56

Abstract Types and the Dot Notation

Luca Cardelli and Xavier Leroy

March 10, 1990

dlilgliltiall

Systems Research Center
130 Lytton Avenue
Palo Alto, California 94301

Systems Research Center

DEC’s business and technology objectives require a strong research program. The Systems
Research Center (SRC) and three other research laboratories are committed to filling that need.

SRC began recruiting its first research scientists in 1984 — their charter, to advance the state
of knowledge in all aspects of computer systems research. Our current work includes exploring
high-performance personal computing, distributed computing, programming environments,
system modelling techniques, specification technology, and tightly-coupled multiprocessors.

Our approach to both hardware and software research is to create and use real systems so
that we can investigate their properties fully. Complex systems cannot be evaluated solely in
the abstract. Based on this belief, our strategy is to demonstrate the technical and practical
feasibility of our ideas by building prototypes and using them as daily tools. The experience
we gain is useful in the short term in enabling us to refine our designs, and invaluable in the
long term in helping us to advance the state of knowledge about those systems. Most of the
major advances in information systems have come through this strategy, including time-sharing,
the ArpaNet, and distributed personal computing.

SRC also performs work of a more mathematical flavor which complements our systems research.
Some of this work is in established fields of theoretical computer science, such as the analysis
of algorithms, computational geometry, and logics of programming. The rest of this work explores
new ground motivated by problems that arise in our systems research.

DEC has a strong commitment to communicating the results and experience gained through
pursuing these activities. The Company values the improved understanding that comes with
exposing and testing our ideas within the research community. SRC will therefore report results
in conferences, in professional journals, and in our research report series. We will seek users
for our prototype systems among those with whom we have common research interests, and
we will encourage collaboration with university researchers.

Robert W. Taylor, Director

Abstract Types and the Dot Notation

Luca Cardelli and Xavier Leroy

March 10, 1990

Affiliations

Xavier Leroy’s address is Laboratoire d’Informatique, Ecole Normale Supérieure, 45 rue
d’Ulm, 75230 Paris Cedex 05, France.

(©Digital Equipment Corporation 1990

This work may not be copied or reproduced in whole or in part for any commercial purpose.
Permission to copy in whole or in part without payment of fee is granted for nonprofit
educational and research purposes provided that all such whole or partial copies include the
following: a notice that such copying is by permission of the Systems Research Center of
Digital Equipment Corporation in Palo Alto, California; an acknowledgment of the authors
and individual contributors to the work; and all applicable portions of the copyright notice.
Copying, reproducing, or republishing for any other purpose shall require a license with
payment of fee to the Systems Research Center. All rights reserved.

Authors’ abstract

We investigate the use of the dot notation in the context of abstract types. The dot
notation—that is, a.f referring to the operation f provided by the abstraction a—is
used by programming languages such as Modula-2 and CLU. We compare this notation
with the Mitchell-Plotkin approach, which draws a parallel between type abstraction and
(weak) existential quantification in constructive logic. The basic operations on existentials
coming from logic give new insights about the meaning of type abstraction, but differ
completely from the more familiar dot notation. In this paper, we formalize simple calculi
equipped with the dot notation, and relate them to a more classical calculus & la Mitchell
and Plotkin. This work provides some theoretical foundations for the dot notation, and
suggests some useful extensions.

Contents
1 Introduction

2 A simple calculus with abstract types

21 Syntax . ..o e e e e
2.2 Typechecking
23 Evaluation

3 A calculus with the dot notation

3.1 Syntax e
3.2 Typechecking
3.3 Evaluation
3.4 Encoding the dot calculus in the open calculus
3.4.1 Formal definition of the translation
3.42 Preservationof typing
3.4.3 Preservation of semantics.,
3.5 Encoding the open calculus in the dot calculus

4 A more powerful calculus with dot

4.1 Typing e e e e e,
42 Evaluation
4.3 Relation totheopencaleulus
43.1 A translation function
4.3.2 Preservationof typing,
4.3.3 Preservation of semantics.
4.4 Type equivalence modulo reduction

5 Conclusion

References

10
10
11
12
12
13
14
18
19

20
21
21
22
22
24
26
27

27

31

1 Introduction

Type abstraction has emerged as one of the most important techniques for specifying and
building large software systems [6, 4], since it provides fundamental typing support for
modularization [14].

Abstract types (sometimes called opaque types) are therefore one of the necessary
features of modern programming languages. However, for a long time their standing
has been rather mysterious, and their type rules have been explained in ad-hoc and
operational ways, making formal reasoning about abstract types difficult. For example,
it 1s still commonly said that an opaque type is “different from any other type in the
system when seen from outside the abstraction”, or that a new abstract type is “created”
whenever its description is evaluated. Such statements are both informal and arbitrary;
clearly, a formal background is needed to define precisely what type abstraction means,
derive sensible typechecking rules, and reason about programs using abstract types.

In an attempt to fill this need, Mitchell and Plotkin [13] made an important connection
between type abstraction and the second-order existential quantifiers of logic. They pro-
posed that an abstraction—that is, an abstract type A, together with operations f,g,...
whose types F, G, ... normally involve A—should be viewed as an “existential” statement.
That is, there should exist a concrete type representation of A and an implementation
of the operations f,g,... such that f,g,... have the types F,G,..., respectively!. For
instance, a package implementing complex numbers could be specified by the existential
type shown in figure 1; two different implementations meeting this specification are shown
in figure 2. An abstraction is therefore an assertion that adequate implementations exist;
it provides a partial specification of such implementations. These existential statements
might be false, in which case the specification of the abstract type should be seen as
inconsistent.

The approach of Mitchell and Plotkin showed for the first time that the type rules
for abstract types could be described non-operationally, by looking at the well-known
rules of constructive logic from the standpoint of programming. It also provided the
necessary formal framework for proving fundamental properties of abstract types, such as
representation independence [15, 11].

The connection between this approach to type abstraction and the notion of type
abstraction found in several modern programming languages is however not complete.
These languages use a dot notation, such as a.f, to refer to an operation f provided
by an abstraction a, or in other words, to the field named f of module a. The type
theory approach provides an elimination construct that looks totally different, for the
same purpose . We set out in this paper to investigate this difference in notation, explore

1 This type-theoretical notion of “abstract types”, should not be confused with the many-sorted algebra
approach. It is both weaker, since it does not involve equations (which can however be added in a type-
theoretical logic), and also stronger, because of higher-order functions.

type Compler =

3C. make
re
m
mul

Real — Real — (
C — Real

C — Real
C—-C—-C

Figure 1: A specification of a complex arithmetic package

val cartesian_complez : Complez =

(¢ =
make =
re
m
mul =

Real X Real

Az :Real. Ay:Real. (z,y)

Az:C. first(z)

Az:C. second(z)

Az:C. dy:C. (first(z).first(y) — second(z). second(y),
first(z). second(y) + second(z). first(y)))

val polar_complez : Complez =

(C =
make =
re
m
mul =

il

Real X Real

Az :Real. Ay:Real. (v/z2? + y?, arctan(y/z))

Az:C. first(z). cos(second(z))

Az:C. first(z). sin(second(z))

Az:C. Ay:C. (first(z). first(y), second(z) + second(y)))

Figure 2: Two implementations of the complex arithmetic package

Acomplez : Complez.
open complez as (C, mk, re, im, mul) in
let square = Az :C. mul z = in re(square(mk 2 3))

Figure 3: Using a package with the open notation

Acomplez : Complez.
let square = Az : complez.C. (complez.mul z z) in
complez.re(square(complez. make 2 3))

Figure 4: Using a package with the dot notation

also whether there is a difference in expressive power, and try to relate both notations, in
the hope of filling one of the remaining gaps between the theory and the practice of type
abstraction.

The “logical” notation for abstraction uses a construct, which we call open here,
corresponding to the logical rule for existential elimination. Namely, given a package p

implementing an abstraction 4, f,g,..., we can open the package p, bind its components
to variables A', f', ¢, ..., and use such variables in a usage scope (following in):
p:3A. f,g,...

openpas A, f'.g',...in ... A'"... f'... 4. ..

