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ABSTRACT

Autonet is a self-configuring local area network composed of switches interconnected

by 100 Mbit/second, full-duplex, point-to-point links. The switches contain 12 ports that

are internally connected by a full crossbar. Switches use cut-through to achieve a packet

forwarding latency as low as 2 microseconds per switch. Any switch port can be cabled to

any other switch port or to a host network controller.

A processor in each switch monitors the network’s physical configuration. A

distributed algorithm running on the switch processors computes the routes packets are to

follow and fills in the packet forwarding table in each switch. This algorithm

automatically recalculates the forwarding tables to incorporate repaired or new links and

switches, and to bypass links and switches that have failed or been removed. Host

network controllers have alternate ports to the network and fail over if the active port

stops working.

With Autonet, distinct paths through the set of network links can carry packets in

parallel. Thus, in a suitable physical configuration, many pairs of hosts can communicate

simultaneously at full link bandwidth. The aggregate bandwidth of an Autonet can be

increased by adding more links and switches. Each switch can handle up to 2 million

packets/second. Coaxial links can span 100 meters and fiber links can span two

kilometers.

A 30-switch network with more than 100 hosts is the service network for Digital’s

Systems Research Center.
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1. INTRODUCTION

The Ethernet [10], with 10 Mbit/s host-to-host bandwidth and 10 Mbit/s aggregate

bandwidth, has done well as the standard local area network (LAN) for high-performance

workstations, but it is becoming a bottleneck in demanding applications. One modern

workstation can use an Ethernet’s entire data transfer capacity, and workstations are

getting faster and more numerous. There is an increasing need for a faster, higher-capacity

LAN.

This need is being addressed commercially by the FDDI [4, 5] token ring LAN. With

ten times greater host-to-host and aggregate bandwidth, FDDI will provide considerable

relief for the Ethernet bottleneck. Autonet is an alternative approach to a higher-speed,

higher-capacity, general-purpose LAN that could replace Ethernet. The fundamental

advantage of Autonet over FDDI is greater aggregate bandwidth from the same link

bandwidth. With FDDI the aggregate network bandwidth is limited to the link bandwidth;

with Autonet the aggregate bandwidth can be many times the link bandwidth. Other

advantages of Autonet over FDDI include lower latency, a more flexible approach to high

availability, and a higher operational limit on the number of host that can be attached to a

single LAN. Also, Autonet appears to be simpler than FDDI. There is no intrinsic reason

why an Autonet should cost more than an FDDI ring.

Any replacement for Ethernet must retain Ethernet’s high availability and largely

automatic operation, and be capable of efficiently supporting the protocols that work on

Ethernet. Low latency is important in a new network because distributed computing

makes request/response protocols such as RPC [9] as important as bulk-data transfer

protocols. Because security will become increasingly important in the next decade, a new

LAN must not hinder encrypted communication. Autonet addresses all these requirements.

The primary goal of the Autonet project was to build an useful local area network,

rather than to do research into component technologies for computer networks. Except in

a few aspects, Autonet is designed using ideas that have been tried in other systems in

different combinations. But bringing together just the right pieces can be a challenge in

itself, and can produce a result that advances the state of the art.

Building Autonet required combining expertise in networking, hardware design,

computer security, system software, distributed systems, proof of algorithms,

performance modeling, and simulation. While a primary purpose for Autonet was to

support for distributed computing, Autonet’s implementation uses distributed computing

to perform its status monitoring and reconfiguration.

The development goal for Autonet was producing a network that would be put into

service use. The prospect of service use forced us to develop practical solutions to both

the big and the little problems encountered in the design process, and generated a strong

preference for simplicity in the design. In early 1990 an Autonet replaced an Ethernet as

the service LAN for our building, connecting over 100 computers. Service use is

allowing the effectiveness of the design to be evaluated and the design to be improved

based on operational experience.

Section 2 of this paper contains a brief description of Autonet, to provide context for

the rest of the paper. Section 3 describes the major design decisions that define the

network. Section 4 highlights the areas where Autonet appears to break new ground.

Section 5 provides a more detailed description of the components of the network. Section
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6 describes the operation of these components. Finally, section 7 discusses our early

experience with Autonet and indicates directions for future work.

2. OVERVIEW

An Autonet, such as the one illustrated in Figure 1, consists of a number of switches and

host controllers connected by 100 Mbit/s full-duplex links. As shown by the grey arrows,

a packet generated by a source host travels through one or more switches to reach a

destination host. Switches contain logic to forward packets from an input port to one or

more output ports, as directed by the destination address in each packet’s header. A non-

blocking crossbar in each switch connects the input and output ports. Depending on the

topology, the network can handle many packets at once. Packets even can flow

simultaneously in opposite direction on a link.

Figure 1: A Portion of an Autonet Installation

Switches can be interconnected in an arbitrary topology, and this topology will

change with time as new switches and links are added to the network, or as switches and

links fail. A processor in each switch monitors the state of the network. Whenever the

topology changes, all switch processors execute a distributed reconfiguration algorithm.

This algorithm determines the new topology and loads the forwarding tables of each

switch to route packets using all operational switches and links. In normal operation the

switch processor does not participate in the forwarding of packets.

Switches forward packets using a cut-through technique that minimizes switching

latency. There is a small amount of buffering associated with each switch input port and a

flow control mechanism that ensures these buffers do not overflow. Except during

reconfiguration, Autonet never discards packets.
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Hosts are connected to the Autonet via dual-ported controllers. For best network

availability, a host is connected to two switches; the controller design allows only one of

these connections to be used at a time. An Autonet ought to accomodate at least 1000

dual-connected hosts. Possible improvements to the reconfiguration algorithm would

allow even larger Autonets.

3. DESIGN DECISIONS

This section summarizes the major decisions that characterize the Autonet design.

3.1 Point-to-Point Links at 100 Mbit/s

Ethernet uses a broadcast physical medium. Each packet sent on an Ethernet segment is

seen by all hosts attached to the segment. As described by Tobagi [20], the minimum size

of an Ethernet packet is determined by the need to detect collisions between packets.

Reliable collision detection requires that each packet last a minimum time. At high bit

rates this time translates into unacceptably large minimum packet sizes. Most 100 Mbit/s

and faster networks, including Autonet, use point-to-point links to get away from these

limitations. Using point-to-point links also can produce a design that is relatively

independent of the specific link technology. As long as a link technology has the needed

length, bandwidth, and latency characteristics, then it can be incorporated into the network

with appropriate interface electronics.

We settled on 100 Mbit/s for the link bandwidth in Autonet because that speed

represents a significant increase over Ethernet, while still being well within the limits of

standard signalling technology. We chose the AMD TAXI chip set [3] to drive the links,

leaving the subtleties of phase-locked loops and data encoding on the link to others. The

overall Autonet design should scale to ten times faster links.

We engineered Autonet to tolerate transmission delays sufficient for fiber optic links

up to 2 km in length. The first link we have implemented uses 75 ohm coaxial cable,

with full-duplex signalling on a single cable. Electrical considerations limit these coax

links to a maximum length of 100 m. If both link types were implemented they could be

mixed in a single installation: coaxial links might be used within a building because of

their lower cost; fiber optic links might be used between buildings because of their longer

length limit.

3.2 Unconstrained Topology with Pre-calculated Packet Routes

An Autonet is physically built from multi-port switches interconnected by point-to-point

links in an arbitrary topology (although the network will work better when thought is

given to the topology). Any switch port can be cabled to any other switch port, or to a

port on a host controller. A packet is routed from switch to switch to its destination

according to pre-calculated forwarding tables that are tailored to the current physical

configuration.

A tree-shaped flooding network, like Hubnet [13], has an aggregate network

bandwidth that is limited to the link bandwidth and has limited ability to configure around
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broken components. A ring topology like that used in FDDI has similar limitations. In

addition, a ring has latency proportional to the number of hosts. A reasonably configured

Autonet has latency proportional to the log of the number of switches. Autonet handles

many packets simultaneously along different routes, has unconstrained topology, and

allows a great deal of flexibility in establishing routes that avoid broken components.

3.3 Automatic Operation

One of the virtues of Ethernet and FDDI is that in normal operation no management is

required to route packets. Even when multiple networks are interconnected with bridges

[14], a distributed algorithm executed by the bridges determines a forwarding pattern to

interconnect all segments without introducing loops. The bridge algorithm also

automatically reconfigures the forwarding pattern to include new equipment and to avoid

broken segments and bridges.

Autonet also operates automatically. This function is provided by software executing

on the control processor in each switch that monitors the physical installation. Whenever

a switch or link fails, is repaired, is added, or is removed, this software triggers a

distributed reconfiguration algorithm. The algorithm adjusts the packet routes to make use

of all operational links and switches and to avoid all broken ones. Of course, human

network management is still required to repair broken equipment and adjust the physical

installation to reflect substantially changed loads.

3.4 Crossbar Switches

An Autonet switch has 12 full-duplex ports that are internally interconnected by a

crossbar. We chose a crossbar because its structure is simple and its performance is easy

to understand, although a more sophisticated switch fabric could be used if it allowed a

single input port to connect simultaneously to any set of output ports to support

broadcast.

The small number of ports is a direct result of wanting to get the system into service

quickly. All the Autonet hardware is built out of off-the-shelf components, and 12 ports

was all that could be fit into a reasonably sized switch without using custom integrated

circuits. The Autonet switch design would scale easily to 32 or 64 ports per switch by

using higher levels of circuit integration. Such larger switches would be more cost-

effective for all but the smallest installations, because fewer ports would be used for

switch-to-switch links. A virtue of our small switch is that it generates a higher switch

count, which in turn provides a more interesting test for the distributed reconfiguration

algorithm.

3.5 Limited Buffering with Flow Control

Autonet uses a FIFO buffer at each receiving switch port. A start/stop flow control

scheme signals the transmitter to stop sending more bytes down the link when the

receiving FIFO is more than half full. Packets are not discarded by the receiving switch in

normal operation. With our flow control scheme a 1024-byte FIFO is sufficient to absorb

the round-trip latency of a 2 km fiber optic link, although we actually use a 4096-byte
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FIFO to obtain deadlock-free routing for broadcast packets. The FIFO is only big enough

to contain a few average-sized packets or less than one maximum-sized packet. Flow

control is independent of packet boundaries so a single packet can be in several switches

at once. A consequence of this scheme is that congestion can back up through the

network, potentially delaying even packets that will not be routed over the congested link.

