of the collector is outlined in Figure 8. The collector runs
concurrently with the mutator during the collection. As before, ¢ is the start of the
collection, and t; follows the end of the thread scans.

Since the mutator is no longer stopped while the collector runs, the collector
must protect some of its operations with the mutex. For example, interchanging
white and black must be done holding the mutex, which also controls the allocator’s
use of these variables.

The global variable tracing indicates whether the collector is in the mark
phase, during which it traces the heap structure. When tracing is true, the mutator
must log shared REF assignments to the TQ, as in the initial collector. The code for
shared REF assignment is outlined in Figure 9.

o Shared REF assignments performed when tracing is true are enqueued by
the mutator; the collector reads them to note the effects of the assignments
on the heap.

¢ Assignments performed when tracing is false need not be communicated
to the collector; they are not of interest. This can help to speed shared REF
assignment.

As with the initial collector, local REF assignments are not logged to the TQ.

The concurrent version of ShadeFromRoots is different from the non-
concurrent version in Figure 7 in that the mutator threads run during Shade-
FromRoots, except while they are being scanned, and in that, as with the
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PROCEDURE Collector();
BEGIN
LOOP
wait until collection is needed;
LOCK mutex DO
interchange white and black;
tracing := TRUE;
END;
(* mark phase *)
ShadeFromRoots() ;
REPEAT
WHILE there are gray objects DO
pick a gray object;
LOCK mutex DO
Shade (its REFs) ;
mark it black;
END;
END;
shade from lhs inTQ;
UNTIL no gray objects;

LOCK mutex DO tracing := FALSE; END;

(* sweep phase *)
for each object DO

IF the object is white THEN free it; END;

END;
END;
END Collector;

PROCEDURE ShadeFromRoots();
BEGIN
for each global REF value DO
Shade (the REF) ;
END;
for each mutator thread DO
stop the thread;
for each possible local REF in its state DO
Shade (the REF) ;
END;
restart the thread;
END;
shade from lhs and rhs in TQ from to to t1;
END ShadeFromRoots;

Figure 8: The concurrent mark-and-sweep collector (overview)

concurrent RC collector, it is necessary to treat specially the portion of the TQ that
was written by the mutator during the thread scans.

As always, reachable objects are reachable either from a global REF or from a
thread state. ShadeFromRoots can be seen to satisfy the lemma invariant:

Invariant 2 If a white object is reachable from a global REF that has been visited
by ShadeFromRoots, then it is reachable by some path of objects from some gray
object, or from some object that appears in the TQ after to as a rhs.

e At the time ShadeFromRoots visited the global REF, its referent was shaded
gray, establishing the invariant. If there has been no assignment to the global
since then, the invariant still holds. If there has been an assignment, the new

value appears in the TQ as a rhs.

Given Invariant 2, ShadeFromRoots can be shown to obey the weak invariant:



PROCEDURE Assign(VAR lhs: REFANY; rhs:

BEGIN
LOCK mutex DO
IF tracing THEN
tq~.lhs := lhs;
tq~.rhs := rhs;
increment tq;

IF tq block is full THEN
notify collector of full 1q block;
tq := nexttq block;

END;

END;
lhs := rhs;
END;
END Assign;

Figure 9: The code for shared REF assignment (simple version)

¢ The invariant is obviously true at the beginning of ShadeFromRoots, since
no threads have been scanned and no globals have been visited; by definition,
all objects reachable by a thread are reachable by some path starting from

some global or from the thread’s state.

¢ The invanant is unaffected by the collector’s actions during ShadeFrom-

Roots.

- When ShadeFromRoots visits a global, any white object reachable
from the global becomes rcachable from a gray object.

- When ShadeFromRoots shades a REF, this does not affect the invariant.

— When ShadeFromRoots scans a thread, there are no unvisited globals,
and any object previousiy reachable from its state becomes reachable

from a gray object.
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REFANY) ;

Invariant 3 (Weak version) If a white object is reachable by a mutator thread that
has not been scanned, it can be reached via some path of objects starting from
some unvisited global; or from the thread’s state; or from some gray object; or
from some object that appears in the TQ after tq as a lhs or as a rhs.

If a white object is reachable by a mutator thread that has been scanned, it can
be reached via some path of objects starting from some gray object; or from some
object that appears in the TQ between to and ty as a lhs or as a rhs; or from some
object that appears in the TQ after ty as a lhs.



¢ The invariant is unaffected by mutator actions. The only mutator actions
that can affect the invariant are allocations and assignments.

Allocations do not not affect the invariant, since new objects are created
black by NEW.

Assignments can destroy paths by which objects are reachable, by overwriting
a REF variable, and can also make objects newly reachable by some threads.

— A local REF assignment by a thread affects only that thread’s state, and
so could affect only the first part of the invariant. If an object is no
longer reachable from the thread’s state, but is still reachable by that
thread, it must be reachable from some global. Either the global is
unvisited, or, by Invariant 2, the object appears in the TQ after to as a
rhs. Either way, the invariant is maintained.

~ Consider a shared REF assignment performed by a thread between ¢o
and t,. This assignment can destroy paths through the lhs to objects that
nonetheless remain reachable, but the lhs will appear in the transaction
queue afier to, so the path destruction cannot make the invariant false.
The assignment can also let other threads reach new objects through
the rhs, but the rhs will also appear in the transaction queue between to
and t1, so any new paths are accounted for.

— Consider a shared REF assignment performed by a thread after t;.

There are no unscanned threads, so the first part of the invariant does
not apply. As before, the assignment can destroy paths through the
Ihs to objects that remain reachable, but the lhs will appear in the
transaction queue after fo.
Before the assignment, the rhs was reachable by the thread that did the
assignment; by the invariant, there was a path to it. If the assignment
did not destroy the path, the same path still holds. If the assignment
destroyed the original path, the rhs has overwritien a link in the path,
creating a new path for the rhs. In either case, the invariant is still
satisfied for the rhs, and for objects reachable from it.

Given that ShadeFromRoots satisfies this weak invariant, it also obeys the
stronger invariant below. The weak invariant guarantees that there will be a path;
the strong version guarantees that therc will be a “chain™: a path whose clements,
past the beginning, are white.

Invariant 4 (Strong version) If a white object is reachable by a mutator thread
that has not been scanned, it can be reached via some chain of white objects
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starting from some unvisited global; or from the thread’s state; or from some gray
object; or from some object that appears in the TQ after ty as a lhs or as a rhs.

If awhite object is reachable by a mutator thread that has been scanned, it can
be reached via some chain of white objects starting from some gray object; or from
some object that appears in the TQ between to and t, as a lhs or as a rhs; or from
some object that appears in the TQ after t, as a lhs.

¢ The invariant is obviously true at the beginning of ShadeFromRoots: the
weak invariant holds and all objects are white.

¢ The collector’s actions during ShadeFromRoots do not affect the invariant.
As with Invariant 1, shading objects does not affect the invariant.

¢ Consider a reachable white object x; the weak invariant provides a path to x.
The objects along the path are white, gray, or black.

If all the objects are white, the invariant is satisfied.

Else, pick the last non-white object in the path. If it is gray, it heads a valid
chain. Otherwise, the object is black; call the white object following it r.
The black object must have been allocated since ?g, and the REF to r was
assigned into it since then.

— If the assignment occurred before t;, r appears on the TQ as a rhs
between ¢y and ¢, and the invariant is satisfied; r heads a chain.

- If the assignment occurred after ¢;, r satisfied the condition on the
second part of the invariant at the time of the assignment; it had a valid
chain. Moreover, there must still be a valid chain for r:

* If no elements of the original chain have been shaded, and the
chain has not been broken by assignments, then the original chain
is still valid.

* Otherwise, the element furthest down the chain to have been
shaded or to have had the link to it broken by an assignment heads
a valid chain to r, since that element is either gray or appears in
the TQ after ¢y as a lhs.

