52

Modula-3 Report (revised)

Luca Cardelli, James Donahue,
Lucille Glassman, Mick Jordan,
Bill Kalsow, Greg Nelson

November 1, 1989

dlilgliltlall

Systems Research Center
130 Lytton Avenue
Palo Alto, California 94301

Systems Research Center

DEC’s business and technology objectives require a strong research program. The Systems
Research Center (SRC) and three other research laboratories are committed to filling that need.

SRC began recruiting its first research scientists in 1984 — their charter, to advance the state
of knowledge in all aspects of computer systems research. Our current work includes exploring
high-performance personal computing, distributed computing, programming environments,
system modelling techniques, specification technology, and tightly-coupled multiprocessors.

Our approach to both hardware and software research is to create and use real systems so
that we can investigate their properties fully. Complex systems cannot be evaluated solely in
the abstract. Based on this belief, our strategy is to demonstrate the technical and practical
feasibility of our ideas by building prototypes and using them as daily tools. The experience
we gain is useful in the short term in enabling us to refine our designs, and invaluable in the
long term in helping us to advance the state of knowledge about those systems. Most of the
major advances in information systems have come through this strategy, including time-sharing,
the ArpaNet, and distributed personal computing.

SRC also performs work of a more mathematical flavor which complements our systems research.
Some of this work is in established fields of theoretical computer science, such as the analysis
of algorithms, computational geometry, and logics of programming. The rest of this work explores
new ground motivated by problems that arise in our systems research.

DEC has a strong commitment to communicating the results and experience gained through
pursuing these activities. The Company values the improved understanding that comes with
exposing and testing our ideas within the research community. SRC will therefore report results
in conferences, in professional journals, and in our research report series. We will seek users
for our prototype systems among those with whom we have common research interests, and
we will encourage collaboration with university researchers.

Robert W. Taylor, Director

Modula-3 Report (revised)

Luca Cardelli, James Donahue, Lucille Glassman. Mick Jordan, Bill Kalsow, Greg Nelson

November 1, 1989

Modula-2

SEal=e
Garbage 1 !——_—1—- ‘_‘ l l—‘amms W_HJ 3

Modula-3

©1989 Digital Equipment Corporation, Ing. C. Olivetti and C., SpA.

This work may not be copied or reproduced in whole or in part for any commercial purpose.
Permission to photocopy in whole or in part without payment of fee is granted for nonprofit
educational and research purposes provided that all such copies include the following: a notice
that such copying is by permission of the Systems Research Center of Digital Equipment
Corporation in Palo Alto, California and the Olivetti Research Center of Ing. C. Olivetti
and C., SpA in Menlo Park, California; an acknowledgment of the authors and individual
contributors to the work; and all applicable portions of the copyright notice. All rights
reserved.

The right to implement or use the Modula-3 language is unrestricted.

See the end of this report for "Twelve changes to Modula-3, 19 December 1990".

Contents

Definitions 1

Types 2

Statements 17
Declarations 28

Modules and interfaces 32
Expressions 36

Unsafe opcrations 48
Required interfaces 50
Syntax 54

Acknowledgments 61
Bibliography 63
Index 65

Preface

The goal of Modula-3 is 10 be as simple and safe as it can be while meeting the needs
of modern systems programmers. Instead of exploring new features, we studied the
features from the Modula family of languages that have proven themselves in practice
and tricd to simplify them and fit them into a harmonious language. We found that most
of the successful features were aimed at one of two main goals: greater robustness, and
a simpler, more systematic type system.

Modula-3 descends from Mesa[6], Modula-2[10], Cedar(3], and Modula-2+(8, 7]. It
also resembles its cousins Objcct Pascal[5], Oberon[9], and Euclid{4].

Modula-3 retains one of Modula-2’s most successful features, the provision for explicit
interfaces between modules. It adds objects and classes, exception handling, garbage
collection, lightweight processes (or threads), and the isolation of unsafe features.

The Modula-3 report was published by Olivetti and Digital in August 1988. Imple-
mentation cfforts followed shortly at both companies. In January 1989, the committee
revised the language to reflect the experiences of these implementation teams. The
main changes were the introduction of branded reference types, the requirement that
opaquc types be branded, the legalization of opaque supertypes, and the new flexibility
inrevealing information about an opaque type.

il

Modula-3 Report

lle that will not apply new remedies must expect new evils: for time is the greatest
innovator, and if time of course alter things to the worse, and wisdom and

counsel shall not alter them to the better, what shall be the end?

—Francis Bacon

1 Definitions

A Modula-3 program specifics a computation that acts on a sequence of digital compo-
nents called locations. A variable is a sct of locations that represents a mathematical
valuc according to a convention dctermined by the variable’s rype. If a value can be
represented by some variable of type T, then we say that the value is a member of T and
T contains the value.

An identifier is a symbol dcclared as a name for a variable, type, procedure, etc. The
region of the program over which a declaration applics is called the scope of the decla-
ration. Scopces can be nested. The meaning of anidentificr is determined by the smallest
cnclosing scope in which the identificr is declared.

An expression specifics a computation that produces a value or variable. Expressions
that produce variables arc called designators. A designator can denote either a variable
or the value of that variable, depending on the context. Some designators are readonly,
which means that they cannot be used in contexts that might change the value of the

2 MODULA-3 REPORT

variable. A designator that is not rcadonly is called writable. Expressions whose values
can be determined statically arc called constant expressions; they are never designators.

A static error is an error that the implementation must detect before program execution.
Violations of the language definition are static errors unless they are explicitly classified
as runtime errors.

A checked runtime error is an crror that the implementation must detect and report at
runtime. The method for reporting such errors is implementation-dependent. (If the im-
plementation maps them into exceptions, then a program could handle these exceptions
and continue.)

An unchecked runtime error is an error that is not guaranteed to be detected, and can
cause the subsequent behavior of the computation to be arbitrary. Unchecked runtime
errors can occur only in unsafe modules.

2 Types

I am the voice of today, the herald of tomorrow...
I am the leaden army that conquers the world—I am TYPE.
—Frederic William Goudy

Modula-3 uses structural equivalence, instead of the name equivalence of Modula-2.
Two types arc the same if their definitions become the same when expanded; that s,
when all constant expressions are replaced by their values and all type names are re-
placed by their definitions. In the case of recursive types, the expansion is the infinite
limit of the partial cxpansions. A type expression is allowed wherever a type is required.

In any scope, a type name is either opaque or concrete. An opaque type name denotes a
reference type with an unknown referent type. A concrete type name denotes a type that
is known in the scope (except for the referent types of opaque types that occur within
it). The REVEAL statcment can be used to make an opaque type name concrete within a
scope by making its referent type known (Scction 4, page 31).

A type is empty if it contains no valucs. For example, [1..0] is an cmpty type. Empty
types can be used to build non-empty types (for example, SET OF [1..0], which is
not empty because it contains the empty set). It is a static error to declare a variable of
an empty type.

Every expression has a statically-determined type, which contains every value that the
expression can produce. The type of a designator is the type of the variable it produces.

Assignability and type compatibilily are defined in terms of a single syntactically spec-

2. TYPES 3

ified subtype relation with the property that if T is a subtype of U, then every member
of T is a member of U.

Every expression has a unique type, but a value can be a member of many types. For
example, the value 6 is a member of both [0. .9] and INTEGER. It would be ambiguous
to talk about “the type of a value”. Thus the phrase “type of x” means “type of the
expression x”, while “x is a member of T” means “the value of x is a member of T”.

However, there is one sense in which a value can be said o have a type: every object
or traced reference value includes a code for a type, called the allocated type of the
reference value. The allocated type is tested by TYPECASE (Section 3, page 27).

Ordinal types

There are three kinds of ordinal types: cnumerations, subranges, and INTEGER. An
cnumeration type is declared like this:

TYPE T = {id;, id., ..., id,}

where the id’s are distinct identifiers. The type T is an ordered set of n values; the
expression T.id; denotes the i°th value of the type in increasing order. The empty
enumeration { } is allowed.

Integers and ecnumcration elements arc collectively called ordinal values. The base type
of an ordinal value v is INTEGER if v is an integer, otherwisc it is the unique enumeration
type that contains v.

A subrange type is declared like this:
TYPE T = [Lo..Hi]

where Lo and Hi are two ordinal values with the same base type, called the base type
of the subrange. The values of T arc all the values from Lo (0 Hi inclusive. Lo and Hi
must be constant expressions (Scction 6, page 48). If Lo exceeds Hi, the subrange is
cmpty.

The opcrators ORD and VAL convert between enumerations and intcgers. The opera-
tors FIRST, LAST, and NUMBER applicd to an ordinal type return the first clement, last
clement, and number of clements, respectively (Section 6, page 46).

Here arc the predeclared ordinal types:

INTEGER All integers represented by the implementation
CARDINAL The subrange [0. .LAST(INTEGER)]

BOOLEAN The cnumeration {FALSE, TRUE}

CHAR An cnumeration containing at least 256 clements

4 MODULA-3 REPORT

The first 256 elements of type CHAR represent characters in the ISO-Latin-1 code, which
is an extension of ASCII. The language does not specify the names of the elements of

the CHAR enumeration. FALSE and TRUE arc predcclared synonyms for BOOLEAN . FALSE
and BOOLEAN. TRUE,

Each distinct enumeration type introduces a new collection of values, but a subrange
type reuses the values from the underlying type. For example:

TYPE
T1 = {A, B, C};
T2 = {A, B, C};
Uil = [T1.A..T1.C];
U2 = [T1.A..T2.C]; (* sic *)
v = {A, B}

T1 and T2 are the same type, since they have the same expanded form. In particular,
T1.C = T2.C and therefore U1 and U2 are also the same type. But the types T1 and U1
are distinct, although they contain the same values, because the expanded form of T1
is an enumcration while the expanded form of U1 is a subrange. The type V is a third
type whose values V. A and V. B arc not related to the values T1.4 and T1.B,

Floating-point types
There are two built-in floating point types:

REAL Contains all single-precision floating point values
LONGREAL Contains all double-precision floating point values

Arrays

An array is an indexed collection of component variables, called the elements of the
array. The indexes are the values of an ordinal type, called the index type of the array.
The elements all have the same size and the same type, called the element type of the
array.

There are two kinds of array typcs, fixed and open. The length of a variable with a fixed
array type is determincd at compile time. The length of a variable with an open array
type is determined at runtime, when the variable is allocated or bound. It cannot be
changed thercafler.

The shape of a multi-dimensional array is the sequence of its lengths in each dimension.
More preciscly, the shape of an array is its length followed by the shape of any of its
elements; the shape of a non-array is thc empty scquence.

2. TYPES 5

Arrays are assignable if they have the same clement type and shape. If either the source
or target of the assignment is an open array, a runtime shape check is required (Section
3, page 17).

A fixed array type declaration has the form:
TYPE T = ARRAY Index OF Element

where Index is an ordinal type and Element is any type other than an open array type.
The values of type T are arrays whose clement type is E1ement and whose length is the
number of elements of the type Index.

If a has type T, then a[i] designates the element of a whose position corresponds to
the position of i in Index. For example, consider the declarations:

VAR a: ARRAY [0..2] OF REAL
VAR b: ARRAY (5..7] OF REAL

The variables a and b range over the same sct of values, namely the set of real sequences
of length three. But ali] and b(i] are interpreted differently; for example, the first
element of a is designated a[0] while the first element of b is designated b[5]. This
interpretation is unchanged by the assignment a := b, since assignment changes a
variable’s value but not its type.

An expression of the form:

ARRAY Index;, ..., Index, OF Element
is shorthand for:
ARRAY Index; OF ... OF ARRAY Index,, OF Element

This shorthand is eliminated from the expanded form of the type.
An expression of the formaliy, ..., 1,] is shorthand for ali;]... [i,].

An open array type declaration has the form:
TYPE T = ARRAY OF Element
where Element is any type. The values of T arc arrays whose element typcis Element

and whosc length is arbitrary. The index sct of an open array variable is the integer
subrange [0..n-1], where n is the length of the array.

An open array type can be used only as the type of a formal paramclter, the referent of
a reference type, the clement type of another open array type, or as the type in an array
constructor.

Examples of array types:

6 MODULA-3 REPORT

TYPE
Transform = ARRAY [1..3], (1..3] OF REAL;
Vector = ARRAY OF REAL;
Priority = {Background, Normal, High};
ReadyQueue = ARRAY Priority OF Queue.T

Records

A record is a sequence of named variables, called the fields of the record. Different
fields can have different types. The name and type of each ficld is statically determined
by the record’s type. The expression r. £ designates the ficld named £ in the record r.

A record type declaration has the form:

TYPE T = RECORD FieldList END

where FieldList is a list of field declarations, each of which has the form:
fieldName: Type := default

where £ieldName is an identificr, Type is any non-empty type other than an open array

type, and default is a constant expression. The ficld names must be distinct. A record

is amember of T if it has fields with the given names and types, in the given order, and
no other fields. Empty records arc allowed.

The constant default is a default value used when a record is constructed (page 41) or
allocated (page 42). Either “:= default” or “: Type” can be omitted, but not both,
If Type is omitted, it is taken Lo be the type of default. If both are present, the value
of default must be amember of Type.

When a series of fields shares the same type and default, any fieldName can be a list
of identifiers separated by commas. Such a list is shorthand for a list in which the type
and default arc repeated for cach identifier. That is:

f1, ..., £ Type := default
is shorthand for:
f;: Type := default; ...; f,: Type := default

The shorthand is climinated from the expanded form of the type. The default values are
included in the expanded form.