The result of this expression is the result of the subexpression following in. Figure 3 shows
how the complex arithmetic package above can be used with this notation. Additional
examples using this notation can be found in Cardelli and Wegner [3].

It is easy to see why abstraction is enforced. Although A may be implemented in
p as, say, Int, A’ is a formal variable and cannot match any type except itself. This
corresponds to the informal idea that abstract types are “different from any other type”.
There is also a crucial restriction that the type variable A’ should not escape its scope: 1t
must not appear free in the type of the result of open or in the types of global variables.

Existential types provide a fully satisfactory theoretical solution to the problem of
modelling abstract types. However, the open notation is very clumsy for programiming
purposes; if a package is opened twice, the two abstract type variables thus introduced
will not match. Hence one must find a sufficiently large usage scope around which to
place the open construct without violating the typing rules; MacQueen [9] points out that
the required usage scope may be so large that most benefits of abstraction are lost.

This difficulty motivated MacQueen to take a different approach to abstraction, using
dependent types and general sums [9]. His approach is adequate for modules (when they
are not first-class values, as in Standard ML (8]), but not for abstract types, since packages

3

must now necessarily stop being first-class values to preserve typing decidability [12]. In
addition, general sums do not ensure abstraction by themselves; hence, Standard ML
provides a separate abstraction construct.

Independently, programming languages providing facilities for type abstraction were
developed, and most of them use a different notation. This programming notation uses a
dot operator to select the components of a package, including selecting the abstract type
when 1t is in a type context:

p:3A. f,g,...
..pA...pf...pg...

See figure 4 for a reformulation of the example above using this notation.

This dot notation has proved very convenient for actual programming, especially for
programming in the large. However, it does not lend itself to formalization as readily as
the open notation.

One difficulty with the dot notation is that the name A is bound and can be renamed:
JA.B = 3A'.B{A—A'}. Hence what does p.A really mean? Similarly, how are the names
f,g,... handled? Programming languages seem to avoid this problem by rejecting a-
conversion of existential variables. Here we circumvent the problem by using positions
instead of names: p.Fst refers to the type component of an abstraction, and p.snd to the
operation-set component.

Apart from this difficulty, the main problem is that we no longer have a precise notion
of the usage scope of a package. If p.A always matches (another occurrence of) p.A, why
should it not match Int, or some other type?

Moreover, p.A (or p.Fst) is now a type; hence we have introduced value expressions as
subexpressions of type expressions. Should p.A match p’. A only if p = p’? Or if p and p’
have the same normal form? Clearly some restriction should be imposed here to preserve
typing decidability.

Finally, are packages first-class values? In Modula-2 for instance, modules are not first-
class values. In this paper, we wish to avoid this additional stratification, and assume
that the p in p.A is a first-class value, so we can handle general abstract types and not
just modules. Alternatively, we are assuming that our modules are first-class values and
that multiple implementations of an interface can coexist [2]. But should we require p in
p.A to be a simple identifier z, as in most programming languages, or a sequence z.y.z. ..
? Or can we allow p to be an arbitrarily complex expression, provided that it has no
side-effect, and that equality of two such expressions is decidable?

If we had a translation between some flavor of dot notation and the open notation, we
could avoid answering directly all such hard questions about the dot notation. We should
not be afraid of losing expressiveness in the translation, since we believe existential types
characterize the correct notion of abstraction.

The main question then that this paper addresses is under which circumstances is the
dot notation equivalent to the open notation?

First, in section 2, we introduce a simple calculus with the open notation, intended
to serve as a reference point. We give typechecking rules, denotational semantics, and
show the soundness of the type system. In section 3, the open elimination construct is
replaced by a simplified dot notation, consisting of two projections, .Fst and .snd, that
are syntactically restricted to apply to simple variables only. Then we prove that the
calculus thus obtained is equivalent to the former one by translating one calculus into
the other. The translations are reasonably faithful, since they preserve both typing and
semantics. Finally, in section 4, we lift the restriction on .Fst and .snd, and allow them
to operate on any term; it seems that not all terms of this calculus with generalized dot
notation have equivalents in the original calculus with open; however, we characterize a
large class of terms that can be encoded in the open notation, while retaining typing and
semantics.

2 A simple calculus with abstract types

The calculus in this section is based upon the usual simply typed A-calculus, extended with
constants and primitive operations as needed (such as integers, booleans and pairs, though
we shall axiomatize only integers for simplicity.) To model type abstraction, we add
existential quantification on types, and two term constructors: second-order dependent
pairs and the open construct. These term constructors correspond to the introduction
and elimination rules for existential quantification in constructive logic.

2.1 Syntax

In the following, X and Y range over a given countable set of type variable identifiers, A
and B range over the class of types, similarly, z and y range over the set of term variable
identifiers, and a, b, ¢ range over the class of terms.

A = X|A-B|3X. A
a = z|Az:A.b|bla)|(X=A,b:B)|openaas(X,y:B)inb

The construct (X = A4, b: B) builds a second-order dependent pair. This is basically a
pair of a type A and a term b of type B; however, b and B may depend on the binding
X = A; that 1s, X may appear in b or in B, and is considered to be bound to A there.
This binding is not visible outside of the pair; in particular, the type of the pair is simply
3X. B, without any mention of A.

The elimination construct open a as (X, y: B) in b evaluates a to a pair, binds X to
its internal type and y to its value, and returns the value of b in this new environment.

The variable X gets bound in B and b; y is bound in b.
For some purposes, we also consider the calculus above extended with integer con-

stants:

A == ... |Int
a = ...|0]|succ(a)]|casea of 0:b, suce(z):c
The pattern-matching construct case a of 0:b, succ(z): ¢ subsumes test for zero, the

predecessor function, and the usual if ...then ... else construct; x is considered bound
(to the predecessor of a) in c.

As usual, expressions are identified up to a renaming of bound variables.

2.2 Typechecking

We specify the typing of terms of this calculus by a system of inference rules. The rules
define the judgment “term a has type A under the assumptions E”, written E | a : A.

The assumptions are either “variable ¢ has type A” or “identifier X 1s a valid type
variable”, hence the syntax of typing environments E is as follows:

E:=0|E,X|E,z:A
We write Dom(E) for the set of variables introduced in E, that is:
Dom(0) =0 Dom(E,X)= Dom(E)U{X} Dom(E,z:A)= Dom(E)U {z}

However, we must put additional constraints on the environments, to ensure that type
variables are introduced in the environment before being used in types. So we have to
define two ‘more judgments: “typing environment E is well-formed”, written &5 E ENV;
and “type A is valid in environment E”, written E F; A TYPE, as follows.

k@ ENV
E EENV X ¢ Dom(E) EL ATYPE <z ¢ Dom(E)
kb E,X ENV kb E,z: AENV
k E ENV k E,X,E ENV
E K Int TYPE E,X,E'F X TYPE

EL ATyPE ELR B TYPE E, XK ATYPE

Er A— B TYPE EFr 3X. ATYPE

We can now give the typechecking rules for terms. The first rules are exactly those of
the simply typed A-calculus:

L E,z:A E'ENV
E,z:AEtz:A
EK ATYPE FE,z:AEb:B
EbAz:A.b: A— B
Erb:A—-B EhLa:A
Ekba): B

Typing rules for integers are straightforward:

E E ENV Eka:Int

EFEKo0:1Int E I succ(a) : Int

EKa:Int ERb:A E,z:Inthc: A

E Y, casea of 0:b, succ(z):ic: A

A pair (X = A, b: B) has type 3X. B if the claim b : B holds when considering the
binding X = A in b and B. The type A does not appear in the type of the pair; it is
therefore hidden outside of the pair.

EL ATYPE Ekb{X—A}: B{X—A}
EL(X=Ab:B): 3X.B

If a has an existential type 3X. B, then an open a as (X, y: B) in ¢ construction has
the same type as ¢. The term c is considered in an environment where the type variable
X is defined and the term variable y has type B. Inside c, the type X is a formal variable,
which cannot match any type except itself. To ensure that X does not escape the scope
of the open expression, we require that X is not free in the type C of the body c¢. This is
ensured by requiring that C is a valid type in the original environment E, in which X is
unbound.