Limited buffering also implies that a switch must be able to start forwarding a packet

without having the entire packet in the local buffer. In fact, in Autonet such cut-through

forwarding can begin after only 25 bytes have arrived.

An alternative buffering scheme would be to provide many packets of buffering at

each receiving switch port, say using 1 Mbyte of memory, and to provide no flow control

at this level. The port would have a higher capacity to absorb incoming traffic during

periods of congestion, delaying the need to respond to the congestion and allowing time

for congestion avoidance mechanisms to work. Also, longer links could be used because

the absence of flow control eliminates the maximum link latency constraint. Eventually,

though, a port would have to defend itself by discarding arriving packets.

We chose limited buffering with flow control because it uses less memory per switch

port, making the switches simpler and smaller. In the absence of proven mechanisms for

avoiding congestion, an additional advantage of our scheme may be that communication

protocols will be more stable because the flow control scheme responds to link overload

by backing up packets rather than by throwing them away.

3.6 Deadlock-Free, Multipath Routing

Because Autonet uses flow controlled FIFOs for buffering and does not discard packets in

normal operation, deadlock is possible if packets are routed along arbitrary paths.

Deadlocks can be dealt with by detecting and breaking them, or by avoiding them. For

Autonet we chose the latter approach. Detecting deadlocks reliably and quickly is hard, and

discarding an individual packet to break a deadlock complicates the switch hardware. Our

scheme uses deadlock-free routes while still allowing packet transmission on all working

links. (See section 4.2.) The scheme has the property that it allows multiple paths

between a particular source and destination, and takes advantage of links installed as

parallel trunks.

3.7 Short Addresses

The Autonet reconfiguration algorithm assigns a short address to each switch and host in

the network. (A few short addresses are reserved for special purposes like broadcast.) Short

addresses contain only enough bits (11 bits in the prototype) to name all switch ports in a

maximal-sized Autonet. A forwarding table in each switch, indexed by a packet’s

destination short address (and incoming port number), allows the switch to quickly pick a

suitable link for the next step in a route to the packet’s destination. The forwarding table

is constructed as part of the distributed configuration algorithm that runs whenever the

physical installation changes, breaks, or is repaired. The short address of a switch or host

can change when reconfiguration occurs, although it usually does not.

Autonet’s addressing scheme lies between source routing, as used in Nectar [6] for

example, and addressing by unique identifier (UID), as used in Ethernet. Of the three
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schemes, UID addressing is the most complex in a network that requires explicit routing,

because the network must know a route to each UID-identified destination and do one or

more UID-keyed lookups to forward a packet. Source routing removes from the network

the responsibility for determining routes, placing it instead with the hosts in smart

controllers or in system software. The network must contain mechanisms to report the

physical configuration to the hosts and to alter packets as they are forwarded. Source

routing eliminates the possibility of dynamic choice of alternative routes. In comparison,

Autonet’s use of short addresses results in relatively simple switch hardware without

giving up dynamic multipath routing.

When considering alternative addressing schemes for LANs we must keep in mind

that Ethernet has established UID addressing as the standard interface for datagrams. What

the network hardware does not provide, the host software must. So the design question

becomes one of splitting the work of providing UID addressing between network

switches, host controllers, and host software. For Autonet, all host controllers and

switches have 48-bit UIDs; host software implements UID addressing based on Autonet

short addresses. (See section 3.11.)

3.8 Hardware-Supported Broadcast

Because Ethernet naturally supports broadcast, high-level protocols have come to depend

upon low-latency broadcast within a LAN. Autonet switch hardware can transmit a packet

on multiple output ports simultaneously. This capability is used to implement LAN-wide

broadcast with low latency by flooding broadcast packets on a spanning tree of links.

Since a broadcast packet must go everywhere in a network, the aggregate broadcast

bandwidth is limited to the link bandwidth. As we found out, supporting broadcast

complicates the problem of providing deadlock-free routing. (See section 6.6.6.) Having

low-latency broadcast, however, simplifies the problem of mapping destination UIDs to

short addresses.

3.9 Alternate Host Ports

In an Autonet, a host is directly connected to an active switch. In an Ethernet-based

extended LAN, a host is directly connected to a passive cable. An active switch has a

greater tendency to fail than a passive cable. The specific availability goal for Autonet is

that no failure of a single network component will disconnect any host. Thus, Autonet

allows each host to be connected to two different switches. The mechanism we chose for

dual connection is to provide two ports on an Autonet host controller. The host chooses

and uses one of the ports, switching to the alternate port after accumulating some

evidence that the chosen port is not working.

Having alternate ports simplifies other areas of the design. For example, without

alternate ports serious consideration would need to be given to providing “hot swap” for

port cards in switches: otherwise, turning off a switch to change or add a port card would

disable the network for all directly connected hosts. With alternate ports on host

controllers, hot swap is not necessary: turning off a switch simply causes the connected

hosts to adopt their alternate ports to the network. Port failover usually can be done

without disrupting communication protocols. The obvious disadvantage of having
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alternate ports is the increased cost of more host-to-switch links and extra switches. For

100 Mbit/s links, however, the cost per link is quite low compared to the cost of the host

that typically would be connected to such a network.

3.10 Integrated Encryption

Security in most distributed systems must be based on encrypted communication. We

wanted encrypted packets to be handled with the same latency and throughput as

unencrypted ones -- secure communication is more likely to be used if there is no

performance penalty. Therefore we have put a pipelined encryption chip in the host

controller. This chip can encrypt and decrypt packets as they are sent or received with no

increase in latency over unencrypted packets.

3.11 Generic LAN Abstraction

Because of short addresses, Autonet presents a different interface to host software than

does Ethernet. When faced with the job of integrating Autonet into our operating system,

we quickly decided that this difference should be hidden at a low level in the host software.

The interface “LocalNet” makes available to higher-level software multiple generic LANs

that carry Ethernet datagrams addressed by UID. Machinery inside LocalNet notices

whether an Ethernet or an Autonet is being used. For packets transmitted over Autonet,

LocalNet supplies the Autonet packet header complete with destination and source short

addresses. LocalNet learns the correspondence between UIDs and short addresses by

inspecting arriving packets.

4. INNOVATIONS

In a few areas the Autonet design appears to break new ground. We highlight these areas

here. Later sections describe these features in more detail.

4.1 Distributed Spanning Tree Algorithm with Termination Detection

Deadlock-free routing and the flooding pattern for broadcast packets in Autonet are both

based on identifying a spanning tree of operational links. The spanning tree is computed

using a distributed algorithm similar to Perlman’s [16]. That algorithm has the property

that all nodes will eventually agree on a unique spanning tree, but no node can ever be

sure that the computation has finished. For Autonet, indefinite termination is

unacceptable, because an Autonet cannot carry host traffic while reconfiguration is in

progress. To do so would invite deadlock caused by inconsistent forwarding tables in the

various switches.

To eliminate this problem we extended Perlman’s distributed spanning tree algorithm

to notify the switch chosen as the root as soon as the tree has been determined. This

prompt notice of termination allows the Autonet to open for business quickly after a

reconfiguration and guarantees that all switch forwarding tables describe consistent

deadlock-free routes.
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4.2 Up*/Down* Routing

Deadlock-free routing in Autonet is based on a loop-free assignment of direction to

the operational links. The basis of the assignment is the spanning tree described in the

previous section, with “up” for each link being the end that is “closer” to the spanning

tree root. The result of this assignment is that the directed links do not form loops. We

define a legal route to be one that never uses a link in the “up” direction after it has used

one in the “down” direction. This up*/down* routing guarantees the absence of deadlocks

while still allowing all links to be used and all hosts to be reached.

4.3 Dynamic Learning of Short Addresses

The LocalNet layer of host software, mentioned above, is given UID-addressed packets to

transmit over the network. If a packet is to be delivered over an Autonet then LocalNet

must provide the complete Autonet packet header, including the short addresses of the

source and destination.

LocalNet uses a UID-addressed cache for recording the short addresses corresponding

to various destination UIDs. The information in this UID cache comes from inspecting

the source short-address and source UID in each packet that is received. When the specific

short address of a destination is not known, a packet is transmitted using the broadcast

short address; the destination UID in the packet allows the intended target host to accept

the packet and all other hosts to reject it. The next response from the destination allows

LocalNet to learn the correct short address. If responses are not forthcoming, LocalNet

also can request the short address of another host by using Autonet broadcast to contact

the LocalNet implementation at that host. This scheme allows a host to track the short

addresses of various destinations without generating many extra packets and without

bothering higher layers of software. The learning algorithm requires only 15 extra

instructions per packet received.

4.4 Automatic Reconfiguration

The Autonet reconfiguration mechanism is based on each switch monitoring the state of

its ports. Hardware status indicators report illegal transmission codes, syntax errors, lack

of progress, and other conditions for each port. As an end-to-end check, the switch control

program verifies a good port by exchanging packets with the neighboring switch. The

appearance or disappearance of a responding neighbor on some port will cause a switch to

trigger a reconfiguration.

Building a stable, responsive mechanism for detecting faults and repairs has proved to

be subtly difficult. The hard problems are determining error fingerprints for each

commonly occurring fault, and designing hysteresis into the reconfiguration mechanism

so that faults are responded to quickly but intermittent switches or links are ignored for

progressively longer periods. Experience with an operational Autonet has allowed us to

develop its fault and repair detection mechanisms to achieve both responsiveness and

stability.
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4.5 First-Come, First-Considered Port Scheduler

Packets arriving at an Autonet switch must in turn be forwarded to one or more

output ports. (Packets destined for the control processor on the local switch are forwarded

to a special internal port.) For packets to a single destination host, the switch determines

a set of output ports by lookup in the forwarding table. Any port in the set can be used to

send the packet. For broadcast packets the switch determines by lookup in the forwarding

table the set of output ports that must forward the packet simultaneously. Scheduling the

output ports to fulfill both sorts of requests must be done carefully to prevent starvation

of particular input ports, which in turn could lead to performance anomalies including

deadlocks.