Examples of record types:

2. TYPES 7

TYPE
Time = RECORD seconds: INTEGER; milliseconds: [0..999] END;
Alignment = {Left, Center, Right};
TextWindowStyle = RECORD

align := Alignment.Center;
font := Font.Default;
foreground := Color.Black;
background := Color.White;
margin, border := 2
EKND
Packed types

A dcclaration of a packed type has the form:
TYPE T = BITS n FOR Base

where Base is a type and n is an intcger-valucd constant expression. The values of type
T are the same as the values of type Base, but variables of type T that occur in records,
objects, or arrays will occupy exactly n bits and be packed adjacent to the preceding
ficld or clement. For example, a variable of type

ARRAY [0..255] OF BITS 1 FOR BOOLEAN
is an array of 256 booleans, each of which occupies one bit of storage.

The values allowed for n are implementation-dependent. An illegal value for n is a
static error. The legality of a packed type can depend on its context; for example, an
implementation could prohibit packed integers from spanning word boundaries.

Sets
A set is a collection of values taken from some ordinal Ltype. A sct type declaration has
the form:

TYPE T = SET OF Base

where Base is an ordinal type. The valucs of T are all sets whose elements have type
Base. For example, a variable whose type is SET OF [0. . 1] can assume the following
values:

{3 {0} {1} {0,1}
Implementations are expected to usc the same representation for a SET OF T as for

an ARRAY T OF BITS 1 FOR BOOLEAN. Hence, programmers should expect SET OF
[0..1023] to be practical, but not SET OF INTEGER.

8 MODULA-3 REPORT

References
A reference value is cither NIL or the address of a variable, called the referent.

A reference type is either fixed, open, or an object type. The members of a fixed refer-
ence type address variables of some fixed type; the members of an open reference type
address variables of any type. An object type is intermediate between a fixed and open
reference type: all variables addressed by a member of an object type share a com-
mon set of fields and methods. This section describes fixed and open reference types;
Section 2, page 11, describes object types.

A reference type is either traced or uniraced. When all traced references to a piece
of allocated storage are gone, the implementation reclaims the storage. Two reference
types are of the samc reference class if they are both traced or both untraced.

There arc exactly three open reference types (NULL is included by convention):

REFANY Contains all traced references
ADDRESS Contains all untraced references
NULL Contains only NIL

The TYPECASE statement (Section 3, page 27) can be used to determine the referent
type of a variable of type REFANY or of an object, but there is no such operation for
variables of type ADDRESS.

A declaration for a fixed traced reference type has the form:
TYPE T = REF Type

where Type is any type. The valucs of T are traced references to variables of type Type,
which is called the referent type of T.

Untraced reference types are similar, but with the restriction that it is unsafe for an
untraced reference (o point at a type that the garbage collector must trace. We thus
extend the definition of “traced™: atype is traced if it is a traced reference type, a record
type any of whose ficld types is traced, an array type whose clement type is traced, or a
packed type whose underlying unpacked type is traced. Otherwise a type is untraced.

A declaration for a fixcd untraced refcrence type has the form:
TYPE T = UNTRACED REF Type

where Type is any untraced! type. The valucs of T arc the untraced references to vari-
ables of type Type.

In both the traced and untraced cascs, the keyword REF can optionally be preceded
by “BRANDED b” where b is a text literal called the brand. Brands distinguish types

!This restriction is lifted in unsafc modules.

2. TYPES 9

that would otherwise be the same; they have no other semantic effect. All brands in a
program must be distinct. If BRANDED is present and b is absent, the implementation
automatically supplics a unique value for b.

Examplcs of reference types:

TYPE
TextLine = REF ARRAY OF CHAR;
ControllerHandle = UNTRACED REF RECORD
status: BITS 8 FOR [0..255];
filler: BITS 12 FOR [0..0];
pc: BITS 12 FOR [0..4095]
END;
T = BRANDED "ANSI-M3-040776" REF INTEGER;
Apple = BRANDED REF INTEGER;
Orange = BRANDED REF INTEGER;

Procedures
A procedure is eithcr NIL or a triple consisting of:
e the body, which is a statcment,

o the signature, which spccifics the procedure’s formal arguments, result type, and
raises sct (the sct of cxceptions that the procedure can raise),

e the environment, which is the scope with respect to which variable names in the
body will be interpreted.

A procedure that rcturns a resull is called a function procedure; a procedure that does
not retum a result is called a proper procedure. A top-level procedure is a procedure
declared in the outermost scope of a module. Any other procedure is a local procedure.
(A local procedurc can be passed as a parameter but not assigned, since in a stack
implementation a local procedure becomes invalid when the frame for the procedure
containing it is popped.)

A procedure constant is an identificr declared as a procedure. (As opposed to a proce-
durce variable, which is a variable declared with a procedure type.)

A procedure type declaration has the form:

TYPE T = PROCEDURE sig

where sig is a signaturce specification, which has the form:

10 MODULA-3 REPORT

(mode; name;: type; := default;;

mode,, name,: type, := default,): R RAISES {S}

where:

e Eachmode; is a parameter mode, which can be VALUE, VAR, or READONLY. If mode;
is omitted, it defaults to VALUE.

o Each name; is an identifier, the name of parameter i. The parameter names must
be distinct.

e Each type; is a type, the type of paramecter i.

o Eachdefault; is a constant expression 10 be used as a default value for parameter
i. If mode; is VAR, it is a static error to include *“:= default;”. If mode; is
READONLY or VALUE, either *“: = default;” or*“: type;” can be omitted, but not
both. If default; is omitted, calls to procedures of type T must include a value
for parameter i. If type; is omitted, it is taken to be the type of default;. If both
are present, the value of default; must bc amember of type;.

¢ R is the result type, which can be any type but an open array type. The “: R” can
be omitted, making the signature that of a proper procedure.

o S is a set of cxceptions, the raises sct. If “RAISES {S}” is omitied, S defaults to
the set of all exceptions. “RAISES {}” means that S is the empty set.

A procedure value P is a member of the type T if it is NIL or its signature is covered by
the signature of T, where signature; covers signature; if:

¢ They have the same number of parameters, and corresponding parameters have
the same type and mode.

o They have the same result type, or neither has a result type.
o The raiscs sct of signature; contains the raiscs sct of signatures.

The parameter names and defaults affect the type of a procedure variable, but not its
value. For example, consider the declarations:

VAR p: PROCEDURE(n: INTEGER)
VAR q: PROCEDURE(m: INTEGER)

The variables p and q range over the same sct of valucs, namely the proper procedures
with one VALUE paramcier of lype INTEGER. But calls that use kcyword parameters are
interpreted differently; for example, p(n := 0) is a valid call, but p(m := 0) is not.
This interpretation is unchanged by the assignment p := q, since assignment changes
a variable’s value but not its type.

2. TYPES 11

When a series of parameters share the same mode, type, and default, name; can be a
list of identifiers scparated by commas. Such a list is shorthand for a list in which the
mode, type, and default are repeated for cach identifier, That is:

mode vy, ..., v,: type := default

is shorthand for:
mode v;: type := default; ...; mode v,: type := default

This shorthand is eliminated {rom the expanded form of the type. The default values
are included in the expanded form.

Examples of procedure types:

TYPE
Integrand = PROCEDURE (x: REAL): REAL;
Integrator = PROCEDURE(f: Integrand; lo, hi: REAL): REAL;
TokenIterator = PROCEDURE(VAR t: Token) RAISES {TokenError};
RenderProc = PROCEDURE(
scene: REFANY;
READONLY t: Transform := Identity)

In a procedure type, RAISES binds to the closcst preceding PROCEDURE. That is, the
parentheses arc required in:

TYPE T = PROCEDURE (): (PROCEDURE ()) RAISES {}

Objects

Anobject is cither NIL or a reference (o a data record paired with a method suite, which
is a record of procedures that will cach accept the object as a first argument.

The object type determines the types of a prefix of the ficlds of the data record, as if
“OBJECT” were “REF RECORD”. But the data record can contain additional fields not
mentioned in the object type. Similarly, the object type determines the signatures of a
prefix of the method suite, but the suite can contain additional methods.

The only way 1o call a procedure in a mcthod suite is to pass the object itsclf as the
first argument. Conscquently, the first parameter o the procedure can be of any type
that contains the object. The rest of the procedure signature must be covered by the
mcthod declaration in the object type. More precisely, a procedure p satisfies a method
declaration with signature sig for an object x if p is NIL or if:

e pis a top-level procedure whose first parameter has mode VALUE and a type that
contains x, and

 if p’s first parameter is dropped, the resulling signature is covered by sig.

12 MODULA-3 REPORT

If o is an object, then o. £ designates the data ficld named £ in o’s data record. If m is
one of o’s methods, an invocation of the formo.m(...) denotes an execution of o’s
m method (Section 3). Such invocations are the only way to access methods.

There are two built-in object types:

ROOT The traced object type with no fields or methods
UNTRACED ROOT The untraced object type with no ficlds or methods

The declaration of an object type has the form:
TYPE T = ST OBJECT FieldList METHODS MethodList END

where ST is an optional supertype, FieldList is a list of ficld declarations, exactly as
inarecord type, and MethodList is a listof method declarations and method overrides,
which are defined below. The names introduced in FieldList and MethodList must
be distinct. If ST is omitted, it defaults Lo ROOT. If ST is untraced, then the fields must
not include traced types.?

In both the traced and untraced cases, the keyword 0BJECT can optionally be preceded
by “BRANDED” or by “BRANDED b”, where b is a text litcral. The meaning is the same
as in non-object reference types.

A method declaration has the form:

m sig := proc

where m is an identifier, sig is a procedure signature, and proc is a top-level procedure
constant.

The “:= proc” is optional. If present, it specifics a default method value used when
allocating objects of type T; if abscnt, the default method value is NIL. A procedure is
a legal default valuc for mcthod m in type T if it satisfics the method signature for any
object of type T; that is, if its first parameter has modc VALUE and type some supertype
of T and if dropping its first parameter results in a signature that is covered by sig.

A method override has the form:
m = proc

where m is the name of a method of the supertype and proc is a top-level procedure
constant that is a legal default for method m in type T. Each mcthod override specifies
that proc is the default value used for method m when allocating objects of type T. If a
method is not overridden, its default in T is the same as its default in the supertype.

An object x is a member of the type T if its data record contains the ficlds of the super-
type, followed by the fields declared in FieldList, possibly followed by other ficlds;

2This restriction is lifted in unsafe modules.

2. TYPES 13

its method suite contains procedures that satisfy the method declarations in the super-
type, followed by procedures that satisfy the method declarations in MethodList, pos-
sibly followed by other procedures; its reference class is the same as the reference class
of the supertype; and the allocated type of x is a subtype of T. All fields and methods
must appear in the declared order.

Note that the method signatures are statically determined by an object’s type (except
for the first argument), but the method values are not determined until the object is
allocated. They cannot be changed thereaftcr.

If T is an object type and m is the name of one of T’s methods, then T.m denotes T’s
default m method. This notation makes it convenient for a subtype method to invoke
the corresponding method of one of its supertypes.

A field or method in a subtype masks any ficld or method with the same name in the
supertype. To access such a masked field, use NARROW to vicw the subtype variable as
amember of the supertype.

Examples. Consider the following declarations:

TYPE
A = OBJECT a: INTEGER; METHODS p() END;
AB = A OBJECT b: INTEGER END;

PROCEDURE Pa(self: A) = ... ;
PROCEDURE Pab(self: AB) = ...

Since ncither A nor AB has a default value for the p method, the method value should
be specified when the objects are allocated. The procedures Pa and Pab are suitable
values for the p method of objects of types A and AB. For example:

NEW(AB, p := Pab)
allocates an object with an AB data record and a mcthod that expects an AB; it is an
example of an object of type AB. Similarly,

NEW(A, p := Pa)
allocates an object with an A data record and a method that expects an A; it is an example
of an object of type A. A morc interesting cxample is:

NEW(AB, p := Pa)

which allocatcs an object with an AB data record and a method that expects an A. Since
cvery AB is an A, the method is not too choosy for the object in which it is placed. The
result is a valid object of type AB. In contrast,

NEW(A, p := Pab)

14 MODULA-3 REPORT

attempts to allocate an object with an A data record and a method that expects an AB;
since notevery A is an AB, the method is too choosy for the object in which it is placed.
The result would not be a member of the type AB, so this call to NEW is a static error.
Here is an example of dcfault method values and method overrides:

TYPE Window =

OBJECT
extent: Rectangle
METHQODS
mouse(e: ClickEvent) := IgnoreClick;
repaint(e: RepaintEvent) := IgnoreRepaint
END;

TYPE TextWindow =
Window OBJECT
text: TEXT;
style: TextWindowStyle
METHODS
repaint := RepaintTextWindow
END;

TextWindow overrides the repaint method but not the mouse method. So if no meth-
ods are specified when an object of type TextWindow is allocated, its mouse method
will be IgnoreClick and its repaint method will be RepaintTextWindow. The pro-
cedure RepaintTextWindow can demand a TextWindow as its first parameter, but
IgnoreRepaint and IgnoreClick must accept any Window.

Finally, an cxample that uscs objects for reusable quecucs. First, the interface:

TYPE
Queue = RECORD head, tail: QueueElem END;
QueueElem = OBJECT link: QueueElem END;

PROCEDURE Insert(VAR q: Queue; x: QueueElem);
PROCEDURE Delete(VAR q: Queue): QueueElem;
PROCEDURE Clear(VAR q: Queue);

Then an cxample clicnl:

2. TYPES 15

TYPE

IntQueuneElem = QueueElem OBJECT val: INTEGER END;
VAR

q: Queue;

x: IntQueueElem;

Clear(q);
x := NEW(IntQueueElem, val := 6);
Insert(q, x);

x := Delete(q)

Passing x to Insert is safe, since every IntQueueElem is a QueueElem. Assigning the
result of Delete t0 x cannot be guaranteed valid at compile-time, but the assignment
will produce a checked runtime error if the source value is not a member of the target
type. Thus IntQueueElem bears the same relation to QueueElem as [0. .9] bears to
INTEGER. Notice that the runtime check on the result of Delete(q) is not redundant,
since other subtypes of QueueElem can be inserted into q.