Eka:3X.B EKCTYPE E X,y:BLec:C
EFopenaas(X,y:B)inc:C

7

It is easy to see that E I; a : A implies E };, A TYPE, which implies ; E ENV in turn.
This fact is used implicitly in the rules above.

2.3 Evaluation

The usual approach to evaluation would be to define reduction rules on the typed terms;
following Mitchell and Plotkin [13], we could take, for instance:

(Az:A.b)(a) — b{z—a}
open (X=A,b:B)as(X,y:B)inc — c{y~b}{X—A}

plus some rules for constants. However, these rules do not identify terms that intuitively
have exactly the same meaning, for instance

open z as (Y, z:Int) in succ(z)

and
succ(open z as (Y, z:Int) in z).

Though the open a as ... construct performs very little computation, it is not allowed to
disappear until a is reduced to an explicit pair, which may never occur. This prevents a
number of desirable reductions: (open z as (Y, 2:Y) in Au:Int.u)(0) is in normal form,
while the corresponding untyped term (Az. Au. u)(z)(0) may be reduced. This turns out
to be a major problem when trying to relate other calculi with this one, as we shall do
later on, since the various typed reductions do not match, while the untyped reductions
are the same.

We could add other reduction rules to perform the desired identifications, but it is
unclear whether the Church-Rosser and strong normalization properties would still hold.

Instead, we choose to reduce the underlying untyped A-terms, obtained by erasing all
type annotations. Pairs of a type and a term are identified with the term itself, hence
the pairing operation simply disappears, and open becomes a simple binding of a term
to a variable, similar to the let construct of ML. For simplicity, we express it by mere
substitution of the variable by the term.

Erase,(z) = =z
Erase,(Az:A.b) = Az. Erase,(b)
Erase,(b(a)) = FErase,(b)(Erase,(a))
Erase,((X=A,b:B)) = Erase,(b)
Erase,(opena as (X, y: A)inb) = Erase,(b){y—Erase,(a)}
Erase,(0) = 0

Erase,(succ(a)) = succ(Erase,(a))

Erase,(case a of 0:b, succ(z):c) = case Erase,(a) of 0: Erase,(b),
succ(z): Erase,(c)

After the erasing is performed, the untyped A-term thus obtained is reduced in the
usual way [1]. However, when we add constants to this calculus, there is a possibility of
a run-time type error during reduction; for instance, an integer could be applied as if it
were a function. It remains to show that this cannot occur if the initial term is well-typed.

To be more precise, we shall use a denotational semantics for the untyped A-calculus.
Following MacQueen, Plotkin and Sethi [10], we choose a domain V isomorphic to N +
(V. — V) + {wrong},. Then to each untyped term m, considered in an environment 2,
we associate a meaning that is a value [m], of the “universe” V; meaningless terms, that
1s terms whose evaluation leads to a type error, are mapped to wrong. The environment
p 1s a partial mapping from term variables to values of V.

[z], = p(z) if defined, wrong otherwise

[Aem], = v [m]ypey
[m(n)], = if [m],isin V — V then ([m],)([n],) else wrong
[o], = 0
[suce(m)], = if [m], € N. then [m], + 1 else wrong
[case m of 0:n, succ(z):p], = if [m], =0 then [n],
if [m], =141 then [p]zy
else wrong

We can now state the soundness of the typing rules:

Proposition 1 For all terms a and types A, if 0 &; a : A, then Erase,(a) does not denote
wrong, that is [Erase,(a)]p # wrong.

To prove this proposition, we shall first give a meaning to type expressions as well.
Following the ideal model of types [10], we interpret type expressions as ideals of V, as
follows:

[[Int]]p = N.L
X1, = p(X)if defined, @ otherwise
[A—Bl, = {feV -V |Vvel[A],f(v)e€ [B]}
[BX- A]]p = L_l [[A]]p[X4—W]
W ideal

wrongew

where in addition p maps type variables to ideals of V. Notice that if wrong is not in
p(X) for any X, then wrong ¢ [A], for all types A. The soundness of typing then follows
easily from the following claim, which is proved in [10]:

9

Proposition 2 Assume EF; a: A. Let p be a mapping compatible with E; that is, for
all type variables X € Dom(FE), the ideal p(X) does not contain wrong, and for all term
variables ¢ € Dom(E), the denotation p(z) belongs to [E(z)],. Then [Erase,(a)], € [4],.

Apart from confirming that the type rules are sensible, this soundness result is a
clue that indeed data abstraction is ensured in this calculus. Data abstraction is usually
characterized by representation independence properties. These properties formalize the
intuition that two “equivalent” implementations of an abstract type are not distinguish-
able; that is, the observed behavior of a program using one or the other is the same.
Soundness of typing is a (weak) representation independence property, where two terms
are equivalent when they have the same type, and observed behavior is the absence of
run-time type errors. Stronger representation independence properties hold for this cal-
culus; for instance, Mitchell [11] shows (for a superset of the calculus in this section) that
if two implementations of an abstraction are related by a logical relation, then one can
be substituted for the other in any closed term without modifying its meaning.

3 A calculus with the dot notation

We now formalize a calculus based on the dot notation. This is a A-calculus with second-
order dependent products, differing from the one in the previous section only in the way
of splitting existentials: instead of a single open construct, it provides two constructs:
one for accessing the value part of the pair, written z.snd; and one to get a witness of the
abstracted type, written z.Fst. As this is intended to model the “qualified identifiers” of
Modula-2 [16] and the “abstract tuples” of Quest [2], we shall in this section restrict .Fst
and .snd to operate on term variables only.

3.1 Syntax

We keep the same notational conventions: X and Y are type variables, A and B are types,
z and y are term variables, and a and b are terms.

A X|A—- B|3X. A|zFst
a = z|dz:Ab|bla)|(X=A,b:B)|z.snd

As previously, we can extend this dot calculus with integer constants:

A == ...|Int

a == ...| 0] succ(a)|casea of 0:b, succ(z):c

10

3.2 Typechecking

As in the previous section, we have to define the judgment E I a : A, as well as two
auxiliary judgments ; £ ENV and E k; A TYPE.

Type environments have exactly the same structure, and are well-formed under the
same conditions :

L 0 ENV
i E ENV X ¢ Dom(E) ER ATYPE =z ¢ Dom(E)
kh E,X ENV b E,z:AENV

For type validity, we have to add one rule for the new construction z.Fst, stating that
it is a valid type whenever z is shown to have an existential type.

h E,X,E' ENV E XKATYPE
E,X,E'K X TYPE EkK3X.ATYPE
ER ATYPE EHh B TYPE Ehz:3X. A
EHL A— B TYPE E & z.Fst TYPE

For typechecking of terms, we drop the open rule and keep the other four rules. As
term variables may now appear in a type expression, they must be prevented from escaping
their scope. Hence, the rule for functions Az: A. b states that z is not free in the type B
of the body . As in section 2.2, this is ensured by requiring that B is a valid type in the
original environment E, which does not define z.

h E,z: A, E'ENV
Ez:AF'hz: A

Ehb ATypE EL BTYPE E,z:ALb:B
EKM:Ab:A—> B
Ehb:A—-B Ehka:A
Ekba): B
Et ATYPE EhRb{X—A}: B{X—A}
EL{(X=Ab:B): 3X. B

11

The new construct z.snd is well-typed provided that = has an existential type 3.X. A;
its type is A, where the abstracted type X is substituted by its witness z.Fst.

Ebz:3X A

Ebkz.snd: A{X—z.Fst}

3.3 Evaluation

As in section 2.3, we do not reduce typed terms directly, but rather strip all type informa-
tion first and then evaluate the untyped A-term thus obtained. This stripping is defined
on terms with dot in the same vein as in section 2.3, with the additional case:

Eraseq(z.snd) =z

Instead of directly investigating this calculus — proving the soundness of the type
system, for instance — we shall first try to relate it to the open calculus. Indeed, we
are going to provide translations from terms of one calculus into the other calculus. The
translations are reasonably faithful in that they preserve typing and semantics. Most
interesting properties of the open calculus can then be effortlessly shown to hold in the
dot calculus as well.

