53

IO Streams:
Abstract Types, Real Programs

Mark R. Brown and Greg Nelson

November 15, 1989

Systems Research Center
130 Lytton Avenue
Palo Alto. California 94301

Systems Research Center

DEC’s business and technology objectives require a strong research program. The Systems
Research Center (SRC) and three other research laboratories are committed to filling that need.

SRC began recruiting its first research scientists in 1984 — their charter, to advance the state
of knowledge in all aspects of computer systems research. Qur current work includes exploring
high-performance personal computing, distributed computing, programming environments,
system modelling techniques, specification technology, and tightly-coupled multiprocessors.

Our approach to both hardware and software research is to create and use real systems so
that we can investigate their properties fully. Complex systems cannot be evaluated solely in
the abstract. Based on this belief, our strategy is to demonstrate the technical and practical
feasibility of our ideas by building prototypes and using them as daily tools. The experience
we gain is useful in the short term in enabling us to refine our designs, and invaluable in the
long term in helping us to advance the state of knowledge about those systems. Most of the
major advances in information systems have come through this strategy, including time-sharing,
the ArpaNet, and distributed personal computing.

SRC also performs work of a more mathematical flavor which complements our systems research.
Some of this work is in established fields of theoretical computer science, such as the analysis
of algorithms, computational geometry, and logics of programming. The rest of this work explores
new ground motivated by problems that arise in our systems research.

DEC has a strong commitment to communicating the results and experience gained through
pursuing these activities. The Company values the improved understanding that comes with
exposing and testing our ideas within the research community. SRC will therefore report results
in conferences, in professional journals, and in our research report series. We will seek users
for our prototype systems among those with whom we have common research interests, and
we will encourage collaboration with university researchers.

Robert W. Taylor, Director

10 Streams: Abstract Types, Real Programs

Mark R. Brown and Greg Nelson
November 15, 1989

(©Digital Equipment Corporation 1989

This work may not be copied or reproduced in whole or in part for any commercial purpose.
Permission to copy in whole or in part without payment of fee is granted for nonprofit
educational and research purposes provided that all such whole or partial copies include the
following: a notice that such copying is by permission of the Systems Research Center of
Digital Equipment Corporation in Palo Alto, California; an acknowledgment of the authors
and individual contributors to the work; and all applicable portions of the copyright notice.
Copying, reproducing, or republishing for any other purpose shall require a license with
payment of fee to the Systems Research Center. All rights reserved.

Authors’ abstract

The paper proposes standard Modula-3 interfaces for text input and output. It also describes
an implementation of the interfaces, focusing on two novel features of Modula-3: the partially
opaque type and the explicit isolation of unsafe code.

Mark R. Brown and Greg Nelson

Capsule review

In this report the authors make good use of the example of a text IO package, written in
Modula-3, to achieve a number of different aims. They state clearly at the start what those
aims are and then proceed to accomplish them.

The package is presented in complete detail, starting from an abstract interface, and even-
tually reaching an efficient machine-dependent implementation. This specifies the package
completely in a manner that the authors hope will be used as a standard for a text IO
package.

The example is used to illustrate how the Modula-3 construct of a partially opaque type can
be used to finely control the amount of information-hiding within a module. Good use of this
feature means that each layer of interface reveals only the amount of information actually
required at that level, thereby preserving security and aiding comprehension.

One of the original features of Modula-3 is the notion of a module presenting a safe interface;
that is, an interface that is guaranteed not to produce an unchecked runtime error. Since the
IO Streams require unsafe components at the lower levels to achieve efficiency, the authors
use the example to illustrate how a safe interface can be constructed from an unsafe one,
showing how the safe boundary is clearly delineated.

The authors accomplish the difficult task of presenting a complex example in a great deal of
detail, without obscuring the issues they wish to illustrate. This report could be recommended
to a number of different classes of reader, ranging from those who wish to implement an I0
package, through those who wish to see Modula-3 in use, to those who have to document a
package for use by others.

Kevin D. Jones

Contents

Introduction 1

The Wr interface 2

The Rd interface 5

The Stdio and FileStream interfaces 11
The WrClass interface 12
Text writers 16

The unsafe interfaces 18
The WrRep module 21
The RdClass interface 29
The RdRep module 31
Concluding remarks 38

Acknowledgments 41
Bibliography 43
Index 45

Where the stream runneth smoothest, the water is deepest.
—John Lyly

1 Introduction

Our first goal is to define Modula-3 interfaces for text input and output. The interfaces
define two types of objects, readers and writers, collectively called streams. Streams
come in a potentially unlimited number of classes, such as streams to and from
terminals, disk files, etc. We hope these interfaces will become standards.

Our second goal is to illustrate the partially opaque type, a Modula-3 feature that
allows flexible data abstraction. A quick survey of the literature will show that
there are hundreds of language features to support abstract data types, but only one
example—the stack. To give a realistic example of the partially opaque type in action,
we will describe the Modula-3 streams package in detail, from top to bottom.

Our final goal is to illustrate the explicit isolation of unsafe code. Reading and
writing characters must be fast, and on some systems this will require unsafe, machine-
dependent code. The program described in this paper contains two modules that can
be reprogrammed in a machine-dependent way. (Of course, reprogramming them does
not affect the abstract properties of strcams.) We present versions of the modules
that are suitable for byte-addressable machines. They use pointer arithmetic, and are
therefore unsafe.

As a general rule, the upper layers of a system are safer than the lower layers. In
Modula-3, where safety has a precise technical meaning, the transition between the
safe and the unsafe is not gradual: it occurs where an unsafe module exports a safe
interface. Programming this layer is very crror-prone; the streams package provides a
realistic example of the dangers.

We will view strcams at three levels of detail. At the highest level, the client interfaces
Rd and Wr define strcams as abstract types. In this view the types are completcly

2 10 STREAMS

opaque. At the intermediate level, the class interfaces RdClass and WrClass reveal
the buffer structure that is needed to implement new classes of streams. Here the types
are partially opaque. At the lowest level, the modules RdRep and WrRep reveal the
complete representation, and contain the potentially machine-dependent code.

The client and class interfaces are safe; the low-level modules are unsafe. There are
also two interfaces, UnsafeWr and Unsaf eRd, which reveal the semaphores that make
operations on readers and writers atomic.

Perhaps the first object-oriented I/O package was part of the Simula system [1]. The
first to use class-independent buffering seems to be the 1/0 system for the OS6 described
by J. E. Stoy and C. Strachey in 1972 [5]. The package described in this paper is
closely based on the Modula-2+ streams package used in the Topaz System at Digital’s
Systems Research Center.

The program in this paper is written in revised Modula-3 [2].

2 The Wr interface

A Wr.T (or “writer”) is a character output stream. The basic operation on a writer is
PutChar, which extends a writer’s character sequence by one character. Some writers
(called “seckable writers™) also allow overwriting in the middle of the sequence. For
example, writers to random access files are scekable, but writers to terminals and
sequential files are not.

Writers can be (and usually are) buffered. This means that operations on the writer
don’t immediately affect the underlying target of the writer, but are saved up and
performed later. For example, a writer to a disk file is not likely to update the disk after
each character.

Abstractly, a writer wr consists of:

len(wr) a non-negative integer

c(wr) a character sequence of length 1en(wr)
cur (wr) an integer in the range [0. .len(ur)]
target (wr) a character sequence

closed(wr) a boolcan

seekable(wr) aboolean
buffered(wr) aboolean

These values are gencrally not directly represented in the data fields of a writer object,
but in principle they determinc the state of the writer.

The sequence ¢ (wr) is zero-based: ¢ (wr) [1] is valid for i from O throughlen(wr)-1.
The value of cur(wr) is the indcx of the character in c(wr) that will be replaced or

2. THE WR INTERFACE 3

appended by the next call to PutChar. If wr is not seckable, then cur (wr) is always
equal to len(wr), since in this case all writing happens at the end.

The difference between c(wr) and target (wr) reflects the buffering: if wr is not
buffered, then target (wr) is updated to equal c(wr) after every operation; if wr is
buffered, then updates to target (wr) can be delayed. For example, in a writer to
a file, target(wr) is the actual sequence of characters on the disk; in a writer to a
terminal, target (wr) is the sequence of characters that have actually been transmitted
(this sequence may not exist in any data structure, but it still exists in the eye of God).

Every writer is a monitor; that is, it contains an internal lock that is acquired and held
for each operation in this interface, so that concurrent operations will appear atomic.
For faster, unmonitored access, see the Unsaf eWr interface (Section 7).

Since there are many classes of writers, there are many ways that a writer can break—
for example, the network can go down, the disk can fill up, etc. All problems of this
sort are reported by raising the exception Failure. Each writer class should specify
what failures it can raise and how they are encoded in the argument to Wr.Failure
(which has type REFANY).

[llegal operations (for example, writing to a closed writer) raise the exception Error.

Many operations on a writer can wait indcfinitely. For example, PutChar can wait if
the user has suspended output to his terminal. These waits can be alertable, so each
procedure that might wait includes Thread . Alerted in its raises clause.

The rest of this section is a listing of the Wr interface, together with comments
specifying the effect of each procedure. It is convenient to define the action PutC(wr,
ch), which outputs the character ch to the writer wr:

PutC(wr, ch) =
IF closed(wr) THEN RAISE Error(Code.Closed) END;
IF cur(wr) = len(wr) THEN
"Extend c(wr) by one character, incrementing len(wr)"
END;
c(wr)[cur(wr)] := ch;
INC(cur(wr));
"Possibly Flush wr"

where “Possibly Flush wr” specifics a non-deterministic choice between assigning
target(wr) := c(wr) and doing nothing. PutC is only used in specifying the
interface; it is not a real procedure.