Subtyping rules
We write T <: U (o indicatc that T is a subtype of U and U is a supertype of T.

IfT <: U, then every value of type T is also a value of type U. The converse does not
hold: for cxample, a rccord or array type with packed fields contains the same values as
the corresponding type with unpacked ficlds, but there is no subtype relation between
them. This scction presents the rules that define the subtyping relation.

(u..v] <: B if wand v have basetype B
fu..v] <: [u'..v'] if [u..v] is a (possibly empty) subset of [u’. .v’]

That is, subtyping on ordinal types reflccts the subset relation on the value sets.

(ARRAY OF)™ ARRAY Jy, ..., J, OF ARRAY K;, ..., K, OF T
<: (ARRAY OF)™*" ARRAY I,, ..., I, OF T
if NUMBER(I;) = NUMBER(K;) fori=1,...,p.

That is, an array type A is a subtype of an array type A’ if they have the same ultimate
clement type, the same numbecr of dimensions, and, for cach dimension, either both are
open, or A is fixcd and A’ is open, or they are both fixed and have the same size.

NULL <: REF T <: REFANY
NULL <: UNTRACED REF T <: ADDRESS

16 MODULA-3 REPORT

That is, REFANY and ADDRESS contain all traced and untraced references, respectively,
and NIL is a member of every reference type.

NULL <: PROCEDURE(A): R RAISES S forany A, R, and S.
That is, NIL is a member of every procedure type.

PROCEDURE(A): Q RAISES E <: PROCEDURE(B): R RAISES F
if signature (B): R RAISES F covers (4): Q RAISES E.

That is, for procedure types, T <: T’ if they are the same except for parameter names,
defaults, and the raises set, and the raises sct for T is contained in the raises set for T/,

ROOT <: REFANY
UNTRACED ROOT <: ADDRESS
NULL <: T OBJECT ... END <: T

That is, every object is a reference, NIL is a member of every object subtype (and
therefore of every object type), and every subtype is included in its supertype.
BITS n FORT <: T and T <: BITS n FOR T

That is, BITS FOR T has the same values as T.
T <: T forall T
T <: Uand U <: V impliecs T <: V forall T, U, V.

That is, <: is reflexive and transitive.

Note that T <: Uand U <: T docs not imply that T and U arc the same, since the
subtype relation is unaffected by parameter names, default values, and packing.

For example, consider:

TYPE
T = [0..255];
U = BITS 8 FOR [0..255];
AT = ARRAY OF T;
AU = ARRAY OF U;

The types T and U arc subtypes of onc another but arc not the same; so the types AT and
AU are unrelated by the subtype relation.

Predeclared opaque types

The language predeclares the two types:

TEXT <: REFANY
MUTEX <: ROQT

3. STATEMENTS 17

which represent text strings and mutual exclusion semaphores, respectively. These are
opaque types as defined in Section 4, page 31. Their properties are specified in the
required interfaces Text and Thread (Section 8).

3 Statements

Look into any carpenter’s tool-bag and see how many different
hammers, chisels, planes and screw-drivers he keeps there—not for
ostentation or luxury, but for different sorts of jobs.

—Robert Graves and Alan Hodges

Execuling a statement produces a computation that can halt (normal outcome), raise
an exception, cause a checked runtime crror, or loop forever. If the outcome is an
exception, it can optionally be paired with an argument.

We define the scmantics of RETURN and EXIT with exceptions called the exit-exception
and the return-exception. The exit-exception takes no argument; the return-exception
takes an argument of arbitrary type. Programs cannot name these exceptions explicitly.

Implcmentations should speed up normal outcomes at the expense of exceptions (except
for the return-exception and cxit-exception). Expending ten thousand instructions per
exceplion raised to save one instruction per procedure call would be defensible.

If an expression is evaluated as part of the exccution of a statement, and the evaluation
raiscs an exception, then the exception becomes the outcome of the statement.

The empty statement is a no-op. In this report, cmpty statcments arc written (*skip*).

Assignment

To specify the typechecking of assignment statcments we need to define “assignable”,
which is a relation between types and types, between expressions and variables, and
between expressions and types.

A type T is assignable 10 a type U if:
eT <: U,or
e U <: TandT is an array or a reference type other than ADDRESS?, or

o T and U arc ordinal types with at Icast onec member in common.

3This restriction is lifted in unsafe modules.

18 MODULA-3 REPORT

An expression e is assignable to a variable v if:
e the type of e is assignablc to the type of v, and

e the value of e is a member of the type of v, is not a local procedure, and if it is an
array, then it has the same shape as v.

The first point can be checked statically; the others generally require runtime checks.
Since there is no way to determine statically whether the value of a procedure parameter
is local or global, assigning a local procedure is a runtime rather than a static error.

An expression e is assignable to a type T if e is assignable to a variable of type T. (If T
is not an open array type, it follows that e is assignable to any variable of type T.)

An assignment statement has the form:

v = e
where v is a writable designator and e is an expression assignable to the variable des-
ignatcd by v. The statement sets v to the value of e. The order of cvaluation of v and e
is undefined, but e will be evaluated before v is updated. In particular, if v and e are

overlapping subarrays (Section 6, page 39), the assignment is performed in such a way
that no elcment is uscd as a target before it is used as a source.

Examples of assignments:

VAR
x: REFANY;
a: REF INTEGER;
b: REF BOOLEAN;
a := b; (* static error *)
x := a; (* no possible error *)
a := x (* possible checked runtime error *)

The same comments would apply if x had an ordinal type with non-overlapping sub-
ranges a and b, or if x had an object type and a and b had incompatible subtypes. The
type ADDRESS is treated diffcrently from other reference types, since a runtime check
cannot be performed on the assignment of raw addresses. For example:

VAR
x: ADDRESS;
a: UNTRACED REF INTEGER;
b: UNTRACED REF BOOLEAN;
a := b; (* static error =)
x := a; (* no possible error *)
a := x (* static error in safe modules *)

3. STATEMENTS 19

Procedure call
A procedure call has the form:
P(Bindings)

where P is a procedure-valued expression and Bindings is a list of keyword or posi-
tional bindings. A keyword binding has thc form name := actual, where actual
is an expression and name is an identifier. A positional binding has the form actual,
where actual is an expression. When keyword and positional bindings are mixed in a
call, the positional bindings must precede the keyword bindings. If the list of bindings
is empty, the parentheses are still required.

The list of bindings is rewritten 1o fit the signature of P’s type as follows: First, each
positional binding actual is converted into a keyword binding by supplying the name
of the i’th formal paramecter, where actual is the i’th binding in Bindings. Second,
for each parameter that has a default and is not bound after the first step, the binding
name := default is added to the list of actuals, where name is the name of the pa-
ramcter and default is its default value.

The rewriticn list of actuals must bind only formal paramcters and must bind each for-
mal parameter exactly once.

For a READONLY or VALUE parameter, the actual can be any expression assignable to
the type of the formal (cxcept that the prohibition against assigning local procedures is
rclaxed). For a VAR parameter, the actual must be a writable designator whose type is
the same as that of the formal, or, in casc of a VAR array parameler, assignable to that
of the formal.

A VAR formal is bound (o the variable designated by the corresponding actual; that is, it
isaliascd. A VALUE formal is bound to a variable with an unused location and initialized
to the value of the corresponding actual. A READONLY formal is treated as a VAR formal
if the actual is adesignator and the type of the actual is the same as the type of the formal
(or an array type that is assignable to the type of the formal); otherwise it is treated as
a VALUE formal.

Implementations arc allowed to forbid VAR or READONLY parameters of packed types.

To exccute the call, the procedure P and its arguments are evaluated, the formal param-
cters are bound, and the body of the procedure is executed. The order of evaluation of P
and its actual arguments is undefined. Itis a checked runtime crror to call an undefined
or NIL procedure.

Itis a checked runtime error for a procedure to raise an cxception not listed in its RAISES
clausc* or for a function procedure 1o fail 1o return a result.

*If an implementation maps this runtime error into an cexception, the excepiion is implicitly included in all
RAISES clauses.

20 MODULA-3 REPORT

A procedure call is a statement only if the procedure is proper. To call a function
procedure and discard its result, use EVAL.

A procedure call can also have the form:
o.m(Bindings)

where o is an object and m names one of o’s methods. This is equivalent to:

(o’s m method) (o, Bindings)

For examples of procedure calls, suppose that the type of P is

PROCEDURE(ch: CHAR; n: INTEGER := 0)

Then the following calls are all equivalent:

P(’a’, 0)

P(’a’)

P(n := 0, ch := ’a’)
P('a’, n := 0)

The call P() is illegal, since it doesn’t bind ch. The call P(n := 0, ’a’) is illegal,
since it has a keyword parameter before a positional parameter.

EVAL

An EVAL statement has the form:
EVAL e

where e is an expression. The effect is to evaluate e and ignore the result. For example:
EVAL Thread.Fork(p)

Block statement

A block statement has the form:
Decls BEGIN S END
where Decls is a sequence of declarations and S is a statement. The block introduces

the constants, types, variables, and procedures declared in Decls and then executes S.
The scope of the declared names is the block. (Sce Section 4, page 28.)

3. STATEMENTS 21

Sequential composition

A statement of the form:
Sy;; S»

executes Sy, and then if the outcome is normal, exccutes Sa. If the outcome of S, is an
exception, S» is ignored.®

RAISE

A RAISE statement without an argument has the form:
RAISE e

where e is an exception that takes no argument. The outcome of the statement is the
exception e. A RAISE statement with an argument has the form:

RAISE e(x)

where e is an exception that takes an argument and x is an expression assignable to
e’s argument type. The outcome of the statement is the exception e paircd with the
argument x.

TRY EXCEPT
A TRY-EXCEPT statcment has the form:

TRY

Body
EXCEPT

id; (v;) => Handler,
I ..
| id, (v,,) => Handler,
ELSE Handlery
END

where Body and cach Handler arc statcments, cach id names an exception, and each
v is an identifier. The “ELSE Handler,” and each “(v;)” arc optional. It is a static
crror for an exception to be named more than once in the list of id’s.

The statement exccutes Body. If the outcome is normal, the except clause is ignored.
If Body raises any listed cxception id;, then Handlex; is executed. If Body raises any
other exception and “ELSE Handler,” is present, then it is exccuted. In either case,

>Some programmers use the semicolon as a statcment terminator, some use il as a stalement separator.
Similarly, some use the vertical bar in case statcments as a prefix operator, some use it as a separator. Modula-
3 allows both styles. This report uses both operators as separators.

22 MODULA-3 REPORT

the outcome of the TRY statement is the outcome of the selected handler. If Body raises
an unlisted exception and “ELSE Handler,” is absent, then the outcome of the TRY
statement is the exceplion raiscd by Body.

Each (v;) declares a variable whosc type is the argument type of the exception id;
and whose scope is Handler;. When an exception id; paired with an argument x is
handled, v; is initialized to x before Handler; is executed. It is a static error to include
(v;) if exception id; does not take an argumecnt.

If (v;) is absent, then id; can be a list of exceptions scparatcd by commas, as shorthand
for a list in which the rest of the handler is repeated for each exception. That is:

id;, ..., id, => Handler
is shorthand for:

id; => Handler; ...; id, => Handler

Itis achecked runtime error to raise an exception outside the dynamic scope of a handler
for that exception. A “TRY EXCEPT ELSE” counts as a handler for all exceptions.

TRY FINALLY
A statement of the form:

TRY S; FINALLY S, END

executes statement S; and then statcment So. If the outcome of S, is normal, the TRY
statement is cquivalent 10 Sy ; Sa. If the outcome of S is an exception and the outcome
of S, is normal, the exception from S is re-raised after S» is executed. If both outcomes
are exceptions, the outcome of the TRY is the exception from So.

LOOP

A statement of the form:
LOOP S END

repeatedly exccutes S until it raises the cxit-exception. The statement is equivalent to:

TRY S; S; S; ... EXCEPT cxit-cxception => (*skip*) END

3. STATEMENTS 23

EXIT

The statement
EXIT

raiscs the exit-exception. An EXIT statement must be textually enclosed by a LOOP
WHILE, REPEAT, or FOR statement.

)

We define EXIT and RETURN in terms of exceptions in order to specify their interac-
tion with the exception handling statements. As a pathological example, consider the
following code, which is an elaborate infinitc loop:

LooP
TRY
TRY EXIT FINALLY RAISE(E) END
EXCEPT
E: (*skip*)
END
END

RETURN
A RETURN statement for a proper procedurce has the form:

RETURN

The statement raises the return-cxception without an argument. It is allowed only in
the body of a proper procedure.

A RETURN statcment for a function procedure has the form:

RETURN Expr

where Expr is an expression assignable to the result type of the procedure. The state-
ment raiscs the return-exception with the argument Expr. Itis allowed only in the body
of a function procedure.

Failure to return a value from a function procedure is a checked runtime error.

The cffect of raising the return exception is (o terminate the current procedure activa-

tion. To be precisc, a call on a proper procedure with body B is equivalent (after binding
the arguments) Lo:

TRY B EXCEPT rcturn-cxception => (*skip*) END

A call on a function procedure with body B is cquivalent to:

24 MODULA-3 REPORT

TRY

B; (error: no retumed value)
EXCEPT

return-exception (v) => (the result becomes v)
END

IF

An IF statement has the form:

IF By THEN S,
ELSIF B, THEN S

ELSIF B, THEN S,
ELSE S,
END

where the B’s are boolean expressions and the S’s are statements. The “ELSE S, and
each “ELSIF B; THEN S;” arc optional.