3.4 Encoding the dot calculus in the open calculus

The idea behind both translations is that, in the body of an open ¢ as (Y, 2: A) in b
expression, Y and z seem to have the same meaning as z.Fst and z.snd, respectively.
This remark suggests the following strategy to transform a program with dot into one
with open: insert some open z as (Y, z: A4) in ... for each variable z used in a z.Fst or
z.snd construct, and use Y and z instead of z.Fst and z.snd. In other words:

blz.Fst,z.snd| — openz as (Y, z: A) in b[Y, 2]
For instance, this would allow the following translation:

dz:3X. X x X — Int.(second(z.snd))(first(z.snd))+—
Az:3X.X x X — Int.(openz as (Y, z2:Y x ¥ — Int) in second(z))
(openz as (Y, z:Y x Y — Int) in first(z))

and this is obviously wrong, since the scoping constraint of open is not respected. (Y
appears free in the types of the results.) So, this scheme must be restricted to the cases
where z.Fst does not appear in the type of blz.Fst,z.snd]. Presumably, this may be
achieved by taking a subexpression b large enough to enclose all uses of z.Fst and z.snd;

12

ComplesWRT(X) abbreviates

(Real — Real — X) X (X — Real) x (X — Real) x (X — X — X)
In the dot calculus:

Az:3X. ComplezWRT (X).

second(z.snd) ((/\z:a:.Fst. fourth(z:.snd)(z)(z))(first(zz.snd)(3)(2)))

In the open calculus:
Az:3X. Complezs WRT (X).
open z as (X, y: CompleeWRT (X)) in

second(y) (()\z : X. fourth(y)(z)(z))(first(y)(3)(2)))

Figure 5: Translation from the dot calculus to the open calculus

indeed, the body of the A-abstraction binding z will do, since the typing rule for A prevents
z (and, hence, z.Fst) from being free in the type of the body.
Therefore, the following translation scheme seems sensible:

Az:3X. A b—— Az:3X. A.openz as (X, y: A) in b{z.Fst—X}{z.snd—y}

For instance, if we express the complex arithmetic example (figures 3 and 4) in the open
calculus and in the dot calculus (see figure 5), the translation outlined above actually
transforms the first program into the second one. This scheme works for closed terms,
but we shall soon describe a translation for open terms as well.

Now, we would like to show that a well-typed term translates to a well-typed term.
To allow for easy induction on derivations, we need to translate not only terms, but also
whole judgments. Hence, we first reformulate the translation in a more general (and more
controlled) way.

3.4.1 Formal definition of the translation

Let aq be a closed, well-typed term of the dot calculus. To avoid name clashes, we rename
the identifiers appearing in ag so that none gets bound more than once.

Let P be the set of term variables z such that z.Fst or z.snd appear in ao. Given
the typechecking rules for projections, each € P has an existential type; we write it as
3T,. A,, after renaming if necessary?.

2Due to the typing rule for pairs, this type may differ from the type declared for z by the abstraction
binding it, as in (X = 3Y. Int, Az : X. z.snd: X — Int). The type 3T;. A; we associate with = is the
“true” type of z; that is, the type given to it in the derivation of a¢ : Ay (this derivation is unique, given
the typing rules), or alternatively the type declared for z, where all bindings such as X = 3Y. Int above
have been performed.

13

To each £ € P, we associate a term variable v, that does not appear in a,.
For each subterm a of ao, we define its translation |a] as follows:

lz] = =
|z.snd| = v,
[Az:A.b] = Az:|A].openz as(T,, v,:|A.])in [b]ifz e P
|Az:A.b] = Az:|A]l. |[b]ifz¢P
ba)] = [)(la))
(X=A,5:B)] = (X=|Al, [8]:|B))

This is basically the transformation outlined above, with substitutions delayed, and per-
formed only when necessary: we insert an open z as... only when z € P; that is, when
z.Fst or z.snd are actually used.

In the same vein, types translate as follows:

X = X
lz.Fst] = T,
|A— B| = |A] - |B]
13X. A] = 3X.|A]

To translate environments, the only case that needs special treatment is the intro-
duction of a variable z belonging to P. In the derivation, this case corresponds to the
typechecking of the body b of a function Az: A. b. After translation, b will be preceded
by an open z as (T, v,: |A4z]) in ..., so we must typecheck the translation of b in an
environment where T, and v, are defined. Hence the translation of E, z: A introduces T,
and v,: | A;| in addition to z:[A].

0] = 0

|E,X| = |E|,X
|E,z: A |E],z:|A|, Teyve: |A:] ifz€P
|E,z:A] = |E|,z:|A]ifz¢ P

3.4.2 Preservation of typing

We are now able to translate any judgment componentwise, and in particular O b ao : Ao.
To prove that the translation preserves typing, it remains to show that its translation
0K |ao] : |Ao] can be derived in the open calculus.

Proposition 3 Let ag be a closed, well-typed term of the dot calculus. Let | | be the
assoctated translation function. Let D be the derivation of 0 1 ag : Ao.

14

o If; E ENV is proved in D, then t; |[E| ENV.
o If Ef; ATYPE is proved in D, then |E| K |A| TYPE.
e fENa: Aisprovedin D, then |E| K |a] : |A].

Proof: By induction on the three derivations, starting with the one of E 1 a : A.

e For value variables: we have the following derivation

b E,z:A, FEy ENV
El,m:A,Ezhz A

By induction, we have a derivation of k; |Ey,z: A, E,| ENV. By definition of the
translation, |E;,z: A, E;] has clearly the form Ej,z:|A|, E;. Hence the desired
result |E;,z: A, E,| K z: |A] follows.

e For value access in a pair: from the original derivation

kb Ey,z:3T,. A;, E; ENV
Ey,z:3T,. A;,Ey i z: 3T,. A,
Ei,2:3T,. Az, E; b .snd : A {T,—=z.Fst}

we get by induction a derivation of t; | Ey,z: 3T,. A,, E,| ENV. As z.snd appears
in the derivation above, z belongs to P. Therefore, | Ey, z:3T,. A., E,| introduces
the variable v, with type [A;|. Hence |E| & v, : | A:], which implies the expected
result

|E] K |z.snd| : [A{X —z Fst}|

since, as |z.Fst| = T,
|A{T;—z.Fst}] = |A]

e For abstraction:

E L ATYPE E L B TYPE E,z:A7b: B

EbM:Ab:A—> B

15

If z ¢ P, by induction we have proofs of
|E| 5 |A] TYPE

|E,z:A| K [b] : |B]

that 1s
|E],=z:[A] K [b] : |B]

hence

|E] K Az: [A]. [b] : |[A] — | B]
which is the desired result.
If z € P, then A = 3T.. A,, and the same steps lead to:
\E| & 3T,. |A:] TYPE
|E| & |B] TYPE
|E],z:3T,. Az}, Toyve: |Az] 15 [b) ¢ | B
so we have the following derivation:

|E|,z:3T;. |A:] 5z : 3T, [As)
\E| & |B] TYPE
|E],z:3T,. |Az], Teyve: |Az] 5 |b) ¢ | B)

|E|,z:3T,. |Az] K openc as (T, v.: [A;]) in [b] : | B]
|E]| K 3T,. |Az] TYPE

|E| K Az:3T;. |A;]. openz as (T, ve: |Az]) in [b] : 3T%. |A:| — |B]
that leads to the desired result:

|E| K |Az:A.b] : |[A— B|

For apphication: obvious by induction hypothesis.

For pair construction: from
ERL ATYPE EhLbWX<—A}: B{X—A}
EFERL(X=Ab:B):3X.B

we get by induction hypothesis proofs of
|E| K |A] TYPE lE| & |[b{X <A} : |B{X—A}]

16

To conclude that |E| K (X =|A], |b):|B]):3X. |B], it suffices to show that

[b{X=A}] = [p{X[A]}
[B{X—A} = [B{X—|A]}

The proof is by induction on b and B. We give the non-trivial case: b = Az:C. d
with z € P.