An Autonet switch includes a strict first-come, first-considered scheduler that polls

the availability of output ports and assigns them to the forwarding requests generated by

the input ports. This scheduler, implemented in a single Xilinx programmable gate array

[21], eliminates the problem of starvation and is a key element in achieving Autonet’s

best-case switch transit latency of 2 µs (achieved when the router queue is empty and a

suitable output port is available).

5. COMPONENTS

We begin a more detailed description of the Autonet design with an overview of the

hardware and software components.

5.1 Switch Hardware

Figure 2 presents a block diagram of the Autonet switch. The switching element is a 13

by 13 crossbar constructed from paired 8-to-1 multiplexer chips. Twelve of the crossbar

inputs and outputs are connected to link units that can terminate external links. The 13th

input and output are connected via a special link unit to the switch’s control processor, so

it can send and receive packets on the network. The crossbar provides a 9-bit data path

from any input to any free output as well as a 1-bit path in the other direction. The

former is used to forward packet data and the packet end marker; the latter to communicate

a flow control signal. The crossbar also can connect a single input port to an arbitrary set

of output ports.

The control processor is a Motorola 68000 [15] running on a 12.5 MHz clock. The

processor uses 1 Mbyte of video RAM as both its main memory and its buffers for

sending and receiving packets: the processor uses the random access ports to the memory

while the crossbar uses the serial access ports. A 64-Kbyte ROM is available for booting

the control processor at power-up. The processor has access to a timer that interrupts

every 328 µs for calculating timeouts. Because of limited space on the board, however, no

CRC or encryption hardware is provided. CRCs for packets to/from the control processor

are checked/generated by software. Currently none of the packets sent or received by the

control processor are encrypted. The control processor also has access to a ROM

containing the switch’s 48-bit UID, and to red and green LEDs on the switch front panel.

A link unit implements one switch port. It terminates both channels of a full-duplex

coaxial link, receiving from one channel and transmitting to the other. The receive path
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uses the AMD TAXI receiver to convert from the 100 Mbit/s serial data stream on the

link to a 9-bit parallel format. The 9th bit distinguishes the 256 data byte values from 16

command values used for packet framing and flow control. The arriving data bytes (and

packet end marks) are buffered in a 4096 by 9 bit FIFO. Logic at the output of the FIFO

captures the address bytes from the beginning of an arriving packet and presents them to

the switch’s router. Once the router has set up the crossbar to forward the packet, the link

unit removes the packet bytes from the FIFO and presents them to the crossbar input.

The flow control signal from the crossbar enables and disables the forwarding of packet

bytes through the crossbar. As soon as a packet end command is removed from the FIFO

and forwarded, the output port or ports become available for subsequent packets.

Figure 2: Structure of an Autonet Switch
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The transmit path in the link unit accepts parallel data from the crossbar and presents

it to the AMD TAXI transmitter, which converts it to 100 Mbit/s serial form and sends it

down the link. The receive and transmit portions of a single link unit are tied together so

that the flow control state derived from the receiving FIFO can be transmitted back over

the transmit channel on the same link. (See section 6.2.) A link unit does not include

CRC hardware; an Autonet switch does not check or generate CRCs on forwarded packets.

A link unit maintains a set of status bits that can be polled by the control processor.

These status bits are a primary source of information for the algorithms that monitor the

condition of the ports on a switch to decide when a network reconfiguration should occur.

The control processor also has some control over the operation of an individual link unit.

Via a control register each link unit can be instructed to illuminate LEDs on its front

panel, to send special-purpose flow control directives, and to ignore received flow control.

The router contains 64 Kbytes of memory for the forwarding table and a routing

engine that schedules the use of switch output ports. The forwarding tables are loaded by

the control processor as part of a network reconfiguration. The routing engine is

implemented in a single Xilinx 3090 programmable gate array.

Most of the switch operates on a single 80 ns clock. Link units can forward one byte

of packet data into the crossbar on each clock cycle. The router can make a forwarding

decision and set up a crossbar connection every 6 clock cycles, producing a packet

forwarding rate of about 2 million packets per second. The latency from receiving the first

bit of a packet on an input link to forwarding the first bit on an output link is 26 to 32

clock cycles if the output link and router are not busy.

The Autonet switch is packaged on 5 card types in a 45 x 18 x 30 cm Eurocard

enclosure. A completely populated switch contains 12 link units, 5 2-bit crossbar slices,

1 control processor, and 1 router, all implemented on 10 x 16 cm cards. The backplane,

into which all other card types plug at right angles, is a 43 x 13 cm board. A switch

draws about 160 w of power.

5.2 Controller Hardware

The first host controller for Autonet, shown in Figure 3, attaches to the Digital

Equipment Corporation Q-bus [11] that is used in our Firefly [19] multiprocessor

computers. In general, we believe that a network controller should be both simple and

fast, and play no role in the correct operation of the network fabric. Operating at the full

100 Mbit/s network bandwidth with low latency requires a completely pipelined structure

and packet cut-through for transmit and receive. Simplicity requires no higher-level

protocol processing in the controller. In the case of this first controller, however, the 14

Mbit/s bandwidth of the Firefly Q-bus allows use of a shared data bus within the

controller and elimination of cut-through with little impact on controller latency or

throughput.

The network ports are each implemented in a small cabinet kit designed to be

mounted in the Firefly chassis. The cabinet kit includes the TAXI transmitter and

receiver, and the circuit for driving the link. A signal on the ribbon cable to the controller

card selects which cabinet kit is in use. Selection of which port to use is done by the host

software.
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Figure 3: Structure of the Q-bus Autonet Controller

The controller itself fills a 10.5 x 8.5 inch quad Q-bus card. The receive path is

pipelined up to the point where arriving packets are stored in a 128-Kbyte receive buffer.

The transmit path is pipelined outward from a 128-Kbyte transmit buffer. CRC checking

and generation are done with a Xilinx 3020 [21]. Encryption is handled by an AMD 8068

encryption chip [2]. The connections between the transmit buffer, receive buffer, CRC

chip, encryption chip, and Q-bus are via a 16-bit internal bus. The controller board

includes a ROM containing a 48-bit UID that can be used as the host’s UID address.

The controller’s operation is under the direction of a microprogram executing on an

AMD 29116 microprocessor [1]. The microcode initially comes from a 12-Kbyte boot

ROM, but microcode can subsequently be downloaded from the host over the Q-bus.

Microcode downloading has allowed us to experiment easily with the controller-to-host

interface. This controller is able to use the full Q-bus bandwidth to send and receive

packets. Encrypted packets can be sent and received with no performance penalty.
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5.3 Link Hardware

The first links implemented for Autonet use 75 ohm coaxial cable. A hybrid circuit

allows both channels of a full-duplex link to be carried on a single cable. This

implementation has the consequence that signals transmitted on an Autonet port can be

reflected and correctly received at the same port. Reflection occurs when no cable is

attached, when an unterminated cable is attached, and when the attached cable terminates at

an unpowered remote port. Thus, a host or switch must be prepared to receive its own

packets.

The circuit driving the links includes a high-pass filter that prevents frequencies

below about 10 MHz from being transmitted. This filter is needed because the data

encoding scheme used by the TAXIs allows signals with low frequency components to be

generated by sending certain legal sequences of bytes and commands. Without the filter,

low frequency transitions can prevent the receiver from recovering the data correctly.

The service network in our building uses Belden 82108 low-loss cable and standard

cable television “F” connectors. We accept cabinet kits and link unit cards for service if a

packet-echoing protocol can send and receive 40,000 packets of 1,500 bytes each over a

100-meter link between the test host and test switch without a CRC error.

5.4 Switch Control Program

Autopilot, the software that executes on the control processor of each switch, is

responsible for implementing Autonet’s automatic operation. Its major functions are

propagating and rebooting new versions of itself, responding to monitoring and

debugging packets, monitoring the physical network, answering short-address request

packets from attached hosts, triggering reconfigurations when the physical network

changes, and executing the distributed reconfiguration algorithm.

The Autopilot source code consists of about 20,000 lines written in C and 3500 lines

written in assembler. This generates a 62,000-byte object program. A stable version of

Autopilot is included in the switch boot ROMs and is automatically loaded when power

is turned on or the switch is reset. Whenever a new version is ready for use, it is down

loaded from the programming environment (a Firefly workstation) over the Autonet itself

into the nearest switch. The version of Autopilot running there accepts the new version,

boots it, and then propagates it to neighboring switches.

The structure of Autopilot is typical of small, real-time, control programs. Interrupt

routines enqueue and dequeue buffers for packets sent and received by the control

processor. Everything else runs at process level as tasks under the control of a non-

preemptive scheduler. Tasks are structured as procedure calls that run to completion

within a few milliseconds. The task scheduler manages a timer queue for tasks that need

to be run after a timeout has expired. Current timeout resolution is 1.2 milliseconds. The

major algorithms in Autopilot are described in later sections.

5.5 The SRC Service LAN

The service Autonet for SRC contains 30 switches. The current topology uses four of the

twelve ports on each switch for links to other switches and eight ports for links to hosts.



GetInfo(net, info)
SetState(net, state)
Send(net, buffer, size)
Receive(buffer, status)
StartForwarding(net1, net2)

LocalNet UID Cache

to controller to controller

• • •Ethernet
Driver

Autonet
Driver

14

With each host connected to two switches, this configuration has the capacity to attach

120 hosts. The Autonet is connected to the Ethernet in the building via a bridge. Thus the

Autonet and Ethernet behave as a single extended LAN.

The hosts on Autonet are Firefly workstations and servers. A Firefly contains 4

CVax processors providing about 3 Mips each and can have up to 128 Mbytes of

memory. Typical workstations have 32 or 64 Mbytes of memory. All processors see the

same memory via consistent caches. At least until the Autonet proves itself to be stable

and reliable, and the more disruptive experiments stop, most Fireflies are connected to

both the Autonet and the Ethernet. The choice of which network to use can be changed

while the system is running. Switching from one network to the other can be done in the

middle of an RPC call or an IP connection without disrupting higher-level software.

5.6 Host Software

The Firefly host software for Autonet includes a driver for the controller, the

LocalNet generic LAN with UID cache, and the Autonet-to-Ethernet bridging software.