The statement evaluates the B’s in order until some B; evaluates to TRUE, and then
executes S;. If none of the expressions evaluates o TRUE and “ELSE So” is present, it
is executed. If none of the cxpressions cvaluates to TRUE and “ELSE Sq” is absent, the
statement is a no-op (except for any side-cffects of the B’s).

WHILE

If B is an expression of type BOOLEAN and S is a statcment:
WHILE B DO S END

is shorthand for:
LOOP IF B THEN S ELSE EXIT END END

REPEAT
If B is an expression of type BOOLEAN and S is a statcment:

REPEAT S UNTIL B

is shorthand for:
LOOP S; IF B THEN EXIT END END

3. STATEMENTS 25

WITH

A WITH statement has the form:
WITH id = e DO S END

where id is an identificr, e an expression, and S a statement. The statement declares
id with scope S as an alias for the variable e or as a readonly name for the value e.
The expression e is cvaluated once, at entry to the WITH statement. The statement is
equivalent to a procedure call of the form P(e), where P is declared as:

PROCEDURE P(mode id: type of e) = BEGIN S END P;

If e is a writable designator, mode is VAR; otherwise, mode is READONLY. Free vari-
ables in S are interpreted in the context of the WITH statement. Any RETURN or EXIT
statements in S are also interpreted in the context of the WITH.

A single WITH can contain multiple bindings, which are evaluated sequentially, Thus:
WITH id; = e;, ids = ea,

is equivalent to:
WITH id, = e; DO WITH id, = e» DO ...

FOR

A FOR statement has the form:
FOR id := first TO last BY step DO S END

where id is an identifier, first and last arc ordinal expressions with the same base
Lype, step is an integer-valued cxpression, and S is a statement. “BY step” is optional;
if omitted, step defaults to 1.

The identifier id denotes a rcadonly variable whose scope is S and whose type is the
common basetype of first and last.

If id is an intcger, the statlement steps id through the valucs first, first+step,
first+2*step, ..., stopping when the valuc of id passes last. S executcs once
for cach valuc; if the scquence of valucs is emply, S never exccutes. The expressions
first, last, and step arc cvaluated once, belore the loop is entered. If step is neg-
ative, the loop itcrates downward.

The case in which id is an clement of an cnumeration is similar. In either case, the
scmantics arc defined preciscly by the following rewriting, in which T is the type of
id and in which i, done, and delta stand for variabics that do not occur in the FOR
statcment:

26 MODULA-3 REPORT

VAR
i := ORD(first);
done := ORD(last);
delta := step;
BEGIN
IF delta >= 0 THEN
WHILE i <= done DO
WITH id = VAL(i, T) DO S END;
INC(i, delta)
END
ELSE
WHILE i >= done DO
WITH id = VAL(i, T) DO S END;
INC(i, delta)
END
END
END

CASE

A CASE statement has the form:
CASE Expr OF

L => 8
...
I L, => S,
ELSE S,
END

where Expr is an expression whose type is an ordinal type and each L is a list of constant
expressions or ranges of constant cxpressions denoted by “e; . . e5”, whichrepresent the
values from e, (0 e2 inclusive. If e, exceeds eo, the range is empty. It is a static error
if the sets represented by any two L’s overlap or if the value of any of the constant
expressions is not a member of the type of Expr. The “ELSE S,” is optional.

The statcment evaluates Expr. If the resulting value is in any L;, then S; is executed.
If the value is in no L; and “ELSE S,” is prescnt, then it is executed. If the value is in
no L; and “ELSE S;,” is absent, a checked runtime error occurs.

3. STATEMENTS 27

TYPECASE

A TYPECASE statement has the form:

TYPECASE Expr OF
Ty (v1) => 5

I ...

| Tn (vu) =>s,

ELSE Sy

END

where Expr is an expression whose type is a reference type, the S’s are statements, the
T's arc reference types, and the v’s are identificrs. It is a static error if Expr has type
ADDRESS or if any T is not a subtype of the typc of Expr. The “ELSE Sy” and each
“(v)” are optional.

The statement evaluates Expr. If the resulting reference value is a member of any listed
type T;, then S; is executed, for the minimum such i. (Thus a NULL case is useful only
if it comes first.) If the value is a member of no listed type and Sg is present, then it is
exccuted. If the value is a member of no listed Lype and Sq is absent, a checked runtime
€ITOr OCCurs.

Each (v;) declares a variable whose type is T; and whose scope is S;. If v; is present,
itis initialized to the value of Expr before S; is executed.

If (v;) is abscnt, then T; can be a list of Lype expressions separated by commas, as
shorthand for a list in which the rest of the branch is repeated for each type expression,
That is:

T, ey, Ty => 8

is shorthand for:
T, => S I ... | T, => 8§

For cxample:

PROCEDURE ToText(r: REFANY): TEXT =
(* Assume r = NIL or r* is a BOOLEAN or INTEGER. *)
BEGIN
TYPECASE r OF
NULL => RETURN "NIL"
| REF BOOLEAN (rb) => RETURN Fmt.Bool(rb~)
| REF INTEGER (ri) => RETURN Fmt.Int(ri")
END
END ToText;

28 MODULA-3 REPORT

LOCK

A LOCK statement has the form:
LOCK mu DO S END

where S is a statement and mu is an expression whose type is MUTEX (Section 2, page
16). It is equivalent to:

WITH m = mu DO

Thread.Acquire(m);

TRY S FINALLY Thread.Release(m) END
END

where m stands for a variable that does not occur in S.

INC and DEC

INC and DEC statements have the form:

INC(v, n)
DEC(v, n)

where v designatcs a variable of an ordinal type® and n is an optional integer-valued
argument. If omitted, n defaults to 1. The statements increment and decrement v by n,
respectively. The statements arc equivalent to:

WITH x = v DO x :
WITH x = v DO x :

H

VAL(ORD(x) + n, T) END
VAL(ORD(x) - n, T) END

where T is the type of v and x stands for a variable that does not appear in n. As a
consequence, the statements check for range errors.

4 Declarations

There are two basic methods of declaring high or low before the showdown in all
High-Low Poker games. They are (1) simultaneous declarations, and (2) consecutive
declarations Itis a sad but true fact that the consecutive method spoils the game.
—John Scarne’s Guide to Modern Poker

A declaration introduces a name for a constant, type, variable, exception, or procedure.
The scope of the name is the block containing the declaration. A block has the form:

Decls BEGIN S END

In unsafe modules, INC and DEC are extended to ADDRESS.

4. DECLARATIONS 29

where Decls is a sequence of declarations and S is a statement, the executable part
of the block. A block can appear as a statement or as the body of a module or proce-
dure. The declarations of a block can introduce a name at most once, though a name
can be redeclared in nested blocks, and a procedure declared in an interface can be re-
declared in a module exporting the interface (Section 5, page 32). Except for variable
initializations, the order of declarations in a block does not matter.

Types

If T is an identifier and U a type (or type expression, since a type expression is allowed
wherever a type is required), then:

TYPET = U

declares T o be the type U.

Constants
If id is an identificr, T a type, and C a constant expression, then:
CONST id: T = C

declares id as a constant with the type T and the value of C. The “: T” can be omitted,
in which case the type of id is the type of C. If present, T must contain C.

Variables

If id is an identificr, T a non-empty type other than an open array type, and E an ex-
pression, then:

VAR id: T := E
declares id as a variable of type T whosc initial valuc is the value of E. Either “:= E”
or *“: T” can be omitted, but not both. If T is omitted, it is taken to be the type of E. If

E is omiticd, the initial value is an arbitrary value of type T. If both are present, E must
be assignable to T.

The initial valuc is a shorthand that is cquivalent Lo inscrting the assignment id := E
at the beginning of the exccutable part of the block. If several variables have initial
valucs, their assignments are inscried in the order they are declared. For example:

VAR i: [0..5] := j; j: [0..8] := i; BEGIN S END
initializes 1 and j to the same arbitrary value in [0. . 5]; it is equivalent to:

VAR i: [0..5]; j: [0..5]; BEGIN i := j; j := i; S END

30 MODULA-3 REPORT

If a sequence of identificrs share the same type and initial value, id can be a list of
identifiers separated by commas. Such a list is shorthand for a list in which the type
and initial value are repeated for each identifier. That is:

VAR vy, ..., v,: T := E
is shorthand for:
VAR vi: T :=E; ...; VARv,,: T := E

This means that E is evaluated n times.

Procedures

There are two forms of procedure declaration:
PROCEDURE id sig = B id
PROCEDURE id sig

where id is an identifier, sig is a procedure signature, and B is a block. In both cases,
the type of id is the procedure type determined by sig. The first form is allowed only
in modules; the second form is allowed only in intcrfaces.

The first form declares id as a procedure constant with signature sig, body B, and
environment the scope containing the declaration. The parameter names are treated as
if they were declared at the outer level of B; the parameter types and initial values are
evaluated in the scope containing the procedure declaration. The procedure name id
must be repeated after the END that terminates the body.

The second form declares id to be a procedure constant whose signature is sig. The
procedure body is specificd in a module cxporting the interface, by a declaration of the
first form.

Exceptions
If id is an identifier and T a type other than an open array type, then:

EXCEPTION id(T)

declares id as an cxception with argument type T. If “(T)” is omiticd, the exception
takes no argument. Exception declarations arc allowed only at the top level of interfaces
and modulcs. All declared exceptions arc distinct.

4. DECLARATIONS 31

Opaque types
An opaque type declaration has the form:
TYPET <: U

where T is an identifier and U an expression denoting a reference type. It declares T as
a name for some unspecified subtype of U.

Revelations

A revelation provides information about an opaque type. Unlike other declarations,
revelations introduce no new names.

There are two kinds of revelations, definitive and partial. There can be any number of
partial revelations for an opaque type; there must be exactly one definitive revelation.

A dcfinitive revelation has the form:
REVEAL T = V

where V is a type expression (not just a name) whose outermost type constructor is a
branded reference or object type, T is an identificr (possibly qualified by a module name)
that has been declared as an opaque subtype of some type U, and V <: U. Within the
scope of the revelation, T is known to be the concrete type V. The requirement that V be
branded guarantees that all opaque types in a program are distinct.

A partial revelation has the form:
REVEAL T <: V
where V is a type expression, T is a (possibly qualified) identificr that has been declared

as an opaque subtype of some type U, and V <: U, Within the scope of this revelation,
T is known 1o be a subtype of V. It is a static error if this is not the case.

Revelations are allowed only at the top level of interfaces and modules. A revelation
in an interface can be imported into any scope where it is required.

Recursive declarations

A constant, type, or procedure declaration N = E, a variable declaration N : E, an
exception declaration N(E), orarevelation N = E is recursive if N occurs in any partial
cxpansion of E. A variable dcclaration N := I where the type is omitted is recursive

32 MODULA-3 REPORT

if N occurs in any partial expansion of the type E of I. Such declarations are allowed
if every occurrence of N in any partial expansion of E is (1) within some occurrence of
the type constructor REF or PROCEDURE, (2) within a field or method type of the type
constructor OBJECT, or (3) within a procedure body.

Examples of legal declarations:

TYPE
List = REF RECORD x: REAL; link: List END;
T = PROCEDURE(n: INTEGER; p: T);
XList = X OBJECT link: XList END;
CONST
N = BYTESIZE(REF ARRAY [0..N] OF REAL);
PROCEDURE P(b: BOOLEAN) = BEGIN IF b THEN P(NOT b) END END P;
EXCEPTION E(PROCEDURE () RAISES {E});
VAR v: REF ARRAY ([0..BYTESIZE(v)] OF INTEGER;
VAR v := BITSIZE(v)

Examples of illegal declarations:

TYPE
T = RECORD u: U END; U = RECORD t: T END;
X = X OBJECT END;
CONST
N = N+i1;
TYPE
T <: ROOT; U <: ROOT;
REVEAL T = U OBJECT END; U = T OBJECT END;
VAR v := P();
PROCEDURE P(): ARRAY [0..NUMBER(v)] OF INTEGER

5 Modules and interfaces

Art, it seems 1o me, should simplify. That, indeed, is very nearly the whole of the
higher artistic process; finding what conventions of form and what detail

one can do withowt and yet preserve the spirit of the whole.

—Willa Cather

A module is like a block, except for the visibility of names. A name is visible in a
block only if it is declared in the block or in some enclosing block; a name is visible
in a module only if it is declared in the module or in an interface that is imported or
exported by the module.

5. MODULES AND INTERFACES 33

An interface is a group of declarations. Declarations in interfaces are the same as in
blocks, except that any variable initializations must be constant and procedure declara-
tions must specify only the signature, not the body.

A module X exports an interface I to supply bodics for one or more of the procedures
declared in the interface. A module or interface X imports an interface I to make the
names in I visible in X.

Import statements

There arc two forms of IMPORT statement:
IMPORT I, ..., I,

FROM I IMPORT N, ..., N,

where the I’s are names of intcrfaces and the N’s are names of entities declared in the
interface I.

The first form makes the names of the interfaces I, ..., I, visible. To refer to an
entity named N in any I; the importer must use the qualificd identifier I; . N.

The second form makes the names N;, ..., N,, from interface I visible. It does not
make the name I visible; the importer must refer to N; and not I.N;.

The same interface can be imported using both forms, in which case both the interface
name and the explicitly imported names are visible. Importing an interface provides
access to the names and revelations it declares, but not to those it imports.

Interfaces

An interface has the form:
INTERFACE id; Imports; Decls END id.

where id is an identificr that names the interface, Imports is a sequence of import
statcments, and Decls is a scquence of declarations that contains no procedure bodies
or non-conslant variable initializations. The names declared in Decls and the visible
imported names must be distinct. It is a static crror for two or more interfaces to form
an import cycle.