({X—A}] = Xz:|C{X—A}] openz as (T, v,:|A;)) in [d{X—A}|
Az: [C|{X|A]} openz as (T, vz:|A:]) in [d|{X | A]}

by induction hypothesis. The type variable X is not free in A4, (indeed, by definition
of T and A, the type 3T,. A is C where some type variables have been substituted,
and especially X has been substituted by A). Therefore X is not freein | A.| either.
Hence the desired result:

({X—A}] = (Mz:|C]|.cpenz as(T;, v.:|4;])in [d]){X—|4]}
= [b{X<[A]}

We turn now to the £ i A TYPE judgment. All cases are straightforward, except

maybe the one for z.Fst; but then the original derivation is:

b Ei,z:3T.. A;, E; ENV
Ei,2:3T.. A, E; gz : dT,. A,

Ei,z:3T,. A,,E, | ©.Fst TYPE

The translation of Ey,z: 3T,. A;, E, introduces the type variable T, and it is a well-

formed environment, so | Ey, z:3T;. Az, E,] 5 Tz TYPE holds, which is the desired result
since [z.Fst] = T,.

Similarly, for the i £ ENV judgment, the only interesting case is the introduction of

an z belonging to P. By definition of T, and A,, the type given to z must be 3T. A,.

E T, A, TYPE
E 3T,. A, TYPE z ¢ Dom(E)
h E z:3T,. Ay ENV

17

By induction, we have a proof of | E], T, &; | A.| TYPE, hence the following derivation:
|E],T. 5 |A;] TYPE
|E] k 3T,. |A;] TYPE z ¢ Dom(|E|)
L |E],z:3T,. |Az] ENV T ¢ Dom(|E|,z:3T,. |A:])
LB, 2:3T,. |Az), T: ENV

We can substitute this for the proof of [E], T, ENV in the derivation of |E|,T, kK
|Az] TYPE, thereby obtaining a proof of \E],z:3T,. |Az],Tx | |Az] TYPE. Hence:

|E|,z:3T,. |Az], To 5 |Az) TYPE v, & Dom(|E|,z:3T,. |As, T)
LB, z:3T:. [Ac), Teyve: | Az] ENV

3.4.3 Preservation of semantics

As the translation respects the structure of functions and applications, a closed term of
the dot calculus and its translation in the open calculus have exactly the same underlying
untyped terms. More precisely, we have:

Proposition 4 For all subterms a of aq,
Eraseo(|a|){ve—z for all z € P} = Erasea(a).
Hence Erase,(|ao|) = Eraseq(ag).
Proof: By induction on a. We give the main cases:
o if a = z.snd, Eraseq(a) = z and Frase,(|a]) = v,.
eifa=MAz:A.band z € P, then

Erase,(|a]) = Erase,(Az:|A| openz as (T, ve:|A:])in [b])
= Az.(Erase,(|b]){ve—z})

hence, by induction hypothesis,

Erase,(|a)){vyy for all y € P} =
Az. (Eraseo(|b]){ve—z}{vy—y forall y € P\ {z}}) =
Az. Eraseq(|b])

which is the expected result.

18

The remaining cases are obvious. O

Using the last two propositions, we can show the soundness of the type system of
the dot calculus, extended with integer constants as mentioned in section 3.1. (The
translation function is extended to the integer constructs in the trivial way, by translating
their components recursively; it is easy to see that propositions 3 and 4 still hold.)

Corollary 1 If0 K ao : Ao, then Eraseq(ao) does not denote wrong.

Proof: The translation |ao] is a well-typed closed term of the open calculus. Hence, by
proposition 1, [Erase,(|ao])]p # wrong, which is the desired result, since Erase,(|ao]) =
Eraseq(ao). O

3.5 Encoding the open calculus in the dot calculus

The reverse translation is much less informative, but would confirm the intuition that the
dot calculus is no less powerful than the open calculus, so we shall sketch it quickly.
The basic idea is to replace every open a as (X, y: A) in b by

(Az:3X. A. b{X —2z.Fst,y—z.snd})(a)

for some unused term variable 2. In contrast with the previous translation, any type
of the open calculus is also a type of the dot calculus, and this also holds for well-
formed environments. Hence we just have to provide a translation for terms, which is
straightforward:

(2] = =z
[Az:A.b] = Az:A. [b]
[6(a)] = [b]([a])
[(X=Ab:B)] = (X=4,[b]:B)
[openaas (X, y:A)inb] = (Az:(3X. A). [b]{X —=z.Fst,y«z.snd})([a])

where z is not free in opena as (X, y: A) in b

We must check that, in the last rule, the substitution of y by z.snd can be performed,
since in z.Fst or z.snd, ¢ cannot be substituted by any term but another variable without
producing a syntactically incorrect term such as a(b).Fst. Happily, by definition of the
translation, if y.Fst or y.snd appears in [b], then y is bound by a A, and hence will not
have to be substituted.

As | |, the function [| preserves typing and semantics:

19

Proposition 5 [fELa: A, then E R [a] : A.

Proof: by induction on the original derivation. The only interesting case is the trans-
lation of an open construct:

Ekba:3X.A EEBTYPE E X, y:AKb:B
Ef, openaas(X,y:A)inb: B

By induction, it follows that E t; [a] : 3X. A and E, X,y: A [b] : B. By induction on

the proof of the latter, we get a derivation of
E,z:3X. Ak [b]{X«+zFst,y—z.snd}: B{X«—zFst}

As X is not free in B, we have B{X«z.Fst} = B. Finally, from the proof of E & [a] :
3X. A, we can prove that £ 3X. A TYPE. Putting all together, we get:

EL3IX. ATYPE
EL B TYPE
E,z:3X. Ak [b]{X~=2Fst,y—z.snd}: B

EtAz:3X A [b]{X2Fst,y—2zssnd}:3X. A—B Ek[a]:3X A
Ebt (Az:3X. A. [b]{X «=zFst,y—=z.snd})([a]): B

This is the expected result. a

Proposition 6 For any term a of the open calculus, Erasey([a]) B-reduces to Erase,(a).

Proof: similar to the proof of proposition 4. a

4 A more powerful calculus with dot

In this section, we simply lift the restriction that only a value variable may be the argument
of a .Fst or .snd construction, and allow instead any term, provided it has an existential
type.

Regarding the formalism, this is a very natural generalization of the previous dot
calculus, reminiscent of the second-order general sums (also called strong sums) of type
theory [7, 5].

From the point of view of programming languages, this extension, in its full generality,
does not seem to model any real situation, especially since .Fst now embeds the whole

20

class of values into the class of types; this means that the dividing line between types and
values begins to blur dangerously.

However, we may feel the need for a calculus less restrictive than the dot calculus of
the previous section. For instance, to deal with nested modules, it seems natural to have
not only one-level access in modules, such as module.Type, but also access through paths
of arbitrary length, such as module.submodule.data. To formalize this, the argument of
a .Fst or .snd must be allowed to be a path, where a path 1s a term variable followed by
an arbitrary number of .snd.

We could study this first extension of the dot calculus in the same way as for the
dot calculus, by finding a translation to the open calculus and proving that it is faithful.
However, other similar extensions may come to mind, and the same work would have to
be done for each. Therefore, it seems easier to study the most general extension of all,
where any term can appear to the left of a .Fst or .snd construct.

4.1 Typing

The typing rules are exactly those of the simple dot calculus, with the obvious general-
ization for the projections:

Eha:3X. A ERa:3X A

E L a.Fst TYPE EF a.snd: A{X—a.Fst}

It may be tempting to identify certain type expressions of this calculus, for instance
(X =A, b:B)Fst and A, and to use this notion of type equivalence for typechecking,
instead of for strict equality. This amounts to adding the following rule:

EFEka:A A B
Eka:B

At first, we choose to disallow the latter rule and require syntactic equality for two types
to be compatible; we shall come back to this issue later on.

4.2 Evaluation

As usual, we strip all type information before reducing. The .snd operation becomes
identity on A-terms:
Erase,(a.snd) = Erase,(a)

As for the simple calculus with dot, we shall not investigate this calculus directly, but
try to relate 1t to the open calculus first.

21

4.3 Relation to the open calculus

When we try to encode this calculus into the open calculus, we find terms which apparently

have no equivalents in the open calculus. For instance, assume a : A and consider the
following term:

(X=4,(Y=X,a:Y).snd: (Y=X, a:Y) Fst)
To express it in the open calculus, we have to insert an open (Y=X,a:Y) as... at some
point, and since X is free in the pair, the only Literal translation is:

(X=A,open(Y=X,a:Y)as(Z, 2:2)inz: Z)

but then Z escapes the scope of the open construct. (See later for a similar term but with
no trivial redexes.)