Take r’s chain and append the subchain of white objects following it in
x’s path; this is a valid chain for x.

The final “shade from lhs and rhs in TQ from ¢ to t;” operation that ends
ShadeFromRoots shades all lhs’s and rhs’s that appear in the TQ between t¢ and
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t1 (the present time). This maintains Invariant 4, and establishes the invariant of
the remainder of the mark phase:

Invariant 5 Any white object that is reachable by the mutator can be reached via
some chain of white objects starting from a gray object, or appears in the TQ after
ty asalhs.

e By Invariant 4, the invariant holds immediately following ShadeFromRoots.

e As in Invariant 1, the collector’s shading operations do not affect the
invariant. Note that after TQ entries are used for shading, they are no longer
of interest since their referents are no longer white; this lets the collector
discard TQ entries after processing them.

e As in Invariant 1, marking an object black does not affect the invariant.
(Note that although the code in Figure 8 locks the operation of shading the
referents of a gray object and marking the gray object black, the lock is not
necessary for the correct operation of the collector: although locking gives a
consistent snapshot of the REFs in the gray object, any REF that would leave
the object during the operation would appear as a lhs in the TQ.)

¢ As in Invariant 4, mutator actions do not affect the invariant. Although it is
no longer true that black objects have been allocated since {o, any white REFs
in black objects must still have been assigned into the black object since to,
since objects contain no REFs for white objects when they are marked black.

If there are no gray objects at the end of the repeat-loop in Collector, that
means that when the while-loop scan over all gray objects was completed, there
were no white objects reachable by the mutator. This situation must persist, so the
mark phase can end; all white objects are unreachable.

In the sweep phase, the collector sweeps the heap to free white objects.
Meanwhile, the mutator continues to allocate, so the free lists must be protected
with mutexes. The allocator may split nodes but does not coalesce them; this
simplifies locking between the mutator and the collector, since the collector knows
that a valid node address will remain valid regardless of mutator actions. The
collector itself coalesces nodes as it frees objects.

3.1.5 Faster shared REF assignment

The code for shared REF assignment shown in Figure 9 tests the tracing flag
while the mutex is held. Although no values are logged to the TQ when tracing
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PROCEDURE Assign(VAR lhs: REFANY; rhs: REFANY);
BEGIN
IF tracing THEN
LOCK mutex DO
IF tracing THEN
tq~.1lhs := lhs;
tq~.rhs := rhs;
increment tq;
IF tq block is full THEN
notify collector of full 1q block;
tq := nexttq block;

END;
END;
lhs := rhs;
END;
ELSE
(* fast path *)
lhs := rhs;
END;
END Assign;

Figure 10: The code for shared REF assignment (faster version)

is false, and the lock is not needed for the assignment, there is still the overhead
of acquiring and releasing the mutex. Imagine that the code is modified as in
Figure 10 to create a fast path in the normal case (when tracing is false); we
would expect that this would reduce the average cost of shared REF assignments.

This modification, although faster, is inadequate by itself; the combination of
testing tracing and conditionally branching is non-atomic. Although tracing
might be false when tested, it could become true before the fast-path assignment is
done, and this assignment could interfere with the mark phase.

Each thread could therefore perform “one bad assignment” per collection,
based on one obsolete reading of tracing. This problem can be avoided by
modifying ShadeFromRoots to make an initial scan of all threads to see if they
are suspended between the test and the assignment, and, if so, to shade the lhs
and rhs. Imagine that the code in Figure 10 is implemented in machine code as in
Figure 11. The lhs is loaded into a register before the test; if the rhs is already in a
register, then shading from each thread’s registers suffices for the pre-scan.
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load lhs value; # [ instruction
if tracing, ... # [ instruction
lhs := rhs; # 1 instruction

Figure 11: Instruction sequence for shared REF assignment (faster version)

3.2 A mark-and-sweep collector with VM synchronization

The concurrent M&S collector described in Section 3.1.4 requires 3 instructions
for shared REF assignments in the normal case (when tracing is false). Using
VM synchronization, it is possible to reduce this to the minimum of 1 instruction
in the normal case. VM synchronization was first used in a collector in the
VM-synchronized copying collector described by Ellis, Li, and Appel [7]. Mike
Burrows of SRC suggested the approach below, which extends VM synchronization
to M&S collectors.

VM synchronization allows threads to synchronize implicitly instead of explic-
itly, by using VM mechanisms to protect memory locations.'® When a location is
not protected, each thread can freely read and write the location. When a location
is protected, an attempted access will trap and the thread will be blocked; as soon
as the access can proceed, the location is unprotected and the trapped thread is
allowed to continue. In effect, every read or write operation does an implicit “test
if locked,” as embodied by the VM hardware’s permission checking, but there is
no overhead if the locations are not protected. On the average, accesses through
REFs become a little slower, since they may trap, but assignments are speeded up.

3.2.1 Overview

This collector is an M&S collector, like the previous experimental collector. As
before, a three-color white-gray-black algorithm is used. The collector uses VM
synchronization to keep the mutator from reading REFs to white objects. If a
mutator thread tries to read a REF to a white object, a VM fault occurs, the object
is shaded, and the thread is continued; the read can now proceed.

At the beginning of each collection, the collector shades the referents of globals
and thread states, as before. Once therc are no REFs to white objects in thread
states, or in globals, the mutator cannot put any there, since it cannot obtain such
REFs until their referents are shaded. Similarly, black objects will not contain REFs
to white objects, since the mutator has no REFs to white objects it could place there.

1%Since the unit of protection is a page, all locations on a page are protected identically.

26



Therefore, if the mutator were to obtain a REF to a white object, it would have
to be from a gray object. To achieve the necessary VM synchronization, all pages
containing gray objects are kept inaccessible to the mutator; they cannot be read.
These “gray pages” are made inaccessible when they become gray, as part of the
operation of shading an object gray. When a page no longer contains any gray
objects, it can be made accessible again.!!

Since gray objects are protected, attempting to read a REF from one will cause
atrap. The collector shades the refercnts of gray objects on the page, and marks
the gray objects black, until the page is no longer gray, then it unprotects the page
and continues the mutator thread.

The VM-synchronized M&S collector does not use a TQ. Instead of having
the collector run behind the mutator, the mutator is forced to run behind a barrier
created by the collector.

This collector uses the same storage layout and the same allocator as the
previous M&S allocator described in Section 3.1.1.

3.2.2 The collector

The VM-synchronized M&S collector is outlined in Figure 12. As before, a
collector thread runs the procedure Collector. Additionally, a separate trap-
catcher thread in the collector runs the procedure TrapCatcher; it waits for a
trapped thread to be delivered, cleans its unreachable page by ridding it of gray
objects, and continues the thread’s execution.

(For improved performance, there can be a number of trap-catcher threads,
each running TrapCatcher. This will result in reduced delays for trapped threads.
It is also possibic to divide the collector’s work in selecting and cleaning gray
pages among a number of threads, if desired, and the sweep phase can also be
performed in parallel.)

Both the main collector and the trap-catcher share the procedures Shade and
Clean. Each page has an associated count of gray objects on the page; a “gray
mutex” to protect the gray count and to scrialize shading; and a “cleaning mutex”
to serialize cleaning. Each mutex can be shared among a number of pages to
reduce storage needs; for example, page number p might use gray mutex number
p mod N. The gray count can be replaced by a single gray bit to further reduce
storage rcquircments.