34 MODULA-3 REPORT

Modules

A module has the form:
MODULE id EXPORTS Interfaces; Imports; Block id.

where id is an identifier that names the module, Interfaces is a list of distinct names
of interfaces exported by the module, Imports is a list of import statements, and
Block is a block, the body of the module. The name id must be repeated after the
END that terminates the body. “EXPORTS Interfaces”can be omitted, in which case
Interfaces defaults to id.

If module M exports interface I, then all declared names in I are visible without
qualification in M. Any procedure declared in I can be redeclared in M, with a body.
The signature in M must be covered by the signature in I (as defined in Section 2, page
9.) To determine the interpretation of keyword bindings in calls to the procedure, the
signature in M is used within M; the signature in I is used everywhere else.

Except for the redeclaration of exported procedures, the names declared at the top
level of Block, the visible imported names, and the names declared in the exported
interfaces must be distinct.

For example, the following is illegal, since two names in exported interfaces coincide:
INTERFACE I; INTERFACE J; MODULE M EXPORTS I, J;
PROCEDURE X(); PROCEDURE X(); PROCEDURE X();

The following is also illegal, since the visible imported name X coincides with the
top-level name X:

INTERFACE I; MODULE M EXPORTS I; FROM I IMPORT X;
PROCEDURE X(); PROCEDURE X() = ...;

But the following is legal, although peculiar:

INTERFACE I; MODULE M EXPORTS I; IMPORT I;
PROCEDURE X(...); PROCEDURE X(...) = ...;

since the only visible imported name is I, and the coincidence between X as a top-level
name and X as a name in an exported interface is allowed, assuming the interface
signature covers the module signature. (Within M, the interface declaration determines
the signature of I.X and the module declaration determines the signature of X.)

Initialization

A program s a collection of modules in which no procedure is multiply defined. The
effect of executing a program is to execute the bodies of each of its modules. The order
of execution of the modules in a program is constrained by the following rule:

5. MODULES AND INTERFACES 35

If module M depends on module N and N does not depend on M, then N’s body will be
executed before M’s body, where:

¢ A module M uses an interface I if M imports or exports I or if M uses an interface
that imports I.

¢ A module M depends on a module N if M uses an interface that N exports or if M
depends on a module that depends on N.

Except for this constraint, the order of execution is implementation-dependent.

The module whose body is executed last is called the main module. Implementations are
expected to provide a way to specify the main module, in case the import dependencies
do not determine it uniquely. The recommended rule is that the main module be the
one that exports the interface Main, whose contents are implementation-dependent.

Program execution terminates when the body of the main module terminates, even if
concurrent threads of control are still executing,.

Safety

The keyword UNSAFE can precede the declaration of any interface or module to indicate
that it is unsafe; that is, that it uses unsafe features of the language (Section 7, page
48). An interface or module not explicitly labeled UNSAFE is called safe.

An interface is intrinsically safe if there is no way to produce an unchecked runtime
error by using the interface in a safe module. If all modules that export a safe interface
are safe, the compiler guarantees the intrinsic safety of the interface. If any of the
modules that export a safe interface are unsafe, it is the programmer, rather than the
compiler, who makes the guarantee.

It is a static error for a safe interface to import an unsafe one or for a safe module o
import or export an unsafe interface.

Example module and interface

Here is the canonical example of a public stack with hidden representation:

36 MODULA-3 REPORT

INTERFACE Stack;
TYPE T <: REFANY;
PROCEDURE Push(VAR s8: T; x: REAL);
PROCEDURE Pop(VAR s: T): REAL;
PROCEDURE Create(): T;

END Stack.

MODULE Stack;

REVEAL T = BRANDED OBJECT item: REAL; link: T END;
PROCEDURE Push(VAR 8: T; x: REAL) =

BEGIN

8 := NEW(T, item := x, link := g)

END Push;
PROCEDURE Pop(VAR 8: T): REAL =

VAR res: REAL;

BEGIN
res := g.item; s := g8.link; RETURN res
END Pop;
PROCEDURE Create(): T = BEGIN RETURN NIL END Create;
BEGIN
END Stack.

If the representation of stacks is required in more than one module, it should be moved
10 a private interface, so that it can be imported wherever it is required:

INTERFACE Stack (* ... as before ... *) END Stack.

INTERFACE StackRep; IMPORT Stack;
REVEAL Stack.T = BRANDED OBJECT item: REAL; link: Stack.T END
END StackRep.

MODULE Stack; IMPORT StackRep;

(* Push, Pop, and Create as before *)
BEGIN
END Stack.

6 Expressions

The rules of logical syntax must follow of themselves,
if we only know how every single sign signifies.
—Ludwig Wittgenstein

An expression prescribes a computation that produces a value or variable. Syntactically,
an expression is either an operand or an operation applied to arguments, which are

6. EXPRESSIONS 37

themselves expressions. Operands can be identifiers, literals, or types. An expression
is evaluated by recursively evaluating its arguments and performing the operation. The
order of argument evaluation is undefined for all operations except AND and OR.

Conventions for describing operations

To describe the argument and result types of operations, we use a notation like
procedure signatures. But since most operations are too general to be described by a
true procedure signature, we extend the notation in several ways.

The argument to an operation can be required to have a type in a particular class, such
as an ordinal type, set type, etc. In this case the formal specifies a type class instead of
atype. For example:

ORD (x: Ordinal): INTEGER

A single operation name can be overloaded, which means that it denotes more than one
operation. In this case, we write a separate signature for each of the operations. For
example:

ABS (x: INTEGER) : INTEGER
(x: REAL) : REAL
(x: LONGREAL) : LONGREAL

The particular operation will be selected so that each actual argument type is a subtype
of the corresponding formal type or a member of the corresponding formal type class.

The argument to an operation can be an expression denoting a type. In this case, we
write Type as the argument type. For example:

BYTESIZE (T: Type): CARDINAL
The result type of an operation can depend on its argument values (although the result

type can always be determined statically). In this case, the expression for the result
type contains the appropriate arguments. For example:

FIRST (T: FixedArrayType): IndexType(T)
IndexType(T) denotes the index type of the array type T and IndexType(a) denotes

the index type of the array a. The definitions of ElemType(T) and ElemType(a) are
similar.

38 MODULA-3 REPORT

Operation syntax

The operators that have special syntax are classificd and listed in order of decreasing
binding power in the following table:

x.a infix dot

£(x) alil T{x} applicative (, [, {
P postfix -

+ - prefix arithmetics
* / DIV MOD infix arithmetics
+ - & infix arithmeltics
= # < <= >= > IN infix relations
NOT prefix NOT

AND infix AND

OR infix OR

All infix operators are left associative. Parcntheses can be used to override the prece-
dence rules. Here are some cxamples of expressions together with their fully parenthe-
sized forms:

M.F(x) (M.F)(x) dot before application
Q(x)" (Qx)- application before -

- P - (p7) " before prefix -
-ax*bh (-a) =b prefix - before *
a*xb-c (a*b) -c¢ * before infix -

x INs -t x IN (s - t) infix - before IN
NOT x IN s NOT (x IN s) IN before NOT

NOT p AND g (NOT p) AND q NOT beforc AND
AORBAND C A OR (B AND C) AND before OR

Operators without special syntax arc procedural. An application of a procedural oper-
ator has the form op(args), where op is the operation and args is the list of argument
expressions. For example, MAX and MIN are procedural operators.

Designators

An identificr is a writable designator if it is declared as a variable, is a VAR or VALUE
parameltcr, is a local of a TYPECASE or TRY EXCEPT statcment, or is 2 WITH local that is
bound to a writable designator. An identificr is a readonly designator if itis a READONLY
parameter, a local of a FOR statcment, or a WITH local bound to a non-designator or
readonly dcsignator.

6. EXPRESSIONS 39

The only operations that produce designators are dereferencing, subscripting, selection,
and SUBARRAY.” This section defines these operations and specifies the conditions under
which they produce designators.

r-

ali]

denotes the the referent of r; this operation is called dereferencing. The expres-
sion r~ is always a writable designator. It is a static error if the type of r is an
open reference type, object type, or opaque type, and a checked runtime error if
r is NIL. The type of r~ is the referent type of r.

denotes element i - FIRST(a) of the array a. The expression a[i] is a des-
ignator if a is, and is writable if a is. The expression i must be assignable to
the index type of a. The type of a[i] is the clement type of a.

An expression of the form ali;, ..., i,] isshorthand for ali,]...[i,].
If a is a reference to an array, then a[i] is shorthand for a~ [i].

o.f, I.x, T.m, E.id

If r denotes a record, r. £ denotes its £ ficld. In this case r. £ is a designator if
r is, and is writable if r is. The type of r. £ is the declared type of the field.

If r is a reference to a record, then x. f is shorthand forr~. £.

If o denotes an object and £ names a data field specified in the type of o, then
o.1 denotes that data ficld of o. In this case o.. £ is a writable dcsignator whose
type is the declarced type of the field.

If I denotes an imported interface, then I.x denotcs the entity named x in the
interface I. In this case I.x is a designator if x is declared as a variable; such a
designator is always wrilable.

If T is an object type and m is the name of one of T's methods, then T.m de-
notes T's default m method. In this case T.m is not a designator. Its type is the
procedure type whose first argument has mode VALUE and type T, and whose
remaining arguments are determined by the method declaration for m in T. The
name of the first argument is unspccified; thus in calls to T.m, this argument
must be given positionally, not by keyword. T.m is not a procedure constant.

If E is an cnumerated type, then E. id denotes its value named id. In this case
E. id is not a designator. The type of E. id is E.

SUBARRAY(a: Array; from, for: CARDINAL): ARRAY OF ElemType(a)

SUBARRAY produces a subarray of a. It docs not copy the array; it is a designator
ifais, and is writable if a is. If a is a multi-dimensional array, SUBARRAY applies
only to the top-level array.

7In unsafe modules, LOOPHOLE can also produce a designator.

40 MODULA-3 REPORT

The operation returns the subarray that skips the first from elements of a and
contains the next for elements. Note that if from is zero, the subarray is a prefix
of a, whether the type of a is zero-based or not. It is a checked runtime error if
from+for exceeds NUMBER(a).

If the element type of a is packed, implementations may restrict or prohibit the
SUBARRAY operation.

Numeric literals

Numeric literals denote constant non-negative integers or reals. The types of these
literals are INTEGER, REAL, and LONGREAL.

A literal INTEGER has the form base_digits, where base is one of “2”,“3", ..., “16”,
and digits is a non-empty sequence of the decimal digits 0 through 9 plus the hex-
adecimal digits A through F. The “base_" can be omitted, in which case base defaults
to 10. The digits are interpreted in the given base. Each digit must be less than base.
For example, 16_tf and 255 are cquivalent integer literals.

A literal REAL has the form decimal E exponent, where decimal is a non-empty
sequence of decimal digits followed by a decimal point followed by a non-empty se-
quence of decimal digits, and exponent is a non-empty sequence of decimal digits
optionally preceded by a + or -. The literal denotes decimal times ten raised to the
given exponent. If “E exponent” is omitied, exponent defaults to 0.

A literal LONGREAL has the form decimal D exponent,and decimal and exponent
are the same as in a literal REAL.

Case is not significant in digits, prefixes or scale factors. Embedded spaces are not
allowed.

For example, 1.0 and 0.5 are valid, 1. and .5 are not; 6.624E-27 is a REAL, and
3.1415926535d0 a LONGREAL.

Text and character literals

A character literal is a single printing character or escape sequence enclosed in single
quotes. The type of a character litcral is CHAR.

A text literal is a scquence of zero or more printing characters or escape sequences
enclosed in double quotes. The type of a text literal is TEXT.

Printing characters are all printing 1SO-Latin-1 characters except double-quote, right
single quote, and backslash (sce Scction 9, page 59).

6. EXPRESSIONS 41

The only way to include a quotation mark or non-printing character such as newline in a
text or character literal is with an cscape sequence. Here are the legal escape sequences:

\n newline (linefeed) \f form feed

\t tab \\ backslash

\r carriage return \" double quote

\’ single quote \nnn char with code 8_nnn

A \ followed by exactly three octal digits specifies the character whose code is that
octal value. A \ that is not a part of one of these escape sequences is a static error.

For example, *a’ and *\’° are valid character literals, *** and ’** are not; "* and
"Don\’t\n" are valid text literals, "*’* is not.
NIL

The literal “NIL” denotes the value NIL. Its type is NULL.

Function application

A procedure call is an expression if the procedure returns a result. The type of the
expression is the result type of the procedure.

Set, array, and record constructors

A sct constructor has the form:
S{Gl, e ey 6”}

where S is a sct type and the e’s arc expressions or ranges of the form lo. .hi. The
constructor denotes a valuc of type S containing the listed values and the values in the
listed ranges. The e’s, 1o’s, and hi’s must be assignable 10 the element type of S.

An array constructor has the form:
A{el, ceay en}

where A is an array type and the e’s arc cxpressions. The constructor denotes a value
of type A containing the listed clements in the listed order. The e’s must be assignable
to the clement type of A. This mcans that if A is a multi-dimensional array, the e’s must
themsclves be array-valued expressions.

If A is a fixcd array type and n is at lcast 1, then e,, can be followed by “. .” to indicate
that the valuc of e,, will be replicated as many times as necessary 1o fill out the array.
Itis a static crror to provide too many or too few clements for a fixed array type.

42 MODULA-3 REPORT

A record constructor has the form:
R{Bindings}

where R is a record type and Bindings is a list of keyword or positional bindings,
exactly as in a procedure call (Section 3). The list of bindings is rewritten to fit the list
of ficlds and defaults of R, exactly as for a procedure call; the record field names play
the role of the procedure formal parameters. The expression denotes a value of type R
whose field values are specified by the rewritten binding.