4 10 STREAMS

INTERFACE Wr;
FROM Thread IMPORT Alerted;

TYPE

T <: ROOT;

Code = {Closed, Unseekable};
EXCEPTION Failure(REFANY); Error(Code);

PROCEDURE PutChar(wr: T; ch: CHAR)
RAISES {Failure, Alerted, Error};
Output ch to wr. More precisely, this is equivalent to:
PutC(wr, ch); IF NOT buffered(wr) THEN Flush(wr) END

PROCEDURE PutText(wr: T; t: TEXT)
RAISES {Failure, Alerted, Error};

Output t to wr. More precisely, this is equivalent to:

FOR i := 0 TO Text.Length(t) - 1 DO
PutC(wr, Text.GetChar(t, i))

END;

IF NOT buffered(wr) THEN Flush(wr) END

except that, like all operations in this interface, it is atomic with respect to other
operations in the interface. (It would be wrong to write PutChar instead of
PutC, since PutChar always flushes if the writer is unbuffered.)

PROCEDURE PutString(wr: T; a: ARRAY OF CHAR)
RAISES {Failure, Alerted, Error};
Output a to wr. More precisely, this is equivalent to:
FOR i := FIRST(a) TO LAST(a) DO PutC(wr, a[i]) END;
IF NOT buffered(wr) THEN Flush(wr) END

except that it is atomic.

PROCEDURE Seek(wr: T; n: CARDINAL)
RAISES {Failure, Alerted, Error};

Set the current position of wr to n. This is a no-op if wr is closed. More
precisely, this is equivalent to:

IF NOT seekable(wr) THEN RAISE Error(Code.Unseekable) END;
cur(wr) := MIN(n, len(wr));

"“Possibly Flush wr"

3. THE RD INTERFACE 5

PROCEDURE Flush(wr: T) RAISES {Failure, Alerted, Error};
Perform all buffered operations. That is, set target(wr) := c(wr). This is
ano-op if wr is closed.

PROCEDURE Close(wr: T) RAISES {Failure, Alerted, Error};

Flush wr, release any resources associated with wr, and set closed(wr) :=
true. The documentation for a procedure that creates a writer should specify
what resources are released when the writer is closed. This leaves closed (wr)
equal to TRUE even if it raises an exception, and is a no-op if wr is closed.

PROCEDURE Length(wr: T): CARDINAL
RAISES {Failure, Alerted, Error};

PROCEDURE GetIndex(wr: T): CARDINAL RAISES {};
PROCEDURE Seekable(wr: T): BOOLEAN RAISES {};
PROCEDURE Closed(wr: T): BOOLEAN RAISES {};

PROCEDURE Buffered(wr: T): BOOLEAN RAISES {}:

These procedures return len(wr), cur(wr), seekable(wr), closed(wr),
and butfered(wr), respectively.

END Wr.

3 The Rd interface

AnRd.T (or “reader”) is a character input stream. The basic operation on a reader is
GetChar, which returns the source character at the “current position” and advances
the current position by one. Some readers are “seckable”, which means that they also
allow setting the current position anywhere in the source. For example, readers from
random access files are seckable; readers from terminals and sequential files are not.

Some readers arc “intermittent”, which means that the source of the reader trickles in
rather than being available to the implementation all at once. For example, the input
stream from an interactive terminal is intermittent. An intcrmittent reader is never
seekable.

Abstractly, a reader rd consists of

6 10 STREAMS

len(rd) the number of source characters

src(rd) a sequence of length len(rd)+1

cur(rd) an integer in the range [0..1len(xd)]
avail(rd) an integer in the range [cur(rd)..len(xrd)+1]
closed(rd) a boolean

seekable(rd) a boolean

intermittent(xrd) aboolean

These values are not necessarily directly represented in the data fields of a reader
object, but conceptually they determine the state of the reader. In particular, for an
intermittent reader, 1en(rd) may be unknown to the implementation, but it still exists
in the aforementioned God’s-eye view.

The sequence src(rd) is zero-based: sre(rd) [i] is valid for i from O to len(xd).
The first 1en(xd) elements of src are the characters that are the source of the reader.
The final element is a special value eof used to represent end-of-file. The value eof is
not a character.

The value of cur (rd) is the index in src(rd) of the next character to be returned by
GetChar, unless cur(rd) = len(rd),in which case a call to GetChar will raise the
exception End0fFile,

The value of avail(xd) is important for intermittent readers: the elements whose
indexes in sxc(rd) are in the range [cur(xd)..avail(rd)-1] are available to the
implementation and can be read by clients without blocking. If the client tries to
read further, the implementation will block waiting for the other characters. If rd is
not intermittent, then avail(rd) is equal to Len(rd)+1. If rd is intermittent, then
avail(rd) can increase asynchronously, although the procedures in this interface are
atomic with respect to such increases.

The definitions above encompass readers with infinite sources. If rd is such a reader,
then 1len(xd) and len(xd)+1 are both infinity, and there is no final eof value.

Every reader is a monitor; that is, it contains an internal lock that is acquired and held
for each operation in this interface, so that concurrent operations will appear atomic.
For faster, unmonitored access, see the UnsafeRd interface (Section 7).

Since there are many classes of readers, there are many ways that a reader can break—
for example, the connection to a terminal can be broken, the disk can signal a read
error, etc. All problems of this sort are rcported by raising the exception Failure.
Each reader class should specify what failures it can raise and how they are encoded in
the argument to Failure (which has type REFANY).

Illegal operations raisc the exception Exror,

Many operations on a reader can wait indefinitcly. For example, GetChar can wailt if
the user is not typing. In general these waits arc alertable, so each procedure that might
wait includes Thread . Alerted in its RAISES clause.

3. THE RD INTERFACE 7

The remainder of this section is a listing of the Rd interface, together with comments
specifying the effect of each procedure.

INTERFACE Rd;
FROM Thread IMPORT Alerted;

TYPE
T <: ROOT;
Code =
{Closed, Unseekable, Intermittent, CantUnget};
EXCEPTION EndOfFile; Failure(REFANY); Error(Code);

PROCEDURE GetChar(rd: T): CHAR
RAISES {EndOfFile, Failure, Alerted, Error}:

Return the next character from rd. More precisely, this is equivalent to the
following, in which res is a local variablc of type CHAR:
IF closed(rd) THEN RAISE Error(Code.Closed) END;
Block until avail(rd) > cur(rd);
IF cur(rd) = len(rd) THEN
RAISE EndOfFile
ELSE

res := src(rd)[cur(rd)]; INC(cur(rd)); RETURN res
END

PROCEDURE EOF(rd: T): BOOLEAN RAISES {Failure, Alerted, Error};

Return TRUE iff rd is at end-of-file. More precisely, this is equivalent to:

IF closed(rd) THEN RAISE Error(Code.Closed) END;
Block until avail(rd) > cur(rd);
RETURN cur(xrd) = len(rd)

Notice that on an intermittent reader, EOF can block. For example, if there are
no characters buffered in a terminal reader, EOF must wait to see if the user
types the end-of-file escape. If you are using EOF in an interactive input loop,
the right sequence of operations is:

1. prompt the user
2. call EOF, which probably waits on user input
3. presuming that EOF returned FALSE, rcad the user’s input

PROCEDURE UnGetChar(rd: T) RAISES {Error}

“Pushcs back” the last character read from rd, so that the next call to GetChar
will read it again. More preciscly, this is equivalent to the following

8 10 STREAMS

IF closed(rd) THEN RAISE Error(Code.Closed) END;
IF cur(rd) > O THEN DEC(cur(rd)) END

except there is a special rule: UnGetChar(rd) is guaranteed to work only if
GetChar(rd) was the last operation on rd. Thus UnGetChar cannot be called
twice in a row, or after Seek or EOF. If this rule is violated, the implementation
is allowed (but not required) to raisc Error (CantUnget).

PROCEDURE CharsReady(rd: T): CARDINAL RAISES {Failure}

Return some number of characters that can be read without indefinite wait-
ing. The *“end of file marker” counts as one character for this purpose, so
CharsReady will return 1, not 0, if EOF(xd) is true. More precisely, this is
equivalent to the following:

IF closed(rd) THEN RAISE Error(Code.Closed) END;
IF avail(rd) = cur(rd) THEN
RETURN 0
ELSE
RETURN some number in the range [1 .. avail(rd) - cur(rd)]
END;

Warning: CharsReady can return a result less than avail(rd) - cur(rd);
also, more characters might trickle in just as CharsReady returns. So the code
to flush buffered input without blocking requires a loop:

LOQP

n := Rd.CharsReady(rd);

IF n = 0 THEN EXIT END;

FOR i := 1 TO n DO EVAL Rd.GetChar(xrd) END
END;

PROCEDURE GetSub(
rd: T;
VAR (*out*) str: ARRAY OF CHAR)
: CARDINAL
RAISES {Failure, Alerted, Error};

Read from rd into str until rd is exhausted or str is filled. More precisely,
this is equivalent to the following, in which i is a local variablc:
i := 0;
WHILE NOT EOF(rd) AND i # NUMBER(str) DO
str(i] := GetChar(rd);
INC(1)
END;
RETURN 1

3. THE RD INTERFACE 9

PROCEDURE GetSubLine(
rd: T;
VAR (*out*) str: ARRAY OF CHAR): CARDINAL
RAISES {Failure, Alerted, Error};

Read from rd into str until a newlinc is read, rd is exhausted, or sub is filled.
More precisely, this is equivalent to the following, in which i is a local variable:
i:= 0;
WHILE
NOT EOF(xrd) AND
i # NUMBER(str) AND
(i = 0 OR str[i-1] # ’\n’)
DO
strli] := GetChar(rd);
INC(i)
END;
RETURN i

PROCEDURE GetText (
rd: T;
len: INTEGER)
: TEXT
RAISES {Failure, Alerted, Error};

Read from rd until it is exhausted or 1en characters have been read, and return
the result as a TEXT. More precisely, this is equivalent to the following, in which
i and res are local variables:
res := ""; i := 0;
WHILE NOT EOF(rd) AND i # len DO
res := res & Text.FromChar(GetChar(rd));
INC(i)
END;
RETURN res

PROCEDURE GetLine(rd: T): TEXT
RAISES {End0fFile, Failure, Alerted, Error};

If EOF (rd) then raise End0fFile. Otherwise, read characters until a newline
is read or rd is exhausted, and rcturn the result as a TEXT—but discard the final
newline if it is present. More preciscly, this is equivalent to the following, in
which ch and res are local variables:

10 10 STREAMS

IF EOF(rd) THEN RAISE EndOfFile END;
res := ""; ch := ’\000’; (* any char but newline *)
WHILE NOT EOF(rd) AND ch # ’\n’ DO

ch := GetChar(xrd);

IF ch # ’\n’ THEN res := res & Text.FromChar(ch) END
END;
RETURN res

PROCEDURE GetIndex(rd: T): CARDINAL RAISES {};

This is equivalent to:

IF closed(rd) THEN

RAISE Error(Code.Closed)
ELSE

RETURN cur(rd)
END

PROCEDURE GetLength(rd: T): CARDINAL
RAISES {Failure, Alerted, Error};

This is equivalent to:

IF closed(rd) THEN
RAISE Error(Code.Closed)
ELSIF intermittent(rd) THEN
RAISE Error(Code.Intermittent)
ELSE
RETURN len(xrd)
END

PROCEDURE Seek(rd: T; n: CARDINAL) RAISES {Failure, Alerted, Error};

This is equivalent to:

IF closed(rd) THEN

RAISE Error(Code.Closed)
ELSIF NOT seekable(rd) THEN

RAISE Error(Code.Unseekable)
ELSE

cur(rd) := MIN(n, len(xd))
END

PROCEDURE Close(rd: T) RAISES {Failure, Alerted};

Release any resources associated with rd and set closed(rd) := TRUE.
The documentation of a procedurc that creates a reader should specify what
resources are released when the reader is closed. This lcaves xd closed even if
it raises an exception, and is a no-op if rd is closed.

4. THE STDIO AND FILESTREAM INTERFACES 11

PROCEDURE Intermittent(rd: T): BOOLEAN RAISES {}:
PROCEDURE Seekable(rd: T): BOOLEAN RAISES {}:

PROCEDURE Closed(rd: T): BOOLEAN RAISES {};
Return intermittent(rd),seekable(rd), and closed(rd), respectively.
END Rd.

4 The Stdio and FileStream interfaces

The interface Stdio provides streams for standard input, standard output, and standard
error:

INTERFACE Stdio;
IMPORT Rd, Wr;

VAR
stdin: Rd4.T;
stdout: Wr.T;
stderr: Wr.T;

END Stdio.

The initialization of these streams depends on the underlying operating system. If the
output streams are directed to terminals, they should be unbuffered, so that explicit
Wr.Flush calls are unnecessary for interactive programs. If the streams are directed
to or from random-access files, they should be seckable. It is possible that stderr =
stdout; therefore, programs that perform seck operations on stdout should take care
not to destroy output data when writing error messages.

The FileStream interface provides simple routines for opening files. The detailed
semantics of the file system vary greatly from system to system, so it is to be expected
that this interface will grow in different dircctions in different systems. But all systems
should be able to implement the following very weakly-specified interface, and thereby
provide a measure of portability for simplc clients.

The interface doesn’t specify whether the readers and writers returned by the procedures
are seckable or buffered. Probably rcaders and writers to disk files are seekable and
buffered, but in general this depends on the system. Similarly, none of the procedures in
the interface have raises clauses, since the errors they can raise are system-dependent.

Closing a file reader or writer closes the underlying file.

12

10 STREAMS

INTERFACE FileStream;
IMPORT Rd, Wr;

PROCEDURE OpenRead(n: TEXT): R4.T;

Return a reader whose source is the contents of the file named n.

PROCEDURE OpenWrite(n: TEXT): Wr.T;

Return a writer whose target is the contents of the file named n. If the file does
not exist it will be created; if it does exist it will be truncated to length zero.

PROCEDURE OpenAppend(n: TEXT): Wr.T;

Return a writer whose target is the contents of the file named n. If the file does
not exist it will be created; if it does exist then the writer will be positioned to
append to the existing contents of the file.

END FileStream.

5 The WrClass interface

There is no end to the number of useful classes of readers and writers. Here are a few
examples from SRC’s standard libraries:

Tee writers, which write copies of their stream to each of two other writers. The
name comes from the Unix program “tee”, which performs a similar function
in the realm of pipes. The most common use is to write to a terminal and to a
logfile at the same time.

Various ways to make new readers from old readers: for example, by concate-
nation, subsequencing, duplication, and filtering.

Split writers, which are intended for use by applications that use parallel threads
writing to a single writer. Split writers keep the output from each thread
separate; this creates the illusion that one thread writes all of its output before
the next thread starts writing its output.

Local pipes, in which a reader is connected to a writer so that its source is the
writer’s target.

Foﬁnalted writers, in which the client can mark the start and end of logical
objects and specify desirable places to break the objects into lines. Formatted
writers are basic tools for building pretty printers.

It is beyond the scope of this paper to describe these classes in detail. Instead we will
describe the interfaces that allow you to define new classes.

5. THE WRCLASS INTERFACE 13

The basic idea is thatreaders and writers are objects whose method suites are determined
by their class. In the most naive version of this idea, a writer class’s putChar method
would determine the effect of Wr . PutChar for writers of the class:

PutChar(wr, ch) = wr.putChar(ch)

The putChar method for a terminal writer would send characters to the terminal; while
the method for a disk file writer would send characters to the disk, etc.

There are two reasons for rejecting this naive version. The first reason is that it
is inefficient to call a method for every PutChar, The second and more important
reason is that most writers are buffered, and it is undesirable to force every client to
reimplement buffering.

We implement PutChar and GetChar by class-independent code operating on a buffer;
class-dependent code is invoked only when the buffer fills up (in the case of a writer)
or empties (in the case of a reader).

In this section we define the WrClass interface, which reveals the buffer structure
in a writer object. New writer classes are created by importing WrClass (to gain
access to the buffer and the methods) and then defining a subclass of Wr.T whose
methods provide the new class’s behavior. The private fields that are needed by the

class-independent code but are irrelevant to the buffer structure are lumped together
into the opaque type Private.

INTERFACE WrClass;

IMPORT W¥r;

FROM Thread IMPORT Alerted;
FROM Wr IMPORT Failure, Error;

TYPE
Private <: ROOT;

REVEAL
Wr.T = Private BRANDED OBJECT
buff: REF ARRAY OF CHAR;
st: CARDINAL; (* index into buff *)
lo, hi, cur: CARDINAL; (* indexes into c(wr) *)
closed, seekable, buffered: BOOLEAN
METHODS
seek (n: CARDINAL) RAISES {Failure, Alerted, Error};
length(): CARDINAL
RAISES {Failure, Alerted, Error} := LengthDefault;
flush () RAISES {Failure, Alerted, Error} := FlushDefault;
close () RAISES {Failure, Alerted, Error} := CloseDefault
END;

14 10 STREAMS

Let wr be a writer, which abstractly is given by ¢(wr), target(wr), cur(wr),
closed(wr), seekable(wr), buffered(wr). The actual representation of wr is
an object of type Wr.T. The wr.cur, wr.closed, wr.seekable, and wr.buffered
fields in the object represent the corresponding abstract attributes of wr. The wr . buft,
wr.st, wr.lo, and wr.hi fields in the object represent a buffer containing the
unflushed part of c(wr). The target of the writer is represented in some class-specific
way, which is not specified by this interface.

More precisely, we say that the state of the writer object wr is valid if the following
conditions V1 through V4 hold:

V1. the cur field and the booleans are correct:

wr.cur = cur(wr) AND
wr.closed = closed(wr) AND
wr.buffered = buffered(wr) AND
vr.seekable = seekable(wr)

V2. the indexes of any unflushed characters are in the range {lo..cur-1]. That
is, forall i notin [wr.lo..wr.cur-1],

c(wr) [i] = target(wr)[i]

V3. the (possibly) unflushed characters are stored in buff starting with buff [st].
That is, for all i in [wr.lo..wr.cur-1],
c(ur)[i] = wr.bufflwr.st + i - wr.lo]

(Usually st is zero. Non-zero valucs may be useful to satisfy buffer alignment
constraints.)

V4. the current position is either contained in the buffer, or just past the buffer:

wr.lo <= wr.cur <= wr.hi

It is possible that buff = NIL in a valid state, since the range of i’s in V3 can be
empty; for example, in case 1o = cur,

We say that the state is ready if the buffer contains the current position; that is, if

NOT wr.closed
AND wr.buff # NIL
AND wr.lo <= cur(wr) < wr.hi

If the state is ready, then Wr. PutChar can be implemented by storing into the buflcr.
The class-independent code in WrRep docs cxactly this, until the buffer is full, at which
point it calls a class method to consume the buffer and provide a ncw one.

In general, the class-independent code modifics cur and buff[i] for i in the range
[st..st+(hi-1)-10], but not the buff reference itself, st, 1o, or hi. The class-
independent code locks the writer before calling any methods; therefore, no two mcthod

5. THE WRCLASS INTERFACE 15

activations initialized by the class-independent code will be concurrent. A method
must not apply operations from the Wr interface to the writer itself, or deadlock will
result.

Here are the specifications for the methods:

The method call wr.seek(n) treats n as a position to seek to, and moves the buffer to
contain this position. More precisely:

Given a valid state, wr.seek(n) must produce a valid ready state in which
wr.cur = MIN(n, len(wr)) and c¢(wr) is unchanged.

An important special case is whenn = wr.cur = wr.hi;thatis, when the buffer has
overflowed and the effect of the seck is simply to advance from the last character of a
buffer to the first character of a new buffer. Every writer class (seekable or not) must
provide a seek method that supports this special case. The method must support the
general case only if the writer is seckable.

The £1ush method updates the underlying target of the writer. That is:

Given a valid state, wr.flush() must produce a valid state in which c(wr)
and cur (wr) are unchanged and target(wr) = c(wr).

If a writer is unbuffered, the class-indcpendent code will call the flush method after
every modification to the buffer.

The close method releases all resources associated with a writer. That is:

Givena valid state in which target (wr) = c(wr),thecallwr.close() must
release all resources associated with wr.

The exact meaning is class-specific. Validity is not required when the method returns,
since after it returns, the class-independent code will set the closed bit in the writer,
which makes the rest of the state irrelevant, even if it is invalid.