In this collector, REF assignments do not distinguish between shared REF
variables and local REF variables; all assignments are simple one-instruction

"'"The collector uses a privileged mechanism to read the protected pages.
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PROCEDURE Collector();
BEGIN
LOoP

wait until collection is needed ;

LOCK mutex DO
interchange white and black;
for each mutator thread DO

stop the thread;
END;

END;

(* mark phase *)

ShadeFromRoots();

WHILE there are gray pages DO
pick a gray page;
Clean(the page) ;

END;

(* sweep phase *)

for each object DO
IF object.color = white THEN

free it;
END;
END;
END;
END Collector;

PROCEDURE ShadeFromRoots();
BEGIN
for each global REF value DO
Shade (the REF) ;
END;
for each mutator thread DO

for each possible local REF in its state DO

Shade (the REF) ;
END;
restart the thread ;
END;
END ShadeFromRoots;

PROCEDURE Shade (object) ;
BEGIN

LOCK the object's page's gray mutex DO
IF object.color = white THEN
IF NOT page.protected THEN
protect the page ;
END;
object.color := gray;
page .grays := page.grays + 1;
END;
END;

END Shade;

PROCEDURE Clean(page) ;
BEGIN

LOCK the page’s cleaning mutex DO
LOOP
LOCK the page’s gray mutex DO
IF page.grays = 0 THEN
unprotect the page;
EXIT;
END;
END;
for each gray object on the page DO
Shade (its REFs) ;
object.color := black;
LOCK the page's gray mutex DO
page.grays := page.grays - 1;
END;
END;
END;
END;

END Clean;

PROCEDURE TrapCatcher();
BEGIN

LoopP
wait for a trapped thread;
Clean(the unreachable page) ;
restart the thread,

END;

END TrapCatcher;

Figure 12: The VM-synchronized mark-and-sweep collector (overview)



assignments.

Each mark phase begins with stopping all mutator threads at once, unlike the
previous concurrent collectors, which stopped threads one at a time. While the
threads are all stopped, all REF objects dircectly reachable by the mutator (i.e., those
referenced by global or local REFs) are shaded gray; their pages are therefore made
inaccessible. Thereafter, while there are gray pages (and therefore gray objects),
the collector picks a gray page to clean. While there are gray objects on the page,
the collector picks one, shades all REFs it holds, then marks the gray object black.
Finally, the page is no longer gray, so it can be unprotected.'?> When there are no
more gray pages, there are no more gray objects; the mark phase is finished, and
there are no protected pages.

The sweep phase is the same as in the previous M&S collectors.

Because of VM synchronization, the invariants of the mark phase are much
simpler to state and to demonstrate than in the previous collector.

Invariant 6 No gray object is readable by the mutator.
* At the beginning of the mark phasc, there are no gray objects.
¢ Only Shade makes objects gray, but only on pages that are protected.
¢ Only Clean unprotects pages, but only on pages with no gray objects.

¢ Shade and Clean’s actions arc mutually atomic, due to the use of the gray
mutex.

Invariant 7 No white object is immediately reachable by the mutator (i.e., no
global REFs are to white objects, and no mutator thread that is not stopped has
local REF's to white objects); no black object contains a REF to a white object.

¢ The invariant is true after ShadeFromRoots shades the global REFs; no
mutator threads are running, and there are no black objects.

¢ ShadeFromRoots’s operation of shading a mutator thread’s local REFs and
restarting it preserves the invariant. The local REFs cannot be modified
during this operation because the thread is stopped.

¢ Since gray objects cannot be read by the mutator, by Invariant 6, and since
black objects do not contain REFs to white objects, the mutator cannot read
a REF to a white object from any object on the heap.

12La.rgc objects can span multiple pages. Cleaning one of the pages cleans them all, so they can
all be unprotected.



¢ Since the mutator cannot obtain a REF to a white object, it cannot store such
a REF into a black object.

o The procedure Clean makes an object black only after any REFs to white
objects it contains have been shaded. While this is happening, no REF to a
white object can be stored into the object by the mutator, since the mutator
has access to no white object.

¢ Objects do not become white during the mark phase.

Invariant 8 Disregarding VM protection, any white object that is reachable by
the mutator (i.e., by any mutator thread that is not stopped) can be reached via
some chain of white objects starting from a gray object.

¢ Since the mutator has no REFs to white objects, and since black objects
contain no REFs to white objects, any white objects reachable by the mutator
must be reachable by such a chain.

Unlike the previous concurrent M&S collector, which stops threads one at
a time, this collector must stop all threads before restarting any. Otherwise,
unscanned threads could store REFs to white objects into black objects, violating
the invariant. There seems no way that a VM-synchronized M&S scheme can
scan one thread at a time, letting each make significant progress while the others
are scanned. This suggests that the synchronization structures possible using
VM synchronization are strictly weaker than when using explicit synchronization,
which is not surprising.

Since all mutator threads are stopped during ShadeFromRoots, that procedure
should run as fast as possible to avoid noticeable interruptions of service. Instead
of shading each global REF separately, an optimization is to consider the pages
containing global REFs as “objects” themselves. ShadeFromRoots will shade
these global REF pages instead of shading from the individual global REFs; if these
globals are stored contiguously, a single VM operation will protect them all. The
collector and the Clean procedure will then clean global REF pages in addition to
heap pages. Similarly, all mutator stack pages can be considered as objects, and
they can all be protected with a single VM operation.

During the mark phase, a heap page can alternate between gray and non-gray
a number of times, as different objects on the page become gray then black. The
associated VM operations can be expensive; the “protect” operations are especially
expensive on shared-memory multiprocessors, since all processors must adjust
their caches and TLBs. We note that when a page becomes gray, it must be
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protected, but it is not necessary to unprotect the page after it is cleaned. If the
page is left protected, and it later becomes gray, it will not need to be re-protected,
thereby avoiding a pair of VM operations. Of course, a Clean operation initiated
by a mutator trap should unprotect the page. If a mutator thread traps on a page
while it is protected but not gray, the page can be quickly unprotected, slowing the
mutator only slightly.

As an additional optimization, the entire heap could be protected at the
beginning of a collection. This is faster than making pages unreadable only as they
become gray, and produces no more mutator page traps.

3.2.3 A generational VM-synchronized mark-and-sweep collector

The VM-synchronized M&S collector can also be made “generational” [12], reduc-
ing the average time required for a collection. A generational VM-synchronized
M&S collector has been designed but not implemented.

A generational collector takes advantage of the observation that most REF
objects become garbage relatively soon after they are allocated. In a generational
collector, the collector usually chooses to collect only those objects that belong to
recent “generations” (i.e., those allocated most recently), and only rarely considers
the older generations too.

Each object belongs to some generation: 0 (the oldest), 1, 2, ..., n (the newest).
Newly allocated objects join generation n. Each collection collects generations
g...n for some g; usually, g = n. The objects retained from each generation ¢
become members of generation ¢ — | (or follow some similar scheme); objects
retained from generation 0 remain in gencration 0. Objects in generations 0...g — 1
are retained. Objects allocated during the mark phase join a special extra generation
n + 1, and move to generation n during the sweep phase.

Previous generational collectors have been compacting collectors, where the
age of an object can be determined from its location in memory. Since this is not
the case with M&S collectors—newly allocated objects can be interspersed among
older objects—the object’s generation number is stored in the object header. A 2-
or 3-bit field should suffice.

When generations g...n are collected, those generations’ roots must be shaded.
These include not only global and local REFs to objects in these generations, but
also “forward REFs” from generations ()...g — L; these “older generations™ are not
being collected, so all of their objects arc being retained.

VM synchronization is used to keep track of forward REFs, as has also been
done by Shaw [10]. After each collection, all non-empty heap pages are write-
protected, so that any mutator update to an older-generation page will trap. On a
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write trap, TrapCatcher lists the page as potentially containing forward REFs (and
records into which generation), then unprotects the page and restarts the mutator.

ShadeFromRoots must perform extra shading to start a collection. Global
REFs are roots, but so are forward REFs from older generations. Equivalently,
objects in older generations can act as if they start each collection shaded gray. To
achieve this, the entire heap is read-protected at the beginning of each collection,
cheaply making all these “gray” pages unreadable.