To try to find an equivalent term in the open calculus, the general strategy is the same
as in section 3.4: replace subterms such as b[a.Fst, a.snd] by open a as(X, y:A)in b[X, y],
with the additional constraints that a.Fst should not appear in the type of bla.Fst, a.snd],
and that b must not bind any of the free variables of a. However, the previous example
shows that sometimes both constraints cannot be satisfied, especially when type variables
are free in q.

If a has no free type variables, the transformation might work: let b be the body of the
smallest abstraction Az: A. b enclosing all uses of a.Fst and a.snd. Either a.Fst does not
appear in the type B of b, in which case it is possible to insert an opena as... there, or
a.Fstis part of B. But in the latter case, z ¢ FV(B), hence z is not free in a. Therefore,
we can “Lift” a out of b, consider the next enclosing A, and iterate.

We are now going to formalize this argument in the same way as in the previous section
by providing translations for terms, types, and environments.

4.3.1 A translation function

Let ao be a closed, well-typed term, renamed so that each variable gets bound once at
most, and let D be the derivation of 0 i ao : Ag. We write P for the set of subterms a of
ao such that a.Fst or a.snd appears in D.

From now on, we shall suppose that the following condition holds:

(C) For all a € P, there are no type variables free in a.

For instance, it was not the case in the previous example, where P = {Y=X,a:Y)}.
For each a € P, the term a has no free type variables, therefore D derives a type
for a®; this type is an existential type (given the typechecking rules for .Fst and .snd),

3Hypothesis (C) is crucial here, since in general, it is not true that any subterm of a is given a type
in D, because of the typing rule for pairs (X = 4, b: B), which requires that b{X — 4} has a type, but not
necessarily b itself. For instance, Az: X. succ(z) has no type by itself, though (X =1Int, Az: X. succ(z):
X — Int) is well-typed.

22

and we write 37,. A, for it (after renaming of variables if necessary). Furthermore, we
associate with a a value variable v, unused in a,.

Now we have to decide, for all a € P, where to insert an open a as... Let a € P.
We consider the smallest subexpression b of ay binding all free variables of a. Since no
variables are bound twice, such a b exists, and it contains all occurences of a.Fst and
a.snd. If a is closed, it is ag. Otherwise, as there are no type variables free in a, it is
the body of a A- abstractlon Az : A.b. We shall consider only the latter case, since we
can assume without loss of generality that ag itself is a A-abstraction. We say that the
variable bound by this abstraction is the first free variable of a.

For all term variables z, we write F(z) for the sequence of all @ € P such that z is the
first free variable of a. The translation of terms consists mainly in inserting, before the
body b of any function Az:A. b, an open |a] as (T,, va: |Aq]) in ... for each a € F(z).
However, we must take care of the order of insertion, to avoid using a T, or v, before
it is defined. More precisely, if a and o’ belong to F(z) and a is a subexpression of a,

then open ¢ as... must precede open a’ as... Therefore, we enumerate the sequence
F(z) = a1,...,a, in topological order, that is if a; is a subexpression of aj, then 1 < j.
2] = =
la.snd| = v,

[Az:A.b] = Az:|A].open |ai] as (Ty,, va, : |44,]) in
open |a,] as (Tq,, Va,:|A4,]) in |b]
if F(z) =ai,...,a,
[6(a)] = [b)(la))
[(X=4,8:B)] = (X=[4], [b]:B])

Notice that the third rule remains valid if F(z) = 0, and means |Az: 4.b] = Az: A]. [b]

in this case. The translation of types is the same as for the original dot calculus:

[X] = X
laFst|] = T,
[A—B] = [A] - |B]
13X. 4] = 3X.|A4]

As for the original dot calculus, we must synchronize the translation of environments with
the translation of terms. Adding z: A to E means that we are about to typecheck the
body b of Az: A.b. After translation, b will be preceded by open a as (T}, v,: |A.])in ...
for each a € F(z). So, the translation of E,z: A must define T, and v, : | A.] for each
a € F(z).

0] = 0

23

B, X] = [E,X
|E,z:A] = |E|,z:|A],Tay Ve | Aar]s- 1 Tans Vay: [Aan)
if F(z) =a1,...,an

Condition (C) ensures that all a € P are translated, and that no 7, or v, is free in
lao], since the open a as (T,, v,:|A4,]) in ... encloses all uses of T, and v,.

4.3.2 Preservation of typing

Proposition 7 If one of the judgments ; E ENV, EF, ATYPE, or E} a: A is a step
of the derivation D, then we can prove | |E| ENV, |E| K |A]| TYPE, or |E| K |a] : 4]

respectively.

Proof: the proofis a straightforward generalization of the proof given for proposition 3.
We proceed by induction on the derivation of the judgment. Here are the interesting
cases:

o For value access in a pair: the original derivation is

Eka:3T,. A,

ELasnd: A, {T,—aFst}

so a € P and E binds all free variables of a, including its first free variable. Hence,
| E] introduces v, with the type |A.]. By induction, we get a proof of |E| K |a] :
3T,. | As], from which we can extract a proof of 5 | E| ENV. Hence, | E] K v, 1 | 4],
which is the expected result, since |a.snd| = v, and obviously,

| Ae{Ta—a.Fst}] = | Aq]

o For A-abstraction:

EE ATYPE EE B TYPE Ez:ARb: B
EbXX:Ab:A—- B

Let ay,...,a, be F(z). For all 1, since a; is a subterm of b and since there are no
type variables free in a;, the derivation of E,z: A} b: B contains a derivation of
E,; & a; : 3T,,. A, for some environment E,,. So, by induction, we get proofs of

|E| Kk |A] TYPE

24

|E| & |B] TYPE
NaR]
L Ea;] K [ai] : 3T [Aai]
where X; = |E|,z: [A],To,, Ve, [Aay |5 -+ -, Taj, Va; i | Ag;| forall 0 < j < .
As a;is a subexpression of b, it is easy to see that ¥, and | E,, | bind the free variables
of a; to the same types. Furthermore, as F(z) is enumerated in topological order,
for all 7 > 4, the terms a;.Fst and a;.snd do not appear in a;, therefore T,; and v,

are not free in |a;|. Hence, ¥;_; and |E,, | bind the free variables of a; to the same
types. So, from the derivation of

| Ea;] f2 ai) : 3T, [Aa,]

we can build a proof of

Yio1 K lai] : 3T, | Aqg

Since X, is an extension of | E], from the proof of |E| ; | B| TYPE, we get a proof
of ¥; 5 | B] TYPE. Hence the desired result:

a5 (8] : [B]
L1 5 |B] TYPE
Ynoi b lan] : 3T, | A,

2'n—l }—o open |_a"nJ as <Tan1 Va, * I_AﬂnJ) in _bJ : LBJ
Yn_2 5 |B] TYPE
271-2 b |_an—1J : ETan-l‘ ‘.Aan—lJ

|E],z:|A] K open |a;| as (Tq,, va,: |Aq,|) in ... |b] : | B]
|E] K |A] TYPE

|E] & [Mz:A.b] : |[A— B]

e For the introduction of a value variable in an environment:
EL ATYPE z ¢ Dom(A)
kL E,z:AENV

Let ay,...,a, be F(z). If n = 0, we get by induction a proof of |E| |, |A] TYPE,
hence the desired result I; |E],z:|A] ENV.

25

Otherwise, by the same reasoning as in the case of A-abstraction, we have a proof

of:

\E|,z:[A], Ty, Va, : | Aay)s -y Tan—yr Van—y : [Aan_i) 5 L8n]) : 3Ta,. [Aa.]
from which we can extract a derivation of:

|E|,z:[A],Tay, Ve, | Aarly -1 Tan_1yVan_y i | Aaa_y] b ITa,. [Aa.] TYPE
whose penultimate step is:

|E|,z: | A}, Tay, Ve [Aar)s -y Tan_1sVan_y | Aans)s Tan b |Aa,] TYPE

n ‘o

Hence the desired result:

ELE}, 2:|A], TayyVay : | Aarls- -« s Tans Van i | Aan] ENV

The remaining cases are easy. a

4.3.3 Preservation of semantics

As in the previous section, this translation does not modify the meaning of the program:
Proposition 8 For all subterms a of ao,

Eraseo(|a]){vs—Eraseo(|b]) for all b € P} = Erase,(a).
Hence Eraseo(|ao]) = Erase,(ao).