The 1ength method returns the length of the writer. That is:

Given a valid state, wr.length() must return len(wr), leaving a valid state
in which c(wr) and cur(wr) arc unchanged.

The next two procedures are needed to code class-specific operations.
PROCEDURE Lock(wr: Wr.T) RAISES {};

The writer wr must be unlocked; lock it and make its state valid.

PROCEDURE Unlock(wr: Wr.T);

The writer wr must be locked and valid; unlock it and restore the private
invariant of the writer implcmentation,

16 10 STREAMS

A class-specific operation on a writer wr should use the following template:
Lock(wr); TRY ... FINALLY Unlock(wr) END

The methods don’t have to do this, since the class-independent code automatically
locks and unlocks the writer around method calls. The next section provides examples
of the use of Lock and Unlock,

The last declarations in the interface are for the default methods:

PROCEDURE LengthDefault(wr: Wr.T): CARDINAL RAISES {};
PROCEDURE CloseDefault(wr: Wr.T) RAISES {};

PROCEDURE FlushDefault(wr: Wr.T) RAISES {};

LengthDefault returns wr.cur, while CloseDefault sets wr.buff to NIL
and FlushDefault is a no-op.

END WrClass.

6 Text writers

As an example of a writer class implementation, this section describes a simplified
version of text writers.

The target of a text writer is an internal buffer whose contents can be retrieved as a
TEXT. Retrieving the buffer resets the target to be empty.

Text writers are buffered and unseckable, and never raise Failure or Alerted. The
fact that they are buffered is essentially unobservable, since there is no way for the
client to access the target except through the text writer. The interface is:

INTERFACE TextVWr;
IMPORT Wr;

TYPE T <: Wr.T;
PROCEDURE New(): T;

Return a new text writer withec = "", cur = 0,

PROCEDURE ToText(wr: T): TEXT;
Return ¢ (wr), resetting c (wr) to """ and cur (wr) to zero.

END TextWr.

6. TEXT WRITERS 17

Next we describe a very simple implementation of text writers. A fast implementation
would probably import the private representation of the Text interface.

MODULE TextWr;

IMPORT Wr, WrClass, Text;
FROM Wr IMPORT Failure;
EXCEPTION FatalError;

REVEAL
T = Wr.T BRANDED OBJECT text: TEXT END;

CONST BuffSize = 500;

A single buffer of the given size is used; each time it fills up, its characters are appended
to text. That is, the representation invariant for a text writer wr is

target(wr) = wr.text & SUBARRAY(wr.buff~, 0, wr.cur-wr.lo)
Notice that since wr is unseekable, Llen (wr) is always equal towr. cur.

PROCEDURE New(): T =

BEGIN
RETURN
NEW(T,
st := 0,
lo := 0,
cur := 0,

hi := BuffSize,

buff := NEW(REF ARRAY OF CHAR, BuffSize),
closed := FALSE,

seekable := FALSE,

buffered := TRUE,

seek := Seek,
close := Close,
text := "")

END New;

18 10 STREAMS

PROCEDURE Seek(wr: T; n: CARDINAL) RAISES {Failure} =
BEGIN
IF wr.cur # n THEN
RAISE FatalError (* Bug in WrRep =)

END;
wr.text := wr.text &
Text.FromStr (SUBARRAY(wr.buff~, 0, wr.cur - wr.lo));
wr.lo := wr.cur;
wr.hi := wr.lo + NUMBER(wr.buff")
END Seek;

PROCEDURE Close(wr: T) RAISES {}
BEGIN wr.buff := NIL; wr.text :

NIL END Close;

PROCEDURE ToText(wr: T): TEXT =

VAR
result: Text.T;
BEGIN
WrClass.Lock(wr);
TRY
wr.seek(wr.cur);
result := wr.text;
wr.text := "";
wr.cur := 0;
wr.lo := 0;
wr.hi := NUMBER(wr.buff")
FINALLY
WrClass.Unlock(wr)
END;
RETURN result
END ToText;

BEGIN END TextWr.

7 The unsafe interfaces

The routines in the UnsafeWr and UnsafeRd interfaces are like the corresponding
routines in the Wr and Rd interfaces, but it is the clicnt’s responsibility to lock the stream
before calling them. The lock can be acquired once and held for several opcerations,
which is faster than acquiring the lock for each operation, and also makes the whole

7. THE UNSAFE INTERFACES 19

group atomic. Danger is the price of speed: it is an unchecked runtime error to call
one of these operations without locking the stream.

The UnsafeWr interface also provides routines for formatted printing of integers and
reals. Using them is more efficient but less convenient than using the Fmt interface
(described in the first edition of the Modula-3 report [3]). For example, the statement

Wr.PutText(wr, "Line " & Fmt.Int(n) & " of file " & f)

could be replaced with the following faster code:

LOCK wr DO
FastPutText(wr, "Line ");
FastPutlInt (wr, n);
FastPutText(wr, " of file ");
FastPutText(wr, f)

END

If several threads are writing characters concurrently to the same writer, treating each
PutChar as an atomic action is likely to produce inscrutable output—it is usually
preferable if the units of interleaving are whole lines, or even larger. It is therefore
convenient as well as efficient to import UnsafeWr and use LOCK clauses like the one
above to make small groups of output atomic. But don’t forget to acquire the lock!
If you call one of the routines in this interface without it, then the unsafe code in
WrRep might crash your program in a rubble of bits. A historical note: the main
public interface to Modula-2+ writers used the unsafe, unmonitored routines. Errors
were more frequent than expected, mostly because of concurrent calls to Wr.Flush
or Wr.Close, which often occur as implicit finalization actions when the programmer
doesn’t expect them. In the Modula-3 design we have therefore made the main
interfaces safe.

Here is the interface:

UNSAFE INTERFACE UnsafeWr;
IMPORT Wr, Thread;

FROM Thread IMPORT Alerted;
FROM Wr IMPORT Failure, Error;
FROM Fmt IMPORT Base, Style;

REVEAL
Wr.T <: Thread.Mutex;

Thus an importer of UnsafeWr can write code like LOCK wr DO ... END,

PROCEDURE FastPutChar(wr: Wr.T; ch: CHAR)
RAISES {Failure, Alerted, Error};

Like Wr . PutChar, but wr must be locked (as in all routines in the interface).

20 10 STREAMS

PROCEDURE FastPutText(wr: Wr.T; t: TEXT)
RAISES {Failure, Alerted, Error};

Like Wr.PutText.

PROCEDURE FastPutString(wr: Wr.T; a: ARRAY OF CHAR)
RAISES {Failure, Alerted, Error};

Like Wr.PutString.

PROCEDURE FastPutInt(wr: Wr.T; n: INTEGER; base := 10)
RAISES {Failure, Alerted, Error};

Like Wr.PutText(wr, Fmt.Int(n, base)).

PROCEDURE FastPutReal(
wr: Wr.T;
r: REAL;
precision: CARDINAL := 6;
style := Style.Mix)
RAISES {Failure, Alerted, Error};

Like Wr.PutText(wr, Fmt.Real(wr, precision, style)).

PROCEDURE FastPutLongReal(
wr: Wr.T;
r: LONGREAL;
precision: CARDINAL := 6;
style := Style.Mix)
RAISES {Failure, Alerted, Error};

Like Wr.PutText (wr, Fmt.LongReal(wr, precision, style)).
END UnsafeWr.

The UnsafeRd interface is similar, but GetChar and Eof are the only operations that
are sufficiently performance-critical to be included:

UNSAFE INTERFACE UnsafeRd;

IMPORT Rd, Thread;

FROM Thread IMPORT Alerted;

FROM Rd IMPORT Failure, Error, EndOfFile;

REVEAL
Rd.T <: Thread.Mutex;

8. THE WRREP MODULE 21

PROCEDURE FastGetChar(rd: Rd.T): CHAR
RAISES {End0fFile, Failure, Alerted, Error};

Like Rd.GetChar, but rd must be locked.

PROCEDURE FastEOF(xrd: Rd.T): BOOLEAN
RAISES {Failure, Alerted, Error};

Like Rd . EOF, but rd must be tocked.
END UnsafeRd.

8 The WrRep module

Finally we come to the machine-dependent part of the design: the unsafe modules
that make the common operations fast. These modules can be reprogrammed to take
advantage of the character manipulation instructions available on a particular machine.
The versions of the modules presented here assume that bytes are addressable, and
achieve efficiency by doing arithmetic on byte pointers. They also assume that the
garbage collector is not relocating, that concurrent assignments to references are
atomic, and that character arrays are packed.

UNSAFE MODULE WrRep EXPORTS Wr, WrClass, UnsafelWr;
IMPORT Thread, Fmt, Text;

FROM Thread IMPORT Alerted;

EXCEPTION FatalError;

REVEAL
Private =
Thread.Mutex BRANDED OBJECT
next, stop: UNTRACED REF CHAR := NIL;
buffP: REF ARRAY OF CHAR
END;

Recall that a Wr. T was defined in WrClass to consist of the Private fields followed
by the buffer structure. The Private ficlds start with a Thread.Mutex, which is as
expected, since UnsafeWr revealed that Wr. T is a subtype of Thread. Mutex.

The basic idea is that wr .next points at the character of wr.buf?f that will be written
by the next call to PutChar. The fast path through FastPutChar writes this character
and advances wr.next, until wr.next = wr.stop, at which point the code takes a
slower path:

<*INLINE*> PROCEDURE FastPutChar(wr: T; ch: CHAR)
RAISES {Failure, Alerted, Error} =

22 10 STREAMS

(* wr is clean (see below) and locked. *)

BEGIN
IF wr.next # wr.stop THEN
wr.next":= ch;
INC(wr.next, ADRSIZE(CHAR))
ELSE
SlowPutChar(wr, ch)
END

END FastPutChar;
(* wr is clean and locked *)

Notice that FastPutChar does not update wr.cur, and therefore does not maintain
the validity of wr. This saves time, and the correct value for wr . cur can be computed
from wr.next whenever a valid state is required.