(As an optimization, globals and mutator stacks could also participate in VM
protection, as discussed in Section 3.2.2. This would let the collector know when
they had most recently been written, and which generations of REFs they might
contain, allowing fewer pages to be scanned. In particular, stack pages that have
not been written recently (e.g., because of a thread that is blocked, or deep in
recursion) would not be scanned. This would avoid the syndrome with the initial
Modula-2+ collector in which all mutator stack pages are effectively pinned in real
memory by frequent collector references.)

During the mark phase, only objects in generations g...n are shaded, since only
new objects are to be collected. All older objects remain white during tracing.

After all threads have been restarted, ShadeFromRoots traces from the old
objects in each recently-written page. This echoes Collector’s tracing from gray
pages. The procedure Clean must handle both gray pages in the current generation
and “gray” pages in older generations.

When TrapCatcher catches a read trap, it cleans the unreachable page, as
before, and releases the read protection. When it catches a write trap, it notes that
it may contain REFs that point as far forward as the current new generation, and
releases the write protection.!®

The collector’s sweep phase is also modified. Only objects in the current
generations are collected; older objects have their color set to black to re-establish
the invariant that objects are black between collections. This can be simplified by
a redefinition of white and black for those pages. Future allocations in an old page
must use that page’s value of black; the allocator can use the per-page value, or the
old objects can be recolored before allocations proceed.

3.3 A mostly-copying collector with VM synchronization

Copying collectors have many advantages over other types of collector. They
compact the heap, eliminating external fragmentation. They linearize heap data

131f the VM system does not allow pages to be writable but not readable, TrapGatcher must also
clean the page and release the read protection.
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structures, so that related objects lie near each other. They allow fast allocation. In
addition, they can easily be made concurrent, VM-synchronized, and generational.

A copying collector divides the storage for the heap into two spaces: old and
new. In a non-concurrent copying collector (a “stop-and-copy” collector), only the
new space normally contains objects; the old space is empty. Objects are allocated
contiguously within the new space; allocating a new object can simply increment
an address and check whether the end of the space has been reached.

When the new space becomes full, or a collection is otherwise desired, the old
space and the new space swap roles; all objects are now in the old space. The
collector copies all reachable objects from the old space to the new space, tracing
recursively from the roots; this compacts the heap and can linearize it. Each
object is moved to the new space, leaving a forwarding pointer behind; it is now
“half-copied.” Then its REFs are updated to point to its referents’ new addresses;
it is now fully copied. The roots are also updated to point to the new space. When
the copying completes, there is no garbage in the new space; the contents of the
old space are discarded and the mutator proceeds.

In a concurrent copying collector, the mutator proceeds while a collection is in
progress. The mutator obeys the invariant that the REFs it obtains can point only
into the new space, not the old space. Should a mutator action produce a REF for
an object that had not yet been moved, it is moved immediately and the new REF
is returned.

Not only REFs should be updated to point into the new space; POINTERs,
addresscs, VAR parameters, certain temporaries, etc., should also be updated. This
is not possible in the current Modula-2+ environment; not enough information is
available at runtime to distinguish a POINTER value that should be updated from a
perhaps identical INTEGER value that presumably should not. Moreover, Modula-
2+ is used in Topaz together with other languages, whose runtime environments
share this lack of information.

Using a mostly-copying (“MC”) collector, first described by Bartlett, solves
this problem [1]. Each object is considered “mobile” or “immobile.” An object
is immobile if therc may be non-REF pointers to it; otherwise, it is mobile. The
collector moves mobile objects, but immobile objects do not move, since the
possible references to them cannot be relocated reliably. When mobile objects
move, only known REFs must be relocated, by definition, and this can be done
safely. Ideally, there will be few immobile objects; most objects will be moved,
and few will be left behind to reduce the benefits of the mostly-copying collector.
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3.3.1 Heap layout; the allocator

The heap is divided into pages. Between collections, all non-empty pages belong
to the new space; all empty pages are free. When a collection starts, the non-empty
pages join the old space, and additional pages are allocated for the new space
as necessary. When an old page is found to contain an immobile object, it is
considered to belong to the new space as well as the old space; otherwise, all old
pages are freed at the end of the collection.

As with the initial RC collector, the allocator distinguishes between small
objects and large objects. Small objects are packed within pages, and large objects
are allocated their own contiguous run of pages. However, all small objects are
allocated contiguously into a common “‘current allocation page,” regardless of size.
When an object will not fit, a new current allocation page is obtained and the object
is allocated there. Large objects use a binary-buddy system, which is also used to
provide new current allocation pages.

In an MC collector, it is necessary to be able to determine whether an address
points to or into a heap object, and, if “into,” to determine the object’s starting
address. This is straightforward for large objects, as with the binary-buddy system
in Section 3.1.1. For small objects, the small page containing the address must be
scanned sequentially until the address is reached or passed.

Large objects are never moved. The point of relocation is to reduce fragmen-
tation and to move related objects onto the same pages, but large objects always
reside on their own pages, so moving them would be pointless. Therefore, large
objects are always considered immobile.

3.3.2 Overview

A non-concurrent MC collector has been designed and implemented for Modula-
2+, and a concurrent version has been designed and largely implemented. These
collectors resemble Bartlett’s, but are organized to help accommodate concurrency.

The non-concurrent collector operates in three phases. In the first phase (the
“mark” phase), all reachable objects are marked black, as in the M&S collectors,
but no objects are moved. Mobility is also determined; an object is marked
immobile if a possible POINTER-like value in a root or in a reachable object might
reference it. In the second phase (the “copy” phase), all reachable, mobile objects
are moved, and all REFs are relocated.!” In the third phase (the “sweep” phase),

141n Bartlett's collector, the operations of the first phase and the second phase are combined. As
objects are traced, they are moved, butin a way that is reversible. In Bartlett’s second phase, objects
found to be immobile are restored to their original locations, and all REFs are fixed up.
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old pages that are now empty are reclaimed.

Since thread states are scanned conservatively, some objects will be falsely
marked immobile. This will occur more frequently than the similar conservative
retention of REF objects, since the possible POINTERs may be to or into the objects,
not just “to” as for possible REFs. In this implementation, for simplicity, the
locations of POINTER values in globals and in heap objects are not known to
the collector. Instead, the collector considers every word that is not known to
contain a REF as a potential POINTER. This conservative approach results in more
objects being immobilized than are truly referenced by POINTERs or similar values.
Detlefs, describing a similar concurrent collector for C++ [3], assumes perfect
knowledge of the locations of POINTERS in objects; Bartlett assumes the same.

Some white objects will be marked immobile. These are not retained; the
premise is that the possible POINTERs that immobilized them were in fact not
pointers and the mutator will not use these “pointers” later. This is the same rule
for retention as in the previous collectors.

In the concurrent VM-synchronized MC collector, the mutator runs concur-
rently with the collector, as the collector traces the heap to distinguish reachable
objects from unreachables, and mobiles from immobiles, and as it moves reachable
mobile objects and relocates the REFs to them.

During the mark phase, it may not be known yet whether any particular object is
mobile or immobile; any object currently considered mobile can become immobile
as tracing proceeds. (This is not the case with Detlefs’ collector, as he restricts the
contents of heap objects to eliminate the possibility of such surprises.) If mutator
actions during tracing provide the mutator with a REF to an object, that object must
be marked immobile to avoid a future change in the decision.

During the copy phase, it has been decided which objects are mobile and which
are not. If the mutator tries to obtain a REF (0 a mobile object, and the object has
not yet been moved, it is moved to the new space and its new location is returned.

The sweep phase is the same as in the non-concurrent version.

