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Abstract
Quest is a programming language based on impredicative type quantifiers and

subtyping within a three-level structure of kinds, types and type operators, and values.
The semantics of Quest is rather challenging. In particular, difficulties arise when we

try to model simultaneously features such as contravariant function spaces, record types,
subtyping, recursive types, and fixpoints.

In this paper we describe in detail the type inference rules for Quest, and we give
them meaning using a partial equivalence relation model of types. Subtyping is
interpreted as in previous work by Bruce and Longo, but the interpretation of some
aspects, namely subsumption, power kinds, and record subtyping, is novel. The latter is
based on a new encoding of record types.

We concentrate on modeling quantifiers and subtyping; recursion is the subject of
current work.
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1. Introduction
Type theory provides a general framework for studying many advanced programming

features including polymorphism, abstract types, modules, and inheritance. (See [Cardelli

Wegner 85] for a survey.) The Quest programming language [Cardelli 89] attempts to take
advantage of this general framework to integrate such programming constructs into a
flexible and consistent whole.

In this paper we focus on the Quest type system, by describing and modeling its most
interesting features. At the core of this system is a three-level structure of kinds, types
(and type operators), and values. Within this structure we accommodate impredicative
type quantifiers and subtyping. Universal type quantifiers can then be used to model type
operators, polymorphic functions, and ordinary higher-order functions. Existential type
quantifiers can model abstract types. Subtyping supports (multiple) inheritance, and in
combination with quantifiers results in bounded-polymorphic functions and partially
abstract types. Subtyping is realized in a uniform way throughout the system via a notion
of power kind, where P (A) is the kind of all subtypes of A.

Formally, Quest is an extension of Girard's Fω [Girard 72] with additional kind
structure, subtyping structure, recursive types, and fixpoints at all types. Alternatively, it
is a higher-order extension of the calculus studied in [Curien Ghelli 90], which is the kernel
of the calculus in [Cardelli Wegner 85]. Recursion is necessary to model programming
activities adequately, and causes us to abandon the Curry-Howard isomorphism between
formulas and types.

New kinds and types can be easily integrated into the basic Quest system to model
various programming aspects. For example, basic types can be added to model primitive
values and their relations [Mitchell 84]; record and variant types can be introduced to model
object-oriented programming [Cardelli 88, Wand 89, Cardelli Mitchell 89, Cook Hill Canning 90];
and set types can be introduced to model relational data bases [Ohori 87]. In all these cases,
subtyping performs a major role. Many of these additional type constructions can
however be encoded in a very small core system, which is the one we investigate in this
paper.

The type rules we consider are very powerful, but not particularly complex or
unintuitive from a programming perspective. This contrasts with the semantics of Quest,
which is rather challenging. In particular, difficulties arise when we try to model
simultaneously features such as contravariant function spaces, record types, subtyping,
recursive types, and fixpoints. In this paper we concentrate on modeling quantifiers and
subtyping; recursive types and values are an active subject of research [Amadio 89] [Abadi

Plotkin 90] [Freyd Mulry Rosolini Scott 90].
The model we present for such advanced constructions is particularly simple; the

basic concepts are built on top of elementary set and recursion theory. This model has
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been investigated recently within the context of Category Theory, in view of the
relevance of Kleene's realizability interpretation for Category Theory and Logic. Our
presentation applies and further develops, in plain terms and with no general categorical
notions, the work carried on in [Longo Moggi 88] and [Bruce Longo 89]. Our work is also
indebted to that by Amadio, Mitchell, Freyd, Rosolini, Scedrov, Luo and others (see
references).

The presentation of the formal semantics is divided into two parts, corresponding to
sections 4 and 5, where we discuss variants of the language with and without explicit
coercions. However, the underlying mathematical structure is the same and the
interpretations are strictly related.

We conclude this section with a few examples, both to introduce our notation and to
provide some motivation.

The polymorphic identity function below introduces the universal quantifier over
types (Π) along with λ-abstraction over types (λ(X::TYPE)) and type application, and the
function space operator (îïñ) along with λ-abstraction over values (λ(x:X)) and value
application:

let id : Π(X::TYPE) (XîïñX) =
λ(X::TYPE) λ(x:X) x

id(Int)(3) = 3 : Int

Abstract types are obtained by existential quantification over types (Σ) [Mitchell Plotkin

85]. (As is well known, these existential quantifiers, with their associated primitives, can
be defined in terms of Π and îïñ. Similarly, cartesian product (×), can be defined from îïñ.)
The following might be the type of a package providing an abstract type X, a constant of
type X, and an operation from X to Int:

Σ(X::TYPE) (X × (XîïñInt))

Bounded universal quantifiers allow us to write functions that are polymorphic with
respect to all the subtypes (<:) of a given type. This is particularly useful for subtypes of
record types, which are generally meant to model object types in object-oriented
programming languages. Here àage:Intâ is the type of records that contain a field age of
type Int, and Üage=5, color=redá is a value of type àage:Int, color:Colorâ, which is a
subtype of àage:Intâ. The following ageOf function computes the age of any member of a
subtype of àage:Intâ.
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let ageOf : Π(X<:àage:Intâ) (XîïñInt) =
λ(X<:àage:Intâ) λ(x:X) x.age

ageOf(àage:Int, color:Colorâ)(Üage=5, color=redá) = 5 : Int

Bounded existential quantifiers are useful for representing types that are partially
abstract in the sense that they are known to be subtypes of a given type, but are not
completely specified:

Σ(X<:àage:Intâ) ...

Bounded existential quantifiers also model types that are subtypes of abstract or partially
abstract types:

Σ(X<:àage:Intâ) Σ(Y<:X) ...

These last two features are present, in specific forms, in Modula-3 [Cardelli Donahue

Glassman Jordan Kalsow Nelson 88].
We refer to [Cardelli 89] for detailed programming examples that use the full power of

the system.

The paper is organized as follows. Section 2 describes the formal theory of Quest,
including its typing rules, and can be understood on its own. Sections 3, 4, and 5 are more
technical and are concerned with semantics. Section 3 provides background material on
partial equivalence relation (p.e.r.) models, and more specific material on subtyping.
Section 4 gives meaning to Questc (with explicit coercions), while section 5 gives
meaning to Quest (with implicit subsumption).

2. Quest rules
In this section we discuss the typing and reduction rules for Quest. We use K,L,M for

kinds; A,B,C for types and operators; a,b,c for values; X,Y,Z for type and operator
variables; and x,y,z for value variables. We also use T  for the kind of all types, and P (B)
for the kind of subtypes of B. In general, we use capitalized names for kinds and types,
and lower-case names for values.



Page 7

2.1 Terms
The pre-terms are described by the following syntax. Only those pre-terms that are

validated by the rules in the following subsections are legal terms.

K ::= Kinds
P (A) the kind of all subtypes of a type
Π(X::K)L the kind of operators between kinds

A ::= Types and Operators
X type and operator variables
Top the supertype of all types
Π(X::K)B polymorphic types
AîïñB function spaces
λ(X::K)B operators
B(A) operator application
µ(X)A recursive types

a ::= Values
x value variables
top the distinguished value of type Top
λ(X::K)b polymorphic functions
b(A) polymorphic instantiation
λ(x:A)b functions
b(a) function application
cA,B(a) coercions
µ(x:A)a recursive values

The following abbreviations will be used:

T 7 P (Top) the kind of all types

Π(X)L 7 Π(X::T )L Π(X<:A)L 7 Π(X::P (A))L
Π(X)B 7 Π(X::T )B Π(X<:A)B 7 Π(X::P (A))B
λ(X)B 7 λ(X::T )B λ(X<:A)B 7 λ(X::P (A))B
λ(X)b 7 λ(X::T )b λ(X<:A)b 7 λ(X::P (A))b

From the abbreviations above we can see that this calculus includes all the terms of Fω
[Girard 72] and Fun [Cardelli Wegner 85].
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2.2 Judgments
The formal rules are based on eight primitive judgment forms plus three derived ones,

listed below.

 ∫ E env E is an environment

E ∫ K kind K is a kind (in an environment E)
E ∫ A::K type A has kind K
E ∫ A type A is a type (abbr. for E ∫ A::T )
E ∫ a:A value a has type A

E ∫ K<::L kind K is a subkind of kind L
E ∫ A<:B type A is a subtype of type B (abbr. for E ∫ A::P (B))

E ∫ K<::>L K and L are equivalent kinds
E ∫ A<:>B::K A and B are equivalent types or operators of kind K
E ∫ A<:>B type A and B are equivalent types (abbr. for E ∫ A<:>B::T )
E ∫ aóïñb:A a and b are equivalent values

A judgment like E ∫ a:A is interpreted as defining a relation between environments,
value terms, and type terms. This relation is defined inductively by axioms and inference
rules, as described in the following sections. The rules are then summarized in section
2.9.

2.3 Environments and variables
An environment E is a finite sequence of type variables associated with kinds, and

value variables associated with types. We use dom(E) for the set of type and value
variables defined in an environment.

[Env ] [Env X] [Env x]

E ∫ K kind    XÌdom(E) E ∫ A type    xÌdom(E)
———— —————————— ——————————

∫  env ∫ E,X::K env ∫ E,x:A env

[Var X] [Var x]

∫ E',X::K,E" env ∫ E',x:A,E" env
———————— ———————

E',X::K,E" ∫ X :: K E',x:A,E" ∫ x : A
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2.4 Equivalence and inclusion
Equivalence of kinds (<::>) is the least congruence relation over the syntax of kinds

that includes the following rule involving type equivalence:

[KEq P]

E ∫ A<:>A' type
—————————

E ∫ P (A) <::> P (A')

Equivalence of types and operators (<:>) is the least congruence relation over the
syntax of types that includes β and η  type conversions (shown later), and the following
rule for recursive types. Here AßX means that A must be contractive in X in order to
avoid non-well-founded recursions; see the definition in 2.9. The third rule below claims
that every contractive context C has a unique fixpoint.

[TF µ]

E, X::T  ∫ A type    AßX
——————————

E ∫ µ(X)A type

[T µ]

E,X::T  ∫ A type    AßX
———————————————

E ∫ µ(X)A <:> A{Xóïôµ(X)A} type

[TEq Contract]

E ∫ A<:>C{XóïôA} type    E ∫ B<:>C{XóïôB} type    CßX
————————————————————————

E ∫ A <:> B type

Inclusion of recursive types is given by the following rule, working inductively from the
inclusion of the recursive variables to the inclusion of the recursive bodies:

[TIncl µ]

E ∫ µ(X)A type    E ∫ µ(Y)B type    E, Y::T, X<:Y ∫ A <: B
—————————————————————————

E ∫ µ(X)A <: µ(Y)B

Equivalence of values (óïñ) is the least congruence relation over the syntax of values
that includes β and η value conversions (shown later), together with the following rule
for recursive values:
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[µ]

E ∫ µ(x:A)b : A
———————————————

E ∫ µ(x:A)b óïñ b{xóïôµ(x:A)b} : A

The rules for recursive types and values will not be modeled in the later sections.
Nonetheless, we consider them an essential part of the language, and refer the reader to
[Amadio 89], [Abadi Plotkin 90], and [Freyd Mulry Rosolini Scott 90] for related and ongoing
work.

The following rules state that the property of having a kind (respectively a type) is
invariant under kind (respectively type) equivalence; that is, equivalent kinds and types
have the same extensions:

[KExt] (Kind Extension) [TExt] (Type Extension)

E ∫ A::K    E ∫ K<::>L E ∫ a:A    E ∫ A<:>B type
—————————— ———————————

E ∫ A :: L E ∫ a : B

The relations of type and kind inclusion are reflexive and transitive:

[KIncl Refl] [KIncl Trans]

E ∫ K <::> L E ∫ K <:: L    E ∫ L <:: M
————— ———————————

E ∫ K <:: L E ∫ K <:: M

[TIncl Refl] [TIncl Trans]

E ∫ A <:> B type E ∫ A <: B    E ∫ B <: C
———————— ——————————

E ∫ A <: B E ∫ A <: C

We shall see shortly that the subtype relation is actually defined in terms of power kinds,
then all the rules written in terms of subtyping are interpreted as rules about power kinds.