The rewritten binding must bind only field names and must bind each field name exactly

once. Each expression in the binding must be assignable to the type of the corresponding
record field.

NEW
An allocation operation has the form:
NEW(T, ...)

where T is a refcrence type other than REFANY, ADDRESS, or NULL. If T is a fixed refer-
ence type, the operation returns the address of a newly-allocated variable of T's referent
type. If T has an object type, the operation returns a newly-allocated data record con-
taining the data fields declared in T, paired with a method suite containing the methods
declared in T. The reference returned by NEW is distinct from all existing references.
The allocated type of the new rcference is T.

Itisastaticerror if T's referent type is empty. If T is declared as an opaque type, NEW(T)
is legal only in the scope of a definitive revelation for T (Section 4, page 31).

The initial state of the referent generally represents an arbitrary value of its type. If
T is an object Lype or a reference (0 a record or open array then NEW takes additional
arguments 10 control the initial state of the ncw variable.

If T is a reference to an array with & open dimensions, the NEW operation has the form:
NEW(T, ni, ..., ng)

where the n’s are integer-valued expressions that specify the lengths of the new array
in its first & dimensions. The values in the array will be arbitrary values of their type.

If T is an object type or a reference 1o a record, the NEW operation has the form:
NEW(T, Bindings)

where Bindings is a list of kcyword bindings uscd to initialize the new fields and
methods. Positional bindings are not allowed.

6. EXPRESSIONS 43

Each binding £ := v initializes the field or method £ to the value v. Ficlds or meth-
ods for which no binding is supplied will be initialized to their defaults if they have
dcfaults; otherwisc they will be initialized to arbitrary values of their types. Note that
mcthods always have defaults, since the “default default” is NIL. It is a static error if any
method’s signature fails 1o satisfy its declaration (Scction 2, page 11), and a checked
runtime crror if any method is not a top-level procedure.

Arithmetic operations

The effect of an operation that overflows, underflows, or divides by zero is a checked
runtime error. To perform arithmetic operations modulo the word size, programs should
use the routines in the Word interface (page 53).

prefix + (x: INTEGER) : INTEGER
(x: REAL) ¢ REAL
(x: LONGREAL) : LONGREAL
infix + (x,y: INTEGER) : INTEGER
(x,y: REAL) : REAL
(x,y: LONGREAL) : LONGREAL
(s,t: Set) : Set

As a prefix operator, +x returns x. As an infix operator on numeric arguments, + de-
notes addition. On sets, + denotes set union. Thatis, x IN (s + t) if and only if
(x IN s) OR (x IN t). The typesof s and t must be the same, and the result is the
same type as both. In unsafe modules, + is cxtended (0 ADDRESS.

prefix - {(x: INTEGER) INTEGER
(x: REAL) : REAL

(x: LONGREAL) : LONGREAL

infix - (x,y: INTEGER) : INTEGER
(x,y: REAL) : REAL

(x,y: LONGREAL) : LONGREAL
(s,t: Set) : Set

Asa prefix operator, ~x is the negative of x. As an infix operator on numeric arguments,
- denotes subtraction. On scts, - denotes sct difference. Thatis: x IN (s - t) if
andonly if (x IN s) AND NOT (x IN t). The types of s and t must be the same,
and the result is the same type as both. In unsafc modulcs, - is extended to ADDRESS.

infix * (x,y: INTEGER) : INTEGER
(x,y: REAL) : REAL
(x,y: LONGREAL) : LONGREAL

(s,t: Set) : Set

44 MODULA-3 REPORT

On numeric arguments, * denotes multiplication. On sets, * denotes intersection. That
is: x IN (s * t) ifandonlyif (x IN s) AND (x IN t). The types of s and t
must be the same, and the result is the same type as both.

infix / (x,y: REAL) : REAL
(x,y: LONGREAL) : LONGREAL
(s,t: Set) : Set

On reals, / denotes division. On sets, it denotes symmetric difference. In other words,
x IN (s / t) ifandonlyif (x IN s) # (x IN t). Thetypes of s and t must be
the same, and the result is the same type as both.

infix DIV (x,y: INTEGER): INTEGER
infix MOD (x,y: INTEGER): INTEGER

The value x DIV y is the floor of the quotient of x and y; that is, the maximum integer
notexceeding the real number zsuch thatz * y = x. The valueof x MOD y is defined
tobex - y * (x DIV y).

This means that for positive y, the value of x MOD y liesintheinterval [0 .. y-1],
regardless of the sign of x. For negative y, the value of x MOD y lies in the interval
{y+1 .. 0], regardless of the sign of x.

ABS (x: INTEGER) : INTEGER
(x: REAL) : REAL
(x: LONGREAL) : LONGREAL

ABS(x) is the absolute value of x.

FLOAT (x: INTEGER) : REAL
(x: LONGREAL) : REAL

LONGFLOAT (x: INTEGER) : LONGREAL
(x: REAL) : LONGREAL

FLOAT(x) is the nearest REAL to x; LONGFLOAT (x) is the nearcst LONGREAL. Ties are
broken arbitrarily.

FLOOR (x: REAL) : INTEGER
(x: LONGREAL) : INTEGER
CEILING (x: REAL) : INTEGER

(x: LONGREAL) : INTEGER

FLOOR(x) is the greatest integer not exceeding x. CEILING(x) is the least integer not
less than x.

6. EXPRESSIONS 45

ROUND (r: REAL) : INTEGER
(r: LONGREAL) : INTEGER

TRUNC (r: REAL) : INTEGER
(r: LONGREAL) : INTEGER

ROUND(r) is the nearest integer to r; ties are broken arbitrarily. TRUNC(r) rounds r
toward zero; it equals FLOOR(r) for positive r and CEILING(r) for negative r.

MAX, MIN (x,y: Ordinal) : Ordinal
(x,y: REAL) : REAL
(x,y: LONGREAL) : LONGREAL

MAX returns the greater of the two values x and y; MIN returns the lesser. If x and y are
ordinals, they must have thc same base type, which is the type of the result.

Relations
infix =, # (x, y: Any): BOOLEAN

The operator = rcturns TRUE if x and y have the same value. The operator # returns
TRUE if x and y have differcnt values. Itis a static error if the type of x is not assignable
to the type of y or vice versa.

References are equal if they address the same variable. Procedures are equal if they
agree as closures; that is, if they refer to the same procedure body and environment.
Sets are equal if they have the same elements. Arrays are equal if they have the same
length and corresponding elements are equal. Records are equal if they have the same
fields and corresponding ficlds are equal.

infix <=, >= (x,y: Ordinal) : BOOLEAN
(x,y: REAL) : BOOLEAN
(x,y: LONGREAL) : BOOLEAN
(x,y: ADDRESS) : BOOLEAN
(x,y: Set) : BOOLEAN

In the first four cases, <= returns TRUE if x is not greater than y. In the last case, <=
returns TRUE if cvery element of x is an element of y. In all cases, it is a static error if
the type of x is not assignable to the Lype of y, or vice versa. The expressionx >= y is
equivalenttoy <= x.

infix >, < (x,y: Ordinal) : BOQLEAN
(x,y: REAL) : BOOLEAN
(x,y: LONGREAL) : BOOLEAN
(x,y: ADDRESS) : BOOLEAN

(x,y: Set) : BOOLEAN

46 MODULA-3 REPORT

In all cases, x < y means (x <= y) AND (x # y),andx > y meansy < x. Itis
a static error if the type of x is not assignable to the type of y, or vice versa.

infix IN (e: Ordinal; s: Set): BOOLEAN

Returns TRUE if e is an element of the set s. It is a static error if the type of e is not
assignable to the element type of s. If the value of e is not a member of the element
type, no error occurs, but IN returns FALSE.

Boolean operations

prefix NOT (p: BOOLEAN) : BOOLEAN
infix AND (p,q: BOOLEAN) : BOOLEAN
infix OR (p,q: BOOLEAN) : BOOLEAN

NOT p is the complement of p.
P AND qis TRUE if both p and q are TRUE. If p is FALSE, q is not evaluated.

p OR qis TRUE if at lcast one of p and q is TRUE. If p is TRUE, q is not evaluated.

Type operations

ORD (element: Ordinal): INTEGER
VAL (i: INTEGER; T: OrdinalType): T

ORD convents an element of an enumeration to the integer that represents its position in
the enumeration order. The first value in any enumeration is represented by zero. If
the type of element is a subrange of an enumeration T, the result is the position of the
element within T, not within the subrange.

VAL is the inverse of ORD; it converts from a numeric position i into the element that
occupies that position in an enumeration. If T is a subrange, VAL rcturns the element
with the position i in the original enumeration type, not the subrange. It is a checked
runtime crror for the value of i to be out of range for T.

If n is an integer, ORD(n) = VAL(n, INTEGER) = n.

NUMBER (T: OrdinalType) : CARDINAL
(A: FixedArrayType) : CARDINAL
(a: Array) : CARDINAL

For an ordinal typc T, NUMBER(T) rcturns the number of clements in T, For a fixed array
lype A, NUMBER(A) is defined by NUMBER(IndexType(A)). Similarly, for an array a,
NUMBER(a) is defincd by NUMBER(IndexType(a)). In this casc, the expression a will
be evaluated only if it denotes an open array.

6. EXPRESSIONS 47

FIRST (T: OrdinalType) : BaseType(T)
(A: FixedArrayType) : BaseType(IndexType(A))
(a: Array) : BaseType(IndexType(a))
LAST (T: OrdinalType) : BaseType(T)
(A: FixedArrayType) : BaseType(IndexType(A))
(a: Array) : BaseType(IndexType(a))

For a non-empty ordinal type T, FIRST rcturns the smallest value of T and LAST returns
the largest value. If T is the empty enumeration, FIRST(T) and LAST(T) are static
errors. If T is any other empty ordinal type, the values returned are implementation-
dependent, but they satisfy FIRST(T) > LAST(T).

Forafixed array type A, FIRST(A) is defincd by FIRST (IndexType(A)) and LAST(A)
by LAST(IndexType(A)). Similarly, for an array a, FIRST(a) and LAST(a) are de-
fined by FIRST(IndexType(a)) and LAST(IndexType(a)). The expression a will
be evaluated only if it is an open array. Note that if a is an open array, FIRST(a) and
LAST(a) have typc INTEGER.

ISTYPE (x: Reference; T: RefType) : BOOLEAN

ISTYPE(x, T) is TRUE if and only if x is a member of T. T must be an object type or
traced reference type, and x must be assignable to T.

NARROW (x: Reference; T: RefType): T

NARROW(x, T) returns x after checking that x is a member of T. If the check fails, a
runtime error occurs. T must be an object type or traced reference type, and x must be
assignable 1o T.

TYPECODE (T: RefType) : INTEGER
(r: REFANY) : INTEGER
(r: UNTRACED ROOT) : INTEGER

Every object type or traced reference type (including NULL) has an associated integer
code. Different types have different codes. The code for a type is constant for any
single execution of a program, but may differ for different executions. TYPECODE(T)
rcturns the code for the type T and TYPECODE (r) returns the code for the allocated type
of r. It is a static error if T is REFANY or is not an object type or traced reference type.

BITSIZE (x: Any) : CARDINAL
(T: Type) : CARDINAL
BYTESIZE (x: Any) : CARDINAL
(T: Type) : CARDINAL
ADRSIZE (x: Any) : CARDINAL

(T: Type) : CARDINAL

48 MODULA-3 REPORT

These operations return the size of the variable x or of variables of type T. BITSIZE
returns the number of bits, BYTESIZE the number of 8-bit bytes, and ADRSIZE the
number of addressable locations. In all cases, x must be a designator and T must not
be an open array type. A designator x will be evaluated only if its type is an open array
type.

Text operations
infix & (a,b: TEXT): TEXT

The concatenation of a and b, as defined by Text .Cat. (Section 8, page 50.)

Constant Expressions

Constant expressions are a subset of the general class of expressions, restricted by the
requirement that it be possible to evaluate the expression statically. All operations are
legal in constant expressions except for ADR, LOOPHOLE, TYPECODE, NARROW, ISTYPE,
SUBARRAY, NEW, dereferencing (explicit or implicit), and function application. All
required operations in the Word interface (Section 8, page 53) are allowed in constant
expressions.

A variable can appear in a constant expression only as an argument to FIRST, LAST,
NUMBER, BITSIZE, BYTESIZE, or ADRSIZE, and such a variable must not have an open
array type. All literals are legal in constant expressions; procedure constants are not.

7 Unsafe operations

There are some cases that no law can be framed to cover.
—Aristotle

The features defined in this chapter can potentially cause unchecked runtime errors and
are thus forbidden in safe modules.

An unchecked type transfer operation has the form:
LOOPHOLE(e, T)

where e is an expression whose type is not an open array type and T is a type. It
denotes e’s bit pattern interpreted as a variable or value of type T. It is a designator if e
is, and is writable if e is. An unchecked runtime error can occur if e’s bit pattern is not
alegal T, or if e is a designator and some legal bit pattern for T is not legal for e.

7. UNSAFE OPERATIONS 49

IF'T is not an open array type, BITSIZE(e) must equal BITSIZE(T). If T is an open
array type, its element type must not be an open array Lype, and e’s bit pattern is inter-
preted as an array whose length is BITSIZE(e) divided by BITSIZE (the element type
of T). The division must come out even.

The following operations are primarily used for address arithmetic:

ADR (VAR x: Any) : ADDRESS

+ (x: ADDRESS, y:INTEGER) : ADDRESS
- (x: ADDRESS, y:INTEGER) : ADDRESS
- (x,y: ADDRESS) : INTEGER

ADR(x) is the address of the variable x. The actual argument must be a designator but
nced not be writable. The operations + and - treat addresses as integers. The validity of
the addresses produced by these operations is implementation-dependent. For exam-
ple, the address of a variable in a local procedure frame is probably valid only for the
duration of the call. The address of the referent of a traced reference is probably valid
only as long as traced references prevent it from being coliccted (and not even that long
if the implementation uses a compacting collector).