This software is written in Modula 2+ [18] and executes in VAX kernel mode. The

Firefly scheduler provides multiple threads [7, 8] per address space (including the kernel),

and the Autonet host software is written as concurrent programs that execute

simultaneously on multiple processors.

Figure 4: Structure of Low-level LAN Software for the Firefly

Figure 4 illustrates the structure of the low-level LAN software for the Firefly. The

LocalNet interface presents a set of generic, UID-addressed LANs that carry Ethernet

datagrams. The GetInfo procedure allows clients to discover which generic nets correspond

to physical networks. The SetState procedure allows clients to enable and disable these

networks. An Ethernet datagram can be sent via a specific network with the Send

procedure. The Receive procedure blocks the calling thread until a packet arrives from

some network. The result of Receive indicates on which network the packet arrived.
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Usually many threads are blocked in Receive. Finally, the StartForwarding procedure

causes the host to begin acting as a bridge between two networks.

For transmission on Autonet, the LocalNet UID cache provides the short address of a

packet’s destination. This cache is kept up-to-date by observing the source UID and source

short-address of all packets that arrive on the Autonet, and by occasionally requesting a

short address from another LocalNet implementation using Autonet broadcast. (See

section 6.8.1.) When a host is acting as an Autonet-to-Ethernet bridge, LocalNet observes

the packets arriving on Ethernet as well, using the UID cache to record which hosts are

reachable via the Ethernet. Thus, by looking up the destination UID of each packet that

arrives on either network, LocalNet can determine whether the packet needs to be

forwarded on the other network. (See section 6.8.2.)

6. FUNCTIONS AND ALGORITHMS

We now consider in more detail the major functions and algorithms of Autonet.

6.1 Link Syntax

The TAXI transmitter and receiver are able to communicate 16 command values that are

distinct from the 256 data byte values. We use these commands to communicate flow

control directives and packet framing. When a TAXI transmitter has no other data or

command values to send, it automatically sends a sync  command to maintain

synchronization between the transmitter and receiver. Thus, one can think of the serial

channel between a TAXI transmitter and receiver as carrying a continuous sequence of

slots that can either be filled with data bytes or commands, or be empty.

In Autonet, flow control prevents a sender from overflowing the FIFO in the

receiving switch. Autonet communicates flow control information by time multiplexing

the slots on a channel. Every 256th slot is a flow control slot. The remaining slots are

data slots. Normally start or stop directives occupy each flow control slot, independent

of what is being communicated in the data slots. To make it easy for a switch to tell

whether a link comes from another switch or from a host, host controllers send a host
directive instead of start. Because flow control directives are assigned unique command

values, they can be recognized even when they appear unexpectedly in a data slot. Thus,

the flow control system is self-synchronizing. Flow control is discussed in more detail in

the next section.

Two special-purpose flow control directives, idhy and panic, may also be sent.

Idhy, which stands for “I don’t hear you”, is sent on a switch-to-switch link when one

switch determines that the link is defective, to make sure the other switch declares the

link to be defective as well. Panic is intended to be sent to force the other switch to reset

its link unit, clearing the receive FIFO and reinitializing the link control hardware so

reconfiguration packets can get through. We have not yet implemented the panic

facilities.

The data slots carry packets. A packet is framed with the commands begin and end.

Data slots within packets are filled with sync commands when flow control stops packet

data from being transmitted. Transmitters are required to keep up with the demand for data
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bytes, so neither controllers nor switches may send sync commands within packets when

flow is allowed. Thus, a link is never wasted by idling unnecessarily within a packet, and

a link unit can assume that in normal operation packet bytes are available to retrieve from

the FIFO. Between packets all data slots are filled with sync commands.

6.2 Flow Control

Figure 5 illustrates the Autonet flow control mechanism. The figure contains pieces

of two switches and a link between them. The names “channel 1” and “channel 2” refer to

the two unidirectional channels on the link. In the receiving link unit of channel 1, a

status signal from the FIFO chip indicates whether the FIFO is more or less than half

full. This information determines the flow control directives being sent on channel 2, the

reverse channel of the same link. When a flow control slot occurs, a start command is

sent if the receiving FIFO is less than half full; stop is sent if it is more than half full.

Back at the receiving link unit of channel 2, the flow control directives generate a flow

control signal for the crossbar. If the output port is forwarding a packet, then the flow

control signal uses the 1-bit reverse path through the crossbar to open and close the

throttle on the FIFO that is the source of the packet.

Figure 5: Switch-to-switch Flow Control Mechanism

An important special case is a port that is receiving no flow control commands.

Because the host controller transmits only sync commands on its alternate link,
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receiving no flow control usually means that the other end of the link is connected to an

alternate host port. Receiving no flow control commands should cause a link control unit

to act as though host (or start if that directive has been received more recently than

host) is being received, thus allowing packets to be forwarded on such a link, effectively

discarding them. Due to an oversight in the design, however, link units that are receiving

no flow control keep acting on the last flow control directive received. The last directive

could have been stop; it is unpredictable following switch power up. Switch software

detects and clears the backups that can result from such indefinite cessation of flow.

This flow control scheme can cause congestion to back up across several links.

Consider a sequence of switches ABCD along the path of some packet. If the receiving

FIFO in C issues stop, say because the CD link is not available at the moment, then the

FIFO in B will stop emptying. Packet bytes arriving from A will start accumulating in

B’s FIFO and eventually B will have to issue stop to A. Thus congestion can back up

through the network until the source controller is issued a stop. If the congestion

persists long enough, then the network software on the host would stop sending packets;

threads making calls to transmit packets would delay returning until more packets could

be sent.

Autonet host controllers may not send stop commands. Thus, a slow or overloaded

host cannot cause congestion to back up into the network. A slow host should have

enough buffering in its controller to cover the bursts of packets that will be generated by

the communication protocols being used. A controller will discard received packets when

its buffers fill up.

We can now understand the relationship between FIFO length, the frequency of flow

control slots, and link latency. Assume that the FIFO holds N bytes and that it issues

stop whenever the FIFO contains more than (1 - f) N bytes, where 0 < f ≤ 1. A flow

control command is sent every S slots. Assume that the link latency is W slot

transmission times. In the worst case the receiving FIFO is not being emptied and the

transmitter sends bytes continuously unless stopped. At the time the receiver causes a

stop command to be sent, its FIFO may contain as many as (1 - f) N + (S - 1) bytes.

Another 2 W bytes will arrive at the FIFO before the stop is effective, assuming the

transmitter acts on the received stop with no delay. To prevent the FIFO from

overflowing then, it must be that:

N  ≥  (1 - f) N + (S - 1) + 2 W

From the speed of light, the velocity factor of fiber optic cable (which is a bit slower than

coaxial cable), and a slot transmission time of 80 ns we can compute that W = 64.1 L,

where L is the cable length in kilometers. Thus:

N  ≥  (S - 1 + 128.2 L) / f

For S = 256 slots, f = 0.5, and L = 2 km, we see that N must be 1024 bytes.

With these choices of S, f, and L, Autonet actually uses 4096-byte FIFOs. The larger

FIFO is used to solve a deadlock problem that is associated with broadcast packets, as

explained in section 6.6.6. The solution to the problem is to have a transmitter of a

broadcast packet ignore stop commands until the end of the broadcast packet is reached,

and make the receiver FIFO big enough to hold any complete broadcast packet whose

transmission began under a start command. Thus, for broadcast packets flow control acts
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only between packets. For this case, we can calculate the maximum allowable broadcast

packet length as the FIFO size minus the worst case count of bytes already in the FIFO

when the first byte of the broadcast packet arrives. Thus:

B  ≤  N - (1 - f) N - (S - 1) - 128.2 L

So, taking B into account, the size needed for the FIFO becomes:

N  ≥  (B + S - 1 + 128.2 L) / f

The minimum acceptable value for B is about 1550 bytes. This size allows Autonet to

broadcast the maximum-sized Ethernet packet with an Autonet header prepended. The

corresponding N is about 4096 bytes. This increase in FIFO size is one of the costs of

supporting low-latency broadcast in Autonet.

6.3 Address Interpretation

As indicated earlier, Autonet packets contain short addresses. In our implementation a

short address is 11 bits, although increasing it to 16 bits would be a straightforward

design change. The short address is contained in the first two bytes of a packet.

Figure 6: Interpretation of Switch Forwarding Table

As shown in Figure 6, address interpretation starts as soon as the two address bytes

have arrived at the head of the FIFO in a link unit. The short address is concatenated with

the receiving port number and the result used to index the switch’s forwarding table. Each

2-byte forwarding table entry contains a 13-bit port vector and a 1-bit broadcast flag. The

bits of the port vector correspond to the switch’s ports, with port 0 being the port to the

control processor. When the broadcast flag is 0, the port vector indicates the set of
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alternative ports that could forward the packet. The switch will choose the first port that

is free from this set. If several of the ports are free then the switch chooses the one with

the lowest number. When the broadcast flag is 1, the port vector indicates the set of ports

that must forward the packet simultaneously. Forwarding will not begin until all these

ports are available. A broadcast entry with all 0’s for the port vector tells the switch to

discard the packet.

Because address interpretation in a switch requires just a lookup in an indexed table, it

can be done quickly by simple hardware. Specification of alternative ports allows a simple

form of dynamic multipath routing to a destination. For example, multiple links that

interconnect a pair of switches can function as a trunk group. Including the receiving port

number in the forwarding table index has several benefits; it provides a way to

differentiate the two phases of flooding a broadcast packet (see section 6.6.6); it allows

one-hop switch-to-switch packets to be addressed with the outbound port number; it

provides a way to prevent packets with corrupted short addresses from taking routes that

would generate deadlocks.

The mechanism for interpreting short addresses allows considerable latitude in the

way short addresses are used. We have adopted the following assignments:

Short Address Packet Destination

0000 From a host; the control processor of the switch attached to

the active host port

0001 - 000f From a switch; the switch or host attached to the addressed

switch port

0010 - ffef Particular host or switch (packet discarded if address not in use)

fff0 - fffb Packet discarded (reserved address values)

fffc From a host; loopback from switch attached to the active host

port

fffd Every switch and every host

fffe Every switch

ffff Every host

Here each short address is expressed as 4 hexadecimal digits, but prototype switches

interpret only the low order 11 bits of these values.