2.5 Subsumption vs. coercion
The following rules reflect the set-theoretical intuitions behind the subtyping relation.

We present two alternatives: subsumption and coercion.
Subsumption formalizes a computationally natural way of looking at subtypes. When

viewing computations as type-free activities, any element of a type is directly an element
of its supertypes:
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[TSub] (Subsumption)

E ∫ a:A    E ∫ A<:B
————————–

E ∫ a : B

A mathematical model of Quest with subsumption is given in part 5. That model is
the main semantic novelty of this paper.

Before that, in part 4, we consider a system without subsumption, called Questc. In
Questc, subsumption is replaced by a coercion rule, where a value of a type A must be
explicitly injected into a supertype B by a coercion function cA,B. Invariance under type
inclusion will be true only modulo coercions in the most straightforward semantics given
in part 4.

[TSub] (Coercion)

E ∫ a:A    E ∫ A<:B
—————————

E ∫ cA,B(a) : B

In the semantics of Questc we obtain a single coercion function c: Π(X::T ) Π(Y<:X)
YîïñX; then c(B)(A) gives meaning to cA,B.

Coercions satisfy the following basic rules; more rules will be given later.

[VCoer Id / Questc] [VCoer Comp / Questc]

E ∫ a:A E ∫ a:A    E ∫ A<:B    E ∫ B<:C
———————— ——————————————

E ∫ cA,A(a) óïñ a : A E ∫ cB,C(cA,B(a)) óïñ cA,C(a) : C

The important intuition about coercions is that they involve little, if any,
computational work. Often they are introduced as identity functions with the only
purpose of "getting the types right". In compilation practice they are often removed
during code generation. Semantically, this will be understood in the model for Questc
below by observing that they are computed by (indexes of) the identity function. In
Quest, the subsumption rule above is a strong (or explicit) way of saying that coercions
have no computational relevance.

2.6 Power kinds
For each type A there is a kind P (A) of all subtypes of A. The kind P (Top) is then

the kind of all types, and is called T. Here are the formation and introduction rules for P ;
the subsumption/coercion rule serves as an elimination rule for P .
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[KF P] [TIncl Refl']

E ∫ A type E ∫ A type
——————— ——————

E ∫ P (A) kind E ∫ A :: P (A)

The subtype judgment E ∫ A<:B is defined as an abbreviation for a judgment
involving power kinds:

E ∫ A <: B iff E ∫ A :: P (B)

The subkind judgment E ∫ K<::L is primitive, but has very weak properties. It is
reflexive and transitive, it extends monotonically to P , and it extends to Π via a covariant
rule:

[KIncl P] [KIncl Π]

E ∫ A<:A' E ∫ K kind    E, X::K ∫ L <:: L'
———————— ——————————————

E ∫ P (A) <:: P (A') E ∫ Π(X::K)L <:: Π(X::K)L'

Note that the first rule above implies P (A) <:: T.
Moreover, we have a subsumption rule on kinds:

[KSub] (Kind Subsumption)

E ∫ A::K    E ∫ K<::L
—————————

E ∫ A :: L

Unlike type subsumption, kind subsumption is satisfied by both models in parts 4 and 5.

2.7 Operator kinds
The kind of type operators is normally written as Köõú L in Fω (operators from kind K

to kind L). In our system, as in the Theory of Constructions, we use a more general
construction Π(X::K)L since X may actually occur in L within a power operator, for
example in Π(X::T ) P (X).

Individual operators are written λ(X::K)A with standard introduction, elimination,
and computation rules, shown later.

2.8 The kind of types
The kind of all types T  contains the type Top, the types of polymorphic functions, the

types of ordinary functions, and the recursive types.
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The type Top is the maximal element in the subtype order:

[TF Top] [TIncl Top]

∫ E env E ∫ A type
—————— ——————

E ∫ Top type E ∫ A <: Top

Hence the power of Top is the collection of all types and, as already mentioned, we can
define the kind of all types as follows:

T = P (Top)

There is a canonical element of type Top, called top. Moreover, any value belonging
to Top is indistinguishable from top:

[VI Top] [VEqTop'] (Top Collapse)

∫ E env E ∫ a:Top    E ∫ b:Top
—————— ——————————

E ∫ top : Top E ∫ a óïñ b : Top

When using the subsumption rule, we obtain that every value has type Top, since Top
is the largest type. Moreover, every value is equivalent to top when seen as a member of
Top, and hence  cA,Top(a) óïñ cB,Top(b) for any a:A and b:B. By this, when using the
coercion rule, there is a unique coercion cA,Top(a) from A into Top. This rather peculiar
situation will be understood in the semantics by the meaning of <: and by the
interpretation of Top as the terminal object in the intended category. Top and its
properties will play a crucial role in the coding of records.

The types of polymorphic functions are modeled by an impredicative general-product
construction, Π(X::K)B. Although we do not show it here, from this product we can
derive "weak" general sums, which are used in the Quest language for modeling abstract
types.

The standard formation, introduction, elimination, and computation rules (shown in
section 2.9) are complemented by rules for subtyping and coercion:

[TIncl Π]

E ∫ K'<::K    E, X::K' ∫ B<:B'
—————————————

E ∫ Π(X::K)B <: Π(X::K')B'
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[VCoer Π]

E ∫ b : Π(X::K)B    E ∫ A : K'    E ∫ Π(X::K)B <: Π(X::K')B'
——————————————————————————————

E ∫ (cΠ(X::K)B,Π(X::K')B'(b))(A)  óïñ  cB{XóïôA},B'{XóïôA}(b(A)) : B'{XóïôA}

Ordinary higher-type functions are modeled by a function space construction (îïñ). We
avoid first-order dependent types (Π(x:A)B, which generalize AîïñB) because in practice
they are hard to typecheck and compile. Again, most rules are standard, but we may want
to notice subtyping and coercion:

[TIncl îïñ]

E ∫ A'<:A    E ∫ B<:B'
—————————

E ∫ AîïñB <: A'îïñB'

[VCoer îïñ]

E ∫ b : AîïñB    E ∫ a : A'    E ∫ AîïñB <: A'îïñB'
————————————————————

E ∫ (cAîïñB,A'îïñB'(b))(a)  óïñ  cB,B'(b(cA',A(a)) : B'

2.9 Formal system
In this section we summarize the formal systems for both Quest and Questc. The rules

of these systems are presented simultaneously as they largely coincide.
Rules are named, for example, [TExt / Quest] (Type Extension) extra. Here TExt is the proper name

of the rule. The notation / Quest means that this rule applies only to Quest, while the
notation / Questc applies only to Questc; otherwise the rule applies to both systems. This
rule is sometimes called Type Extension in the text. Finally, extra means that this rule is actually
derivable or admissible and is listed for symmetry with other rules or for emphasis (for
example, [KEq Refl] and [TEq Refl] are provable by simultaneous induction on the derivations).

The rules grouped as "computation" rules may be oriented in order to provide
reduction strategies.

A recursive type µ(X)C is legal only if C is contractive in X, written CßX [MacQueen

Plotkin Sethi 86]. A type C is contractive in a (free) type variable X if and only if C has one
of the following six forms: a type variable different from X; Top; Π(X'::K)C' with
XÌfree-variables(K) and C'ßX; AîïñB; (λ(X'::K)B)(A) with B{X'óïôA}ßX; or µ(X')C'
with C'ßX (as well as C'ßX').

We are conservative about the contractiveness conditions on Π(X'::K)C, and these
deserve further study. The condition XÌfree-variables(K) prevents constructions such as
µ(X)Π(Y<:X)XîïñX, whose semantics is unclear. The condition C'ßX agrees with one of
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the semantics we give to Π as a non-expansive intersection, although syntactically this
restriction seems unnecessary.

Judgments

 ∫ E env E is an environment

E ∫ K kind K is a kind (in an environment E)
E ∫ A::K type A has kind K
E ∫ A type A is a type (abbr. for E ∫ A::T )
E ∫ a:A value a has type A

E ∫ K<::L kind K is a subkind of kind L
E ∫ A<:B type A is a subtype of type B (abbr. for E ∫ A::P (B))

E ∫ K<::>L K and L are equivalent kinds
E ∫ A<:>B::K A and B are equivalent types or operators of kind K
E ∫ A<:>B type A and B are equivalent types (abbr. for E ∫ A<:>B::T )
E ∫ aóïñb:A a and b are equivalent values

Environments

[Env ] [Env X] [Env x]

E ∫ K kind    XÌdom(E) E ∫ A type    xÌdom(E)
———— —————————— ——————————

∫  env ∫ E,X::K env ∫ E,x:A env

[Var X] [Var x]

∫ E',X::K,E" env ∫ E',x:A,E" env
———————— ———————

E',X::K,E" ∫ X :: K E',x:A,E" ∫ x : A

Kind formation

[KF P] [KF Π]

E ∫ A type E ∫ K kind    E, X::K ∫ L kind
—————— —————————————

E ∫ P (A) kind E ∫ Π(X::K)L kind

Kind equivalence

[KEq Refl] extra [KEq Symm] [KEq Trans]

E ∫ K kind E ∫ K <::> L E ∫ K <::> L    E ∫ L <::> M
—————— —————— ————————————

E ∫ K <::> K E ∫ L <::> K E ∫ K <::> M
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[KEq P] [KEq Π]

E ∫ A<:>A' type E ∫ K <::> K'    E, X::K ∫ L <::> L'
————————— ———————————————

E ∫ P (A) <::> P (A') E ∫ Π(X::K)L <::> Π(X::K')L'

[KExt] (Kind Extension) extra

E ∫ A::K    E ∫ K<::>L
——————————

E ∫ A :: L

Kind inclusion

[KIncl Refl] [KIncl Trans]

E ∫ K <::> L E ∫ K <:: L    E ∫ L <:: M
————— ———————————

E ∫ K <:: L E ∫ K <:: M

[KIncl P] [KIncl Π]

E ∫ A<:A' E ∫ K kind    E, X::K ∫ L <:: L'
———————— —————————————

E ∫ P (A) <:: P (A') E ∫ Π(X::K)L <:: Π(X::K)L'

[KSub] (Kind Subsumption)

E ∫ A::K    E ∫ K<::L
—————————

E ∫ A :: L

Type and Operator formation

[TF Top] [TF µ]

∫ E env E, X::T  ∫ A type    AßX
—————— ——————————

E ∫ Top type E ∫ µ(X)A type

[TF Π] [TF îïñ]

E ∫ K kind    E, X::K ∫ B type E ∫ A type    E ∫ B type
————————————— ——————————

E ∫ Π(X::K)B type E ∫ AîïñB type

[TI Π] [TE Π]

E ∫ K kind    E, X::K ∫ B::L E ∫ B::Π(X::K)L    E ∫ A::K
———————————— ———————————

E ∫ λ(X::K)B :: Π(X::K)L E ∫ B(A) :: L{XóïôA}

Type and Operator equivalence

[TEq Refl] extra [TEq Symm] [TEq Trans]

E ∫ A :: K E ∫ A <:> B :: K E ∫ A <:> B :: K    E ∫ B <:> C :: K
——————— ——————— ———————————————

E ∫ A <:> A :: K E ∫ B <:> A :: K E ∫ A <:> C :: K
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[TEq X] [TEq Top]

E ∫ X :: K ∫ E env
——————— ——————————

E ∫ X <:> X :: K E ∫ Top <:> Top type

[TEq Π] [TEq îïñ]

E ∫ K<::>K'    E, X::K ∫ B<:>B' type E ∫ A<:>A' type    E ∫ B<:>B' type
———————————————— ———————————————

E ∫ Π(X::K)B <:> Π(X::K')B' type E ∫ AîïñB <:> A'îïñB' type

[TEq Abs] [TEq Appl]

E ∫ K<::>K'    E, X::K ∫ B<:>B' :: L E ∫ B<:>B' :: Π(X::K)L    E ∫ A<:>A' :: K
————————————————— ——————————————————

E ∫ λ(X::K)B <:> λ(X::K')B' :: Π(X::K)L E ∫ B(A) <:> B'(A') :: L{XóïôA}

[TEq µ] [TEq Contract]

E, X::T ∫ B<:>B' type    B,B'ßX E ∫ A<:>C{XóïôA} type    E ∫ B<:>C{XóïôB} type    CßX
————————————— ————————————————————————

E ∫ µ(X)B <:> µ(X)B' type E ∫ A <:> B type

[TExt / Quest] (Type Extension) extra [TExt / Questc] (Type Extension)

E ∫ a:A    E ∫ A<:>B type E ∫ a:A    E ∫ A<:>B type
——————————— ————————————

E ∫ a : B E ∫ a : B

[T Π η]