We call a writer “clean” if it satisfies the invariant of FastPutChar; we wiil
derive the precise definition of this invariant bit by bit. First, since the fast path
through FastPutChar implements PutChar by storing into the buffer and not flushing
afterwards, we conclude that a clean writer wr must satisfy the following condition:

Cl. Ifwr.next # wr.stop, then wr is buffered and ready, and

wr.next = ADR(wr.buff{wr.st + cur(wr) - wr.lel))
Notice the use of cur (wr) instead of wr. cur, since the latter value may be invalid.

A noteworthy consequence of C1 is that in a clean writer, wr.next = NIL implies
wr.stop = NIL. (If wr.next were NIL but wr.stop were not, then C1 would imply
that NIL was a buffer address, which is nonscnse.) Because both fields default to NIL,
anewly-allocated writer will satisfy C1. The first call to FastPutChar on a new writer
will take the slow path, which can set up the pointers so that subsequent calls will be
fast.

Next, consider that when the fast path of FastPutChar fills the buffer it must preserve
C1; therefore it must make next = stop if it fills the buffer. Thus a clean writcr wr
must satisfy

C2. If wr.next # wr.stop, then

wr.stop =
ADR(wr.buff[wr.st + (wr.hi - 1) - wr.lo]) + ADRSIZE(CHAR)

You might think that this equation could be simplified by removing the “-~ 1” from
inside the subscript and the “+ ADRSIZE(CHAR)” from outside, but this would access
a non-existent array element if stop points just past the end of buff. The fast path
through FastPutChar maintains C2, since it doesn’t affect the consequent, and it can
only make the antecedent false.

8. THE WRREP MODULE 23

Next, consider that it must be possible to make a clean writer valid, for example, in
order to call its methods. We will do this by updating the cur field. It follows that
the lagging cur field must be the only violation of validity; that is, a clean writer wr
satisfies

C3. All the validity conditions V1 through V4 defined in WrClass hold for wr,
except that the equation for wr . cur in V1 may fail.

Inspection shows that the fast path through FastPutChar maintains C3.

To make a clean writer valid we will compute the correct value for wr.cur from
wr.next using the equation in C1. Unfortunately, C1 requires that this equation hold
only when wr.next # wr.stop, but we will often need to make a clean writer valid
when these pointers are equal; for example, when the buffer fills. We therefore add a
condition that says that the equation holds whenever wr.next is not NIL:

C4. If wr.next # NIL, then
(wr.next = ADR(wr.bufflwr.st + cur(wr) - wr.lol)))

The fast path through FastPutChar maintains C4, since it increments both sides of
the equality by one.

Finally, we must deal with the case wr.next = NIL, which is the case in a writer that
is newly allocated by the runtime system. Such a writer will be valid, since it was
given to us by a class implementation, and we have not yet invalidated it by any calls
to FastPutChar. Thus we conclude that a clean writer wr satisfies:

CS. If wr.next = NIL, then wr is valid.

The fast path through FastPutChar maintains CS5, since it maintains the stronger
invariant wr .next # NIL.

We define a writer to be clean if it satisfies C1-C5.

Conditions C3, C4, and C5 justify the following procedure for making a clean writer
valid:
<*INLINE*> PROCEDURE MakeValid(wr: T) =
(* wr is locked and clean. *)
BEGIN
IF wr.next # NIL THEN
wr.cur :=
wr.lo + (wr.next - ADR(wr.buff(wr.st])) DIV ADRSIZE(CHAR)
END
END MakeValid;
(* wr is locked, clean, and valid *)

The rcverse operation, MakeClean, scts the next and stop pointers to produce a clean
state. It also returns a boolean indicating whether the writer is recady. Here is its spec:

24 10 STREAMS

PROCEDURE MakeClean(wr: T): BOOLEAN

Assuming wr is valid and locked, set wr.next and wr.stop to produce a valid
clean state; furthermore if wr is ready and buffered, make wr.next different
from wr.stop. Return TRUE if and only if the state is ready.

MakeClean has two uses: to reset the next and stop pointers after a class method
has accessed the buffers, and to reset the pointers from their initial NIL values the first
time a writer is encountered by this module. (In the second case, MakeClean is being
applied to a writer that is already clean, in spite of its name.)

Before listing the implementation of MakeClean, we will see how it is used in the code
for SlowPutChar, which is a long but straightforward case analysis, as is usual for the
slow path that takes care of all the cases that are ignored in the fast path:

PROCEDURE SlowPutChar(wr: T; ch: CHAR)
RAISES {Failure, Alerted, Error} =
(* wr is clean and locked; wr.next = wr.stop. *)
BEGIN
IF wr.closed THEN
RAISE Error(Code.Closed)
END;
(* First goal is to make wr valid *)
IF wr.next # NIL THEN
MakeValid(wr)
ELSE
(* wr is already valid; but might be newly allocated. *)
EVAL MakeClean(wr)
(* wr is valid and clean, and if wr is ready
and buffered, then wr.next is non-NIL *)
END;
(* wr is valid and clean *)
IF wr.cur = wr.hi THEN
(* wr is valid, clean, and full *)
wr.seek(wr.cur);
(* wr is valid and ready *)
IF NOT MakeClean(wr) THEN
RAISE FatalError (* Seek method erred *)
END
(* wr is valid, clean, and ready *)
END;
(* wr is valid, clean, and ready *)
IF wr.next # wr.stop THEN
wr.next”~ := ch;
INC(wr.next, ADRSIZE(CHAR))

8. THE WRREP MODULE 25

ELSE
(* wr is unbuffered *)
wr.buff[wr.st + wr.cur - wr.lo] := ch;
INC(wr.cur);
wr.flush()
END
END SlowPutChar;

Here is the implementation of MakeClean, which is short but tricky:

PROCEDURE MakeClean(wr: T): BOOLEAN =
BEGIN
wr.buffP := wr.buff;

IF (wr.lo <= wr.cur) AND (wr.cur < wr.hi)
AND (wr.buffP # NIL) AND (NOT wr.closed)

THEN
(* wr is ready *)
wr.next := ADR(wr.buffP[wr.st + wr.cur - wr.lel);
wr.stop :=

ADR(wr.buffP[wr.st + wr.hi - wr.lo - 1]) + ADRSIZE(CHAR);
IF wr.stop < wr.next THEN
RAISE FatalError (* Who changes wr without the lock? *)
END;
IF NOT wr.buffered THEN wr.stop := wr.next END;
RETURN TRUE
ELSE
(* wr is not ready *)
wr.stop := NIL;

wr.next := NIL;
RETURN FALSE
END

END MakeClean;

The language requires that this procedure avoid unchecked runtime errors even if a
buggy class implementation is modifying the writer without holding the lock. The un-
safe operations in this module are the computations of wr .next and wr . stop, together
with the increment to wr.next. The danger is that errors in the address arithmetic
could make wr . next point somewhere outside of wr . buff, causing PutChar to spray
characters randomly into memory. To prevent this, it suffices to ensure that these two
pointers both point into the array wr.buff~ (or immediately after the array) and that
they are in the proper order. MakeClean guarantees this, since

1. After copying wr.buff into wr.buffP, it uses wr.buffP for the rest of the
computation, so it won’t matter if wr . buff changes concurrently. (Recall that
we are assuming that reads and writcs of references are atomic.)

26 IO STREAMS

2. In the computation of wr.next and wr.stop, the subscripts into wr.buffP
will be checked, and a runtime error will occur if they are out of range, even if
wr.st,wr.cur,wr.hi,and wr.1lo are changing concurrently.

3. The program checks that wr.next precedes wr . stop after computing them.

4. The program maintains wr.buffP equal to wr.buff, which guarantees that
wr.buff” will not be collected, even if a buggy class implementation changes
wr.buff without locking the writer.

All of this may seem like paranoia, but the rule is that a module exporting a safe
interface must guarantee that no programing error by a safe client of that interface can
lead to an unchecked runtime error. Changing the buffer structure without locking the
writer is a possible programming error by a client of WrClass, We therefore must
program WrRep in such a way that this error cannot lead to an unchecked runtime error.
Otherwise we would have to add the word “UNSAFE” to the WrClass interface.

A client of UnsafeWr could call FastPutChar concurrently from two threads, which
could advance next past stop and clobber memory. We have no defense against this,
which is why UnsafeWr is unsafe.

The remainder of the program is straightforward:

PROCEDURE Lock(wr: T) =
BEGIN
Thread.Acquire(wr);
MakeValid(wr)
END Lock;

PROCEDURE Unlock(wr: T) =
BEGIN
EVAL MakeClean(wr);
Thread.Release(wr)
END Unlock;

<*INLINE*> PROCEDURE PutChar(wr: T; ch: CHAR)
RAISES {Failure, Alerted, Error} =
(* wr must be unlocked. *)
BEGIN
LOCK wr DO FastPutChar(wr, ch) END
END PutChar;

We won’t present the code for the procedures PutText, PutString, FastPutText,
FastPutString, FastPutInt, FastPutReal, or FastPutLongReal, since they
don’t illustrate any interesting new points.