As part of the distributed reconfiguration algorithm performed by the switches, each

useable port of each working switch in a physical installation is assigned one of the short

addresses in the range “0010” through “ffef”. The assignment is made by partitioning a

short address into a switch number and a port number, and assigning the switch numbers

as part of reconfiguration. The forwarding tables are filled in to direct a packet (from any

source) containing one of these destination short addresses to the switch control processor

or host attached to the identified port. If the address is not in use, then the forwarding

tables will at some point cause the packet to be discarded. The forwarding tables also

discard packets that arrive at a switch port that is not on any legal route to the addressed

destination; such misrouted packets may occur if bits in the destination short address are

corrupted during transmission.

A host on the Autonet discovers its own short address by sending a packet to address

“0000”. This address directs the packet to the control processor of the local switch. The
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processor is told the port on which the packet arrived and knows its own switch number.

Thus it can reply with a packet containing the host’s short address.

The forwarding tables in every switch will reflect a packet addressed to “fffc” back

down the reverse channel of the link on which it was received. Thus, packets sent by a

host to this address will be looped back to that host. This feature is used by a host to test

its links to the network.

A packet addressed to “ffff” from a host or switch will be delivered to all host ports in

the network. (Section 6.6.6 describes the flooding pattern used.) The addresses “fffd” and

“fffe” work in a similar way.

Finally, the addresses “0001” through “000f” are reserved for one-hop packets

between switches. Each switch forwarding table directs a packet so addressed to be

transmitted on the numbered local port if the packet is from port 0 (the control processor

port); it directs transmission to port 0 if the packet is from any other port.

6.4 Scheduling Switch Ports

Once the appropriate entry has been read from a switch’s forwarding table, the next step in

delivering a packet is scheduling a suitable transmission port. Scheduling needs to be

done in a way that avoids long-term starvation of a particular request. The availability of

the Xilinx programmable gate array allowed this problem to be solved by the simple

strategy of implementing a strict first-come, first-considered scheduler.

Figure 7 illustrates the scheduling engine which contains a queue of forwarding

requests. The queue slots are the columns in the figure. Only 13 slots are required because

with head-of-line blocking, each port can request scheduling for at most one packet at a

time; only the packet at the head of the FIFO is considered. Each queue slot can remember

the result of a forwarding table lookup along with the number of the receive port that is

requesting service.

When a request arrives at the scheduling engine, the request shifts to the right-most

queue slot that is free. Periodically a vector representing the free transmit ports enters the

scheduling engine from the right. This vector is matched with occupied queue slots

proceeding from right to left, in the arrival order of the requests. Each forwarding request

in turn has the opportunity to capture useful free ports.

If a request is for alternative ports (broadcast = 0), then it will capture any free

transmit port that matches with the requested port vector. If multiple matches occur, then

the free port with the lowest number port is chosen. For alternative ports, a single match

allows the satisfied request to be removed from the queue and newer requests to be moved

to the right. The satisfied request is output from the scheduling engine and is used to set

up the crossbar, allowing packet transmission to begin.

If a request is for simultaneous ports (broadcast = 1), then it will accumulate all free

transmit ports that match the requested port vector. In the case that some requested ports

still remain unmatched the vector of free ports proceeds on to newer requests, minus the

ports previously captured. If the matches complete the needed transmit port set, then the

satisfied broadcast request is removed from the queue, as above. The crossbar is set up to

forward from the receive port to all requested transmit ports, and packet transmission is

started.
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Figure 7: Scheduling Engine for Switch Output Ports

The scheduling engine can accept and schedule one request every 480 ns and thus is

able to process up to 2 million requests per second.

Notice that the scheduling engine allows requests to be serviced out-of-order when

useful free ports are not suitable for older requests. Queue jumping allows some requests

to be scheduled faster than they would be with a first-come, first-served discipline. Also

notice that a broadcast request will effectively get higher and higher priority until it is at

the head of the queue. Once there, the request has first choice on free transmit ports; each

time a needed port becomes free, the broadcast request reserves it. Thus, the broadcast

request is guaranteed to be scheduled eventually, independent of the requests being

presented by the other receive ports.

6.5 Port State Monitoring

Our goal of automatic operation requires that the network itself keep track of the set of

links and switches that are plugged together and working, and determine how to route

packets using the available equipment. Further, the network should notice when the set of

links and switches changes, and adjust the routing accordingly. Changes might mean that

equipment has been added or removed by the maintenance staff. Most often changes will

mean that some link or switch has failed.

Autopilot, the switch control program, monitors the physical condition of the

network. The Autopilot instance on each switch keeps watch on the state of each external

port. By periodically inspecting status indicators in the hardware, and by exchanging

packets with neighboring switches, Autopilot classifies the health and use of each port.

When it detects certain changes in the state of a port, it triggers the distributed

reconfiguration algorithm to compute new forwarding tables for all switches.



22

The mechanism for monitoring port states has several layers. The lowest layer is

hardware in each link unit that reports hardware status to the control processor of the

switch. The next layer is a status sampler implemented in software that evaluates the

hardware status of all ports. The third layer is a connectivity monitor, also implemented

in software, that uses packet exchange to determine the health and identity of neighboring

switches. Stabilizing hysteresis is provided by two skeptic algorithms. We now explain

these mechanisms in more detail.

6.5.1 Port States

The port state monitoring mechanism dynamically classifies each port on an Autonet

switch into one of following six states:

Port State Definition

s.dead The port does not work well enough to use.

s.checking The port is being monitored to determine if it is attached to a

host or to a switch.

s.host The port is attached to a host.

s.switch.who The port is being probed to determine the identity of the

attached switch.

s.switch.loop The port is attached to another port on the same switch, or is

reflecting signals.

s.switch.good The port is attached to a responsive neighbor switch.

Figure 8 illustrates these port states and shows the actions associated with the state

transitions. As will be explained in more detail in the next two sections, the state

transitions shown as black arrows are the responsibility of the status sampler; those

shown as grey arrows are the responsibility of the connectivity monitor. The actions

triggered by a transition are indicated by the attached action descriptions.

6.5.2 Hardware Port Status Indicators

Each link unit reports status bits that help Autopilot note changes in the state of the

port. These status bits can be read by the control processor of the switch. Some status

bits indicate the current condition of a port:

Status Bit Current Port Condition Represented

IsHost last flow control received on link indicates a host is attached

XmitOK last flow control received on link allows transmission

InPacket transmitter is in the middle of a packet

Other status bits indicate that one or more occurrences of a condition have occurred since

the bit was last read by the control processor:

Status Bit Accumulated Port Condition Represented

BadCode TAXI receiver reported violation

BadSyntax out-of-place flow control directive, unused command value

received, improper packet framing

Overflow FIFO overflow occurred
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Underflow FIFO underflow occurred inside a packet

IdhySeen idhy flow control directive received

PanicSeen panic flow control directive received

ProgressSeen FIFO forwarded some bytes or has seen no packets

StartSeen start or host flow control directive received

There is considerable design latitude in choosing exactly which conditions to report

in hardware status bits. As we will see below, all switch-to-switch links are verified

periodically by packet exchange. The hardware status bits provide a more prompt hint that

something might have changed. If most changes of interest reflect themselves in the

hardware status bits, however, then port status changes will be noticed more quickly;

Autopilot can use the hardware status change to trigger an immediate verification by

packet exchange.

Figure 8: Switch Port States and Transitions

6.5.3 Status Sampler

The next layer of port state monitoring is the status sampler. This code, which runs

continuously, periodically reads the link unit status bits. A counter corresponding to each

status bit from each port is incremented for each sampling interval in which the bit was

found to be set. The status sampler also counts CRC errors on packets received by the
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local control processor (such as the connectivity test or reply packets described in the next

section), even though CRC errors are actually detected by software. Based on the status

counts accumulated over certain periods, each port is dynamically classified into one of

the four states s.dead, s.checking, s.host, and s.switch.who.

When a switch boots, all ports are initially classified as s.dead. This state represents

ports that are to be evaluated, but not used. While classified as s.dead, a switch port is

forced to send idhy in place of normal flow control to guarantee that the remote port will

be classified by the neighboring switch as no better than s.checking. Receiving idhy is

not counted as an error when a port is classified as s.dead. When a port has exhibited no

bad status for the appropriate period, it moves from s.dead to s.checking. The length of

the error-free period required is determined by the status skeptic described in section 6.5.5.

A port is directed to send normal flow control when it enters s.checking. A port that has

no bad status counts except for receiving idhy stays classified as s.checking.

Once a port is in s.checking, the status sampler waits for idhy flow control to cease,

and then tries to determine whether the port is cabled to a switch or to a host. The IsHost

bit is used to distinguish the cases. Reflecting ports, and ports cabled to another port on

the same switch, will be classified as s.switch.who, because such ports receive the start
flow control directives sent from the local switch, causing IsHost to be FALSE. Alternate

host ports will send continuous sync commands, but no flow control directives. This

pattern generates BadSyntax and makes the IsHost bit useless, so a port showing constant

BadSyntax status, but no other errors, is classified as s.host.

When a port’s state is changed to s.host, the local forwarding table is updated to

permit communication over the port. The port’s entries in the forwarding table are set to

forward all suitably addressed packets to the port and to allow packets received from the

port to be forwarded to any destination in the network. Because both active and alternate

host ports are classified as s.host, switching to the alternate by a host will cause no

forwarding table changes, assuming that the alternate port does not then start producing

bad status counts.

When a port is changed from s.checking to s.switch.who, the forwarding table is set

to allow the control processor to exchange one-hop packets with the possible neighboring

switch. This forwarding table change allows the connectivity monitor to probe the

neighboring switch in order to distinguish between the states s.switch.who ,

s.switch.loop, and s.switch.good.

A port moves back to s.dead from other states if certain limits are exceeded on the bad

status counts accumulated over a time period. As indicated in Figure 8, transitions back to

s.dead will cause the local forwarding table to be changed to stop packet communication

through the port.