Proof: Same proof as for proposition 4. a

As a consequence of propositions 7 and 8, no closed term for which condition (C) holds
can evaluate to wrong. Indeed, this is true even if condition (C) does not hold, since the
type system of the generalized dot notation is sound, as can be proved directly along the
lines of section 2.3. However, it is not clear whether the generalized dot notation ensures
as strong an abstraction as the original open construct. Informally, we may fear that it
is not the case, since, for instance, implementations of abstractions can be fully visible in
types:

(X =1Int,0:X).snd: (X=1Int,0:X)Fst

thus publicizing that X = Int.

26

4.4 Type equivalence modulo reduction

As mentioned previously, we may add the following rule:
Fra:A Ao B
ELa:B (1)

where the equivalence relation < is the congruence generated by the axioms:

(X=A,b:B)Fst & A
(X=A,b:B).snd « b{X—A}
(Az:A.b)(a) — b{zea}

Even if rule 1 uses only equivalence between types, we need to define also equivalence
between terms, because a.Fst is equivalent to b.Fst if a is equivalent to b.

This rule leads to a weaker notion of abstraction, where succ((X = Int, 0: X).snd)
typechecks, for instance. MacQueen [9] argues that this additional flexibility is desirable
for a programming language, in order to be able to express complex dependencies between
modules. However, the DL language he proposes is stratified, and this is not by chance,
since an unstratified system like ours equipped with rule 1 is inconsistent, as it is possible
to encode a calculus with a type of all types in it [12].

Even if we add some stratification, allowing reduction during typechecking, as above,
does not seem to modify drastically the previous results. Admittedly, the counterexample
we gave to show that some terms have no equivalent in the open calculus,

(X=A,(Y=X,a:Y).snd: (Y =X, a:Y).Fst),

now fails, since it reduces to (X = A4, a: X). But we can work out more complicated
examples, without any redex, that exhibit the same pathology, for instance:

Af:(3X. A) —» (3Y. B).
(Z=A,(f(X=2Z,a:X)).snd: B{Y—(f(X =2, a:X)).Fst})
where a : A, since the open (X =7, a: X) as... must take place inside the (Z =4, ...:
...), hence violating the scoping rule for open.
Moreover, the translation above can still be applied to terms in normal form satisfying

condition (C), and, in that case, still leads to well-typed terms of the open calculus, since
for terms in normal form, type equivalence is again syntactic equality.

5 Conclusion

We have described two notations for type abstraction, one coming from logic, the other
from programming, and investigated their relationships. This work contributes to the

27

formal foundation of the notion of abstraction found in programming. It also suggests
some interesting extensions, as we shall see now.

The grammar of a calculus with the dot notation may ensure that condition (C)
always holds. Let p range over the class of terms allowed to appear before a .Fst or a
.snd construct:

a == ...|psndf...
A == ... |pFst]...
If p cannot contain any type variable at all, then condition (C) will certainly hold. This
1s the case, of course, for the simple dot calculus of section 2 (p ::= z).
This is also the case for the extension to “paths” mentioned at the beginning of the
previous section (p ::= z | p.snd). This notion of paths gives a convenient way to deal with

nested abstractions, which is much more natural than, for instance, the nested modules of

Modula-2 [16]. Such a multi-level stratification (as opposed to the usual “flat” structure of

programs considered as a set of modules) seems necessary for very large software systems.
Condition (C) even suggests other extensions, for instance:

p,p =z | p.snd| p(p’)

This would be convenient for dealing with parameterized abstractions. For example,
assuming we extend the system with first-order dependent types V(z : A)B, we could
write:

type Disc(cpz: Complez) =
3X. make: cpz.Fst — Real — X, ...

val disc : V(cpz: Complez)Disc(cpz) =
Acpz : Complez.
(X = c¢pz.Fst X Real
make = Morig: Complez. Aradius:Real. (orig, radius)
)

Here, disc(cpz) would be a package implementing abstract discs of given origin and
radius, depending on a given implementation cpz of Complez. For example, disc(polar-
-complez) and disc(cartesian_complez) would provide different implementations of the
parametric disc abstraction. Two instances of disc(polar_complez) would be recognized
to refer to the same abstraction, according to the translation based on condition (C), and
could hence interact freely.

In conclusion, we can define more and more expressive calculi based on the dot nota-
tion. The most expressive ones, only sketched in this section, should be able to deal with
complex dependencies between first-class parametric abstractions. Our calculi are closer

28

to actual programming languages than are calculi based on logical notation, but enjoy all
the same interesting properties.

Acknowledgements

We are indebted to Martin Abadi, for having pointed out several flaws in earlier proofs
of propositions 3, 5, and 7.

29

References

[1]

2]

[10]

11]

[12]

[13]

H. P. Barendregt. The Lambda Calculus, its Syntaz and Semantics. North-Holland,
1981.

Luca Cardelli. Typeful Programming. Research Report 45, DEC Systems Research
Center, 130 Lytton Avenue, Palo Alto CA 94301. To appear in Proc. IFIP State of
the Art Seminar on Formal Description of Programming Concepts, Rio de Janeiro,

April 1989.

Luca Cardelli, Peter Wegner. “On Understanding Types, Data Abstraction, and
Polymorphism.” Computing Surveys, 17(4), December 1985.

John V. Guttag, James J. Horning, Jeannette M. Wing. “The Larch Family of Spec-
ification Languages.” IEEE Software, September 1985.

W. A. Howard. “The formule-as-types notion of construction.” In J. P. Seldin and J.
R. Hindley, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus
and Formalism, pp. 479-490, Academic Press, 1980.

Barbara Liskov, John Guttag. Abstraction and Specification in Program Development.
The MIT Press, 1986.

P. Martin-Lof. “Constructive mathematics and computer programming.” 6th Int.
Congress for Logic, Methodology, and Philosophy of Science, pp. 153-175, North-
Holland, 1982.

D. B. MacQueen. “Modules for Standard ML.” ACM Symp. on Lisp and Functional
Programming, 1984.

David MacQueen. “Using Dependent Types to Express Modular Structure.” 13th
Ann. ACM Symp. on Principles of Programming Languages, 1986.

David MacQueen, Gordon Plotkin, Ravi Sethi. “An Ideal Model for Recursive Poly-
morphic Types.” Information and Control 71, pp. 95-130, 1986.

John C. Mitchell. “Representation independence and data abstraction (preliminary
version).” 18th Ann. ACM Symp. on Principles of Programming Languages, 1986.

John C. Mitchell, Robert Harper. “The Essence of ML.” 15th Ann. ACM Symp. on
Principles of Programming Languages, 1988.

John C. Mitchell, Gordon D. Plotkin. “Abstract types have existential type.” 11tk
Ann. ACM Symp. on Principles of Programming Languages, 1984.

31

[14] D. L. Parnas. “On the criteria to be used in decomposing systems into modules.”

Communications of the ACM, Vol. 15, No. 12, pp. 1053-1058, December 1972.

[15] J. C. Reynolds. “Towards a theory of type structure.” Colloguium sur la program-
mation, Lecture Notes in Computer Science Vol. 19, pp. 408-425, Springer-Verlag,
1974.

[16] N. Wirth. Programming in Modula-2. Springer-Verlag, 1983.

32

SRC Research Reports

The following pages list the titles of our research reports. You can access the list of
abstracts on gatekeeper.pa.dec.com via anonymous ftp. The pathname of the list is
/usr/spool/ftppublic/pub/DEC /srcreport.abs.

If you would like to order reports electronically, please send mail to src-report@src.dec.com.

SRC Reports

“A Kernel Language for Modules and Abstract Data

Types.”
R. Burstall and B. Lampson.
Research Report 1, September 1, 1984.

“Optimal Point Location in a Monotone
Subdivision.”