The mark phase uses VM synchronization to determine when the mutator is
about to obtain a REF or a POINTER to or into an object. Its invariant is that
the mutator cannot read REFs to white objects (like the invariant in the VM-
synchronized M&S collector), nor can the mutator read REFs or POINTERs to or
into mobile objects, since they would later move. Heap pages are protected when
they become gray, but are not automatically unprotected when they are no longer
gray, only when there is a mutator access; pages are therefore protected if they have
been gray since the last mutator access. When a mutator thread attempts a read
from a protected page, the referents of all REFs held in gray objects on the page are
shaded, as before; the gray objccts arc marked black; the referents of all REFs or
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POINTERSs held in black objects are marked immobile; the page is unprotected and
the mutator thread is allowed to continue.

During the mark phase, then, REFs and POINTERs immediately reachable by
the mutator (i.e., those in globals and in thread states) reference only the new space
(remembering that immobile objects are considered to be in the new space as well
as in the old space).

The copy phase also uses VM synchronization. Its invariant is that the mutator
cannot obtain a REF to a mobile object that has not yet been moved. Again, REFs
and POINTERs immediately reachable by the mutator reference only the new space.
All pages containing half-copied objects (those whose referents have not been
updated) are read-protected; additionally, pages containing reachable objects with
mobile REFs will still be protected from the mark phase. When a read is attempted
from a protected page, the referents of all REF's in the objects are moved to the new
space, if they are not already there; the REFs are adjusted; the page is unprotected
and the thread is restarted.

3.3.3 The non-concurrent collector

The non-concurrent MC collector is shown in Figure 13.

The collector’s mark phase closely resembles the mark phase of an M&S
collector. The threads are stopped. All objects are made white and mobile.
(Between collections, objects are black and immobile.) The root REFs are shaded,
and the referents of possible root POINTERs arc immobilized. The words in
threads’ states may be REFs or POINTERs, so their possible referents are both
shaded and immobilized.!®> Next, while there are gray objects, one is chosen; its
REFs’ referents are shaded, its possible POINTERs’ referents are immobilized, and
it is marked black.

In the copy phase, all black mobile objects are moved, tracing from the roots
and the immobile objects. When an object is moved, a forwarding address is left
at the former location; the forwarding address is used later to relocate REFs to the
old space. The objects that are moved enter a “half-copied” set of objects whose
contents have been moved but whose internal REFs have not been relocated; these
REFs are relocated as the objects leave the half-copied state.'

'°In addition to its registers an its stack, a thread state may also include, for example, the address
of the mutex that the thread is blocked on. The referents of such addresses must also be immobilized.
'$The half-copied set can be implemented as a strict queue, in which case it can be a semi-
contiguous set of objects in the new space. Using a strict queue produces breadth-first copying of the
heap structures, which often does not keep related objects together. Other orders of copying can be
used to prefer, for example, elements from the half-copied set that lie on the current allocation page.
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PROCEDURE Collector();
BEGIN
LooP
wait until collection is needed;
LOCK mutex DO stop all threads; END;
interchange white and black ;
interchange mobile and immobile ;
flip the spaces;
(* mark phase *)
ShadeFromRoots();
WHILE there are gray objects DO
pick a gray object;
Shade (its REFs) ;
Immobilize (its POINTERs) ;
mark it black;
END;
(* copy phase *)
Copy();
restart all threads ;
(* sweep phase *)
for each old page DO
IF no black immobile objects THEN
free the page;
ELSE
Jree the white objects;
END;
END;
END;
END Collector;

PROCEDURE ShadeFromRoots():
BEGIN
Shade (the global REFs) ;
Immobilize (the global POINTERs) ;
Jor each mutator thread DO
Shade (the words in the state) ;
Immobilize (the words in the state) ;
END;
END ShadeFromRoots;

PROCEDURE Shade (address) ;
BEGIN
IF address is to a REF object THEN
IF object.color = white THEN
object.color := gray;
END;
END;
END Shade;

PROCEDURE Immobilize(address);
BEGIN
IF address is to or into a REF object THEN
object.mobile := FALSE;
END;
END Immobilize;

PROCEDURE Copy () ;
BEGIN

half-copied set := {};

roots := Transport (rools) ;

for each immobile object DO
its REFs := Transport (its REFs) ;

END;

WHILE half-copied set # {} DO
select an object from the half-copied set;
its REFs := Transport (its REFs) ;

END;

END Copy;

PROCEDURE Transport{(object): Location;
BEGIN
IF object.mobile THEN
IF object has not been moved THEN
copy bytes to new space ;
add object to the half-copied set;
store forwarding address at old location;
object . mobile := FALSE;
END;
RETURN forwarding address ;
ELSE
RETURN object'’s location;
END;
END Transport;

Figure 13: The non-concurrent mostly-copying collector (overview)
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In the sweep phase, the collector reclaims storage in the old space. This is done
with the mutator running. Usually, entire pages are freed from the old space; they
are returned to the binary-buddy allocator. If a page contains immobile objects,
the page is not reclaimed, but the other objects on the page are marked “free” so
that they will not confuse later collections.'”

3.3.4 The concurrent collector

The concurrent collector is shown in Figure 14. The details of the locking between
the collector and the mutator are not presented here.

The concurrent collector begins the same way as the non-concurrent version.
All threads are stopped, the referents of the global REFs are shaded, and the
referents of possible global POINTERs are immobilized. Then, in this concurrent
version, the referents of the global REFs are also immobilized. Finally, the possible
referents of the words from the thread states are shaded and immobilized; each
thread is restarted after its state has been processed.

(Altematively, if the globals and the mutator stacks were treated as objects,
and made immobile at the beginning of the collection, then heap objects would
become immobile only when the referencing global or stack pages were read by
the mutator. This would result in fewer immobile objects.)

As in the VM-synchronized M&S collector in Section 3.2.3, this collector
maintains a list of pages containing any gray objects. The mark phase cleans each
gray page in turn, marking its gray objects black and possibly causing other objects
to become gray. The mark phase terminates when there are no more gray pages.

Procedure Shade shades white objects gray, and makes gray pages inaccessible
to the mutator. Procedure Shade is called both from the main collector thread and
from the trap-catcher thread and therefore requires additional locking (not shown)
over the non-concurrent version.

Procedure Clean cleans a page. It is also called from both Collector and
TrapCatcher. When it retumns, there are no gray objects on the page. (The extra
locking to cause this to remain true for a useful interval is not shown.) Note that,
unlike the version of Clean in Figure 3.2.2, this Clean does not unprotect the
cleaned page. This maintains Invariant 9, below.

Procedure Copy works with half-copied pages, instead of half-copied objects.
It selects a half-copied page (one that may contain REFs to the old locations of

"Their storage could be reclaimed by having the mutator allocate small objects into runs of words
as opposed to into entire pages. This would be desirable only if it caused little or no slowdown to the
mutator. Alternatively, the collector’s own allocation when moving objects could allocate into page
fragments as well as into whole pages.
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PROCEDURE Collector(); PROCEDURE Clean(page) ;