A side effect of status sampler operation is the removal of long-term blockages to

packet flow. By reading the StartSeen bit, the status sampler counts intervals during

which only stop flow control directives are received at each port. When such intervals

occur too frequently, the port is classified as s.dead. The associated changes to the

forwarding table cause all packets addressed to the port to be discarded, preventing the port

from causing congestion to back up into the network. The ProgressSeen status bit allows

the status sampler to count intervals during which a packet has been available in a FIFO

to be forwarded, but made no progress. From this count the status sampler can classify a

port as s.dead and remove it from service when it is stuck due to local hardware failure.
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6.5.4 Connectivity Monitor

A transition from s.checking to s.switch.who means that the status sampler approves the

port for switch-to-switch communication. A port thus approved is always being

scrutinized by the top layer of port state monitoring, the connectivity monitor. The state

s.switch.who means that Autopilot does not know the identity of the connected switch.

The connectivity monitor tries to determine the UID and remote port number for the

connected switch. The connectivity monitor periodically transmits a connectivity test

packet on the port and watches for a proper reply. As long as no proper reply is received,

the port remains classified as s.switch.who. Thus, a non-responsive remote switch will

cause the port to remain in this state indefinitely. To be accepted, a reply must match the

sequence information in the test packet and echo the UID and port number of the test

packet originator. The connectivity monitor looks at the source UID of an accepted reply

packet to distinguish a looped or reflecting link from a link to a different switch. In the

former case, the connectivity monitor relegates the port to s.switch.loop; such ports are

of no use in the active configuration. In the latter case, the connectivity monitor sets the

state to s.switch.good and initiates a reconfiguration of the entire network. The

reconfiguration causes all switches to compute new forwarding tables that take into

account the existence of the new switch-to-switch link (and possibly a new switch).

The connectivity monitor continuously probes all ports in the three s.switch states.

At any time it may cause the transitions to and from s.switch.who shown by grey arrows

in Figure 8. In the case of a transition from s.switch.good to s.switch.who, a network-

wide reconfiguration is initiated to remove the link from the active configuration. Note

from Figure 8 also that a network-wide reconfiguration is initiated when the status

sampler, described in the previous section, removes its approval of a port in

s.switch.good by reclassifying it as s.dead.

6.5.5 The Skeptics

Two algorithms in Autopilot prevent links that exhibit intermittent errors from causing

reconfigurations too frequently. They are the status skeptic and the connectivity skeptic.

The status skeptic controls the length of the error-free holding period required before a

port can change from s.dead to s.checking. The length of the holding period for a

particular port depends on the recent history of transitions to s.dead: transitions to s.dead

lengthen the holding period; intervals in s.host or any of the s.switch states shorten the

next holding period.

The connectivity skeptic operates in a similar manner to increase the period over

which good connectivity responses must be received before a port is changed from

s.switch.who to s.switch.good. This skeptic therefore limits the rate at which an unstable

neighboring switch can trigger reconfigurations. The sequences of delays introduced by the

skeptic algorithms are still being adjusted.

6.6 Reconfiguration and Routing

We are now ready to describe how Autopilot calculates the packet routes for a particular

physical configuration and how it fills in the forwarding tables in a consistent manner.

The goals for routing are to make sure all hosts and switches can be reached, to make sure
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no deadlocks can occur, to use all correctly operating links, and to obtain good throughput

for the entire network. The distributed reconfiguration algorithm achieves these goals by

developing a set of loop-free routes based on link directions that are determined from a

spanning tree of the network.

Reconfiguration involves all operational network switches in a five step process:

1. Each switch reloads its forwarding table to forward only one-hop, switch-to-

switch packets and exchanges tree-position packets with its neighbors to

determine its position in a spanning tree of the topology.

2. A description of the available physical topology and the spanning tree

accumulates while propagating up the tree to the root switch.

3. The root assigns short addresses to all hosts and switches.

4. The complete topology, spanning tree, and assignments of short addresses are

sent down the spanning tree to all switches.

5. Each switch computes and loads its own forwarding table, based on the

information received in step 4, and starts accepting host-to-host traffic.

Because host packets will be discarded during the reconfiguration process, it is important

that the entire process occur quickly, certainly in less that a second. Note that the

reconfiguration process will configure physically separated partitions as disconnected

operational networks.

As described in the previous section, reconfiguration starts at one or more switches

that have noticed relevant port state changes. In step 1 these initiating switches clear their

forwarding tables and send the first tree-position packets to their neighbors. Other

switches join the reconfiguration process when they receive tree-position packets and

they, in turn, send such packets to their neighbors. In this way the reconfiguration

algorithm starts running on all connected switches.

The reloading of the forwarding tables in step 1 has two purposes. First, it eliminates

possible interference from host traffic, allowing the reconfiguration to occur more

quickly. Second, it guarantees that no old forwarding tables will still exist when the new

tables are put into service at step 6: co-existence could lead to deadlock and packets being

routed in loops.

6.6.1 Spanning Tree Formation

The distributed algorithm used to build the spanning tree is based on one described by

Perlman [16]. Each node maintains its current tree position as four local variables: the

root UID, the tree level at this switch (0 is the root), the parent UID, and the port number

to the parent. Initially, each switch assumes it is the root. A switch reports this initial

tree position and each new position to each neighboring switch by sending tree-position

packets, retransmitting them periodically until an acknowledgement is received.

Upon reception of a tree-position packet from a neighbor over some port, a switch

decides if it would achieve a better tree position by adopting that port as its parent link.

The port is a better parent link if it leads to a root with a smaller UID than the current

position, if it leads to a root with the same UID as the current position but via a shorter

tree path, if it leads to the same root via the same length path but through a parent with a

smaller UID, or if it leads to the current parent but via a lower port number.
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If each switch sends tree-position packets to all neighbors each time it adopts a new

position, then eventually all switches will learn their final position in the same spanning

tree. Unfortunately, no switch will ever be certain that the tree formation process has

completed, so the switches will not be able to decide when to move on to step 2 of the

reconfiguration algorithm. To eliminate this problem we extend Perlman’s algorithm. We

say that a switch S is stable if all neighbors have acknowledged S’s current position and

all neighbors that claim S as their parent say they are stable. While transitions from

unstable to stable and back can occur many times at most switches, a transition from

unstable to stable will occur exactly once at the switch which is the root of the spanning

tree. Thus, when some switch becomes stable while believing itself to be the root of the

spanning tree, then the spanning tree algorithm has terminated and all switches are stable.

Conceptually, implementing stability just requires augmenting the acknowledgement

to a tree-position packet with a “this is now my parent link” bit. A neighbor

acknowledges with this bit set TRUE when it determines that its tree position would

improve by becoming a child of the sender of the tree-position packet. Thus a switch will

know which neighbors have decided to become children, and can wait for each of them to

send a subsequent “I am stable” message. When all children are stable then a switch in

turn sends an “I am stable” message to its parent.

Step 2 of the reconfiguration process has the topology and spanning tree description

accumulate while propagating up the spanning tree to the root switch. This accumulation

is implemented by expanding the “I am stable” messages into topology reports that

include the topology and spanning tree of the stable subtree. As stability moves up the

forming spanning tree towards the root, the topology and spanning tree description grows.

When the switch thinking itself to be the root receives reports from all its children, then

it is certain that spanning tree construction has terminated, and it will know the complete

topology and spanning tree for the network. A non-root switch will know that spanning

tree formation has terminated when it receives the complete topology report that is handed

down the new tree from the root in step 4. Each switch can then calculate and load its

local forwarding table from complete knowledge of the current physical topology of the

network. The upward and downward topology reports are all sent reliably with

acknowledgments and periodic retransmissions.

6.6.2 Epochs

To prevent multiple, unsynchronized changes of port state from confusing the

reconfiguration process, Autopilot tags all reconfiguration messages with an epoch

number. Each switch contains the local epoch number as a 64-bit integer variable, which

is initialized to zero when the switch is powered on. When a switch initiates a

reconfiguration, it increments its local epoch number and includes the new value in all

packets associated with the reconfiguration. Other switches will join the reconfiguration

process for any epoch that is greater than the current local epoch, and reset the local epoch

number variable to match.

Once a particular epoch starts at each switch, then any change in the set of useable

switch-to-switch links visible from that switch (that is, port state changes in or out of

s.switch.good) will cause Autopilot to add one to its local epoch and initiate another

reconfiguration. Such changes can be caused by the status sampler and the connectivity

monitor, which continue to operate during a reconfiguration. Thus, the reconfiguration
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algorithm always operates on a fixed set of switch-to-switch links during a particular

epoch.

If a switch sees a higher epoch number in a reconfiguration packet while still

involved in an earlier reconfiguration, it forgets the tree position and other state of the

earlier epoch and joins the new one. If changes in port state stop occurring for long

enough, then the highest numbered epoch eventually will be adopted by all switches, and

the reconfiguration process for that epoch will complete. Completion is guaranteed

eventually because the status and connectivity skeptics reject ports for increasingly long

periods.

6.6.3 Assigning Short Addresses

Short addresses are derived from switch numbers that are assigned during the

reconfiguration process. Each switch remembers the number it had during the previous

epoch, and proposes it to the root in the topology report that moves up the tree. A switch

that has just been powered-on proposes number 1. The root will assign the proposed

number to each switch unless there is a conflicting request. In resolving conflicts the root

satisfies the switch with the smallest UID and then assigns unrequested low numbers to

the losers.

A short address is formed by concatenating a switch number and a port number. (The

port number occupies the least significant bits.) For a host, then, the short address is

determined by the switch port where it attaches to the network. A host’s alternate link

thus has a distinct short address. For a switch’s control processor, the port number 0 is

used. Because switches propose to reuse their switch numbers from the previous epochs,

short addresses tend to remain the same from one epoch to the next.

6.6.4 Computing Packet Routes

To complete step 5 of the reconfiguration process, each switch must fill in its local

forwarding table based on the topology and spanning tree information that is received

from the root. Autonet computes the packet routes based on a direction imposed by the

spanning tree on each link. In particular, the “up” end of each link is defined as:

1. the end whose switch is closer to the root in the spanning tree;

2. the end whose switch has the lower UID, if both ends are at switches with the

same tree level.

The “up” end of a host-to-switch link is the switch end. Links looped back to the same

switch are omitted from a configuration. The result of this assignment is that the directed

links do not form loops.