In unsafe modules the INC and DEC statements apply to addresses as well as ordinals:

INC (VAR x: ADDRESS; n: INTEGER := 1)
DEC (VAR x: ADDRESS; n: INTEGER := 1)
Theseare shortforx := x + nandx := x - n, except that x is evaluated only once.

A DISPOSE statement has the form:

DISPOSE (v)

where v is a writable designator with a fixed or object reference type. If vis untraced, the
statcment frees the storage for v’s referent and scts v to NIL. Freeing storage to which
active references remain is an unchecked runtime error. If v is traced, the statement is
equivalent to v := NIL.If v is NIL, the statement is a no-op.

In unsafe modules the definition of “assignable” for types is extended: two reference
typcs T and U are assignable if T <: UorU <: T. The only effect of this change is to
allow a value of Lypc ADDRESS 1o be assigned Lo a variable of type UNTRACED REF T. It
is an unchecked runtime error if the value docs not address a variable of type T.

In unsafe modules the type constructor UNTRACED REF T is allowed for traced as well as
untraced T, and the ficlds of untraced objects can be traced. If u is an untraced reference
to a traced variable t, then the validity of the traced references in t is implementation-
dependent, since the garbage collector probably will not trace them through u.

50 MODULA-3 REPORT

8 Required interfaces

C++ has a host of operators that will be explained if and where needed.
—The C++ Programming Language

Modula-3 requires that every implementation provide the interfaces Text, Thread, and
Word, as specified in this chapter. Implementations are free to extend these interfaces,
as long as they do not invalidate clients of the unextended interfaces.

The Text interface

For a semantic specification of an extended version of the Text interface, see “The
Modula-2+ Text Interface” [2].

INTERFACE Text;

TYPE
T = TEXT;
(* A zero-based sequence of characters. It is a checked runtime
error to pass the NIL TEXT to any procedure in this interface. *)

PROCEDURE Cat(t, u: T): T;
(* The concatenation of t and u. *)

PROCEDURE Equal(t, u: T): BOODLEAN;
(» TRUE if t and u have the same length and (case-sensitive) contents. *)

PROCEDURE GetChar(t: T; i: CARDINAL): CHAR;
(* Character i of t. A checked runtime error if i >= Length(t). =)

PROCEDURE Length(t: T): CARDINAL;
(* The number of characters in t. *)

PROCEDURE Empty(t: T): BOOLEAN;
(* TRUE if Length(t) = 0. #)

PROCEDURE Sub(t: T; start, length: CARDINAL): T;

(* Return a subsequence of t: empty if start >= Length(t)
or length = 0; otherwise the subsequence ranging from
start to MIN(start+length, Length(t) - 1). =)

PROCEDURE SetChars(VAR a: ARRAY OF CHAR; t: T);
(* For each i [0..MIN(LAST(a), Length(t) - 1)], set a(il to
GetChar(t, i). *)

8. REQUIRED INTERFACES

PROCEDURE FromChar(ch: CHAR): T;
(* A text containing the single character ch. x)

PROCEDURE FromChars (READONLY a: ARRAY OF CHAR): T;
(* A text containing the characters of a. *)

END Text.

The Thread interface

51

If a shared variable is writtcn concurrently by two threads, or writien by one and read
concurrently by another, the effect is to set the variable to an implementation-dependent
value of its type. For cxample, if one thread writcs a[0] while another concurrently
writes a(1], one of the wriles might be lost. Thus, portable programs must use the
Thread interface to provide mutual cxclusion for shared variables. The formal spec-
ification of this interface is in “Synchronization Primitives for a Multiprocessor: A

Formal Specification” [1].

INTERFACE Thread;

TYPE
T <: REFANY; (+ A handle on a thread)
Mutex = MUTEX; (* Locked by some thread, or unlocked *)
Condition <: ROOT; (* A set of vaiting threads #)

(* Initially a Mutex is unlocked and a Condition is empty.
It is a checked runtime error to pass the NIL Mutex,
Condition, or T to any procedure in this interface. #)

Closure = OBJECT METHODS apply(): REFANY RAISES {} END;

PROCEDURE NewMutex(): Mutex;
(* A newly-allocated, unlocked mutex *)

PROCEDURE NewCondition(): Condition;

(* A newly-allocated condition with no threads vaiting on it. =)

PROCEDURE Fork(cl: Closure): T;
(* A handle on a newly-created thread executing cl.apply(). *)

PROCEDURE Join(t: T): REFANY;

(* Wait until t has terminated and return its result. It is a

checked error to call this more than once for any t. *)

52 MODULA-3 REPORT

PROCEDURE Wait(m: Mutex; ¢: Condition);

(* The calling thread must have m locked. Atomically unlocks
m and waits on c. Then relocks m and returns. *)

PROCEDURE Acquire(m: Mutex);
(* Wait until m is unlocked and then lock it. *)

PROCEDURE Release(m: Mutex);
(* The calling thread must have m locked. Unlocks m. %)

PROCEDURE Broadcast(c: Condition);
(* All threads waiting on c become eligible to run. %)

PROCEDURE Signal(c: Condition);
(* One or more threads waiting on c become eligible to run. *)

PROCEDURE Self(): T;
(* Return the handle of the calling thread. *)

EXCEPTION Alerted; (* Approximate asynchronous interrupts *)

PROCEDURE Alert(t: T);
(* Mark t as an alerted thread. #)

PROCEDURE TestAlert(): BOOLEAN;
(+ TRUE if the calling thread has been marked alerted. *)

PROCEDURE AlertWait(m: Mutex; c: Condition) RAISES {Alerted,...};
(+ Like Wait, but if the thread is marked alerted at the time of
call or sometime during the wait, lock m and raise Alerted.

Implementations may raise additional exceptions. *)

PROCEDURE AlertJoin(t: T): REFANY RAISES {Alerted, ...};

(* Like Join, but if t is marked alerted at the time of
call or sometime during the wait, raise Alerted.
Implementations may raise additional exceptions. *)

CONST
AtomicSize = ...;

(* An implementation-dependent integer constant: the number of bits
in a memory-coherent block. If two components of a record or
array fall in different blocks, they can be accessed concurrently
by different threads without locking. *)

END Thread.

8. REQUIRED INTERFACES 53

The Word interface
INTERFACE Word;

(* A Word.T v represents a sequence of Word.Size bits
Wo, ---» Wyord.Size-1-

It also represents the unsigned number

sum of 2' * w; for 1 in 0, ..., Word.Size-1. *)

TYPE T = INTEGER; (* encoding is implementation-dependent;
for example, two’s complement. *)

CONST Size = BITSIZE(T);

PROCEDURE Plus (x,y: T): T; (+ (x +y) Mop 2Word.Size
PROCEDURE Times (x,y: T): T; (* (x = y) MOD gWord.Size *)
PROCEDURE Minus (x,y: T): T; (* (x - y) Mop 2¥ord.Size .y
PROCEDURE Divide(x,y: T): T; (* x divided by y *)
PROCEDURE Mod (x,y: T): T; (* x MOD y *)

PROCEDURE LT(x,y: T): BOOLEAN; (* x < y #)
PROCEDURE LE(x,y: T): BOOLEAN; (% x <= y %)
PROCEDURE GT(x,y: T): BOOLEAN; (x x > y #)

PROCEDURE GE(x,y: T): BOOLEAN; (* x >= y®)

PROCEDURE And(x,y: T): T; (= Bitwise AND of x and y *)
PROCEDURE Or (x,y: T): T; (x Bitwise OR of x and y *)
PROCEDURE Xor(x,y: T): T; (* Bitwise XOR of x and y =)

PROCEDURE Not (x: T): T; (* Bituise complement of x »)

54 MODULA-3 REPORT

PROCEDURE Shift(x: T; n: INTEGER): T;

(* For all i such that both i and i - n are in the range
[0..Word.Size -~ 1], bit i of the result equals bit i - n of x.
The other bits of the result are 0. Thus shifting by n > 0 is
like multiplying by 2°n %)

PROCEDURE Rotate(x: T; n: INTEGER): T;
(* Bit i of the result is bit ((i - n) MOD Word.Size) of x. *)

PROCEDURE Extract(x: T; i, n: CARDINAL): T;

(* Take n bits from x, with bit i as the least significant
bit, and return them as the least significant n bits of
a word whose other bits are 0. A checked runtime error
if n + 1 > Word.Size. %)

PROCEDURE Insert(x: T; y: T; i, n: CARDINAL): T;

(* Result of replacing n bits of x, with bit i as the least
significant bit, by the least significant n bits of y.
The other bits of x are unchanged. A checked runtime
error if n + i > Word.Size. *)

END Word.

9 Syntax

Care should be taken, when using colons and semicolons in the same sentence,
that the reader understands how far the force of each sign carries.
—~Robert Graves and Alan Hodges

Keywords

Here are the Modula-3 keywords:

AND bo FINALLY METHODS RAISES THEN VAR
ARRAY ELSE FOR MOD READONLY TO WHILE
BEGIN ELSIF FROM MODULE RECORD TRY WITH
BITS END IF NOT REF TYPE

BRANDED EVAL IMPORT 0BJECT REPEAT TYPECASE

BY EXCEPT IN OF RETURN UNSAFE

CASE EXCEPTION INTERFACE OR REVEAL UNTIL

CONST EXIT LOCK PROCEDURE ROOT UNTRACED

DIV EXPORTS LOOP RAISE SET VALUE

9. SYNTAX 55

Reserved identifiers

Here are the reserved identificrs, which cannot be redeclared:

ABS BYTESIZE FALSE ISTYPE MIN NUMBER TEXT
ADDRESS ~ CARDINAL FIRST LAST MUTEX ORD TRUE
ADR CEILING FLOAT LONGFLOAT NARROW REAL TRUNC
ADRSIZE CHAR FLOOR LONGREAL NEW REFANY TYPECODE
BITSIZE DEC INC LOOPHOLE NIL ROUND VAL
BOOLEAN DISPOSE INTEGER MAX NULL SUBARRAY
Operators

The following characters and character pairs are classified as operators:

+ < # = ; .

- > { } | 1= <
* <= () - , =)
/ = [] >
Comments

A comment is an arbitrary character scquence opened by (* and closed by *). Com-
ments can be nested and can extend over more than one line.

Pragmas

A pragma is an arbitrary character sequence opened by <* and closed by *>. Prag-
mas can be nested and can extend over more than one line. Pragmas are hints to the
implementation; they do not affect the language semantics.

We recommend supporting the two pragmas <*INLINE*> and <#*EXTERNAL#*>, The
pragma <+INLINE*> precedes a procedure declaration to indicate that the procedure
should be expanded at the point of call. The pragma <+*EXTERNAL L#> precedes a
procedure declaration to indicate that the procedure is implemented in the language
L, or precedes an interface to indicate that the entire interface is implemented in the
language L.

56 MODULA-3 REPORT

Conventions for syntax
We use the following notation for defining syntax:

XY XfollowedbyY

XlY XoryY

[(x] X orempty

{X} A possibly empty sequence of X’s
XgY XorYorXY

Parentheses are used for grouping. Non-terminals begin with an upper-case letter.
Terminals are either keywords or quoted operators. The symbols Ident, Number,
TextLiteral, and CharLiteral are defined in the token grammar on page 59. Each
production is terminated by a period. Indented productions are used only in the produc-
tions immediately above them. The syntax does not reflect the restrictions that revela-
tions and exceptions can only be declared at the top level; nor does it include explicit
productions for NEW, INC, and DEC, which parse like procedure calls.

Compilation unit productions

Compilation = [UNSAFE] (Interface | Module).

Interface = INTERFACE Ident ";" { Import }
{ Declaration } END Ident ".".
Module = MODULE Ident [EXPORTS IDList] ";'" { Import }
Block Ident ".".
Import = [FROM Ident] IMPORT IDList ";".
Block = { Declaration } BEGIN Stmts END.
Declaration = CONST { ConstDecl '";" }
| TYPE { TypeDecl ";" }
| EXCEPTION { ExceptionDecl ";" }
| VAR { VariableDecl ";" }
| ProcedureHead ["='" Block Ident] ";"
|

REVEAL { TypeID ("=" | "<:") Type ";" }.

ConstDecl = Ident [":" Type] "=" ConstExpr.
TypeDecl = Ident ("=" | "<:") Type.
ExceptionDecl = Ident ["(" Type ')"].
VariableDecl = IDList (":" Type & ":=" Expr).
ProcedureHead = PROCEDURE Ident Signature.

Signature = "(" Formals ")" [":" Type] [RAISES Raises].
Formales = [Formal { ";" Formal } [";"] 1.
Formal = [VALUE | VAR | READONLY] IDList (":" Type & ":=" ConstExpr).

Raises = "{" [ExceptionID { "," ExceptionID }] "}".

9. SYNTAX

57

Statement productions

Stmts = [Stmt { ";" Stmt } [;"] J.

Stmt

AssignStmt | Block | CallStmt | CaseStmt

LoopStmt | RaiseStmt | RepeatStmt | ReturnStmt
TryFinStmt | TryXptStmt | TCaseStmt | WhileStmt | WithStmt.

AssignStmt =
CallStmt =
CaseStmt =
ExitStmt =
EvalStmt =
ForStmt =
IfStmt =
LockStmt =
LoopStmt =
RaiseStmt =
RepeatStmt =
ReturnStmt =
TCaseStmt =
TryXptStmt =
TryFinStmt =
WhileStmt =
WithStmt =

Case

| ExitStmt | EvalStmt | ForStmt | IfStmt | LockStmt
]
)

Expr ":=" Expr.