E ∫ B :: Π(X::K)L    XÌdom(E)
————————————————

E ∫ (λ(X::K)B(X)) <:> B :: Π(X::K)L

Type and Operator computation

[T Π β]

E ∫ (λ(X::K)B)(A) :: L
————————————————

E ∫ (λ(X::K)B)(A) <:> B{XóïôA} :: L

[T µ]

E,X::T  ∫ A type    AßX
———————————————

E ∫ µ(X)A <:> A{Xóïôµ(X)A} type

Type inclusion

[TIncl Refl] [TIncl Trans]

E ∫ A <:> B type E ∫ A <: B    E ∫ B <: C
——————— ——————————

E ∫ A <: B E ∫ A <: C

[TIncl Top] [TIncl Π] [TIncl îïñ]

E ∫ A type E ∫ K'<::K    E, X::K' ∫ B<:B' E ∫ A'<:A    E ∫ B<:B'
—————— ————————————— ——————————

E ∫ A <: Top E ∫ Π(X::K)B <: Π(X::K')B' E ∫ AîïñB <: A'îïñB'
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[TIncl µ]

E ∫ µ(X)A type    E ∫ µ(Y)B type    E, Y::T, X<:Y ∫ A <: B
—————————————————————————

E ∫ µ(X)A <: µ(Y)B

[TSub / Quest] (Subsumption) [TSub / Questc] (Coercion)

E ∫ a:A    E ∫ A<:B E ∫ a:A    E ∫ A<:B
————————– —————————

E ∫ a : B E ∫ cA,B(a) : B

Value formation

[VI Top]

∫ E env
——————

E ∫ top : Top

[VI Π] [VE Π]

E ∫ K kind    E, X::K ∫ b:B E ∫ b:Π(X::K)B    E ∫ A::K
———————————— ———————————

E ∫ λ(X::K)b : Π(X::K)B E ∫ b(A) : B{XóïôA}

[VI îïñ] [VE îïñ]

E ∫ A type    E, x:A ∫ b:B E ∫ b:AîïñB    E ∫ a:A
——————————— —————————

E ∫ λ(x:A)b : AîïñB E ∫ b(a) : B

[VI c / Questc]

E ∫ A <: B    E ∫ a:A
—————————

E ∫ cA,B(a) : B

[VI µ]

E ∫ A type    E, x:A ∫ b:A
———————————

E ∫ µ(x:A)b : A

Value equivalence

[VEq Refl] extra [VEq Symm] [VEq Trans]

E ∫ a : A E ∫ a óïñ b : A E ∫ a óïñ b : A    E ∫ b óïñ c : A
—————— —————— —————————————

E ∫ a óïñ a : A E ∫ b óïñ a : A E ∫ a óïñ c : A

[VEqSub / Quest] (Subsumption Eq) [VEqSub / Questc] (Coercion Eq)

E ∫ aóïña':A    E ∫ A<:B E ∫ aóïña':A    E ∫ A<:B    E ∫ A<:>A' type    E ∫ B<:>B' type
—————————— —————————————————————————

E ∫ aóïña' : B E ∫ cA,B(a)óïñcA',B'(a') : B

[VEq x] [VEq top] [VEqTop] (Top Collapse)

E ∫ x:A ∫ E env E ∫ a óïñ a : Top    E ∫ b óïñ b : Top
—————— ————————— ——————————————

E ∫ x óïñ x : A E ∫ top óïñ top : Top E ∫ a óïñ b : Top
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[VEq TAbs] [VEq TAppl]

E ∫ K<::>K'    E, X::K ∫ b óïñ b' : B E ∫ bóïñb' :: Π(X::K)B    E ∫ A<:>A' :: K
———————————————— —————————————————

E ∫ λ(X::K)b óïñ λ(X::K')b' : Π(X::K)B E ∫ b(A) óïñ b'(A') : B{XóïôA}

[VEq Abs] [VEq Appl]

E ∫ A<:>A' type    E, x:A ∫ b óïñ b' : B E ∫ bóïñb' : AîïñB    E ∫ aóïña' : A
———————————————— ——————————————

E ∫ λ(x:A)b óïñ λ(x:A')b' : AîïñB E ∫ b(a) óïñ b'(a') : B

[VEq µ]

E ∫ A<:>A' type    E, x:A ∫ b óïñ b' : A
—————————————————

E ∫ µ(x:A)b óïñ µ(x:A')b' : A

[Π η / Questc] [îïñ η / Questc]

E ∫ b : Π(X::K)B    XÌdom(E) E ∫ b : AîïñB    xÌdom(E)
——————————————— —————————————

E ∫ (λ(X::K)b(X)) óïñ b : Π(X::K)B E ∫ (λ(x:A)b(x)) óïñ b : AîïñB

Value coercion

[VCoer Id / Questc] [VCoer Comp / Questc]

E ∫ a:A E ∫ a:A    E ∫ A<:B    E ∫ B<:C
———————— ——————————————

E ∫ cA,A(a) óïñ a : A E ∫ cB,C(cA,B(a)) óïñ cA,C(a) : C

[VCoer Top / Questc] extra

E ∫ a : A
————————————

E ∫ cA,Top(a) óïñ top : Top

[VCoer Π / Questc]

E ∫ b : Π(X::K)B    E ∫ A : K'    E ∫ Π(X::K)B <: Π(X::K')B'
———————————————————————————————

E ∫ (cΠ(X::K)B,Π(X::K')B'(b))(A) óïñ cB{XóïôA},B'{XóïôA}(b(A)) : B'{XóïôA}

[VCoer îïñ / Questc]

E ∫ b : AîïñB    E ∫ a : A'    E ∫ AîïñB <: A'îïñB'
—————————————————————

E ∫ (cAîïñB,A'îïñB'(b))(a) óïñ cB,B'(b(cA',A(a)) : B'

[VCoer µ / Questc]

E ∫ a : µ(X)A    E ∫ A : K'    E ∫ µ(X)A <: µ(Y)B
—————————————————————————

E ∫ cµ(X)A,µ(Y)B(a) óïñ cA{Xóïôµ(X)A},B{Yóïôµ(Y)}(a) : µ(Y)B

Value computation

[Π β] [îïñ β]

E ∫ (λ(X::K)b)(A) : B E ∫ (λ(x:A)b)(a) : B
——————————————— —————————————

E ∫ (λ(X::K)b)(A) óïñ b{XóïôA} : B E ∫ (λ(x:A)b)(a) óïñ b{xóïôa} : B
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[µ]

E ∫ µ(x:A)b : A
———————————————

E ∫ µ(x:A)b óïñ b{xóïôµ(x:A)b} : A

2.10 Records and other encodings
Record types are one of the main motivations for studying type systems with

subtyping [Cardelli 88]. However, in this paper we do not need to model them directly (as
already done in [Bruce Longo 89]), since they can be syntactically encoded to a great extent.

More precisely, we show how to encode the record calculus of [Cardelli Wegner 85],
although we do not know yet how to encode the more powerful calculi of [Wand 89] and
[Cardelli Mitchell 89]. Moreover, we show how to encode the functional update problem
discussed in [Cardelli Mitchell 89]; this problem cannot be represented in the calculus of
[Cardelli Wegner 85].

In this section we discuss these encodings, and then we feel free to ignore records in
the rest of the paper.

We start by encoding product types, in the usual way:

A×B 7 Π(C)(AîïñBîïñC)îïñC

pair : Π(A) Π(B) AîïñBîïñA×B
7 λ(A) λ(B) λ(a:A) λ(b:B) λ(C) λ(f:AîïñBîïñC) f(a)(b)

fst : Π(A) Π(B) A×BîïñA
7 λ(A) λ(B) λ(c:A×B) c(A)(λ(x:A)λ(y:B)x)

snd : Π(A) Π(B) A×BîïñB
7 λ(A) λ(B) λ(c:A×B) c(B)(λ(x:A)λ(y:B)y)

We often use a more compact notation:

a,b 7 a,A×Bb 7 pair(A)(B)(a)(b)
fst(c) 7 fstA×B(c) 7 fst(A)(B)(c)
snd(c) 7 sndA×B(c) 7 snd(A)(B)(c)

The expected rules for products are now derivable:

E ∫ A <: A'    E ∫ B <: B'
 ———————————

E ∫ A×B <: A'×B'
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E ∫ P <: A×B    E ∫ p:P E ∫ P <: A×B    E ∫ p:P
 ——————————  ——————————

E ∫ fstA×B(p) : A E ∫ sndA×B(p) : B

As a first step toward records, we define extensible tuple types as iterated products
ending with Top, and extensible tuple values as iterated pairs ending with top. A similar
encoding appears in [Fairbairn 89].

Tuple(A1,...,An) 7 A1×(...×(An×Top)..)

tuple(a1,...,an) 7 a1,(...,(an, top)..)

Hence:

E ∫ a1 : A1 ... E ∫ an : An
 ————————————————

E ∫ tuple(a1,...,an) : Tuple(A1,...,An)

E ∫ A1 <: B1 ... E ∫ An <: Bn ... E ∫ Am type
 ————————————————————

E ∫ Tuple(A1,...,An,...,Am) <: Tuple(B1,...,Bn)

For example: Tuple(A, B) <: Tuple(A) since A <: A, B×Top <: Top, and × is monotonic.

We now need to define tuple selectors (corresponding to product projections). This
would be a family selin of terms selecting the i-th components of a tuple of length n. In
fact, by using subtyping it is sufficient to define a family seli of terms for extracting the i-
th component of any tuple of sufficient length:

sel1 : Π(A1) A1×TopîïñA1
7 λ(A1) λ(t:A1×Top) fstA1×Top(t)

sel2 : Π(A2) Top×A2×TopîïñA2
7 λ(A2) λ(t:Top×A2×Top)

fstA2×Top(sndTop×A2×Top(t))
etc.
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We can also define tuple updators, that is, terms that replace the i-th component of a
tuple with a given value. The crucial point here is that these updators do not forget
information about the type of the components that are not affected by the update. To
achieve this effect, we must use knowledge of the encoding of tuples as pairs. Again, we
can define a family updi instead of a family updi

n.

upd1 : Π(B1) Π(Btl) Π(A1) B1×BtlîïñA1îïñA1×Btl
7 λ(B1) λ(Btl) λ(A1)

λ(t:B1×Btl) λ(a1:A1) a1,A1×Btl
 sndB1×Btl

(t)

upd2 : Π(B1) Π(B2) Π(Btl) Π(A2) B1×B2×BtlîïñA2îïñB1×A2×Btl
7 λ(B1) λ(B2) λ(Btl) λ(A2)

λ(t:B1×B2×Btl) λ(a2:A2) fst(t),(a2, snd(snd(t)))
etc.

These definitions solve the functional update problem [Cardelli Mitchell 89] for tuples.
This problem can be explained by the following example, where we update a field of a
tuple in such a way that the updating function works equally well on subtypes of the
stated tuple type.

We have a type of geometric points defined as Point = Tuple(Int,Int), where the
integers represent respectively the x and y components. Since these are tuples, a point can
have additional components, for example a color; then it is a member of ColorPoint =
Tuple(Int,Int,Color). We further assume that the subrange type 0..9 is a subtype of Int.

The problem consists in defining a function moveX that increments the x component
of a point, returning another Point. Moreover, when applied to a ColorPoint (with
adequate type parameters) this function should return a ColorPoint, and not just a Point.

One might think that moveX has type Π(A<:Point) AîïñA. This is not the case; we
show that the parameter type A must change appropriately from input to output.

Point 7 Tuple(Int,Int)

moveX : Π(B1<:Int) Π(Btl<:Tuple(Int)) B1×BtlîïñInt×Btl
7 λ(B1<:Int) λ(Btl<:Tuple(Int)) λ(p:B1×Btl)

upd1(B1)(Btl)(Int)(p)(sel1(Int)(p)+1)

Obviously, we have:

p : Point 7 tuple(9,0)
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moveX(Int)(Tuple(Int))(p) 7 tuple(10,0) : Point

However, note that in the following example the result does not, and must not, have type
Tuple(0..9,Int):

p : Tuple(0..9,Int) <: Point 7 tuple(9,0)
moveX(0..9)(Tuple(Int))(p) 7 tuple(10,0) : Point

We can also verify that color is preserved:

p : Tuple(0..9,Int,Color) <: ColorPoint 7 tuple(9,0,red)
moveX(0..9)(Tuple(Int,Color))(p) 7 tuple(10,0,red) : ColorPoint

Hence, we obtain a moveX function with the desired properties, but only by taking
advantage of the encoding of tuples as products. Note that in the input type of moveX,
Point is split into Int and Tuple(Int).