To eliminate deadlocks while still allowing all links to be used, we introduce the

up*/down* rule: a legal route must traverse zero or more links in the “up” direction

followed by zero or more links in the down direction. Put in the negative, a packet may

never traverse a link in the “up” direction after having traversed one in the “down”

direction.

Because of the ordering imposed by the spanning tree, packets following the

up*/down* rule can never deadlock, for no deadlock-producing loops are possible. Because

the spanning tree includes all switches, and a legal route is up the tree to the root and then

down the tree to any desired switch, each switch and host can send a packet to every
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switch or host via a legal route. Because the up*/down* rule excludes only looped-back

links, all useful links of the physical configuration can carry packets.

While it is possible to fill in the forwarding tables to allow all legal routes, it is not

necessary. The current version of Autopilot allows only the legal routes with the

minimum hop count. Allowing longer than minimum length routes, however, may be

quite reasonable, because the latency added at each switch is so small. When multiple

routes lead from a source to a destination, then the forwarding table entries for the

destination short address in switches at branch points of the routes show alternative

forwarding ports. The choice of which branch to take for a particular packet depends on

which links are free when the packet arrives at that switch. Use of multiple routes allows

out-of-order packet arrivals.

Note that the up*/down* rule can be enforced locally at each switch. Recall that

Autonet forwarding tables are indexed by the incoming port number concatenated with the

short address of the packet destination. If this short address were corrupted during

transmission, then it might cause the next switch to forward the packet in violation of the

up*/down* rule. To prevent this possibility, the forwarding table entries at a switch that

correspond to forwarding from a “down” link to an “up” link are set to discard packets.

6.6.5 Performance of Reconfiguration

With the first implementation of Autopilot, reconfiguration took about 5 seconds in our

30-switch service network. The 30 switches are arranged as an approximate 4 x 8 torus,

with a maximum switch-to-switch distance of 6 links. The reconfiguration time is

measured from the moment when the first tree-position packet of the new epoch is sent

until the last switch has loaded its new forwarding table. This initial implementation was

coded to be easy to understand and debug. As confidence in its correctness has grown, we

have begun to improve the performance. The current version reconfigures in about 0.5

seconds. We believe we can achieve a reconfiguration time of under 0.2 seconds for this

network. We do not yet understand fully how reconfiguration times vary with network

size and topology, but it should be a function of the maximum switch-to-switch distance.

6.6.6 Broadcast Routing and Broadcast Deadlock

A packet with a broadcast short address is forwarded up the spanning tree to the root

switch and then flooded down the spanning tree to all destinations. This is a case where

the incoming port number is a necessary component of the forwarding table index. Here,

the incoming port differentiates the up phase from the down phase of broadcast routing.

With the Autonet flow control scheme described earlier, however, broadcast packets can

generate deadlocks.

Figure 9 illustrates the problem. Here we see part of a network including five

switches V, W, X, Y, Z, and three hosts A, B, and C. The solid links are in the spanning

tree and the arrow heads indicate the “up” end of each link. Host B is sending a packet to

host C via the legal route BWYZC. This packet is stopped at switch Z by the

unavailability of the link ZC. It is a long packet, however, and parts of it still reside in

switches Y and W. As a result, the link WY is not available. At the same time, a

broadcast packet from host A is being flooded down the spanning tree. It has reached

switch V and is being forwarded simultaneously on links VW and VX, the two spanning

tree links from V. The broadcast packet flows unimpeded through X and Z, and is starting
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to arrive at host C, where its arrival is blocking the delivery of the packet from B to C.

At switch W the broadcast packet needs to be forwarded simultaneously on links WB and

WY. Because WY is occupied, however, the broadcast packet is stopped at W, where it

starts to fill the FIFO of the input port. As long as the FIFO continues to accept bytes of

the packet, it can continue to flow out of switch V down both spanning tree links. But

when the FIFO gets half full, flow control from W will tell V to stop sending. As a

result, sending also will stop down the VXZC path. At this point we have a deadlock.

Figure 9: Broadcast Deadlock

The solution to this broadcast deadlock problem was discussed in section 6.2. The

transmitter of a broadcast packet ignores stop flow control commands until the end of

the broadcast packet is reached, and the receiver FIFO is made big enough to hold any

complete broadcast packet whose transmission began under a start command. In our

example, switch V will ignore the stop from W and complete sending the broadcast

packet. Thus, the broadcast packet will finish arriving at C and link ZC will become free

to break the deadlock.

6.7 Debugging and Monitoring

The main tool underlying Autonet’s debugging and monitoring facilities is a source-

routed protocol (SRP) that allows a host attached to Autonet to send packets to and

receive packets from any switch. The source route is a sequence of outbound switch port

numbers that constitute a switch-by-switch path from packet source to packet destination.
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The source route is embedded in the data part of the SRP packet. At each stage along this

path the packet is received, interpreted, and forwarded by the switch control processor.

Each forwarding step is done using the destination short address that delivers the packet to

the control processor of the switch next in the source route. Delivery of SRP packets

depends only on the constant part of a switch’s forwarding table that permits one-hop

communication with neighbor switches. Thus, SRP packets are likely to get through

even when routing for other packets is inoperative. In particular, the SRP packets

continue to work during reconfiguration.

Based on SRP, we are developing a set of tools for debugging and monitoring

Autonet. For example, Autopilot keeps in memory a circular log of events associated

with reconfiguration. The log entries are timestamped with local clock values. An SRP

protocol allows an Autonet host to retrieve this log. By normalizing the timestamps and

merging the logs for all switches, a complete history of a reconfiguration can be

displayed. The merged log is a powerful tool for discovering functional and performance

anomalies. Another protocol layered on SRP allows most switch state variables to be

retrieved, including the forwarding table. A protocol to recover the physical network

topology and the current spanning tree has also been built.

Tracking down a difficult bug usually requires adding statements to Autopilot to enter

extra entries in the log, downloading this new version of Autopilot, waiting for all

switches to boot the new version, triggering the problem, retrieving all the logs, and

inspecting them. This debugging method is just a more cumbersome version of adding

print statements to a program!

6.8 A Generic LAN

The LocalNet generic LAN interface in the host software hides most differences between

Autonet and Ethernet from client software. To simplify implementing LocalNet, we have

defined client Autonet packets to consist of a 32-byte Autonet header followed by an

encapsulated Ethernet packet. Two differences, however, are not hidden from the clients.

First, Autonet packets may contain more data than Ethernet packets. Second, Autonet

packets may be encrypted. When either of these differences are exploited, LocalNet clients

must be aware that an Autonet is being used.

The format of an Autonet packet is:

Bytes Field Use

2 Destination short address

2 Source short address

2 Autonet type (type = 1 is shown)

26 Encryption information

6 Destination UID

6 Source UID

2 Ethernet type

0 - 64K Data (1500-byte limit for broadcast & Ethernet bridging)

8 CRC
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The destination short address field is the only part of the packet examined by the

switches as the packet traverses the network. It contains the short address of the host (or

switch control processor) to which this packet is directed, or some special-purpose address

such as the broadcast address. The source short address is used by the receiving host (or

switch) to learn the short address of the packet sender. The type field identifies the format

of the packet. The format described here is the one used for encapsulated Ethernet packets.

Reconfiguration, SRP, and special switch diagnostic protocols use different Autonet type

values.

A large fraction of the header consists of encryption information. The encryption

header, whose details we omit here, is used by the receiving controller to decide whether

to decrypt this packet, which part of the packet to decrypt, which key to use, and where in

memory to place the packet after decryption. The encryption facilities are based on

Herbison’s master key encryption scheme [12]. A complete description awaits experience

in using these facilities to provide secure communication.

The destination UID, source UID, and Ethernet type fields form the header of an

Ethernet packet that has been encapsulated within an Autonet packet. The data field may

be up to 64K bytes in length for normal Autonet packets; broadcast packets and packets

to be bridged to an Ethernet are constrained to the 1500-byte Ethernet limit. The CRC

field is generated and checked by the controller.

Occasionally hosts will mis-address packets by placing the wrong short address in the

header. This might happen when, for example, a short address changes after a network

reconfiguration. The receiving host is responsible for checking the destination UID in the

packet and discarding mis-addressed packets. The receiving host also does filtering on

multi-cast UIDs. These function are performed by the Autonet driver software for the

Firefly, but they could be performed by the controller if it were deemed necessary to avoid

overloading a host.

6.8.1 Learning Short Addresses

In order to hide the differences in addressing between the Autonet and the Ethernet,

LocalNet maintains a cache of mappings from 48-bit Ethernet UIDs to short addresses.

The Autonet driver updates the UID cache by observing the correspondence between the

source short address and source UID fields of arriving packets, and, if necessary, by

sending Address Resolution Protocol (ARP) requests [17]. An ARP reply sent on Autonet

will contain the correct source short address in the Autonet header. When transmitting a

packet to an Autonet, LocalNet obtains the destination short address using a cache lookup

keyed with the destination UID.

When an Autonet host first boots, it knows only two short addresses: address “ffff”,

which reaches all hosts on the Autonet, and address “0000”, which reaches the local

switch. The host contacts the local switch to obtain its own short address, which it then

inserts in the source short-address field of all packets that it transmits. Thereafter, the host

uses the following algorithm for transmitting and receiving packets:

Receiving: The source short address is entered in the cache entry for the source UID,

and a timestamp is updated in the cache entry. If the packet was sent to the

broadcast short address, but was addressed to the UID of the receiving host

(rather than to the broadcast UID), then the sending host no longer knows the
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receiver’s short address and an ARP response is immediately sent to the sending

host in order to update its cache entry.

Transmitting: The cache entry for the destination UID is found, and the short

address in the entry is copied into the packet before it is transmitted. If

necessary, a new cache entry is created giving the short address for this UID as

“ffff”, the broadcast short address. If the cache entry was updated within the two

seconds prior to its use, or if it is updated in the two seconds following its use,

no further action is taken. Otherwise, an ARP request is sent to the short

address given in the cache entry. If no response is received within two seconds,

the short address in the cache entry is set to the broadcast short address, which

action is equivalent to removing the entry from the cache. If a packet to be

transmitted is larger than the maximal broadcast packet, and the short address of

the destination is unknown, the packet is discarded and an ARP request is sent

in its place.