Herbert Edelsbrunner, Leo J. Guibas, and Jorge
Stolfi.

Research Report 2, October 25, 1984.

“On Extending Modula-2 for Building Large,
Integrated Systems.”

Paul Rovner, Roy Levin, John Wick.

Research Report 3, January 11, 1985.

“Eliminating go to’s while Preserving Program
Structure.”
Lyle Ramshaw.
Research Report 4, July 15, 1985.

“Larch in Five Easy Pieces.”
J. V. Guttag, J. J. Horning, and J. M. Wing.
Research Report 5, July 24, 1985.

“A Caching File System for a Programmer’s
Workstation.”

Michael D. Schroeder, David K. Gifford, and Roger
M. Needham.

Research Report 6, October 19, 1985.

“A Fast Mutual Exclusion Algorithm.”
Leslie Lamport.

Research Report 7, November 14, 1985,
Revised October 31, 1986.

“On Interprocess Communication.”
Leslie Lamport.
Research Report 8, December 25, 1985.

“Topologically Sweeping an Arrangement.”
Herbert Edelsbrunner and Leonidas J. Guibas.
Research Report 9, April 1, 1986.

“A Polymorphic A-calculus with Type:Type.”
Luca Cardelli.
Research Report 10, May 1, 1986.

“Control Predicates Are Better Than Dummy
Variables For Reasoning About Program
Control.”

Leslie Lamport.
Research Report 11, May 5, 1986.

“Fractional Cascading.”
Bernard Chazelle and Leonidas J. Guibas.
Research Report 12, June 23, 1986.

“Retiming Synchronous Circuitry.”
Charles E. Leiserson and James B. Saxe.
Research Report 13, August 20, 1986.

“An O(n?) Shortest Path Algorithm for a Non-
Rotating Convex Body.”

John Hershberger and Leonidas J. Guibas.

Research Report 14, November 27, 1986.

“A Simple Approach to Specifying Concurrent
Systems.”

Leslie Lamport.

Research Report 15, December 25, 1986.

Revised January 26, 1988.

“A Generalization of Dijkstra’s Calculus.”
Greg Nelson.
Research Report 16, April 2, 1987.

“win and sin: Predicate Transformers for
Concurrency.”

Leslie Lamport.

Research Report 17, May 1, 1987.

Revised September 16, 1988.

“Synchronizing Time Servers.”

Leslie Lamport.

Research Report 18, June 1, 1987.
Temporarily withdrawn to be rewritten.

“Blossoming: A Connect-the-Dots Approach to
Splines.”
Lyle Ramshaw.
Research Report 19, June 21, 1987.

“Synchronization Primitives for a Multiprocessor:
A Formal Specification.”
A. D. Birrell, J. V. Guttag, J. J. Horning, R. Levin.
Research Report 20, August 20, 1987.

“Evolving the UNIX System Interface to Support
Multithreaded Programs.”
Paul R. McJones and Garret F. Swart.
Research Report 21, September 28, 1987.

“Building User Interfaces by Direct Manipulation.”
Luca Cardelli.
Research Report 22, October 2, 1987.

“Firefly: A Multiprocessor Workstation.”
C. P. Thacker, L. C. Stewart, and
E. H. Satterthwaite, Jr.

Research Report 23, December 30, 1987.

“A Simple and Efficient Implementation for Small
Databases.”
Andrew D. Birrell, Michael B. Jones, and
Edward P. Wobber.
Research Report 24, January 30, 1988.

“Real-time Concurrent Collection on Stock
Multiprocessors.”
John R. Ellis, Kai Li, and Andrew W. Appel.
Research Report 25, February 14, 1988.

“Paralle] Compilation on a Tightly Coupled
Multiprocessor.”
Mark Thierry Vandevoorde.
Research Report 26, March 1, 1988.

“Concurrent Reading and Writing of Clocks.”
Leslie Lamport.
Research Report 27, April 1, 1988.

“A Theorem on Atomicity in Distributed
Algorithms.”
Leslie Lamport.
Research Report 28, May 1, 1988.

“The Existence of Refinement Mappings.”
Martin Abadi and Leslie Lamport.
Research Report 29, August 14, 1988.

“The Power of Temporal Proofs.”
Martin Abadi.
Research Report 30, August 15, 1988.

“Modula-3 Report.”
Luca Cardelli, James Donahue, Lucille Glassman,
Mick Jordan, Bill Kalsow, Greg Nelson.
Research Report 31, August 25, 1988.
This report has been superseded by
Research Report 52.

“Bounds on the Cover Time.”

Andrei Broder and Anna Karlin.
Research Report 32, October 15, 1988.

“A Two-view Document Editor with User-definable
Document Structure.”
Kenneth Brooks.
Research Report 33, November 1, 1988.

“Blossoms are Polar Forms.”
Lyle Ramshaw.
Research Report 34, January 2, 1989.

“An Introduction to Programming with Threads.”
Andrew Birrell.
Research Report 35, January 6, 1989.

“Primitives for Computational Geometry.”
Jorge Stolfi.
Research Report 36, January 27, 1989.

“Ruler, Compass, and Computer:
The Design and Analysis of Geometric
Algorithms.”
Leonidas J. Guibas and Jorge Stolfi.
Research Report 37, February 14, 1989.

“Can fair choice be added to Dijkstra’s calculus?”
Manfred Broy and Greg Nelson.
Research Report 38, February 16, 1989.

“A Logic of Authentication.”
Michael Burrows, Martin Abadi, and Roger
Needham.
Research Report 39, February 28, 1989.
Revised February 22, 1990.

“Implementing Exceptions in C.”
Eric S. Roberts.
Research Report 40, March 21, 1989.

“Evaluating the Performance of Software Cache
Coherence.”

Susan Owicki and Anant Agarwal.

Research Report 41, March 31, 1989.

“WorkCrews: An Abstraction for Controlling
Parallelism.”
Eric S. Roberts and Mark T. Vandevoorde.
Research Report 42, April 2, 1989.

“Performance of Firefly RPC.”
Michael D. Schroeder and Michael Burrows.
Research Report 43, April 15, 1989.

“Pretending Atomicity.”
Leslie Lamport and Fred B. Schneider.
Research Report 44, May 1, 1989.

“Typeful Programming.”
Luca Cardelli.
Research Report 45, May 24, 1989.

“An Algorithm for Data Replication.”
Timothy Mann, Andy Hisgen, and Garret Swart.
Research Report 46, June 1, 1989.

»

“Dynamic Typing in a Statically Typed Language.’
Martin Abadi, Luca Cardelli, Benjamin C. Pierce,
and Gordon D. Plotkin.

Research Report 47, June 10, 1989.

“Operations on Records.”
Luca Cardelli and John C. Mitchell.
Research Report 48, August 25, 1989.

“The Part-Time Parliament.”
Leslie Lamport.
Research Report 49, September 1, 1989.

“An Efficient Algorithm for Finding the CSG
Representation of a Simple Polygon.”

David Dobkin, Leonidas Guibas, John Hershberger,
and Jack Snoeyink.

Research Report 50a, September 10, 1989.

“Boolean Formuiz for Simple Polygons” (video).
John Hershberger and Marc H. Brown.
Research Report 50b, September 10, 1989.

“Experience with the Firefly Multiprocessor
Workstation.”

Susan Owicki.
Research Report 51, September 15, 1989.

“Modula-3 Report (revised).”

Luca Cardelli, James Donahue, Lucille Glassman,
Mick Jordan, Bill Kalsow, Greg Nelson.

Research Report 52, November 1, 1989.

“IO Streams: Abstract Types, Real Programs.”
Mark R. Brown and Greg Nelson.
Research Report 53, November 15, 1989.

“Explicit Substitutions.”

Martin Abadi, Luca Cardelli, Pierre-Louis Curien,
Jean-Jacques Lévy.

Research Report 54, February 6, 1990.

“A Semantic Basis for Quest.”
Luca Cardelli and Giuseppe Longo.
Research Report 55, February 14, 1990.

dlilgliltlall

Systems Research Center
130 Lytton Avenue
Palo Alto, California 94301

Ao12] J21ARY pUE [[[apIe)) eIn

uonejoN 10 2y} pue sadAj joerysqy 96