Now we turn to the encoding of records Rcd(l1:A1, ... ,ln:An); these are unordered
product types with components indexed by distinct labels li.

We fix a standard enumeration of labels l 1, l 2, ... . Then a record type is the shortest
tuple type where the type component of label l i is found in the tuple slot of index i, for
each i. The remaining slots are filled with Top. For example:

Rcd(l 3:C, l 1:A) 7 Tuple(A, Top, C)

Under this encoding, record types that differ only on the order of components are
equivalent, and we have the familiar:

E ∫ A1 <: B1 ... E ∫ An <: Bn ... E ∫ Am type
 ———————————————————————

E ∫ Rcd(l1:A1,...,ln:An,...,lm:Am) <: Rcd(l1:B1,...,ln:Bn)

Record values are similarly encoded, for example:

rcd(l 3=c, l 1=a) 7 tuple(a, top, c)

E ∫ a1 : A1 ... E ∫ an : An
 ———————————————————

E ∫ rcd(l1=a1,...,ln=an) : Rcd(l1:A1,...,ln:An)
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E ∫ r : Rcd(l1:A1,...,l1:An) E ∫ r : Rcd(l1:A1,...,li:Ai,...,l1:An)    E ∫ b:B
——————————— ——————————————————

E ∫ r.li : Ai E ∫ r.lióïôb : Rcd(l1:A1,...,li:B,...,ln:An)

Here record selection r.li is defined via seli(r), and record update r.lióïôb is defined via
updi(r)(b).

Note that it is not possible to write a version of moveX for records solely by using the
derived operators above. The functional update problem can be solved only by using
knowledge of the encodings, as was done for tuples. In this respect (an encoding of) a
calculus like the one in [Cardelli Mitchell 89] is still to be preferred, since it can express the
moveX functions independently of encodings.

Under the encodings above, more programs are typable than we would normally
desire; this is to be expected of any encoding strategy. The important point here is that the
familiar typing and computation rules are sound.

3. PER and ω-Set
The rest of the paper describes the mathematical meaning of the Quest system

described in the previous section. The goal here is to guarantee the (relative) consistency
of Quest's type and equational theories. The model though is also meant to suggest
consistent extensions. This is one of the reasons for which we construct a specific (class
of) model(s), instead of suggesting general definitions. These may be obtained by slight
modifications of the work in [Bruce Longo 88] , or, even better, by following the categorical
approach in  [Asperti Longo 91].  Indeed, in the latter case, the invention of a general
categorical meaning for subtyping and subkinds would be a relevant contribution.

In this part, we first try to give the structural (and partly informal) meaning of kinds,
types, and terms, as well as their crucial properties. The reader will find the properties
formally described in part 2 reflected over sets and functions, and should grasp the
essence of the translation. Part 4 develops further the details of the interpretation of
Questc that the experienced reader could give by himself, at that point. Part 5 describes
Quest with the subsumption rule, instead of with coercions.

Because of the presence of type operators, the structure of kinds is at least as rich as
the type-structure of typed λ-calculus. Thus, kinds need to be interpreted as objects of a
Cartesian Closed Category, CCC. The category we will be using is ω-Set below. Its
objects must, of course, include the kind of types, which in turn must be structured as a
CCC.
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In a sense, we need a frame (or global) category, inside which we may view the
category of types as an object. More precisely, we need a frame category and an internal
category, but we will not go into this here, except in remark 3.1.5. The general approach
by internal categories was suggested by Moggi and has been developed by several
authors; see 3.1.5 for references.

The specific structures used here, that is ω-Set and PER below, are described in
[Longo Moggi 88], where their main categorical properties are also given. The approach in
[Longo Moggi 88] is elementary: indeed, these categories may be seen as subcategories of
Hyland's Effective Topos (see [Hyland 82 and 87] for the topos theoretic approach).  The
idea of interpreting subtypes as subrelations is borrowed from [Bruce Longo 89], where the
semantics of Quest's progenitor system, Bounded Fun (with coercions), was first given.

3.1 Semantics of kinds and types
The key idea in the underlying mathematical construction is to use a set-theoretic

approach where the addition of some effectiveness prevents the difficulties discussed in
[Reynolds 84]. In this regard, the blend of set-theoretic intuition and elementary
computability provides a simple but robust guideline for the interpretation of
programming constructs.

The construction is based on Kleene's applicative structure (ω, †), where ω is the set
of natural numbers, together with a standard gödelization ϕn of the computable functions
in ωîïñω, and where † is the operator such that n†m = ϕn(m). However, the same
mathematical construction works for any (possibly partial) combinatory algebra, in
particular on any model of type-free λ-calculus. We prefer, in this part, Kleene's (ω, †) in
view of everybody's familiarity with elementary recursion theory. In part 5, though, we
will base our construction on models of the type-free λ-calculus.

Definition 3.1.1
The category ω-Set has:

objects: 〈A, æA〉 ∈ ω-Set   iff
A is a set and æA ⊆ ω×Α is a relation, such that ∀a∈A. ∃n. n æA a

morphisms: f ∈ ω-Set[A,B]   iff
f: A îïñ B  and  ∃n. n æAîïñB f,
where  n æAîïñB f   ùõú   ∀a∈A. ∀p. p æA a  öõú  n†p æB f(a)  M

Thus, each morphism in ω-Set is "computable" in the sense that it is described by a
partial recursive function that is total on {p | p æA a}, for each a∈A. If p æ a (we may
omit the subscripts), we say that p realizes a (or p computes a).
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We next define the category of types. When A is a symmetric and transitive relation
on ω, we set:

n A m   iff   n is related to m by A,
dom(A) = {n | n A n},
“n”A = {m | m A n} the equivalence class of n with respect to A,
Q(A) = {“n”A | n ∈ dom(A)} the quotient set of A.

Definition 3.1.2
The category PER (of Partial Equivalence Relations) has

objects: A∈PER   iff
A is a symmetric and transitive relation on ω,

morphisms: f∈PER[A,B]   iff
f: Q(A) îïñ Q(B)  and  ∃n. ∀p. (pAp öõú f(“p”A) = “n†p”B)  M

PER is a category where the identity map, in each type, is computed by (at least) any
index of the identity function on ω.

The category PER can be fully and faithfully embedded into ω-Set. In fact, for every
partial equivalence relation (p.e.r.) A, define the ω-set In(A) = 〈Q(A), ∈A〉, where Q(A)
are the equivalence classes of A as subsets of ω, and ∈A is the usual membership relation
restricted to ω×Q(A). Clearly, ∈A defines a realizability relation in the sense of 3.1.1 and
the functor In is full and faithful. Note that ∈A is a single-valued relation, as equivalence
classes are disjoint subsets of ω.

The following simple fact may help in identifying which are the maps in PER, by
viewing them also as morphisms in ω-Set. (The reader should practice going from one
category to the other; the next proposition is just an exercise with this purpose.)

Proposition 3.1.3
Let f ∈ PER[A,C], then

p æAîïñC f (in ω-Set)   ùõú   ∀r. (r A r  öõú  “p†r”C = f(“r”A))
Proof

p æAîïñC f   ùõú  ∀a∈Q(A). ∀r æA a. p†r æC f(a)
ùõú   ∀r. r A r  öõú  p†r ∈ f(“r”A),

since æ coincides with ∈ (with respect to an equivalence class).
Hence we must show:

∀r. (r A r  öõú  p†r ∈ f(“r”A))   ùõú   ∀r. (r A r  öõú  “p†r”C = f(“r”A)).
Case ùõü) Obvious, since p†r ∈ “p†r”C
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Case öõú) Suppose “p†r”C ≠  f(“r”A), then “p†r”C ∩  f(“r”A) =  since Q(C) is a quotient, but
p†r ∈ “p†r”C, and by hypothesis p†r ∈ f(“r”A). Contradiction.  M

What is relevant for us, though, is that PER may be viewed also as an object of ω-
Set; this interprets the fact that T  is a kind. The point is that the objects of PER form a set
and every set may be viewed as an ω-set:

Definition 3.1.4
Let ∆: Set îïñ ω-Set be given by ∆(S) = 〈S, æS〉, where æS = ω×S, that is, ∀n ∀s næS s

(the full relation). The function ∆ is extended to a functor by setting ∆(f) = f, the identity
on morphism.  M

In particular, set Mo = ∆(PER) ∈ ω-Set, the ω-set of types.

Remark 3.1.5 (For readers with some experience in Category Theory.)
ω-Set was equivalently defined in [Hyland 82] as the "~~separated objects" in his

Effective Topos, Eff. The category ω-Set has all finite limits and is a locally CCC (see
below for the cartesian closure). The embedding ∆ above preserves exponents and limits.
Moreover, one may embed ω-Set into Eff by a functor which preserves limits and the
lCCC structure.

By this, the present approach applies in a simple set-theoretic framework the results in
[Hyland 87], [Pitts 87], [Hyland Pitts 87], [Carboni Freyd Scedrov 87], and [Bainbridge Freyd Scedrov

Scott 87]. The general treatment of models, as internal categories of categories with finite
limits, which was suggested by Moggi, is given in [Asperti Martini 89] and [Asperti Longo 90].
The elegant presentation in [Meseguer 88] compares various approaches. We use here the
fact that ω-Set is closed under products indexed over itself and, in particular, we use the
completeness of PER as an internal category. The categorical products are exactly those
naively defined below (to within isomorphism). Both the explicit definition of PER as an
internal category and the required (internal) adjunctions are given in detail in [Longo Moggi

88], which is written also for non category-theorists. (See also [Asperti Longo 90].) M

The reason for the next definitions is that we need to be able to give meaning, over
these structures, to kinds and types constructed as products, as expressed in rules [KF Π]

and [TF Π] in section 2.9. We take care of this point first, since it deals with the crucial
aspect of impredicativity in Quest. A first idea is to try to understand those rather
complex kinds and types as indexed products, in the naive sense of set theory. Namely,
given a set A and a function G: A îïñ Set, define as usual:

×a∈AG(a) = {f | f: A îïñ êa∈AG(a)  and  f(a) ∈ G(a)}.
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This product wouldn't work, but the following simple restriction to realizable maps f, will
work.

Definition 3.1.6
Let 〈A, æA〉 ∈ ω-Set and G: A îïñ ω-Set. Define the ω-set 〈Πa∈AG(a), æΠG〉 by

1)  f ∈ Πa∈AG(a)   iff   f ∈ ×a∈AG(a)   and   ∃n. ∀a∈A. ∀p æA a. n†p æG(a) f(a),
2)  n æΠG f   iff   ∀a∈A. ∀p æA a. n†p æG(a) f(a)  M

When the range of G is restricted to PER we obtain a product in PER:

Definition 3.1.7
Let 〈A, æA〉 ∈ ω-Set and G: A îïñ PER. Let Πa∈AG(a)PER ∈ PER be defined by

n (Πa∈AG(a)PER) m   iff   ∀a∈A. ∀p,q æA a. n†p G(a) m†q  M

A crucial property of ω-Set is that the products defined in 3.1.6 and 3.1.7 are
isomorphic for G: A îïñ PER.

Theorem 3.1.8 ([Bruce Longo 89])
Let 〈A, æA〉 ∈ ω-Set and G: A îïñ PER. Then

〈Πa∈AIn(G(a)), æΠG〉  ≅  In(Πa∈AG(a)PER)  in ω-Set.
Proof

Let æΠG be defined as in 3.1.6. We first prove that æΠG is a single-valued relation.
Assume that n æΠG f ∧ n æΠG h. We show that ∀a∈A. f(a) = h(a) and thus, that f = h. By
definition ∀a∈A. ∀p æA a. n†p æG(a) f(a) ∧ n†p æG(a) h(a), and thus f(a) = h(a) since, for
all a, the relation æG(a) is single valued (and any a in A is realized by some natural
number).

The isomorphism is given by J(f) = {n | n æΠG f}; thus the range of J is a collection
of disjoint sets in ω (equivalence classes). The isomorphism J and its inverse are realized
by the (indices for the) identity function. M

The existence in PER of "products" indexed over arbitrary ω-sets is a very relevant fact.
The point is to show that these object are real products, in a precise categorical sense; this
is hinted in remark 3.15.  What we can do here, in our elementary approach, is to use the
idea in definition  3.1.7, in order to construct exponents as particular cases of products.