8. THE WRREP MODULE 27

PROCEDURE Seek(wr: T; n: CARDINAL) RAISES {Failure, Alerted} =
BEGIN
LOCK wr DO
IF NOT wr.seekable THEN
RAISE Error(Code.Unseekable)
END;
MakeValid(wr);
TRY wr.seek(n) FINALLY EVAL MakeClean(wr) END
END
END Seek;

PROCEDURE GetIndex(wr: T): CARDINAL RAISES {} =
BEGIN LOCK wr DO MakeValid(wr); RETURN wr.cur END END GetlIndex;

PROCEDURE Length(wr: T): CARDINAL RAISES {Failure, Alerted} =
BEGIN
LOCK wr DO
MakeValid(wr);
TRY RETURN wr.length() FINALLY EVAL MakeClean(wr) END
END
END Length;

PROCEDURE Flush(wr: T) RAISES {Failure, Alerted} =
BEGIN
LOCK wr DO
MakeValid(wr);
TRY wr.flush() FINALLY EVAL MakeClean(wr) END
END
END Flush;

PROCEDURE Close(wr: T) RAISES {Failure, Alerted} =
BEGIN
LOCK wr DO
IF NOT wr.closed THEN

MakeValid(wr);

TRY
wr.flush();
wr.close()

FINALLY
wr.closed := TRUE;
wr.next := wr.stop;
wr.buffP := NIL

28 10 STREAMS

END
END
END
END Close;

PROCEDURE Seekable(wr: T): BOOLEAN RAISES {} =
BEGIN
LOCK wr DO RETURN wr.seekable END
END Seekable;

PROCEDURE Closed(wr: T): BOOLEAN RAISES {} =
BEGIN
LOCK wr DO RETURN wr.closed END
END Closed;

PROCEDURE Buffered(wr: T): BOOLEAN RAISES {} =
BEGIN
LOCK wr DO RETURN wr.buffered END
END Buffered;

PROCEDURE CloseDefault{wr: T) RAISES {}
BEGIN wr.buff := NIL END CloseDefault;

PROCEDURE FlushDefault(wr: T) RAISES {}
BEGIN END FlushDefault;

PROCEDURE LengthDefault(wr: T): CARDINAL RAISES {} =
BEGIN RETURN wr.cur END LengthDefault;

BEGIN END WrRep.

The reader may feel that our uncompromising pursuit of safety and efficiency has
led to a design that is too complex. The program would be much simpler if WrRep
kept the writer valid at all times, and the cost would be only a few instructions per
operation. The point is that our design allows a range of implementations of WrRep.
We have presented one that illustrates the issues that arise at the boundary between
safe and unsafe code. Substituting a simpler ¥rRep would not affect clients of Wr or
of WrClass.

9. THE RDCLASS INTERFACE 29

9 The RdClass interface

The RdClass interface is analogous to the WrClass interface. It reveals that every
reader contains a buffer of characters together with methods for managing the buffer.
New reader classes are created by importing RdClass (to gain access to the buffer
and the methods) and then defining a subclass of Rd.T whose methods provide the
new class’s behavior. The opaque type Private hides irrelevant details of the
class-independent code.

INTERFACE RdClass;

IMPORT Rd;

FROM Thread IMPORT Alerted;
FROM Rd IMPORT Failure, Error;

TYPE
Private <: ROOT;
SeekResult = {Ready, WouldBlock, Eof};

REVEAL
Rd.T = Private BRANDED OBJECT
buff: REF ARRAY OF CHAR;
st: CARDINAL; (* index into buff *)
lo, hi, cur: CARDINAL; (* indexes into src(rd) *)
closed, seekable, intermittent: BOOLEAN;
METHODS
seek(dontBlock: BOOLEAN): SeekResult
RAISES {Failure, Alerted, Error};
length(): CARDINAL RAISES {Failure, Alerted, Error}
:= LengthDefault;
close() RAISES {Failure, Alerted, Error}
:= CloseDefault;
END;

Let rd be a reader, abstractly given by len(rd), src(xd), cur(rd), avail (xd),
closed(rd),seekable(rd),and intermittent (rd). The data fields cur, closed,
seekable, and intermittent in the object represent the corresponding abstract
attributes of rd. The buff, st, 1o, and hi ficlds represent a buffer that contains part
of stc(xd), the rest of which is represented in some class-specific way.

More preciscly, we say that a reader rd is valid if V1 through V3 hold:

V1. the characters of buff starting with st accurately reflect sxc. That is, for all i
inf(rd.lo .. rd.hi-1],

rd.buffl{rd.st + i - rd.lo] = src(xd)[i]

30 10 STREAMS

V2. if the cur field is in range, it is up-to-date:
cur(rd) = MIN(rd.cur, len(xd))

(This equation implies that rd.cur > len(rd) has exactly the same meaning as
rd.cur = len(rd). This convention allows the implementation to use “lazy seek-
ing”; that is, Rd . Seek can simply update rd. cur, without calling any class methods.)

V3. the reader does not claim to be both intermittent and seckable:
NOT (rd.intermittent AND rd.seekable)

It is possible that buff = NIL in a valid state, since the range of i’s in V1 may be
empty; for example, in case 1o = hi,

There is no requirement that cur (rd) be anywhere near rd.lo or rd.hi in a valid
state. If in fact cur (rd) lies between these values, we say the reader is ready. More
precisely, rd is ready if:

NOT rd.closed AND
rd.buff # NIL AND
rd.lo <= rd.cur < rd.hi

If the state is ready, then Rd. GetChar can be implemented by fetching from the buffer.

The class-independent code modifies rd. cur, but no other variables revealed in this
interface. The class-independent code locks the reader before calling any methods.

Here are the specifications for the methods:

The basic purpose of the seek method is to make the reader ready. To seek to a position
n, the class-independent code sets rd.cur := n; then if it is necessary to make the
reader ready, it calls rd. seek. As in the case of writers, the seck method can be called
even for an unseekable reader in the special case of advancing to the next buffer.

There is a wrinkle to support the implementation of CharsReady. If rd is ready, the
class-independent code can handle the call to CharsReady(rd) without calling any
methods (since there is at least one character ready in the buffer), but if rd.cur =
rd.hi, then the class independent code needs to find out from the class implementation
whether any characters are ready in the next buffer. Using the seek method to advance
to the next buffer won’t do, since this could block, and CharsReady isn’t supposed to
block. Therefore, the seek method takes a boolean argument saying whether blocking
is allowed. If blocking is forbidden and the next buffer isn’t ready, the method returns
the special value WouldBlock; this allows the class-independent code to return zero
from CharsReady.

More precisely,

Given a valid state with rd.seekable or rd.cur = rd.hi, the effect of
the callres := rd.seek(dontBlock) is to leave rd valid without changing

10. THE RDREP MODULE 31

the abstract state of rd. Furthermore, if res = Ready then rd is ready
and cur(rd) = rd.cur; while if res = Eof, then cur(rd) = rd.cur =
len(rd); and finally if res = WouldBlock then dontBlock was TRUE and
avail(rd) = cur(zd).

The 1ength method returns the length of a non-intermittent reader. That is:

Givenavalidstatein whichrd . intermittent isFALSE, thecallrd.length()
returns len(rd) without changing the state of rd.

The close method releases all resources associated with rd. The exact meaning of
this is class-specific. When the method is called the state will be valid; validity is not
required when the method returns (since after it returns, the class-independent code
will set the closed bit in the reader, which makes the rest of the state irrelevant).

The remainder of the interface is similar to the corresponding part of the WrClass
interface:

PROCEDURE Lock(rd: Rd.T) RAISES {};

The reader rd must be unlocked; lock it and make its state valid.

PROCEDURE Unlock(rd: Rd.T) RAISES {};

The reader rd must be locked and valid; unlock it and restore the private
invariant of the reader implementation.

PROCEDURE LengthDefault{(rd: Rd.T): CARDINAL
RAISES {Failure, Alerted, Error}:

PROCEDURE CloseDefault(rd: RA.T) RAISES
{Failure, Alerted, Error};

The procedure LengthDefault causes a checked runtime error, representing
the failure to supply a length method for a non-intermittent reader. The
procedure CloseDefault sets rd.buff to NIL.

END RdClass.

10 The RdRep module

This module is very similar to the WrRep module, so we will list its code with only
a few comments. We omit the straightforward implementations of the procedures
GetSub, GetSubLine, GetText, GetLine, Intermittent, Seekable, and Closed
from the Rd interface, and of all the procedures in the RdClass interface.

32 10 STREAMS

UNSAFE MODULE RdRep EXPORTS Rd, RdClass, UnsafeRd;
IMPORT Thread, Text;

FROM Thread IMPORT Alerted;

EXCEPTION FatalError;

REVEAL
Private =
Thread.Mutex BRANDED OBJECT
next, stop: UNTRACED REF CHAR := NIL;
buffP: REF ARRAY OF CHAR;
END;

The implementation of Rd.Seek is lazy. When a client calls Rd.Seek with an index
that does not lie within the buffer, Rd.Seek simply records the destination index in
rd.cur and sets both rd.next and rd.stop to NIL. When rd.next # NIL, the
Rd implementation ignores the value of rd.cur in determining cur(rd), but when
rd.next = NIL the Rd implementation uses the value of rd. cur.

A reader xd is *clean” if the following conditions hold (see the WrRep module for more
explanation):

Cl. Ifrd .next # rd.stop, then

Ready(rd) AND
(rd.next = ADR(rd.bufflrd.st + cur(rd) - rd.lel)

C2. Ifrd.next # rd.stop,then

rd.stop =
ADR(xd.bufflrd.st + (rd.hi - 1) - rd.lo]) + ADRSIZE(CHAR)

C3. The validity conditions V1 and V3 hold for rd.

C4. Ifrd.next # NIL then
(rd.next = ADR(rd.buffl[rd.st + cur(rd) - rd.lel)

CS. If rd.next = NIL, thenrd is valid.