This algorithm does not attempt to maintain cache entries that are not being used by

the host, so no ARP packets are sent unless a host has recently failed to respond to some

other packet. Moreover, ARP packets are usually directed to the last known address of the

destination, rather than being broadcast. Packets are sent to the broadcast short address

only when the real short address of the destination is unknown. This is typically the case

for the first packet sent between a pair of hosts, and for the packets sent to a host that has

recently crashed, or changed its short address. Fortunately, higher-level protocols seldom

transmit large numbers of packets to hosts that do not respond, so the total number of

packets sent to the broadcast short address is quite small. It might be necessary to review

this algorithm if higher-level protocols that do not behave in this way were to become

commonplace.

This algorithm generates few additional packets, but can take several seconds to

update a cache after a short address has changed. In order to minimize the delays seen by

higher-level protocols, hosts broadcast an ARP response packet when their short address

changes, so other hosts can update their caches immediately. Short addresses change quite

infrequently, so this does not lead to a large number of broadcasts. If the number of

broadcasts of this type were to become excessive, an alternative approach is to send

packets to hosts whose short address cache entries have recently been updated. This has

the effect of updating the caches of hosts that were recently using the changed short

address.

The current techniques for managing short addresses are good enough that hosts can

change short addresses without causing protocol timeouts, yet generate little additional

load on the network or the hosts. The code for accessing the short address cache adds 15

VAX instructions to both the transmit path and the receive path.

6.8.2 Bridging

A bridge is a device that sits between two networks and forwards packets from one to the

other. It differs from a gateway in that a bridge is usually transparent to protocols above

the data link layer. It differs from a repeater in that not all packets need appear on both

sides of a bridge. Existing Ethernet bridges [14] forward packets from one Ethernet to

another only if it appears likely that a host on the other network might wish to receive a
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packet. They do this by observing the traffic on both networks and learning which side

each host is on. When the destination is on the other network, or when the location of the

destination is unknown, they forward the packet.

We have implemented software that enables a Firefly to function as an Ethernet

bridge, an Autonet bridge, and an Autonet-to-Ethernet bridge. Although we normally use

only the last variation, it is easier to understand its operation by first considering a bridge

between two Autonets. An Autonet bridge is slightly more complicated than an Ethernet

bridge because a short address is not useful outside a single Autonet. When an Autonet

bridge forwards a packet, it must modify the short addresses in the header. The destination

short address is found using the techniques described in the previous section; the source

short address is simply the short address of the bridge on the destination network. Unlike

an Ethernet bridge, which receives all packets on the attached Ethernets, an Autonet bridge

receives only broadcast packets and packets sent to its short address. Thus an Autonet

bridge receives only a fraction of the packets on the attached networks and forwards most

of the packets it receives.

As well as forwarding packets, an Autonet bridge also responds to ARP packets for

hosts known to be on its other network. If the bridge is unsure of the location of a host,

it does not respond to ARP requests immediately, but sends its own ARP requests on the

other network; it responds to the original ARP request only if the destination responds.

To hosts on the bridged Autonets, an Autonet bridge behaves like a large number of hosts

sharing the same short address.

An Autonet-to-Ethernet bridge, the variation we normally use, has a few extra

complications. It refuses to forward encrypted packets or packets longer than the

maximum Ethernet size, though such forwarding could be arranged with a special

encapsulation protocol. The bridge marks the header of all packets from the Ethernet to

indicate to Autonet hosts that they should not attempt to use either encrypted

communication or long packets when talking to the source host. This bridge adds or

removes Autonet headers as packets are forwarded between the two networks. ARP

packets from the Autonet are dealt with as previously described, except that they are never

forwarded to the Ethernet. Instead, the location of Ethernet hosts is deduced from the client

packets they send, in the same way as it is by Ethernet bridges.

In our Autonet-to-Ethernet bridge built on a Firefly, two of the four processors are

devoted to forwarding packets: one executes the Ethernet driver thread and another executes

the Autonet driver thread. In one second, the bridge can discard about 5000 small packets

(66 bytes each), or forward over 1000 small packets, or forward 200-300 maximum-size

Ethernet packets. The bridge is limited by its CPU when dealing with small packets, and

by the speed of its I/O bus when dealing with large packets. The latency of the bridge is

about a millisecond for a small packet. The bridge uses the LocalNet UID cache to

remember which hosts are on which network as well as to map UIDs to short addresses

for Autonet hosts. Using a single cache requires that a given UID be on one network or

the other, never both.

6.8.3 Managing Alternate Links

Each host is connected to the Autonet via two links, but only one is in use at any given

time. The Autonet driver is responsible for deciding which link to use, and for switching

to the alternate link if the active link fails.
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In normal operation, the driver sends a packet to the local switch every few seconds,

both to confirm the host’s short address, and to verify that the link works. If the

controller reports a link error, or if the switch fails to respond promptly, the driver tries to

contact the local switch more vigorously. If the local switch has still not responded

within three seconds, the driver switches links. After switching links, the driver forgets

its short address, and tries to contact the local switch attached to the new link. If the

switch responds, the host advertises its new short address and continues. If there is no

response, the driver switches back to the first link after ten seconds. If neither link is

operational, a host will switch between them once every ten seconds until it can contact a

local switch.

The driver interface lets a client program switch the active link on demand and gather

error rate statistics. Thus the alternate link can be tested, and if necessary replaced, before

it is needed.

The current timeouts for link failover are quite long, and we expect to reduce them

significantly in order to meet client failover requirements. At present, the mechanism is

sufficient to allow a switch to fail without disrupting higher-level protocols. An

enhancement to the protocol used between the switch and host would allow the driver to

choose between two working links connected to different Autonet partitions by selecting

the larger of the two partitions. Experience so far indicates that partition is extremely

unlikely in a well connected Autonet, and so this improvement is likely to be of only

marginal benefit.

7. CONCLUSIONS AND FUTURE WORK

We are beginning to accumulate operational experience with Autonet. Our initial

experience confirms that the goal of largely automatic operation of a network using

arbitrary topology and active switches is realistic. Autonet is now the service network for

most of the workstations at SRC. A new distributed file system is coming online with

its servers only on Autonet. Once reconfiguration time was reduced below 1 second we

ceased receiving complaints from users about the new network. Before that, with

reconfigurations taking more than four seconds, users complained of dropped connections

and RPC call failures. These symptoms were especially noticeable when the release of a

new version of Autopilot caused 30 or more reconfigurations in quick succession. We

now limit the disruption caused by the release of new Autopilot versions by making

compatible versions propagate more slowly. Now users find Autonet indistinguishable

from Ethernet. So far Autonet’s higher bandwidth is largely masked by the Fireflies.

Even though Autonet has been in service for only a limited time, we have already

learned some useful lessons. We would make several improvements to the switch

hardware on the next iteration. The most significant change would be to allow the control

processor to update the forwarding table without first resetting the switch. Resetting

destroys all packets in the switch. Coupling resetting with reloading causes the initial

forwarding table reload of a reconfiguration to destroy some tree-position packets, thus

making reconfiguration take longer. Also, incremental reloads of the forwarding table to

isolate problematic host links during normal operation are fairly disruptive with the

present design.
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One amusing surprise was caused by the fact that an unterminated link reflects

signals. Such an unterminated link will occur, for example, when a host on the network

is turned off. A packet addressed to the particular host would be reflected and retransmitted

repeatedly, although for such unicast packets this would not be disruptive. Broadcast

packets, however, are another matter. A reflected broadcast packet looks like a new

broadcast packet, and is forwarded up the spanning tree to the root switch and then flooded

down the spanning tree to all hosts where, of course, it is reflected again by the reflecting

link. A “broadcast storm” results, with all hosts on the network receiving thousands of

broadcast packets per second. Fortunately, the transition from terminated to unterminated

almost always causes enough BadCode status to be counted at the link unit to cause the

status sampler to classify the link broken and remove it from the forwarding table. We

believe that a better solution to this problem is to make packets travelling in the “up”

direction over a link look different than those travelling in the “down” direction. For

example, different start flow control commands could be used. The link unit could then

automatically discard packets headed in the wrong direction.

Another hardware change would be to make host controllers transmit the host flow

control directive on the alternate port. This change would make it simpler for Autopilot

to detect switch posts that are connected to alternate host ports.

Some lessons are quite mundane. The female F-connectors on host cabinet kits and

switch link units have flats on their threaded barrel to allow a wrench to be used when

mounting them. These flats make screwing on a cable very difficult, because it’s hard to

get the threads started correctly. The connectors without flats on the threads would be

much better.

Autopilot has provided a series of interesting lessons. As a distributed program it has

demonstrated a series of instructive bugs which we plan to document in another report.

We have been reminded how hard such bugs are to find when packet traffic between

switches cannot be observed directly and limited debugger facilities are available. Merging

the logs of all switches is a very powerful technique for function and performance

debugging, but synchronizing the timestamps from the individual logs must be done with

high precision for the merged log to be useful.

Getting the status sampler, connectivity monitor, hardware skeptic, and connectivity

skeptic algorithms structured and tuned for smooth operation also has been hard.

Achieving both responsiveness and stability has required several iterations of the design.

Further iterations probably will occur.

We expect that continued service use of the network will provide more lessons and

expose areas where improvements in performance and reliability can be made.

Future work planned with Autonet includes building higher-speed controllers;

developing network monitoring and management tools; improving the performance of

reconfiguration; understanding how reconfiguration time varies with network size and

topology; using the encryption facilities to support secure, authenticated communication;

and applying the Autonet architecture to much faster links. We are interested in exploring

modified algorithms that can perform local reconfigurations quickly when global

reconfigurations are not required; finding ways to partition large installations into

separately reconfigurable regions; and understanding the performance characteristics of

different topologies and different routing algorithms.
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We also would like to learn how to write an Autonet installation guide. For a

network like Autonet to be widely employed, simple recipes must be developed for

designing the topology of the physical configuration. The number of switches and the

pattern of the switch-to-switch and host-to-switch links determine network capacity,

reliability, and cost. Site personnel will need detailed guidance on determining a

reasonable pattern to follow when installing the network and when growing it to meet

increased load.
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