Corollary 3.1.9
ω-Set and PER are CCC's. Moreover, the embedding In: PER îïñ ω-Set is full,

faithful and preserves the structure of CCC.
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Proof
Observe that if G: A îïñ ω-Set is a constant function, G(a) = 〈B, æB〉 for all a∈A, say,

then 〈Πa∈AG(a), æΠG〉 = 〈BA, æAîïñB〉 is the exponent representing ω-Set[A,B] in ω-Set.
Clearly, in that case, n æAîïñB f  iff  ∀a∈A. ∀p æA a. n†p æB f(a). Products are defined by
using any bijective pairing functions from ω×ω to ω. Any singleton set S gives a terminal
object ∆(S). Eval and the currying operation Λ are defined as in Set and are realized by
(the indexes of) the universal function and the function s of the s-m-n theorem. (The
reader may check this as an exercise or see [Asperti Longo 90] for details.)

The same argument applies to PER by taking, for A∈PER, G: A îïñ PER constant in
3.1.8. (Just recall that PER may be viewed as the ω-set Mo = ∆(PER) and set 〈A, æA〉 =
M o.) Or also, by embedding PER in ω-Set by In, the corresponding ω-sets give
exponents, products, and terminal objects (up to isomorphisms), as In trivially satisfies
the properties stated. M

To clarify the construction, let's look more closely to exponent objects in PER. Take
say AîïñB, that is, the representative of P E R[A,B]. Then by definition each map
f∈PER[A,B] is uniquely associated with the equivalence class of its realizers, “p”AîïñB ∈
AîïñB, say, in the sense of 3.1.3.

It should be clear that the notion of realizer, or "type-free computation" computing the
typed function, is made possible by the underlying type-free universe, (ω,.). As we will
discuss later, this gives mathematical meaning to the intended type-free computations of a
typed program after compilation. As for now, this feature of the realizability model
suggests a distinction between isomorphism in our categories, which does not need to
make sense in other frames (and is relevant for the intuition on which our mathematical
understanding is based):

Definition 3.1.10
An isomorphism f: A ≅ B in ω-Set is identical (or is an identical isomorphism) if both

f and its inverse f-1 are realized by the indices of the identity function. M

It is easy to rephrase this notion for objects in PER. Note though that A ≅ B in PER
via an identical isomorphism iff A = B (that is, A and B are equal).

In ω-Set, though, the isomorphism in 3.1.8 is identical (but it is not an identity).

Proposition 3.1.11
In: PER îïñ ω-Set preserves products and exponents to within identical isomorphism.
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Proof
Exercise. (The category oriented reader may check these preservation properties also

for equalizers, limits... and observe that they are generally not on the nose.) M

In summary, our types may be essentially viewed as kinds, by a very natural (and
strong) embedding. We applied this embedding in theorem 3.1.8, and gave there a unified
understanding of various products and arrows in the syntax. However, theorem 3.1.8
really leads to much more than the cartesian closure of PER, which is shown in corollary
3.1.9. In plain terms, 3.1.8 is the crucial step towards the meaning of the second-order
(polymorphic) types, namely of the types obtained by indexing a collection of types over
a kind, possibly over the collection of all types (an impredicative construction).

3.2 Inclusion and power kinds
The purpose of this section is to set the basis for the semantics of the subkind and

subtype relations in Quest.

Definition 3.2.1 (subkinds)
Let 〈A, æA〉, 〈B, æB〉 ∈ ω-Set.  Define:

〈A, æA〉 ≤ 〈B, æB〉   iff   A ⊆ B  and ∀a∈A.∀n. (n æA a  öõú  n æB a)  M

The idea in this definition is that kinds may be related by the ≤ relation in ω-Set only
when they are actually subsets and when the realizability relation is defined in accordance
with this. Thus there is no need of coercions (equivalently, coercions are just identity
functions). Hence, the subsumption rule [KSub] for kinds is realized. Subtyping will be
interpreted in PER in a more subtle way, which allows a closer look at the computational
properties of the types of programs.

Definition 3.2.2 (subtypes)
Let A, B ∈ PER. Define:

A ≤ B   iff   ∀n,m.  (n A m  öõú  n B m)  M

Both ≤ relations in ω-Set and PER are reflexive and transitive. They are even
antisymmetric, because for 〈A, æA〉, 〈B, æB〉 ∈ ω-Set we have 〈A, æA〉 = 〈B, æB〉  ùõú
〈A, æA〉 ≤ 〈B, æB〉 ∧  〈B, æB〉 ≤ 〈A, æA〉. Similarly, for C,D∈PER we have C = D  ùõú
C ≤ D ∧ D ≤ C.

The semantic notion of subtype we are using here is the one defined in [Bruce Longo

89]. However, we differ from that approach for subkinds, in order to model the strong
relation we formalized in the syntax of Quest.
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Clearly "≤" is a partial order which turns the objects of PER into an algebraic
complete lattice. When A and B are in PER and A ≤ B, then there is a coercer cA,B from
A to B. It is defined by the map cA,B: Q(A) îïñ Q(B) such that cA,B(“n”A) = “n”B, which is
computed by any index of the identity function. By definition, cA,B is uniquely
determined by A and B. (We may omit the subscripts, if there is no ambiguity.)

Intuitively, given n such that nAn, the coercion cA,B takes its A-equivalence class,
“n”A, to its (possibly larger) B-equivalence class, “n”B. This is why cA,B, the coercion
morphism, is computed by all the indices of the identity function. Note that in general
“n”A is smaller than “n”B; they coincide just when Q(A) ⊆ Q(B), a special case of A ≤ B.
Note also that for A,B∈PER, if In(A) ≤ In(B) regarded as ω -sets, then A ≤ B. The
reverse implication holds only when Q(A) ⊆ Q(B). The result is that, here,  ≤  is used
with a slightly different meaning in the two categories, in contrast to the approach in
[Bruce Longo 89].  The advantage is given by the construction of a model of the current rich
kind and type theory.

The power operation is expressed in terms of quasi-functors, a weak notion of
categorical transformation between categories, widely used in several settings. (See
[Martini 88] for recent applications to the semantics of the λ-calculus.) This interpretation
is due to the blend of set-theoretical and categorical intuition at the base of the current
model of subtyping in a higher-order language. Quasi-functors take morphisms to sets of
morphisms which behave consistently with respect to application (see below), and are
such that the image of each identity map contains the identity in the target category.

Definition 3.2.3
The power quasi-functor P : PER îïñ ω-Set is given by:

on objects: P A = 〈{B∈PER | B ≤ A}, æ〉, where ∀B ≤ A ∀n n æ B;
on morphisms: for f: AîïñC and p æ f, define P p(f): P AîïñP C pointwise by

mP p(f)(B)n   iff   ∃m',n'.  m' B n'  and  m = p.m'  and  n = p.n'
Set then P (f) = {P p(f) | p æ f }.  M

For each f: AîïñC and p æ f, one has P p(f) ∈ ω-Set [P A,P C] since ω-Set[P A,P C] =
Set[P A,P C] in view of the full realizability relation given to the ω-set P C. (More
generally, each set-theoretic function which has as its target an object in the range of ∆:
Set îïñ ω-Set is realizable by all indices.)

It is also easy to observe that P (f•g) ⊆ P (f)•P (g) and id ∈ P (id) for f, g, and id in the
due types. This proves that P  is a quasi-functor.
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We claim that the interpretation of subtyping we are using, faithfully corresponds to
the intuitive semantics of subtyping (or is "compelling", as suggested in [Mitchell 88] with
reference to [Bruce Longo 89]).

Note first that the coercion cA,B in general is not a mono (or injective map) in PER. It
happens to be so only when Q(A) ⊆ Q(B), that is, when one also has In(A) ≤ In(B), as ω-
sets. Indeed, the topos theoretic notion of subobject as mono from A to B, given by Q(A)
⊆ Q(B), would not be able to give us the antimonotonicity of "îïñ" in the first argument,
and thus the simple but important theorems 3.4.1 and 3.4.2.

Moreover, in categories (and toposes) one usually works "to within isomorphisms",
while the programming understanding of subtypes and inheritance is surely not "to within
isomorphism". At most, the programming understanding is "to within identical
isomorphisms", as a general isomorphism may be a very complicated program and is not
likely to be computationally irrelevant.

In conclusion, we want a mathematical semantics which reflects the intuition of the
programmer, who views a subtype almost as a subset, but not exactly, as some coercion
may be allowed. Our model suggests what sort of coercions may be generally natural:
they must be computed by the type-free identical maps and preserved by identical
isomorphisms.

This interpretation explains why coercions may disappear in the description of the
programming language and why they do not show up at compile time, even though they
do not need to be exactly the identity. In our understanding, the compilation of a typed
program into its type-free version corresponds to the passage from a morphism in the
category of types or kinds, PER or ω-Set, to its type-free realizers. Type coercions, in
particular, are realized by identical computations.

Because of this interplay between sets, computations, and categories, the present
approach to subtypes is halfway between the set-theoretic notion of subset and the
category (or topos) theoretic subobjects. We claim that this is a suitable mathematical
understanding of the programmer's attitude.

We interpret now the formal equivalence of kinds and types as the equality in the
model. It is then easy to prove that the relations ≤ in 3.2.1-3.2.2, and the quasi-functor P
in 3.2.3, satisfy the applicable properties listed under "Kind inclusion" and "Type
inclusion", in section 2.9. We are then left with justifying subsumption and coercion,
described in section 2.5. We have already discussed the meaning of coercions; these ideas
will lead to the formal interpretation of Questc in part 4. Subsumption and Quest will be
dealt with in part 5. As already mentioned, recursive types and functions are not
considered.
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3.3 Operator kinds
The formation, introduction, and elimination rules for operators ([KF Π], [TI Π], and [TE

Π]) are easily taken care of. Definition 3.1.6 tells us that we can form a kind, the ω-set
〈Πa∈AG(a), æΠG〉, out of any kind (ω-set) 〈A, æ〉 and any function G: A îïñ ω-Set [KF Π].
By definition, the elements of 〈Πa∈AG(a), æΠG〉 are the (computable) functions f such
that, when fed with a∈A give as output elements f(a) of G(a). This is exactly what rules
[TI Π] and [TE Π] formalize.

Rule [T Π  β] is understood in the model by the behavior of a λ-term as a function.
Indeed, [T Π η] stresses that in any model, functions are interpreted extensionally.

3.4 The kind of types
The lattice PER has ω = (ω, ω×ω) as largest element, that is, ω with the full relation.

Clearly, ω contains just one equivalence class, ω. Thus ω gives meaning to Top, and ω to
top. Moreover, the ω-set of all p.e.r.'s is given by Mo = P (ω).

Rule [TF Π] here is given meaning by definition 3.1.7. The interpretation is apparently
very simple, but there is a crucial asymmetry with respect to [KF Π]. Rule [KF Π] has the
structure:

kind       kind
——————

kind
Rule [TF Π], instead, looks like:

kind       type
——————

type
In particular, the kind on the left may be T, the kind of types.

This schema is the crucial type construction in explicit polymorphism. It is
impredicative in that, in order to know what types are, one must already know their entire
collection, T . ([Feferman 87, 88] and [Longo 88] provide further discussions.) This peculiar
type construction is reflected in the related rules.

In [VI Π] one allows the formation of terms where abstraction is not done with respect
to variables ranging over a type, as in the first-order case. Instead, they range over a kind
(possibly T, again). By this, it makes sense by rule [VE Π] to apply a term to an element of
a kind (possibly a type, and even the type of that very term). This is the dimensional clash
which is hard to justify mathematically, and is a central difficulty in the semantics of
polymorphism.

Theorem 3.1.8 relates [KF Π] and [TF Π] by telling us that they are interpreted by the
same construction, in the universe of ω-sets. This gives mathematical unity and clarity of
meaning. In particular, it says that the interpretations of terms constructed by [VI Π] are
going to be computable functions which may be fed with elements of an ω-set and which
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then output a term of the expected type, as required by [VE Π] and as modeled in the
structure by definition 3.1.6.

Rule [TIncl Π] is validated by the following theorem.