10. THE RDREP MODULE 33

<*INLINE*> PROCEDURE MakeValid(rd: T) =
(* rd locked and clean *)

BEGIN
IF rd.next # NIL THEN
rd.cur :=
rd.lo + (rd.next - ADR(rd.buff([rd.st])) DIV ADRSIZE(CHAR)
END

END MakeValid;
(* rd is locked, clean, and valid. Furthermore, if rd.next#NIL,

then rd.cur=cur(rd); this is important for the implementation
of GetIndex. *)

PROCEDURE MakeClean(rd: T) =
BEGIN

rd.buffP := rd.buff;

IF (rd.lo <= rd.cur) AND
(rd.cur < rd.hi) AND
(rd.butfP # NIL)

THEN
rd.next :
rd.stop :=

ADR(rd.buffP[rd.st + rd.hi - rd.lo - 1]) + ADRSIZE(CHAR);
IF rd.stop < rd.next THEN
RAISE FatalError (* Who’s changing rd without the lock? *)

ADR(rd.buffP[rd.st + rd.cur - rd.lo});

END
ELSE
rd.stop := NIL;
rd.next := NIL
END

END MakeClean;

PROCEDURE SlowGetChar(xrd: T): CHAR
RAISES {EndOfFile, Failure, Alerted, Error} =
(* rd is locked and clean; rd.next = rd.stop *)
VAR res: CHAR;
BEGIN
IF rd.closed THEN RAISE Error(Code.Closed) END;
TRY
MakeValid(rd);
IF rd.seek(dontBlock := FALSE) = SeekResult.Eof THEN
RAISE EndOfFile
END

34 10 STREAMS

FINALLY
MakeClean(rd)
END;
IF rd.next = rd.stop THEN
RAISE FatalError (* Seek method didn’t make reader ready *)
END;
res := rd.next"”;
INC(rd.next, ADRSIZE(CHAR));
RETURN res
END SlowGetChar;

<*INLINE*> PROCEDURE GetChar(rd: T): CHAR
RAISES {EndOfFile, Failure, Alerted, Error}
(* rd is unlocked *)
BEGIN
LOCK rd DO RETURN FastGetChar(rd) END
END GetChar;

<*INLINE*> PROCEDURE FastGetChar(rd: T): CHAR
RAISES {End0fFile, Failure, Alerted, Error}
(* rd is locked *)
VAR res: CHAR;

BEGIN

IF rd.next # rd.stop THEN
res := rd.next";
INC(rd.next, ADRSIZE(CHAR))

ELSE
res := SlowGetChar(rd)

END;

RETURN res

END FastGetChar;

<*INLINE*> PROCEDURE EOF(rd: T): BOOLEAN
RAISES {Failure, Alerted, Error} =
(* rd is unlocked *)
BEGIN
LOCK rd DO RETURN FastEOF(rd) END
END EOF;

10. THE RDREP MODULE

<*INLINE*> PROCEDURE FastEOF(xrd: T): BOOLEAN

RAISES {Failure, Alerted, Error} =
(* rd is locked *)

BEGIN
IF rd.next # rd.stop THEN RETURN FALSE
ELSE RETURN SlowEOF(rd)
END

END FastEQF;

PROCEDURE SlowEOF(rd: T): BOOLEAN RAISES {Failure, Alerted} =
(* rd is locked; rd.next = rd.stop *)
VAR res: CHAR;
BEGIN
IF rd.closed THEN
RAISE Error(Code.Closed)
ELSE
MakeValid(rd);
TRY
RETURN rd.seek(dontBlock := FALSE) = SeekResult.Eof
FINALLY
MakeClean(xrd)
END
END
END SlowEQOF;

PROCEDURE UnGetChar(xrd: T) RAISES {Error} =
BEGIN
LOCK rd DO
IF rd.closed THEN RAISE Error(Code.Closed) END;
IF (rd.next = NIL) OR (rd.next = ADR(rd.buff[rd.st])) THEN
RAISE Error(Code.CantUnget)
END;
DEC(xd.next)
END
END UnGetChar;

PROCEDURE CharsReady(rd: T): CARDINAL
RAISES {Failure, Alerted, Error} =
BEGIN
LOCK rd DO
IF -rd.closed THEN RAISE Error(Code.Closed) END;
MakeValid(rd); B

36 10 STREAMS

IF NOT (rd.lo <= rd.cur AND rd.cur < rd.hi) THEN
TRY
IF rd.seek(dontBlock := TRUE) = SeekResult.Eof
THEN RETURN 1
END
FINALLY
MakeClean(xd)
END;
IF rd.cur > rd.hi THEN

RAISE FatalError (* Seek method erred *)
END

END;
RETURN rd.hi - rd.cur
END
END CharsReady;

PROCEDURE GetIndex(rd: T): CARDINAL

RAISES {Failure, Alerted, Error} =
BEGIN

LOCK rd DO
IF rd.closed THEN RAISE Error(Code.Closed) END;
MakeValid(rd);
IF rd.seekable AND (rd.next = NIL) THEN

rd.cur := MIN(xrd.cur, rd.length())
END;

RETURN rd.cur
END
END GetIndex;

PROCEDURE GetLength(rd: T): CARDINAL
RAISES {Failure, Alerted, Error} =
BEGIN

LOCK rd DO
IF rd.closed THEN
RAISE Error(Code.Closed)
ELSIF rd.intermittent THEN
RAISE Error(Code.Intermittent)
ELSE
TRY
MakeValid(rd);
RETURN rd.length()
FINALLY
MakeClean(rd)

10. THE RDREP MODULE

END
END
END
END GetLength;

PROCEDURE Seek(rd: T; n: CARDINAL)
RAISES {Failure, Alerted, Error} =
BEGIN

LOCK rd DO
IF rd.closed THEN
RAISE Error(Code.Closed)
ELSIF NOT rd.seekable THEN
RAISE Error(Code.Unseekable)

ELSE
rd.cur := n;
MakeClean(xrd)
END
END
END Seek;

PROCEDURE Close(rd: T) RAISES {Failure, Alerted, Error} =
BEGIN
LOCK rd DO
IF NOT rd.closed THEN
TRY
MakeValid(rd);
rd.close()
FINALLY
rd.closed := TRUE;
rd.next := NIL;
rd.stop := NIL;
rd.buffP := NIL
END
END
END
END Close;

BEGIN END RdRep.

38 10 STREAMS

11 Concluding remarks

We have heard programmers say “there is no way to give a formal specification for an
object-oriented interface, since the different subclass methods can do different things”.
We hope this paper presents a less superficial view. To give a formal specification for
an object-oriented interface, the key is to distinguish the abstraction represented by
an object from the object itself, as we have distinguished cur (wr) from wr. cur, for
example. The implementer of a subclass has considerable freedom to “instantiate™ the
abstraction (for example, by choosing the target of a class of writers), but no additional
freedom to change the meaning of the operations, which are defined once and for all in
terms of the abstraction. Admittedly there may be operations (like Close) that leave
considerable freedom to the class implementer, but if all the operations are like this,
the abstraction is not likely to be very uscful.

Our treatment has been “formal” only in a very pragmatic way. The stream interfaces
would surely benefit from being translated into Larch [4], or some equally formal
specification language. Nevertheless, we fecl that many programs being written today
could be improved by a dose of specification of the pragmatic sort illustrated by this
paper.

It is interesting that the traditional technique of program verification via invariants was
most useful in the lowest level of the system. The desire to optimize the fast path
introduced a case analysis into the slow path, which was best managed by carefully
writing invariants. The pattern of reasoning we used applies in many similar situations:
we began by coding the fast path based on efficiency considerations; from this code we
derived the global cleanliness invariant; from this we derived the case analysis on the
slow path.

Specifying the interfaces was harder than coding the implementation. We used
interfaces in layers to hide dangerous information from safe clients, while revealing it
to unsafe clients. There are many views of a Wr.T: a client of Wr sees a pure opaque
type, a client of WrClass sees only the buffer structure, a client of UnsafeWr sees the
mutex, and the implementation sees everything. A client that defines a new class sees
the class ficlds and the buffer ficlds, but not the mutex or the private fields.

To achieve this pattern of information-hiding without partially opaque object types, it
would be necessary to allocate each group of fields separately and link them together
with additional references. This would require several allocations per writer, which
would be costly. Partial opacity makes it possible to achieve this information-hiding
with essentially no runtime penalty. In our design, creating a writer requires allocating
a single ten-word object (assuming one-word mutexes, references, and integers). The
method suite does not have to be allocated dynamically, since its contents are known at
compile time, and different instances of a class all point at the same statically allocated
method suite.

11. CONCLUDING REMARKS 39

The least methodical part of the design is the delicate code required to export a safe
interface from an unsafe module. Writing this code is a little like writing a secure
operating system without any help from the virtual memory system. At present, will
power seems more useful than methodology for avoiding errors in this kind of code.
We hope we managed to illustrate the pitfalls without falling into any.

Acknowledgments

Kenneth Brooks, Butler Lampson, and Kai Li contributed to the development of the
Modula-2+ streams package. Eric Muller implemented the basic stream classes for the
Modula-3 runtime.

11

Bibliography

[1] Graham M. Birtwistle, Ole-Johan Dahl, Bjorn Myhrhaug, and Kristen Nygaard.
Simula Begin. Auerbach, Philadelphia, PA, 1973.

[2] Luca Cardelli, James Donahue, Lucille Glassman, Mick Jordan, Bill Kalsow, Greg
Nelson. Modula-3 Report (revised). Research Report 52, Digital Systems Research
Center, November 1989.

(31 Luca Cardelli, James Donahue, Lucille Glassman, Mick Jordan, Bill Kalsow, Greg
Nelson. Modula-3 Report. Rescarch Report 31, Digital Systems Research Center,
August 1988.

(4] J. V. Guttag, J. J. Horning, and J. M. Wing. Larch in Five Easy Pieces. Research
Report 5, Digital Systems Research Center, July 1985.