BEGIN BEGIN
LOOP WHILE some gray objects on page DO
wait until collection is needed ; for each gray object on the page DO
LOCK mutex DO Shade (its REFs) ;
stop all threads; Immobilize (its POINTERs) ;
interchange white and black ; object.color := black;
interchange mobile and immobile ; END;
flip the spaces; END;
END; END Clean;
(* mark phase *)
ShadeFromRoots(); PROCEDURE Copy();
WHILE there are gray pages DO BEGIN
Clean(agray page); half-copied page set := {};
END; (* half-copied pages kept protected: not shown *)
(* copy phase *) roots := Transport (rools) ;
Copy(); for each immobile object DO
(* sweep phase *) its REFs := Transport(its REFs);
as before; END;
END; WHILE select a half-copied page DO
END Collector; WHILE select a half-copied object DO
its REFs := Transport (its REFs) ;
PROCEDURE ShadeFromRoots(); END;
BEGIN END;
Shade (the global REFs) ; END Copy;
Immobilize (the global REFs) ;
Immobilize (the global POINTERs) ; PROCEDURE TrapCatcher();
for each muwtator thread DD BEGIN
Shade (the words in the state) ; LogP
Immobilize (the words in the state) ; wait for a trapped thread ;
restart the thread; IF mark phase THEN
END; Clean(the unreachable page) ;
END ShadeFromRoots; for each black object on the page DO
Immobilize (the object’s REFs) ;
PROCEDURE Shade (address) ; END;
BEGIN ELSIF copy phase THEN
IF the address is 1o a REF object THEN IF the page is in the old space THEN
IF object.color = white THEN for each immobile black object on the page DD
object.color := gray; its REFs := Transport (itsREFs) ;
IF NOT page.protected THEN END;
prolect the page;; ELSIF the page is half-copied THEN
END; finish copying it;
END; END;
END; END;
END Shade; unprotect the page;
END;
(* Immobilize, Transport as before *) END TrapCatcher;

Figurc 14: The VM-synchronized mostly-copying collector (overview)
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mobile objects), and, for each half-copied object on the page, relocates the objects’s

REFs, moving the referenced objects as necessary. As pages become half-copied

(via Transport), they are read-protected against mutator access. When they leave

the set of half-copied pages, they are unprotected. Similarly, after Copy updates

the REFs in black immobile objects, it can unprotect their pages (not shown).
Procedure TrapCatcher services the mutator’s page traps.

¢ When a trap occurs during the mark phase, the page is cleaned, the referents
of all REFs in black objects on the page are immobilized (the mutator cannot
reach the white objects without further traps occurring), and the page is made
readable. (The necessary locking is not shown.) These black objects have
already been immobilized, so the page is in the old and new spaces.

¢ When a trap occurs during the copy phase, all reachable objects on the page
are black. The page is in the new space. Pages in the half-copied set are
unreadable. If the page is half-copied, the referents of the REFs in the page
are moved, the page leaves the half-copied set, and it is made readable. (If
the page was the current allocation page, a new allocation page becomes
current. If desired, TrapCatcher could wait until the page was full or the
copy phase ended.)

Pages in the old space may also be still protected from the mark phase; only
black immobile objects are retained there. All REFs in these black immobile
objects are Transported—if they reference mobile objects, they are made
to reference the new locations—and the page is made readable.

The locking necessary to synchronize TrapCatcher’s actions with the collector’s
changes of phase are not shown.

The invariants of the concurrent VM-synchronized MC collector are straight-
forward. Note that the mark phase correctly identifies the reachable objects as in
Section 3.2.2.

Invariant 9 Following ShadeFromRoots’s call to immobilize the global POINT-
ERs, until the end of the mark phase, the states of running threads do not contain
REFs to white objects or mobile objects; globals do not contain REFs to white
objects or mobile objects; black objects do not contain REFs to white objects, black
objects on unprotected pages do not contain REFs to mobile objects.

o The invariant is true following ShadeFromRoots’s call to immobilize the

global POINTERs. There arc no running mutator threads, and no black
objects. The referents of global REFs have been shaded and immobilized.
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o Collector actions do not affect the invariant.

— ShadeFromRoots’s operation of making the referents of the local
REFs of a mutator thread gray and immobile and restarting the thread
preserves the invariant.

— Cleaning a page preserves the invariant. When objects are made black,
their referents are shaded. Objects are made black only in gray pages,
which are protected.

— TrapCatcher preserves the invariant. After cleaning the page, it im-
mobilizes the referents of all REFs in black objects before unprotecting
the page.

Objects do not become mobile or white during the mark phase.
¢ Mutator actions do not affect the invariant.

— When REFs are allocated during a collection, they are allocated in the
new space (and need not enter the half-copied set). They are black and
immobile.

— Threads cannot load REFs to white objects into their states. They can
acquire REFs only for gray objects and black objects. Gray objects
cannot be dereferenced; black objects do not contain REFs to white
objects. Since threads cannot acquire REFs to white objects, they
cannot store such REFs into globals or black objects.

— Threads cannot load REFs to mobile objects into their states. They can
acquire REFs only for gray objects and black objects. Gray objects
cannot be dereferenced; black objects that can be dereferenced do not
contain REFs to mobile objects. Since threads cannot acquire REFs
to mobile objects, they cannot store such REFs into globals or black
objects.

Invariant 10 During the copy phase, all REFs immediately reachable by the
mutator (i.e., in globals or thread states) contain the objects’ final addresses.

¢ Theinvariant is true at the beginning of the copy phase. All REFs immediately
reachable by the mutator are to immobile objects, which do not move.
Morcover, all REF's in black objects on readable pages are immobile.

e When a page becomes readable by the mutator during the copy phase, all
mobile referents of REFs in it have becn moved to their new locations.
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e Transport places REFs to the old space into half-copied pages, but they are
kept unreadable while the objects are half-copied.

Invariant 11 During the mark and copy phases, if the mutator has a POINTER o
or into a heap object, that object will not be moved.

e If a pre-existing POINTER is immediately accessible to a thread when it is
scanned, the object is immobilized, and will not move.

o If a pre-existing POINTER is found on a gray object, its referent is immobi-
lized, and does not move. All rcachable objects on the heap become gray
during the mark phase, except for newly allocated objects, which do not
contain pre-existing POINTERs,

¢ If the mutator creates a new POINTER to a heap object during the mark phase
or copy phase, it must be created using an already-existing POINTER to the
object, or a REF to the object. (Using arbitrary address arithmetic to create
POINTERs cannot be accommodated.) If the mutator uses an already-existing
POINTER, the invariant is already satisfied. If it uses a REF during the mark
phase, its referent must be immobile, by Invariant 9; it will not be moved. If
it uses a REF during the copy phase, the REF is to the object’s new address,
by Invariant 10; the object has already been moved.

The concurrent VM-synchronized MC collector can also be made generational,
as with the generational VM-synchronized M&S collector. Since the MC collector
allocates sequentially within pages, each page could be labeled with the generation,
as is normal with generational collectors, instead of each object.

3.4 Problems

The experimental collectors were tested with a number of test programs. These
included:

e A simple test program that repeatedly builds a large data structure on the
heap, walks the structure, then abandons it. Twenty threads perform this
action concurrently. This program was used for gross validation, and, since
it is REF-intensive, for simple performance measurements.

e A concurrent program that simulates a physical system in real time, and
displays an animation. This was used as a gross test of the real-time
behaviors of the collectors.
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¢ The Modula-2+ debugger, Loupe. A test case was constructed to make
Loupe’s heap grow quite large; Loupe was thereby usable as a test of the
collectors’ VM performance, as well as of simple speed, since Loupe is
fairly REF-intensive.

¢ The Topaz operating system, Taos. Taos has broad functionality, and is a
rich environment for validation. It also serves to test the collectors’ VM
performance and real-time behavior under varying loads.

All the collectors were tuned until they out-performed the initial Modula-2+
collector in the simple benchmark. When the collectors were studied further,
however, several performance problems were noted, and some problems of
functionality.

3.4.1 Working-set size

Although the experimental collectors often performed better than the initial collec-
tor, they sometimes performed much less well. The principal reason seems to be
an increased working-set size.

Unlike the initial RC collector, the experimental collectors must access the
entire heap during each collection. (Generational collectors were not tested.) This
contrasts with the more limited accesses of the RC collector, which does not touch
objects unrelated to recent mutator references.

Since many Modula-2+ programs can have large heaps (i.e., measured in tens
of megabytes), the experimental collectors could have large working-set sizes,
provoking thrashing. This thrashing reduces throughput, and also reduces real-
time performance. Worse, the Firefly workstation has a relatively low-throughput
paging system, so thrashing is easier to provoke that it might otherwise be.