Theorem 3.4.1
Let 〈A, æA〉, 〈A', æA'〉 ∈ ω-Set  and  G: A îïñ PER, G': A' îïñ PER. Assume A'≤A in

ω-Set and that ∀a'∈A', G(a') ≤ G'(a'), in PER. Then:
Πa∈AG(a) ≤ Πa'∈A'G'(a'), in PER.

Proof
Recall that   n (Πa∈AG(a)PER) m   iff   ∀a∈A. ∀p,q æA a. n†p G(a) m†q . Then

∀a∈A'. ∀p,q æA' a. n†p G(a) m†q. Since n†p G(a) m†q implies n†p G'(a) m†q, we are
done. M

With reference to the discussion on rules [KF Π] and [TF Π] above, a type formation rule
for products with the structure:

type       type
——————

type
would be a first-order rule and may be soundly interpreted over PER [Ehrhard 88].
Quest(c) has nothing of this structure for products, as it complicates typechecking and
compilation. An implicit use of it is the formal description and the semantics of records
given in [Bruce Longo 89]. In the current paper we could avoid any reference to first-order
constructs by coding record types in the second-order language (section 2.10). More on
their interpretation will be given in section 3.5.

As for ordinary higher type functions, the interpretation of their rules, by corollary
3.1.9, is given as a special case of the meaning of the rules above, except for [TIncl îïñ],
since in this specific model types happen to be kinds (by the embedding In). The arrow
types are just degenerated products (that is, products defined by a constant function, as in
3.1.9).

As an exercise, let's see what happens to the exponents in PER and their elements
(the equivalence classes). This may be done by a little theorem, which proves the validity
of rule [TIncl îïñ] in section 2.8.

Proposition 3.4.2
Let A, A',B, B'∈PER be such that A' ≤ A and B ≤ B'. Then AîïñB ≤ A 'îïñB'. In

particular, for n (AîïñB) n, “n”AîïñB ⊆ “n”A'îïñB'
Proof

n (AîïñB) m   ùõú   ∀p,q. (p A q  öõú  n†p B m†q )
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 öõú  ∀p,q. (p A' q  öõú  n†p B' m†q ),
as p A' q  öõú  p A q  öõú  n†p B m†q  öõú  n†p B' m†q

 ùõú  n (A'îïñB') m
The rest is obvious. M

Proposition 3.4.2 gives the antimonotonicity of îïñ in its first argument, as formalized
in the rules of Quest [TIncl îïñ], and required by inheritance. Moreover, and more related to
the specific nature of this interpretation of îïñ, proposition 3.4.2 reveals a nice interplay
between the extensional meaning of programs and the intensional nature of the
underlying structure.

Indeed, typed programs are interpreted as extensional functions in their types, as we
identify each morphism in PER with the equivalence class of its realizers. That is, if n
æAîïñB f, then “n”AîïñB  ∈ AîïñB represents f∈PER[A,B] in the exponent object AîïñB.
Assume for example that M: AîïñB is interpreted by f∈PER[A,B]. (For the moment we
will call A both a type and that type's interpretation as a p.e.r.; see part 4 where the
interpretation of terms and types is given.) In the assumption of the proposition,
f∈PER[A,B] and c(f)∈PER[A',B'] are distinct elements, and live in different function
spaces. The element c(f) is uniquely obtained by the coercion c, which gives meaning to
adjusting the types in M in order to obtain a program in A' îïñ B'. Also, when viewed as
equivalence classes of realizers, f and c(f) are different sets of numbers.

However, the intended meaning of inheritance is that one should be able to run any
program in AîïñB on terms of type A' also, as A' is included in A. When n æAîïñB f, this is
exactly what “n”AîïñB ⊆  “n”A'îïñB' expresses: any computation which realizes f in the
underlying type-free universe actually computes c(f) also. Of course, there may be more
programs for c(f), in particular if A' is strictly smaller than A. Thus, even though f and
c(f) are distinct maps (at least because they have different types) and interpret different
programs, their type-free computations are related by a meaningful inclusion, namely
“n”AîïñB ⊆ “n”A'îïñB' in this model.

This elegant interplay between the extensional collapse, which is the key step in the
hereditary construction of the types as partial equivalence relations, and the intensional
nature of computations is a fundamental feature of the realizability models.

3.5 Records
Formally, there is nothing to be said about the semantics of records, as they are a

derived notion. However, we mention one crucial merit of the coding proposed and its
meaning.

Record types should not be understood simply as cartesian products. The main reason
is that the meaning of a record type R' with more fields than a record type R (but where
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all the fields in R are in R') should be smaller than the meaning of R. Indeed, R' contains
fewer record relizers. This situation was obtained, say, in the PER interpretation of [Bruce

Longo 89] by understanding record types as indexed, first-order products. That is, if I is a
(finite) set of (semantic) labels, then Πi∈ΙAi would interpret a record whose fields are
interpreted by the Ai 's. By theorem 3.4.1, Πi∈ΙAi gives the required contravariance in the
meaning of records.

In the present approach, we can use the expressive power of Quest as a higher-order
language with a Top type, and model records with little effort. Record types are coded as
ordered tuples. Top is the last factor of the product and replaces missing fields (with
respect to the order), and by doing so it guarantees contravariance. This intuition is
precisely reflected in the model, by interpreting Top as the largest p.e.r.. Thus, any
extension of a given record type by informative fields, that is, by fields whose meaning is
different from the full relation on ω, gives smaller p.e.r.'s.

4. Semantic interpretation of Questc
In this section we give the formal semantics of Questc over the ω-Set/PER model.

The basic idea, for the inductive definition, is to interpret type environments as ω-sets
with a realizability notion which codes pairs as elements of a dependent sum. In this way,
if for example E = (, y: B, x: A), then [E] contains all pairs:

<e,a>  with  e∈[, y: B]  and  a∈[, y: B ∫ A type]e
In this approach one has to interpret judgments, not just terms, as judgments contain the
required information to interpret (free) variables. For example, the variable x is given
meaning within the judgment E ∫ x:A, say, for E as above. In particular, its interpretation
[E ∫ x:A]e', for a fixed environment value e' = <e,a>∈[E], is the second projection and
gives a∈[, y: B ∫ A type]e. (See also [Scedrov 1988], [Luo 1988].) The projection is clearly
a realizable map, that is, it is computed by the index of a partial recursive function. Note
that the interpretation of closed terms depends on the judgments they appear in, in
particular on the types they are assigned to.

Moreover, the meaning of a judgment gives, simultaneously, the interpretation of a
construct (kind, type, or term) and makes a validity assertion; for example, it says that a
given term actually lives in the given type, under the given assumptions.

Kinds, types, and terms are interpreted as maps from the ω-set interpreting the given
environment to ω-Set, PER, and the intended type, respectively. As our morphisms are
extensional functions, the interpretation is uniquely determined by their behavior on the
elements of the environment. The indexes realizing these maps may be computed by
induction, using as base the indexes for the projection functions. The crucial step is the
interpretation of lambda abstraction and application for terms. For example, given a



Page 37

realizer p for the map <e,A> ÷ïñ [E,X::K ∫ b:B]<e,A>, a realizer for e ÷ïñ [E ∫ λ(X::K)b :
Π(X::K)B]e is obtained by the recursive function s of the s-m-n (or iteration) theorem,
namely by an index for n ÷ïñ s(<p,n>), where s(<p,n>)(m) = p(<n,m>). Similarly, any
index for the universal partial recursive function gives the realizers for an applicative
term. We prefer to leave to the reader the intensional details of the computations and
focus on the extensional presentation of the interpretation maps. These maps already
require a fair amount of detail for a full description and should not be further obscured by
the explicit mention of the indexes of the realizable functions.

Observe that, in a fixed environment, kinds are interpreted as ω-sets, while types are
p.e.r.'s. More precisely, operator kinds are functions which take an element of a kind
(possibly a type) as input and give an element of a kind (possibly a type) as output. Also,
these functions live in an ω-set, which is obtained as an indexed product in the sense of
3.1.6.

As is common when dealing with CCC's, we make no distinction between an
exponent object, the p.e.r. AîïñB, say, and the set of morphisms, PER[A,B], it represents.
Thus, the meaning of a term in PER[A,B], say, may be viewed either as a function from
the p.e.r. A to the p.e.r. B, or as the equivalence class of its realizers in the p.e.r. AîïñB
(see also definition 4.1.1.(1) below). This poses no problem with regard to ω-Set, since
an exponent object is exactly an (ω-)set of (realizable) functions, as in the category of
sets.

4.1 Interpretation
We interpret, in order, environments, kinds, types, and terms.

Environments

E =  [E] = <{1}, æ> where ∀n∈ω n æ 1

E = E', X::K [E] = <{<e,A> | e∈[E'] ∧ A∈[E' ∫ K kind]e}, æ E >
where  <n,m> æ E <e,A>  iff  n æ E' e  and  m æ [E' ∫ K kind]e A

E = E', x:A [E] = <{<e,a> | e∈[E'] ∧ a∈[E' ∫ A type]e}, æ E >
where  <n,m> æ E <e,a>   iff   n æ E' e  and  m æ [E' ∫ A type]e a

Kinds

∫ E env ∀e∈[E]. [E ∫ T kind]e = M0
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∫ E env ∀e∈[E]. [E ∫ P (A) kind]e = P [E ∫A type]e

∫ E env ∀e∈[E]. [E ∫ Π(X::K)L kind]e = 〈ΠA∈[E∫ K kind]eG(A), æΠG〉
where  G: [E ∫ K kind]e îïñ ω-Set  is given by

G(A) = [E,X::K ∫ L kind]<e,A>

∫ E env ∀e∈[E]. [E ∫ λ(X::K)B :: Π(X::K)L]e ∈ ΠA∈[E∫ K kind]e[E,X::K∫L kind]<e,A>
such that  ∀A∈[E ∫ K kind]e.

([E ∫ λ(X::K)B :: Π(X::K)L]e)(A) = [E,X::K ∫ B::L]<e,A>

∫ E env ∀e∈[E]. [E ∫ B(A) :: L{X←A}]e = ([E ∫ B:: Π(X::K)L]e)([E ∫ A::K]e)

Types

∫ E = E', Xn::Kn, E"
∀e = <...<en,An>,...>∈[E]. [E ∫ Xn::Kn]e = An∈ [E' ∫ Kn kind]en

∫ E env ∀e∈[E]. [E ∫ Top type]e = ω = (ω, ω×ω)

∫ E env ∀e∈[E]. [E ∫ Π(X::K)B type]e = ΠA∈[E ∫ K kind]e[E,X::K ∫ B type]<e,A>

∫ E env ∀e∈[E]. [E ∫ AîïñB type]e = [E ∫ A type]e îïñ [E ∫ B type]e

Terms

E = E', xn:An, E"
∀e = <...<en,an>,...>∈[E]. [E ∫ xn:An]e = an∈ [E' ∫ An type]en

∫ E env ∀e∈[E]. [E ∫ top:Top]e = ω

∫ E env ∀e∈[E]. [E ∫ cA,B(a):B]e = c[E ∫ A type]e,[E ∫ B type]e([E ∫ a:A]e)

∫ E env ∀e∈[E]. [E ∫ λ(X::K)b : Π(X::K)B]e
∈ ΠA∈[E∫ K kind]e[E,X::K ∫B type]<e,A>

 such that  ∀A∈[E∫ K kind]e.
([E ∫ λ(X::K)b : Π(X::K)B]e)(A) = [E,X::K ∫ b:B]<e,A>

∫ E env ∀e∈[E]. [E ∫ b(A) : B{X←A}]e = ([E ∫ b : Π(X::K)B]e)([E ∫ A type]e)
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∫ E env ∀e∈[E]. [E ∫ λ(x:A)b : AîïñB]e ∈ [E ∫ A type]eîïñ[E ∫ B type]e
 such that  ∀a∈[E ∫ A type]e.

([E ∫ λ(x:A)b : AîïñB]e)(a) = [E,x:A ∫ b:B]<e,a>

∫ E env ∀e∈[E]. [E ∫ b(a) : B]e = ([E ∫ b : AîïñB]e)([E ∫a:A]e)

In view of the interpretation of kinds, types, and terms, the meaning of the judgments
is the obvious one. The :: and : relations go to ∈ for ω−sets and p.e.r.'s, respectively; the
relations <:: and <: are interpreted as subkind and subtype in ω−Set and PER; finally,
<::> and <:> are just equality.