[5] J. E. Stoy and C. Strachey. OS6—an experimental operating system for a small
computer. Part 2. input/output and filing system. The Computer Journal, 15(3),
1972,

43

Index

Buffered proc., 5, 28

CharsReady proc., 8, 35
clean reader, 32
clean writer, 22-23
close method
of reader, 31
of writer, 15
Close proc. (Rd), 10
Close proc. (RdRep), 37
Close proc. (TextWr), 18
Close proc. (Wr), 5
Close proc. (WrRep), 27
Closed proc. (R4), 10
Closed proc. (Wr), 5
Closed proc. (WrRep), 28
CloseDefault proc. (RdClass), 31
CloseDefault proc. (WrClass), 16
CloseDefault proc. (WrRep), 28

EOF proc., 7, 34
Error exception (of rcader), 6
Error cxception (of writer), 3

Failure exception (of reader), 6
Failure exception (of writer), 3
FastEOF proc., 21, 34
FastGetChar proc., 20, 34
FastPutChar proc., 19, 21
FastPutInt proc., 20
FastPutLongReal proc., 20
FastPutReal proc., 20
FastPutString proc., 20
FastPutText proc., 19
FileStream interface, 11

45

flush method, 15
Flush proc., §, 27
FlushDefault proc., 16, 28

GetChar proc., 7, 34
GetIndex proc. (Rd), 10
GetIndex proc. (RdRep), 36
GetIndex proc. (Wr), 5
GetIndex proc. (WrRep), 27
GetLength proc. (Rd), 10
GetLength proc. (RdRep), 36
GetLine proc., 9

GetSub proc., 8
GetSubLine proc., 8
GetText proc., 9

Intermittent proc., 10

length method

of reader, 31

of writer, 15
Length proc. (Wr), 5
Length proc. (WrRep), 27
LengthDefault proc. (RdClass), 31
LengthDefault proc. (WrClass), 16
LengthDefault proc. (WrRep), 28
Lock proc. (RdClass), 31
Lock proc. (WrClass), 15
Lock proc. (WrRep), 26

MakeClean proc. (RdRep), 33
MakeClean proc. (WrRep), 23,25
MakeValid proc., 23, 32

New proc. (TextWr), 16, 17

46

OpenAppend proc., 12
OpenRead proc., 12
OpenWrite proc., 12

PutC (char to writer), 3
PutChar proc., 4, 26
PutString proc., 4
PutText proc., 4

RdClass interface, 29-31
RdRep module, 31-37
readers (input streams), 1
abstract state, 5
buffer methods, 30-31
operations, 6-11
ready reader, 30
ready writer, 14

seek method

of reader, 30

of writer, 15
Seek proc. (Rd), 10
Seek proc. (RdRep), 37
Seek proc. (TextWr), 17
Seek proc. (Wr), 4
Seek proc. (WrRep), 26
Seekable proc. (Rd), 10
Seekable proc. (Wr), 5
Seekable proc. (WrRep), 28
S1owEOF proc., 35
SlowGetChar proc., 33
SlowPutChar proc., 24
Stdio (Standard 10), 11

Text writers, 1618

ToText proc. (TextWr), 16, 18

UnGetChar proc., 7, 35
Unlock proc. (RdClass), 31
Unlock proc. (WrClass), 15
Unlock proc. (WxRep), 26
UnsafeRd interface, 20
UnsafeWr interface, 19-20

valid reader, 29

INDEX

valid writer, 14

Wr interface, 2-5
WrClass interface, 12-16
writers (output streams), 1
abstract state, 2
buffer methods, 15
operations on, 3—-5
WrRep module, 21-28

SRC Reports

“A Kernel Language for Modules and Abstract Data
Types.”

R. Burstall and B. Lampson.

Research Report 1, September 1, 1984.

“Optimal Point Location in a Monotone
Subdivision.”
Herbert Edelsbrunner, Leo J. Guibas, and Jorge
Stolfi.

Research Report 2, October 25, 1984.

“On Extending Modula-2 for Building Large,
Integrated Systems.”

Paul Rovner, Roy Levin, John Wick.

Research Report 3, January 11, 1985.

“Eliminating go to’s while Preserving Program
Structure.”
Lyle Ramshaw.
Research Report 4, July 15, 1985,

“Larch in Five Easy Pieces.”
J. V. Guttag, J. J. Horning, and J. M. Wing.
Research Report 5, July 24, 1985.

“A Caching File System for a Programmer’s
Workstation.”

Michael D. Schroeder, David K. Gifford, and Roger
M. Needham.

Research Report 6, October 19, 1985.

“A Fast Mutual Exclusion Algorithm.”
Leslie Lamport.

Research Report 7, November 14, 1985.
Revised October 31, 1986.

“On Interprocess Communication.”
Leslie Lamport.
Research Report 8, December 25, 1985.

“Topologically Sweeping an Arrangement.”
Herbert Edelsbrunner and Leonidas J. Guibas.
Research Report 9, April 1, 1986.

“A Polymorphic A-calculus with Type:Type.”
Luca Cardelli.
Research Report 10, May 1, 1986.

“Control Predicates Are Better Than Dummy
Variables For Reasoning About Program
Control.”

Leslie Lamport.
Research Report 11, May 5, 1986.

“Fractional Cascading.”
Bernard Chazelle and Leonidas J. Guibas.
Research Report 12, June 23, 1986.

“Retiming Synchronous Circuitry.”
Charles E. Leiserson and James B. Saxe.
Research Report 13, August 20, 1986.

“An O(n?) Shortest Path Algorithm for a Non-
Rotating Convex Body.”
John Hershberger and Leonidas J. Guibas.
Research Report 14, November 27, 1986.

“A Simple Approach to Specifying Concurrent
Systems.”

Leslie Lamport.

Research Report 15, December 25, 1986.

Revised January 26, 1988

“A Generalization of Dijkstra’s Calculus.”
Greg Nelson.
Research Report 16, April 2, 1987.

“win and sin: Predicate Transformers for
Concurrency.”

Leslie Lamport.

Research Report 17, May 1, 1987.

Revised September 16, 1988.

“Synchronizing Time Servers.”

Leslie Lamport.

Research Report 18, June 1, 1987.
Temporarily withdrawn to be rewritten.

“Blossoming: A Connect-the-Dots Approach to
Splines.”

Lyle Ramshaw.

Research Report 19, June 21, 1987.

“Synchronization Primitives for a Multiprocessor:

A Formal Specification.”
A. D. Birrell, J. V. Guttag, J. J. Horning, R. Levin.
Research Report 20, August 20, 1987.

“Evolving the UNIX System Interface to Support
Multithreaded Programs.”

Paul R. McJones and Garret F. Swart.

Research Report 21, September 28, 1987.

“Building User Interfaces by Direct Manipulation.”
Luca Cardelli.
Research Report 22, October 2, 1987.

“Firefly: A Multiprocessor Workstation.”
C. P. Thacker, L. C. Stewart, and

E. H. Satterthwaite, Jr.
Research Report 23, December 30, 1987.

“A Simple and Efficient Implementation for Small
Databases.”

Andrew D. Birrell, Michael B. Jones, and
Edward P. Wobber.

Research Report 24, January 30, 1988.

“Real-time Concurrent Collection on Stock
Multiprocessors.”

John R. Ellis, Kai Li, and Andrew W. Appel.

Research Report 25, February 14, 1988.

“Parallel Compilation on a Tightly Coupled
Multiprocessor.”

Mark Thierry Vandevoorde.

Research Report 26, March 1, 1988.

“Concurrent Reading and Writing of Clocks.”
Leslie Lamport.
Research Report 27, April 1, 1988.

“A Theorem on Atomicity in Distributed
Algorithms.”
Leslie Lamport.
Research Report 28, May 1, 1988.

“The Existence of Refinement Mappings.”
Martin Abadi and Leslie Lamport.
Research Report 29, August 14, 1988.

“The Power of Temporal Proofs.”
Martin Abadi.
Research Report 30, August 15, 1988.

“Modula-3 Report.”
Luca Cardelli, James Donahue, Lucille Glassman,
Mick Jordan, Bill Kalsow, Greg Nelson.
Research Report 31, August 25, 1988.
This report has been superseded by
Research Report 52.

“Bounds on the Cover Time.”
Andrei Broder and Anna Karlin.
Research Report 32, October 15, 1988.

“A Two-view Document Editor with User-definable
Document Structure.”

Kenneth Brooks.

Research Report 33, November 1, 1988.

“Blossoms are Polar Forms.”
Lyle Ramshaw.
Research Report 34, January 2, 1989.

“An Introduction to Programming with Threads.”
Andrew Birrell.
Research Report 35, January 6, 1989.

“Primitives for Computational Geometry.”
Jorge Stolfi.
Research Report 36, January 27, 1989.

“Ruler, Compass, and Computer:
The Design and Analysis of Geometric
Algorithms.”
Leonidas J. Guibas and Jorge Stolfi.
Research Report 37, February 14, 1989.

“Can fair choice be added to Dijkstra’s calculus?”
Manfred Broy and Greg Nelson.
Research Report 38, February 16, 1989.

“A Logic of Authentication.”
Michael Burrows, Martin Abadi, and Roger
Needham.

Research Report 39, February 28, 1989.

“Implementing Exceptions in C.”
Eric S. Roberts.
Research Report 40, March 21, 1989.

“Evaluating the Performance of Software Cache
Coherence.”

Susan Owicki and Anant Agarwal.
Research Report 41, March 31, 1989.

“WorkCrews: An Abstraction for Controlling
Parallelism.”

Eric S. Roberts and Mark T. Vandevoorde.

Research Report 42, April 2, 1989.

“Performance of Firefly RPC.”
Michael D. Schroeder and Michael Burrows.
Research Report 43, April 15, 1989.

“Pretending Atomicity.”
Leslie Lamport and Fred B. Schneider.
Research Report 44, May 1, 1989.

“Typeful Programming.”
Luca Cardelli.
Research Report 45, May 24, 1989.

“An Algorithm for Data Replication.”
Timothy Mann, Andy Hisgen, and Garret Swart.
Research Report 46, June 1, 1989.

“Dynamic Typing in a Statically Typed Language.”

Martin Abadi, Luca Cardelli, Benjamin C. Pierce,
and Gordon D. Plotkin.

Research Report 47, June 10, 1989.

“Operations on Records.”
Luca Cardelli and John C. Mitchell.
Research Report 48, August 25, 1989.

“The Part-Time Parliament.”
Leslie Lamport.
Research Report 49, September 1, 1989.

“An Efficient Algorithm for Finding the CSG
Representation of a Simple Polygon.”
David Dobkin, Leonidas Guibas, John Hershberger
and Jack Snoeyink.
Research Report 50a, September 10, 1989.

3

“Boolean Formule for Simple Polygons” (video).
John Hershberger and Marc H. Brown.
Research Report 50b, September 10, 1989.

“Experience with the Firefly Multiprocessor
Workstation.”

Susan Owicki.
Research Report 51, September 15, 1989.

“Modula-3 Report (revised).”

Luca Cardelli, James Donahue, Lucille Glassman,
Mick Jordan, Bill Kalsow, Greg Nelson.

Research Report 52, November 1, 1989.

Systems Research Center
130 Lytton Avenue
Palo Alto, California 94301

uosfaN Baio) pue umoig ‘Y yrew