Of course, some programs provoke thrashing even with the initial collector.
Each collector has a range of programs that run well with it, a range that run poorly,
and a range that thrash. Based on a relatively small number of benchmarks, the
experimental collectors seemed to have a smaller range that run well, and seemed
to enter the thrashing range more swifly.

The MC collector would be expected to have a smaller working-set size
than the other experimental collectors, because it compacts and linearizes the heap.
However, no significant advantage was noted in the experiments. Perhaps Bartlett’s
design (with only two phases to the experimental collector’s three) would be more
constrained in its accesses; perhaps the large working-set size is simply because
the collector is concurrent, which causes more and wider-spread memory accesses
per unit time.
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A generational collector would, of course, have a smaller working-set size.
However, some of its collections would still be complete ones, to reclaim old
garbage, and these could still provoke thrashing from time to time.'® Of course,
if these were infrequent enough, they could be scheduled to occur at times of low
machine utilization.

34.2 Object retention

Some Modula-2+ programmers avoid the cost of REF assignments by generating
and using POINTERSs to heap objects instead of REFs. If they let these objects
become inaccessible via any REF path, of course, the objects would normally
be collected. These programmers sometimes use programming tricks (in unsafe
modules) to fool the collector into not freeing the objects even if they become
inaccessible via REFs (e.g., by artificially raising their reference counts).

Such tricks, however, only fooled the initial RC collector. With the experimen-
tal collectors, such objects were freed and reallocated, causing these (incorrect)
programs to crash. When such code was rewritten to use only safe code, the
programs ran correctly, although more slowly.

An alternative would be to modify the rules for object retention to consider
possible POINTERs as well as REFs. However, this would slow the collectors, and
would cause more objects to be retained. Most Modula-2+ programmers seem to
have no problem with the rule that objects are freed unless they are reachable by
REFs; they know when they’re cheating.

3.4.3 Object immobilization

In the MC collector, objects are immobilized if there are or may be POINTERs to
or into them. The presence of such POINTERs might cause the program to break if
their referents were moved. For example, imagine that a program is reading from
a file into a buffer on the heap. It would be wrong for the buffer to move while the
read was in progress. Fortunately, this does not happen, since the read routine is
called with the buffer as a VAR parameter, whose address acts like a POINTER.
However, this simple approach to immobilization is not always adequate.

¢ This approach is inadequate if POINTERs are stored in an encoded form
and decoded before use. For example, if a POINTER is stored with an

18Some generational collection schemes consider objects that are sufficiently old (i.e., that have
survived some number of collections) to be “permanent.” Permanent objects are never collected.
This distinction is unrealistic in an operating system or any other long-lived server, which canrun for
an unbounded amount of time; never collecting old objects would usually cause a slow storage leak.
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offset, perhaps to simplify some later addressing,'® an earlier object may
incorrectly be considered immobile and the correct one will not. The MC
collector for Modula-2+ handles only unencoded POINTERs, requiring some
programming and code-generation discipline (which fortunately was already
present).

¢ Some programs use non-POINTER variables, such as INTEGERs, to store the
addresses of heap objects. These are not guaranteed to cause immobilization
(although they do in the experimental implementation). If the objects were
to move, these addresses would become invalid.

¢ Some programs hash on REFs; they perform arithmetic on REFs, treating
them as addresses, to obtain hash-table indexes. If the objects were moved,

the same objects would hash to different indexes, and the program would
fail.

¢ Some programs sort on REFs. For example, they sort to determine a non-
blocking locking order among objects. If the objects were to move, the order

of locking would be temporarily affected and concurrent operations might
deadlock.

¢ One program examined wrote REF values into a log file. The log file listed
operations on certain objects, and each object’s key was its REF. If the objects
were to move, the same object might have multiple keys in the file, and the
same key could refer to different objects.

¢ One program passed REF values among address spaces as unique ids. If the
objects were to move, these ids would no longer be unique.

During the use of the experimental MC collector, some of these problems could
avoided by modifying the programs not to use REFs in these ways. Otherwise,
the affected objects were manually immobilized by extending each such object to
include a POINTER to itself. This POINTER kept the object from ever moving.

Another problem with the MC approach is the potentially large number of
objects that are considered immobile. Some programs are well behaved and have
a small number of immobile objects. Loupe, for example, was seen to have about
150 small immobile objects shortly aficr startup; the number never exceeded 250.
Certain other programs, though, had a large number of immobile objects. For

*For example, consider a variable x that is a REF to an array, where element x~[i-1]
is at location ADDR(x")+c*(i-1). A compiler might precompute ADDR(x")-c via common
subexpression elimination.
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example, a majority of the objects in Taos were sometimes marked immobile,
largely removing the advantages of an MC collector. Part of this number might be
due to the experimental collector’s conservative approach in considering possible
POINTERs; part can be due to objects being immobilized in response to mutator
actions during collections.

34.4 Costof VM synchronization

There are several components to the cost of VM synchronization.

¢ All mutator threads must be stopped at once in a VM-synchronized collector.
Each thread is stopped for the time required to stop or restart n — 1 other
threads, plus the time spent in ShadeFromRoots while the threads are all
stopped.

¢ The time for ShadeFromRoots’s initial shading can be high. As described
in Section 3.2, this can be reduced to a few VM operations (three in the
experimental implementations) while all threads are stopped. The time
required for these three operations was sometimes acceptable (about 10 ms)
but was sometimes exorbitant (about 300 ms). No good explanation was
found for the great variation in times required for identical VM operations.

Even though the collector can avoid examining threads’ stacks while they
are all stopped, it still must examine their registers, and make any referents
unreadable, requiring more VM operations. (Ellis, Li, and Appel [7] propose
a scheme that would do much of this work in the mutator threads themselves,
with the currently running threads going first. This could help spread the
VM operations more evenly over the course of a collection.)

¢ When the mutator threads are restarted, they will experience some number of
page traps. This number was seen to be as high as 300 for some collections.
Each trap causes the mutator thread to execute far more slowly than if the
access had proceeded uninterrupied.

As a result, there was a noticeable interruption of service when the VM-
synchronized collectors were used. There would be a short but noticeable interval
when the program would pause (while all the threads were stopped), followed by a
longer period when its progress was slow and jerky (while significant numbers of
page traps were being generated), finally followed by normal operation when the
collection finished.
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The potentially high costs of the necessary operations, and the variability
of these costs, made VM synchronization seem less desirable for use in a new
collector for Modula-2+.

3.4.5 When to collect

The initial RC collector began a collection after a set number of assignments had
passed, or a certain number of bytes had been allocated. Although this policy was
certainly not optimal, it performed reasonably well. If an RC collector performs
two collections, back-to-back, their total cost is not very different from a single
collection over the total interval; the main difference is that the threads are scanned
twice. Therefore, it is not too disadvantageous to make the collection interval
somewhat smaller than optimal; this allows a small fixed interval to work well.

With the M&S or MC collectors, though, the two collections would take almost
twice the time of one. Since the collectors are concurrent, the time they spend
can sometimes be ignored, but not always; the increase in working set size is also
a concemn. This makes a fixed collection interval less advantageous. Although
a variety of other control strategies were tried for the experimental collectors,
attempts to let the collectors run less often when possible resulted in the collectors
often falling behind the mutator, causing unnecessary expansion of the heap or
stopping the mutator while the collector caught up.

4 A combined reference-counting and mark-and-sweep
collector

In reaction to the problems with the experimental collectors, a simple collector was
designed and implemented that combines an RC collector with an M&S collector.
Although shared REF assignments take as much time as in the initial RC collector,
cyclic structures are reclaimed. The combined collector is only a little slower than
the initial collector, with a slightly larger working set size.