Indeed, by induction on types and terms, one may check directly that this is a good
interpretation. In particular, one can check that all the given functions are actually
realized, as mentioned above, and hence that types and terms inhabit the intended
function and product spaces; see 4.1.2. (For example, [E ∫ λ(X::K)b : Π(X::K)B]e is
actually in ΠA∈[E∫ K kind]e[E,X::K ∫ B type]<e,A>.) However, this also follows from
general categorical facts, namely the cartesian closure of ω-Set and the observation that
PER, viewed as M0, is an internal CCC of ω-Set where the internal product Π is right
adjoint to the diagonal functor. (We obtain an internal model of Girard's Fω; see [Asperti

Longo 1990] where the general categorical meaning of Fω is given.)
The next theorem, whose proof is left to the reader, summarizes all these facts, and

states the soundness of the interpretation. Before stating it, though, we set a better
foundation for the interplay of the interpretations of "terms as functions" and "terms as
equivalence classes". This is done by the following definition which extends the
applicative structure of (ω, †) to equivalence classes, and also to the application of an
equivalence class to an element of an ω-set (cf. 3.1.7).

Definition 4.1.1
1 - Let A and B be p.e.r.'s. Define then, for n(AîïñB)n and mAm,

“n”AîïñB† “m”A = “n.m”B
2 - Let 〈K, æK〉 ∈ ω-Set and G: K îïñ PER. Set, for short, Π = ΠA∈KG(A)PER and

define, for nΠn, A∈K, and p æ A:
“n”Π†A = “n.p”G(A)

(Note that "†" : Π×Κ îïñ êA∈KG(A) depends on K and G.) This is well defined as
“n.p”G(A) does not depend on the choice of the number p, which realizes A. M
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By this explicit reconstruction of the applicative behavior, one may more clearly
understand equivalence classes in the p.e.r.'s AîïñB and ΠAÏKG(A)PER as functions in the
due types.

Theorem 4.1.2
∫ E env öõú [E] is a well-defined ω-set

E ∫ K kind öõú ∀e∈[E].  [E ∫ K kind]e  is a well-defined ω-set
E ∫ A::K öõú ∀e∈[E].  [E ∫ A::K]e ∈ [E ∫ K kind]e
E ∫ A type öõú ∀e∈[E].  [E ∫ A type]e ∈ M0
E ∫ a:A öõú ∀e∈[E].  [E ∫ a:A]e ∈ [E ∫ A type]e

E ∫ K <:: L öõú ∀e∈[E].  [E ∫ K kind]e ≤ [E ∫ L kind]e  in ω-Set
E ∫ A <: B öõú ∀e∈[E].  [E ∫ A type]e ≤ [E ∫ B type]e  in PER

E ∫ K <::> L öõú ∀e∈[E].  [E ∫ K kind]e = [E ∫ L kind]e
E ∫ A <:> B öõú ∀e∈[E].  [E ∫ A type]e = [E ∫ B type]e
E ∫ a óïñ b öõú ∀e∈[E].  [E ∫ a:A]e = [E ∫ b:A]e  M

4.2 Emulating coercions by bounded quantification
In Questc and in its current interpretation we have no subsumption, but instead we

have coercions. This means that programs of the form
(λ(x:B)d)(a)   where a:A<:B   (with A≠B) (1)

are not legal: an explicit coercion has to be applied, as in
(λ(x:B)d)(cA,B(a)) (2)

In this latter case, one may avoid both subsumption and coercions and recast (1) via
an additional bounded quantifier:

(λ(X<: B)λ(x:X)d)(A)(a) (3)
It is clear that (3) has the same effect as (1) or as (2), since this is how (1) can be correctly
expressed in our current framework, by coercions. The fact that (2) and (3) are equivalent
is a fairly deep property of the semantics, relating a bounded quantifier to a coercion. In
general, this is not derivable from the syntax.

The following theorem states that, semantically, coercions can be removed in favor of
bounded quantifiers.

Recall that  E ∫a : A  ∧  E ∫A <: B   öõú   E ∫cA,B(a) : B.
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Theorem 4.2.1
Assume that E ∫ d : D, E ∫ a : A and E ∫ A <: B. Then, in PER one has

(λ(X<:B)λ(x:X)d)(A)(a) = (λ(x:B)d)(cA,B(a))
Proof

For simplicity, we fix an environment e and identify types A, B, and D with their
meanings as p.e.r. in e.

Set Π = ΠX≤BXîïñD and let “n”Π = [ E ∫ (λ(X<:B)λ(x:X)d) : Π(X<:B)(XîïñD) ]e ∈ Π.
Then “n”Π†C = “n.p”CîïñD for any C, such that E ∫ C <: B, and any p, since any number p
realizes C, when C ≤ B, by definition of the power quasi-functor.

Let now m be such that [E ∫ a : A]e = “m”A. Then cA,B(“m”A) = “m”B and:
[ E ∫ (λ(X<:B)λ(x:X)d)(A)(a) : D ]e
= “n”Π†A†“m”A= “n.p”AîïñD†“m”A= “n.p.m”D
= “n.p”BîïñD†“m”B where n.p(BîïñD)n.p by 4.1.1(1)
= “n”Π†B†“m”B by 4.1.1(2)
= [ E ∫ (λ(X<:B)λ(x:X)d)(B)cA,B(a) : D ]e
= [ E ∫ (λ(x:B)d)cA,B(a) : D ]e  by the syntax. M

In Questc, we dropped the subsumption rule in favor of coercions. However, there is
also a proof-theoretic reason to warn the programmer about the use of subsumption in
connection with (η); namely, the equational system of typed terms would not be Church-
Rosser any more (with respect to the obvious reduction rules). Consider say:

λ(x:A)(λ(y:B)e)x (with x Ì FV(λ(y:B)e))
where x is not free in λ(y:B)e, and let A <: B.

In the presence of subsumption, this program would type-check, for any e and C such
that e:C. However,

λ(x:A)(λ(y:B)e)x Òñ λ(y:B)e : B îïñ C by (η)
λ(x:A)(λ(y:B)e)x Òñ λ(x:A)e : A îïñ C by (β)

and confluence would be lost. Because of this, we abandon (η) in part 5.
In Questc, the program one has in mind when writing λ(x:A)(λ(y:B)e)x, is actually

described by the polymorphic term:
λ(x:A)(λ(X<:B) λ(y:X) e)(A)(x)

which yields confluent reductions.
For this reason, (η) is adopted in Quest as an equality rule, but not as a computation

rule.

5. Semantic interpretation of Quest
In this section we model the original version of Quest, namely the language based on

the subsumption rule [TSub / Quest] of section 2.9, instead of on coercions.
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Subsumption is important for at least two reasons. First, programming with explicit
coercions becomes too cumbersome; much of the appeal of subtyping has to do with the
flexibility and compactness provided by subsumption. Second, subsumption is intended
not as an arbitrary coercion, but as a coercion that performs no work; this is essential for
capturing the flavor of object-oriented programming, where subsumption is used freely as
a way of viewing objects as members of different types.

Hence we feel we are justified in presenting more complex semantic techniques in
order to give a faithful representation of subsumption.

Let (D, . ) be a model of type-free lambda calculus. The construction of the categories
D-Set and PER

D

 over (D, . ) works similarly. Indeed, all the work carried on so far can
be easily generalized to any (possibly partial) Combinatory Algebra or model of
Combinatory Logic. In view of the relevance of Kleene's realizability interpretation of
Intuitionistic Logic for these models, it is fair to call "realizability structures" the
categories D-Set and PER

D

 over a Combinatory Algebra (D, . ). As already mentioned,
we preferred (ω , †) as it is more directly related to Kleene's work and because of the
immediate intuitive appeal of classical recursion theory. However, we now need to be
able to give meaning to type-free terms, which cannot be done over (ω , †). For this
purpose, we work over an arbitrary λ-model: that is, an applicative structure (D, . ) with
an interpretation D[ - ] of λ-terms defined, say, as in [Hindley Longo 80] or [Barendregt 84].

The interpretation of Quest is given in two steps. First we translate typed terms into
terms of the type-free calculus, by "erasing-types". We add to the latter only a constant
symbol "top", in order to take care of the corresponding constant in Quest.

In the second step, we use the meaning of the erased terms to interpret typed terms.
Environments, kinds, and types will be interpreted as in Questc, except for an
"isomorphic change" in the interpretation of product types. As for types in particular, this
interpretation is possible since, in view of our formal definition of subkinds and of its
semantics, we had no kind coercions even in Questc, but just type coercions.

Terms may still be understood as morphisms, in the due types. We already used the
identification of morphisms with the equivalence classes of their realizers. In the
interpretation of Quest we exploit this correspondence and interpret typed terms directly
as equivalence classes, with no ambiguity.

Briefly, for each environment e = <...<en,an>,...> ∈ [E] we choose an environment
map se: Var îïñ D which picks up an element of the equivalence class an. Then, by using
these environment maps, we interpret a typed term as the equivalence class which
contains the interpretation of its erasure.

The interpretation will not depend on the particular choice of the environment map.
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5.1 Preliminaries and structures
The categories D-Set and PER

D

 over (D, . ) are defined exactly as ω-Set and PERω
over (ω, †), in 3.1.1 and 3.1.2. However, their use in the semantics of Quest will be
slightly changed in a crucial point. Second-order impredicative quantification will not be
interpreted exactly by the set-theoretic indexed product of realizable functions, as in
3.1.7. We will use instead an isomorphic, but not identical, interpretation of this
quantification by p.e.r.'s obtained as a straightforward set-theoretic intersection. This is
made possible by the following simple, but fundamental theorem, which establishes a
connection between the previous interpretation of higher-order quantification and the one
given in [Girard 72] and [Troelstra 73]. It was first suggested by Moggi and actually started
most of the recent work on the semantics of polymorphism, by suggesting that Girard's
model could be given a relevant categorical explanation. (See remark 3.1.5.) We use it
here as a tool for our semantic interpretation of Quest. We report its proof since it matters
for our purposes, as we point out in remark 5.1.2. Note first that, if {Ai}i∈I is a collection
of p.e.r.'s, then ëi∈IAi is also a p.e.r. by

n(ëi∈IAi)m  iff  n Ai m  for all i∈I

Theorem 5.1.1
Let 〈A, æA〉 ∈ D-Set be such that æA = D×A and let G: A îïñ PER

D

. Then:
 (Πa∈AG(a))PER

D

  ≅  ëa∈AG(a) in PER
D

.
Proof ([Longo Moggi 88])

Let S = ëa∈AG(a) ∈ PER
D

. By definition both Πa∈AG(a)PER
D

 and S are in PER
D

.
Thus we need to define a bijection H: S îïñ Πa∈AG(a)PER

D

 and prove that it is realized
with its inverse.

Let H(“n”S) = λa∈A.“n”G(a). Clearly, H(“n”S) ∈ Πa∈AG(a) and H is well defined, since
“n”S = “m”S implies, n G(a) m for all a∈A, and hence “n”G(a) = “m”G(a).

Consider now the combinator k such that k.p.q = p, for all p, q ∈ D. Then k.n realizes
H(“n”S), since

∀a∈A. ∀q æA a. k.n.q = n∈“n”G(a) = H(“n”S)(a),
and k realizes H. It is easy to observe that H is injective. Let us prove that H is surjective.