The RC collector runs often; the M&S collector runs infrequently. Most
garbage is therefore freed by the RC collector, since most garbage is not part of
cyclic structures. Any cyclic garbage is eventually located and reclaimed by the
M&S collector.

The combined collector has replaced the initial collector for use at SRC.
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Figure 15: A small object header

4.1 The allocator

The allocator and storage layout have been extended and improved for the combined
collector.

The layout of a small object header is shown in Figure 15. This layout is
identical to the initial collector’s layout, with the addition of a 2-bit color field for
the M&S collector. The headers of large objects are similarly modified.

Unlike the initial allocator, nodes of one size can be split or coalesced into
nodes of different sizes. (It was decided not to use binary-buddy allocation, to
simplify backward compatibility with pre-existing pickles and with the current
compiler.) The goal is to accommodate long-lived programs, which might exhibit
various behaviors over their lifetimes but whose heap usage at any one time is not
unmanageable. Ideally, these programs should not run more poorly because of
allocator problems due to earlier behavior, such as fragmentation. (Of course, this
ideal is not always achieved, but this allocator does better than the initial allocator.)

A page-level allocator has been added, which uses a binary-buddy system.
Pages are 8192 bytes in size. Large objects are allocated from the page allocator
and returned to it when they are freed. Small object pages are allocated from the
page allocator—each 8KB page holds multiple small objects, which are between 8
and 4096 bytes long—and may be retumed to it when all their objects are freed.

To help concentrate small object allocations on some pages while other pages
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PROCEDURE RCCollector;
BEGIN
LooP
wait until a TQ block is available ;
preempt M&S collector ;
performreference counting ;
pass the TQ block to the M&S collector;
IF should collect THEN
perform the RC collection;
END;
let M&S collector proceed;;
END;
END RCCollector;

Figure 16: The RC collector

have a chance to become free and be recycled, the allocator keeps the free lists
grouped by page; all free objects on the same page are contiguous on the list.

Pickles are divided into small pickles and large pickles. When small pickles
are allocated, they are packed onto the current small pickle page until no space
remains, then a new small pickle page is allocated. Large pickles get their own
run of pages. When pickle objects are freed, they do not immediately enter the
free lists; instead, when all the objects on a small pickle page or in a large pickle
have been freed, the storage is retumned to the page allocator. Since the objects in
a pickle are related, it is likely that they will become free all at once, or almost at
once; this policy lets large pickle pages be recycled at that time, and helps in the
reclamation of small pickle space.

4.2 The collectors

As in the initial RC collector, the mutator’s shared REF assignments are entered
into a TQ. Both collectors read (lhs, rhs) pairs from the TQ. The code for shared
REF assignment is identical to the code in Figure 3.

For simplicity, the RC collector and the M&S collector each runs in its own
thread. The RC collector’s structure is outlined in Figure 16. The structure is the
same as in the initial RC collector, except for two changes.

¢ A collection is not performed on every TQ block read. This helps the
collector catch up when it falls behind the mutator. (Remember that not all
TQ blocks are full. If the mutator requests a collection, it emits a partial
block to signal the collector.)
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o The two collectors do not run at once. Since both modify object headers,
and since locking on a per-object basis would be too expensive, they lock on
a coarser scale.

The RC collector has precedence; if it wants to run, it blocks the M&S
collector from running, then allows it to continue after the RC action.

The RC collector and the M&S collector are both triggered by allocations
or mutator requests. The default allocation threshold is 100KBytes for the RC
collector, and 10MBytes for the M&S collector.

The M&S collector follows the design of the M&S collector described in
Section 3.1.4, but can be preempted by the RC collector. While it is running, it
periodically polls for a preemption request.

While the M&S collector is in its mark phase, it must note each lhs in the TQ;
until all threads have been scanned, it must also note each rhs. The RC collector
calls into the M&S collector before releasing each TQ block; if the M&S collector
is currently in its mark phase, it performs the necessary shading.

Only the RC collector frees objects. When the sweep phase of the M&S
collector finds a white object, it simply sets all REFs in the object to NIL,
decrementing the reference counts of the referents. This breaks cyclic structures,
letting the RC collector reclaim their storage.

Since the RC collector can free objects while the M&S collector is preempted,
the M&S collector must be made to work correctly even when objects are freed
from under it. (Since the M&S collector does not free objects, the RC collector
does not need to be similarly modified.) There are two necessary modifications.

o The mark phase of the M&S collector keeps both a list of gray pages, which
may contain gray objects, and, as an optimization, a shorter list of additional
gray objects. Since the RC collector can free gray objects while the M&S
collector is preempted, the M&S collector must empty its list of gray objects
into the list of gray pages before being preempted. The RC collector may
even remove entire gray pages from the heap during the M&S collector’s
mark phase, or recycle them for other uses; the M&S collector must therefore
treat its list of gray pages as a hint.

o The M&S collector’s mark phase depends on Invariant 5, which guarantees
the existence of chains of white objects, starting from gray objects or certain
others, leading to all reachable white objects. If objects in this chain are
freed, the invariant will not hold.

Therefore, when the RC collector frees an object during the M&S collector’s
mark phase, the RC collector must shade the rcferents of any REFs in the
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if end of TQ, extend; # [ instruction
enqueue lhs, rhs; # 2 instructions
lhs := rhs; # 1 instruction

Figure 17: Instruction count for shared REF assignment with per-thread TQ

object. This will either make the reachable white object gray, or establish a
new chain leading to it from a gray object.

4.3 Faster assignments

A scheme has recently been implemented to reduce the cost of REF assignment
from its current 10 instructions, shown in Figure 3, to as low as 4 instructions
in the normal case. Instead of sharing a single TQ among the mutator threads,
each thread is given its own TQ. The Modula-2+ compiler reserves a register (per
thread, necessarily) to point to the next TQ element. The instruction count for
assignment for this scheme is shown in Figure 17.

The instruction count is reduced by holding the current TQ address in a
register, thereby eliminating a load and a store,?® and by eliminating locking during
the assignment. However, it then becomes the mutator’s responsibility not to
perform concurrent assignments to the same REF variable, as this could result in
incorrect reference counts as noted in Section 2.4. This forces programmers to
treat REF assignment as an inherently non-atomic operation, and to provide their
own multiple-reader one-writer synchronization. Such synchronization is already
present in many programs, as the result of higher-level locking. Unfortunately, this
change creates problems in static checking for safety.

The RC collector reads TQ blocks as they become available from the threads.
It must also look ahead in partial blocks, as before, to adjust counts of objects
involved in assignments while threads were being scanned between to and ¢;; this
requires cach thread to be stopped again after time ¢, to read its TQ address.

Since TQ entrics are no longer read in chronological order, object counts can
temporarily go negative during a collection. The “overflow” bitin an object header
can now indicate underflow as well.

**In the current implementation, the register points to a block of per-thread data, which includes
the TQ address. The instruction count for shared REF assignment is therefore 6 instructions.
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S Summary

Although concurrent garbage collection is an important feature of Modula-2+, the
initial reference-counting collector lacked functionality, and its performance was
sometimes poor. To explore alternative approaches, a number of experimental
collectors were implemented and used with representative Modula-2+ programs.
Although the experimental collectors lacked some of the problems experienced
with the initial collector, they had some new ones; collections took longer, and
their working-set sizes were large. In the end, a combined reference-counting and
mark-and-sweep collector was implemented and put into use.

This new collector offers increased functionality compared with the initial
collector. While its performance is not substantially better, it is not substantially
wOrse.

Other possible collector designs are now being considered. For example, a
purely copying collector might be possible with a few syntactic restrictions on
the uses of POINTERs and related constructs. Instead of using implicit VM-
synchronization to avoid violating collector invariants, it might be faster for
compiled code to use explicit tests for the same purpose.
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