If h ∈ Πa∈AG(a), then by definition, ∃m æΠG h; that is,
∃m. ∀a∈A. ∀q æA a. m.q æG(a) h(a) or, equivalently,
∃m. ∀a∈A. ∀q∈D. h(a) = “m.q”G(a),  as  æA = D×A

Fix now an element 0 of D. Then, for n = m.0, we have ∀a∈A. n G(a) n, that is, n S n. In
conclusion, ∀a∈A. H(“n”S)(a) = “n”G(a) = h(a), that is, H(“n”S) = h. Therefore H-1 exists and
it is realized by any p ∈ D such that p.m= m.0, for all m ∈ D. M
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Remark 5.1.2
The key idea in the proof consists in defining the applicative or functional behavior of

each equivalence class “n”S, say, in S = ëa∈AG(a) ∈ PER
D

, by setting
“n”S†a = “n”G(a)

This is how, to within isomorphism, “n”S defines a function in Πa∈AG(a). Observe that,
when the isomorphism is given by the "constant-constructor" combinator k, the proof
relates this notion of application to the application “n”Π†a = “n.p”G(a), for p æA a, as
defined in 4.1.1. Indeed, “n.p”G(a) is constant with respect to p, under the assumption æA =
D×A in 5.1.1. The next proposition shows that this assumption is satisfied by the D-sets
we are interested in: that is, by the definable ones, in the language of Quest. M

Proposition 5.1.3
Let ∫ E env and E ∫ K kind. Then, for all e∈[E], [E ∫ K kind]e is a D-set 〈A, æA〉

with æA = D×A.
Proof

This is clearly true for the base of the induction, in view of the interpretation of T  and
P (C), for any type C. (Recall that one even has T   = P (Top) ). Consider now E ∫
Π(X::K)L kind. Then:

∀e∈[E]. [E ∫ Π(X::K)L kind]e = 〈ΠA∈[E∫ K kind]e[E,X::K∫L kind]<e,A>, æΠG〉,
where G(A) = [E,X::K∫L kind]<e,A>. By induction, just assume that, for all e and A, the
D-set L(e,A) = [E,X::K∫L kind]<e,A> has the full æL relation. Then any set theoretic
function f in ×A∈[E∫ K kind]e[E,X::K∫L kind]<e,A> is realized by any n ∈ D, since one
always has n.pæL f(A), no matter which A∈[E∫ K kind]e and p are taken. M

Remark 5.1.4 (For readers with some experience in Category Theory.)
Continuing from remark 3.1.5. In [Hyland 87] and [Longo Moggi 88], the existence of a

(internal) right adjoint to the diagonal functor, that is, the small completeness of PER in
the Effective Topos or in ω-Set, is shown by taking exactly the intersection as product
(see [Asperti Longo 90] for details). This fully justifies the interpretation below of second-
order impredicative types as intersections. M

5.2 Interpretation [ - ]'
We now translate typed terms into terms of the type-free calculus, by erasing all type

information. The type-free λ-calculus is extended by a constant symbol, top.

Definition 5.2.1
The translation map erase from typed terms into type-free terms is defined by

induction on the structure of terms:
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erase(x) = x
erase(top) = top
erase(λ(x:A)b) = λx. erase(b)
erase(b(a)) = erase(b)erase(a)
erase(λ(X::K)b) = erase(b)
erase(b(A)) = erase(b)  M

With the preliminaries above, it is now straightforward to implement our idea: a typed
term is interpreted by the equivalence class of its erasure, with respect to its type as p.e.r..
We then need to show that this interpretation is sound. Indeed, this interpretation
generalizes a theorem stated in [Mitchell 86] and tidily relates to the alternative approach to
the semantics of the subsumption rule [TSub / Quest] in [Bruce Longo 89]. Observe that this
interpretation, in contrast to the early attempt in [Bruce Longo 89], is direct. This is made
possible by the use of theorem 5.1.1, since by erasure the meaning of a second-order
typed term becomes an element of the intersection of all the types which form its range.
For example, the polymorphic identity function λ(X::T) λ(x:X) x : Π(X::T) (XîïñX) will
be interpreted as the equivalence class of the type-free identity λx.x, which happens to
live in AîïñA, for any type A.

Note finally that, since the interpretations of type-free terms are elements of D, while
the elements of types as p.e.r.'s are equivalence classes, we need a choice map to obtain
an environment for type-free terms from an environment for typed ones. This is done by
the following definition.

Definition 5.2.2
Given E = E', xn:An, E" and e = < ...<en,an>,...> ∈ [E], fix se: Var îïñ D  such that

se(xn) ∈ an ∈  [E' ∫ An type]'en, where [E] is defined as in section 4.1, and [E' ∫ An
type]'en is the interpretation of types given below. M

Note that se is defined only on term variables and gives no meaning to X::K. The
interpretation below will not depend on the choice of se. Recall that D[ - ]  is the
interpretation of type-free terms in (D, . ).

Environments

[E]' coincides with [E] for Questc

Kinds No change.
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Types No change, except for:

∫ E env ∀e∈[E]. [E ∫ Π(X::K)B type]'e = ëA∈[E∫ K kind] 'e[E,X::K∫B type]'<e,A>

Terms

∫ E env ∀e∈[E]'. [E ∫ a : A]'e = “ D[erase(a)]se”[E ∫ A type]'e

Since higher-order quantification is interpreted as intersection, by an even easier
proof than for Questc, we have:

Lemma 5.2.3
E ∫ A<:B implies ∀e∈[E]'. [E ∫ A type]'e ≤ [E ∫ B type]'e  M

The following theorem proves the soundness of the interpretation.

Proposition 5.2.4
The interpretation [ ] ' is a well-defined meaning for kinds, types, and terms over D-

Set and PER
D.

Proof
We need to check only the result for terms, since kinds pose no problem, and there

has been enough discussion concerning types and the use of intersection as product.
Recall from proposition 5.1.3 that [E∫ K kind]'e is a D-set with the full relation.

Thus we show by induction on the derivation that, for each E ∫ a : A, D[erase(a)]se is
in the domain of [E ∫ A type]'e and that it has the correct functional behavior.

Case E = E', xn:An, E" ∫ xn:An
∫ E env ∀e∈[E]'. [E ∫ xn:An]'e = “se(xn)”[E ∫ A

n 
type]'e

n
which corresponds to

∀e = <...<en,an>,...>∈[E]. [E ∫ xn:An]'e = an∈ [E∫An type]'en

Case E ∫ top:Top
Just recall that ω is the only element of ω.

Case E ∫ b(a) : B
∀e∈[E]'. [E ∫ b(a) : B]'e = “D[erase(ba)]se”[E ∫ B type]'e
= “D[erase(b)erase(a)]se”[E ∫ B type]'e
= (“D[erase(b)]se”[E ∫ AîïñB type]'e) . (“D[erase(a)]se”[E ∫ A type]'e)



Page 47

 = ([E ∫ b : AîïñB]'e) . ([E ∫a:A]'e)
where application between equivalence classes is defined as in 4.1.1.
This simultaneously proves that [ - ]' decomposes soundly and that D[erase(ba)]se is in
dom([E ∫ B type]'e).

Case E ∫ λ(x:A)b : AîïñB
∀e∈[E]'. [E ∫ λ(x:A)b : AîïñB]'e = “D[λx.erase(b)]se”[E ∫ AîïñB type]'e

which is well defined because by induction, from the semantics of E, x:A ∫ b : B, one has
for all n∈D :

n ([E ∫ A type]'e) n   öõú   (D[erase(b)]se[n/x]) is in dom([E ∫ B type]'e)
Thus D[λx.erase(b)]se is in dom([E ∫ AîïñB type]'e), by virtue of the familiar substitution
lemmas in the type-free model (D, . , D[ - ]). (See [Barendregt 84].)

Case E ∫ λ(X::K)b : Π(X::K)B
∀e∈[E]'. [E ∫ λ(X::K)b : Π(X::K)B]'e = “D[erase(b)]se”Σ

where  Σ = ∩A::K{[E ∫ B{X←A} type]'e}. (Note that, by the usual substitution
techniques, one has [E ∫ B{X←A} type]'e = [E,X::K ∫ B type]'<e,A>, where we keep
identifying the semantic and the syntactic type A by an abuse of language.) This is well
defined just as before, since, by induction, one has:

E,X::K ∫ b : B  implies  D[erase(b)]se is in dom([E,X::K ∫ B type]'e)
However, in contrast to the previous case, D[erase(b)]se does not depend on X::K while
B and its semantics do. Exactly because of this, for all types A one has

D[erase(b)]se is in dom([E ∫ B{X←A} type]'e)
and thus D[erase(b)]se is in dom(Σ). The next case describes also the applicative behavior
of [E ∫ λ(X::K)b : Π(X::K)B]'e.

Case E ∫ c(A) : B{X←A}
∀e∈[E]'. [E ∫ c(A) : B{X←A}]'e = “D[erase(c)]se”[E ∫ B{X←A} type]'e

by the definition of erase. Observe now that one must have E ∫ c : Π(X::K)B. By setting
Σ = ∩A::K{[E ∫ B{X←A} type]'e}

by the previous case and the definition of erase, one has
 ∀e∈[E]'. [E ∫ c : Π(X::K)B]'e = “D[erase(c)]se”Σ  in dom(Σ)
Thus, for all A D[erase(c)]se is in dom([E ∫ B{X←A} type]'e).
By this and by the definition of application of an intersection class to a p.e.r., given in
5.1.2, compute

D[erase(c)]se”[E ∫ B{X←A} type]'e = (“D[erase(c)]se”Σ) . ([E ∫ A type]'e)
= ([E ∫ c:Π(X::K)B]'e) . ([E ∫ A type]'e)  M

We have also proved:
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Corollary 5.2.5
If ∫ E env, then ∀e∈[E]. [E ∫ a : A]'e ∈ [E ∫ A type]'e. M

It is a minor variant of the work done for Questc to check fully that we provided an
interpretation for Quest (that is, that the analogue of theorem 4.1.2 holds for Quest). The
crucial point is the validity of the subsumption rule:

E ∫ a : A      E ∫ A <: B
——————————

E ∫ a : B

This rule is valid simply because the interpretation of the term a, say, comes with the
meaning of the entire judgment E ∫ a : A or E ∫ a : B. We gave this meaning in such a
way that it automatically coerces a to B in the semantics when interpreting E ∫ a : B.
Indeed, the meaning of E ∫ a : A is an equivalence class in the p.e.r. [E ∫ A type]'e
(together with the assertion that it actually belongs to the class), while the meaning of [E
∫a:B]'e is an element of the p.e.r. [E ∫ B type]'e, which is in general a larger equivalence
class.

It is worth noticing the essential role of the interpretation of polymorphic types as
intersections. The isomorphism between product and intersection in 5.1.1 is the core of
this interpretation. (See the last two cases in 5.2.1.) It says that type erasing does not
affect the meaning of polymorphic terms, modulo equivalence classes, and reduces the
entire challenging business of how to apply a term to a type, to a simple type coercion in
the model. That is, “n”S†A = “n”G(A), which interprets the polymorphic application for S =
ëA∈KG(A) (see 5.1.2), corresponds to coercing “n”S to the generally larger equivalence
class “n”G(A).

This has a clear mathematical and computational meaning. Mathematically, it derives
from the fact that the maps from any D-set with the full realizability relation to a p.e.r. are
constant functions. (See [Longo Moggi 88], or prove it for exercise.) This is a simple feature
inherited from a deep fact: the validity of the Uniformity Principle in the Realizability
Universe, which is the categorical background of this construction [Longo 88].
Computationally, it says that at run time we disregard types, or that computations are
type-free, in particular the computation of a polymorphic term. However, given a
computation n of type ëA∈KG(A), it happens that n is equivalent to more computations
when updated to type A: namely, all those in “n”G(A).

In [Bruce Longo 89] yet another interpretation of Fun, the progenitor of Quest, is given.
The idea, in that paper, is to use the interpretation of the language with coercions in order
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to give meaning to the one without coercions. This is based on a series of theorems which
relate abbreviated terms (that is, terms where all coercions are erased) to their fattenings
(that is, terms where coercions are put back in place). More precisely, in our language,
given E ∫c a : A, a judgment in Questc, abbrev(a) is obtained by erasing all coercions.
Then, for E ∫ b : B in Quest, b' is a fattening when abbrev(b') = b. The BL-interpretation
of the judgment E ∫ a : A in Quest, is given by setting:

BL[E ∫ a : A]e = [E ∫c a' : A]e
where [E ∫c a' : A]e is the semantics in part 4, for a fattening a' of a.

With some work, [Bruce Longo 89] showed that this is well defined. Indeed, it coincides
with our current interpretation [ - ]'. In other words, by the results in [Bruce Longo 89] and
some further work, we claim that, given a model of the type-free λ-calculus and the
realizability structures over it as models of Quest, one has:

BL[E ∫ a : A]e = [E ∫ a : A]'e
Observe finally that this interpretation is "coherent", in the sense of [Curien Ghelli 89], since
by definition it depends only on the proved judgment and not its derivation. More
generally, the model satisfies the conditions in the coherence theorem in [Curien Ghelli 89].

6. Conclusions
We have described a formal system, which can be considered the kernel of the Quest

language, and we have investigated a particularly attractive approach to its semantics.
The formal system requires a lot of semantics models, probably more than any previous
typed system. Fortunately, PER models promise to satisfy all the required features, and
more (e.g. dependent types). More work needs to be done both on the syntactic side,
studying the properties and the degree of completeness of the formal system, and on the
semantic side, mostly with respect to recursion and recursive types.
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