Expr "(" [Actual { "," Actual }] ")".

CASE Expr OF [Case] { "|" Case } [ELSE Stmts] END.

EXIT.

EVAL Expr.

FOR Ident ":=" Expr TO Expr [BY Expr] DO Stmts END.

IF Expr THEN Stmts {ELSIF Expr THEN Stmts} [ELSE Stmts] END.
LOCK Expr DO Stmts END.

LOOP Stmts END.

RAISE ExceptionID ["(" Expr '")" J.

REPEAT Stmts UNTIL Expr.

RETURN [Expr J.

TYPECASE Expr OF [Tcase] { "|" Tcase } [ELSE Stmts] END.
TRY Stmts EXCEPT [Handler] {"|" Handler} [ELSE Stmts] END.
TRY Stmts FINALLY Stmts END.

WHILE Expr DO Stmts END.

WITH Binding { "," Binding } DO Stmts END.

Labels { "," Labels } "=>" Stmts.

Labels = ConstExpr [".." ConstExpr].
Handler = ExceptionID { "," ExceptionID } ["(" Ident ")"] "=>" Stmts.

Tcase = Type { "," Type } ["(" Ident ")"] "=>" Stmts.
Binding = Ident "=" Expr.

Actual = ([Ident ":="] Expr | Type).

Type productions

Type = TypeName | ArrayType | PackedType | EnumnType | ObjectType
| ProcedureType | RecordType | RefType | SetType | SubrangeType

| n(n 'rype n)u_
ArrayType = ARRAY [Type { "," Type } 1 OF Type.
PackedType = BITS ConstExpr FOR Type.
EnumType = *{" [IDList] "}".
ObjectType = [Ancestor] [Brand] OBJECT Fields [METHODS Methods] END.

58

MODULA-3 REPORT

ProcedureType = PROCEDURE Signature.

RecordType = RECORD Fields END.

RefType = [UNTRACED] [Brand] REF Type.
SetType = SET OF Type.

SubrangeType = “[" ConstExpr ".." ConstExpr "]",

Ancestor = TypeName | ObjectType | UNTRACED.

Brand = BRANDED [TextLiteral].

Fields = [Field { ";" Field } [";" 1 1.

Field = IDList (":" Type & ":=" ConstExpr).
Methods = [Method { ";" Method } [";"]].
Method = Ident (Signature & ":=" ProcedurelD).

Expression productions
ConstExpr = Expr.

Expr = E1 { OR E1 }.
E1 = E2 { AND E2 }.
E2 = { NOT } E3.
E3 = E4 { Relop E4 }.
E4 = E5 { Addop ES5 }.
ES = E6 { Mulop E6 }.
E6 = { "+" | "-r } ET.
E7 = E8 { Selector }.
E8 = Ident | Number | CharLiteral | TextLiteral
| Constructor | "(" Expr ")".
Relop = M= | ongn | ongn | “g=mn | nyn | *>=" | IN.
Addop = "1 | nan | ngn,
Mulop = “s" | “/" | DIV | MoD.
Selector = "~ | "." Ident | "[" Expr { "," Expr } "1"

| »(* [Actual { "," Actual }] ")".

Constructor = Type "{" [SetCons | RecordCons | ArrayCons] "}".

SetCons = SetElt { "," SetElt }.

SetElt = Expr [".." Expr J.

RecordCons = RecordElt { "," RecordElt }.
RecordElt = [Ident ":="] Expr.

ArrayCons = Expr { "," Expr } ["," ".."]

9. SYNTAX 59

Miscellaneous productions

TypeName = Ident ["." Ident] | ROOT | UNTRACED ROOT.
ExceptionID = Ident [".” Ident].
ProcedureID = Ident ["." Ident].

IDList = Ident { "," Ident }.

Token productions

To read a token, first skip all blanks, tabs, newlines, carriage returns, vertical tabs, form
feeds, comments, and pragmas. Then read the longest sequence of characters that forms
an operator (as defined in Section 9, page 55) or an Ident or Literal, as defined here.

An Ident is a case-significant sequence of letters, digits, and underscores that begins
with a letter. An Ident is a keyword if it appears in Section 9, a reserved identifier if
itappears in Section 9, and an ordinary identificr otherwise.

In the following grammar, terminals are characters surrounded by double-quotes and
the special terminal DQUOTE represents double-quote itself,

Literal = Number | CharLiteral | TextLiteral.

Ident = Letter { Letter | Digit | "_" }.
Operator = Nn ' o I gt ' n/n | non l H=n l u:n Mgl | Mgt l ggn l ngn
I HEI g ' MR gl | yn l ngn | ng 1t n I Mgt Ny I II." ’ n:u

' ulu I naen l nononon I n(u l u)n I n{n ' vl}n l u[u I vl]n_

CharLiteral = "¢ (PrlntmgChar | Escape) won,

TextLiteral = DQUOTE { PrintingChar | Escape } DQUOTE.

Escape = "\" "n" | \" ngn | m\" ppn | w\" ngn
l n\n u\n I u\n "oy I u\n DQUOTE

I “\" OctalDigit OctalDigit OctalDigit.

Number = Digit { Digit }

| Digit { Digit } "_" HexDigit { HexDigit }
| Digit { Digit } "." Digit { Digit } [Exponent 1.
EXPOIIEIIt = ("E" ' nen ' nDn I ndu) [(e} I non] Dlglt { Dlglt }.

PrintingChar = Letter | Digit | OtherChar.

HEXDigit = Dlglt I ”A" I HBII | ngn I nDn I uEu | HE
{ Hah l Hp I Hent l ngn I Hat ' nfn

60

Dlglt = non l nyqn I

OctalDigit = "o" | "1" |

Letter - "A" | ||B||

OtherChar = " " | "i» |
l (™) I Han '
' Hgn ' Mgt |
I "o l nén l
| ExtendedChar

| ngn
’ nn
I ngn |
g l nsn I
non | r=n '
oy I non |
n{n I nln I

nat

l np"

ngn
nyn
n[n

ExtendedChar = any char with IS0-Latin-1 code

MODULA-3 REPORT

[A
I n(n l n)n
I non ' n;u

| u]n I n-n

in [8_240..8_377].

Acknowledgments

Modula-3 was designed by Luca Cardelli, Jim Donahue, Mick Jordan, Bill Kalsow, and
Greg Nelson, as a joint project by the Digital Systems Research Center and the Olivetti
Research Center.

Paul Rovner made many contributions as a founding member of the design committee,
but cannot be held responsible for the final product.

Our starting point was Modula-2+, which was designed by Paul Rovner, Roy Levin,
John Wick, Andrew Birrell, Butler Lampson, and Garret Swart. We benefited from the
ruthlessly complete description of Modula-2+ provided in Mary-Claire van Leunen’s
Modula-2+ User's Manual.

Niklaus Wirth made valuable suggestions and inspired us with the courage to throw
things out. He also designed Modula-2, the starting point of our starting point.

Too many people provided helpful feedback to thank individually, but we especially
want to thank the following pcople: Bob Ayers, Andrew Black, David Chase, Dan
Craft, Hans Eberle, John Ellis, Stu Feldman, Jim Horning, Mike Kupfer, Butler Lamp-
son, Trevor Morris, Eric Muller, Lyle Ramshaw, Eric Roberts, Ed Satterthwaite, Jorge
Stolfi, and Garrct Swart.

The report was written by Lucille Glassman and Greg Nelson, under the watchful su-
pervision of the whole committee.

61

Bibliography

(1] A.D. Birrell, J.V. Guttag, J.J. Horning, and R. Levin. Synchronization primitives
for a multiprocessor: a formal specification. Operating Systems Review, 21(5),
November 1987. Also published as SRC Research Report 20, August 1987.

{2] Daniel Jackson and Jim Horning. The Modula-2+ Text interface. Unpublished
manuscript available from Jim Horning at SRC.

(3] Buder W. Lampson. A Description of the Cedar Language. Technical Re-
port CSL-83-15, Xerox Palo Alio Research Center, December 1983.

{4] Butler W. Lampson, James J. Horning, Ralph L. London, James G. Mitchell, and
Gerald J. Popek. Report on the Programming Language Euclid. Technical Re-
port CSL-81-12, Xcrox Palo Alto Research Center, October 1981.

[5] Larry Tesler, Apple Computers. Object pascal report. Structured Language
World, 9(3), 1985.

(6] James G. Mitchell, William Maybury, and Richard Sweet. Mesa Language Man-
ual. Technical Report CSL-78-1, Xerox Palo Alto Research Center, February
1978.

[7] Paul Rovner. Extending modula-2 to build large, integrated systems. /EEE Soft-
ware, 3(6), November 1986.

(8] Paul Rovner, Roy Levin, and John Wick. On Extending Modula-2 For Building
Large, Integrated Systems. Technical Report 3, Digital Systems Rescarch Center,
January 1985.

[9]1 N. Wirth. From Modula to Oberon and The Programming Language Oberon.
Technical Report 82, Institut fur Informatik, ETH Zurich, September 1987.

[10] Niklaus Wirth. Programming in Modula-2. Springer-Verlag, Third Edition, 1985.

63

Index

operator, 45

& operator, 48

(* *) (comment), 55
* operator, 43

+ operator, 43

- operator, 43

. operator, 39

.. in set and array constructors, 41
/ operator, 44

<# *> (pragma), 55
<: declaration, 31

<: rclation, 15

= operalor, 45

" operator, 39

ABS, 44
addition, 43
ADDRESS, 8
assignment of, 18
operations on, 49
ADR, 49
ADRSIZE, 47
aggregate, see records or arrays
aliasing, of VAR paramecters, 19
alignment, see packed types
allocated type, 3
allocation, 42
AND, 46
arithmetic opcrations, 43
arrays, 4
assigning, 17
constructors, 41
first and last clcments, 46
indexing, 5
multi-dimensional, 5

65

number of clements in, 46

passing as parameters, 19

subarrays, 39

subscripting, 39

subtyping rules, 15
ASCII, see ISO-Latin-1
assignable, 17

READONLY/VALUE formals, 19

array subscript, 39

arrays, 4

in=and #, 45

in set operations, 43

in unsafe modules, 49

return value, 23

sct/array/record constructors, 41

variable initializations, 29
assignment statements, 18
automatic derefercncing, 39

backslash, in literals, 40
base type, 3
binding power, of operators, 38
bindings, in procedure call, 19
bit operations, 53
BITS FOR,7
in VAR paramecters, 19
sublyping rules, 16
with subarrays, 40
BITSIZE, 47
block, 28
module, 34
procedure, 30
statement, 20
body, of procedurc, 9
BOOLEAN, 3

66

operations on, 46
BRANDED, 8
BYTESIZE, 47

call, procedure, 19
CARDINAL,3
carriage return, in literals, 40
case
in keywords, 54
literals, 40
CASE statement, 26
CEILING, 44
CHAR, 3
character literals, 40
character set, 3
checked runtime error, 2
INC value out of range, 28
NARROW, 47
NIL Mutexor Thread.T,S1
NIL TEXT, 50
SUBARRAY, 39
Thread. Join, 51
VAL range check, 46
Word.Extract, 53
Word.Insert,53
assignability, 18
dereferencing NIL, 39
failure to return a value, 23
nested procedure as method, 42
no branch of CASE, 26
no branch of TYPECASE, 27
overflow, 43
uncaught exception, 22
undefined procedure, 19
unlisted exception, 19
circularities
in imports lists, 33
in type declarations, 31
coercions
checked, 47
unchecked, 48
comments, 55
tokcnizing, 59
comparison operation, 45

INDEX

concatenating texts, 48
concrete types, 2, 31
constant expression, 1, 48
constants, 1
declarations, 29
numeric, 40
procedure, 9
constructors
array, 41
record, 41
set, 41
contain (value in type), 1
conversion
enumerations and integers, 46
to REALs, 44
covers, for procedure signatures, 10
cyclic imports, 33

data record, of object, 11
deallocation, 49
DEC, 28
on addresses (unsafe), 49
declaration, 1
recursive, 31
scope of, 28
default values
in record fields, 6
in variable declarations, 29
methods, 12
procedure parameters, 10, 19
definitive revelation, 31
delimiters, complete list, 55
dereferencing, 39
designators, 1
operators allowed in, 38
readonly, 38
writable, 38
dimension, 5
DISPOSE, 49
DIV, 44
division by zero, 43
division, real, 44
double quote, in literals, 40

INDEX

element type, of array, 4
empty type, 2
enumerations, 3
first and last elements, 46
number of elements, 46
selection, 39
subtyping rules, 15
environment, of procedure, 9
equality operator, 45
errors, static and runtime, 2
escape scquences, in literals, 40
EVAL, 20
example
pathological, 23
peculiar, 34
exceptions, 17
RAISES sct, 19
RAISE, 21
TRY FINALLY,22
declarations, 30
handlers, 21
return and cxit, 17
EXIT, 23
exit-cxception, 17, 22, 23
expanded definition, 2
exporting an interface, 34
EXPORTS clause, 34
expression, 1, 36
constant, 48
function procedures in, 41
order of ¢valuation, 36
EXTERNAL, 55

FALSE, 3

field sclection, records/objects, 39

ficlds, of record, 6

FIRST, 46

fixed arrays, 4, 5
subtyping rules, 15

fixed reference type, 8

FLOAT, 44

floating point numbers, 4

FLOOR, 44

FOR statcment, 25

exiting, 23
fork, 51
form feed, in literals, 40
FROM ... IMPORT ...,33
function procedures, 9
in expressions, 41
returning values from, 23

garbage-collection, 8

handlers, for exceptions, 21
hexadecimal literal, 40

identifiers, 1
lexical structure, 59
qualified, 33
reserved, 55
scope of, 28
syntax, 59
IF statement, 24
import cycle, 33
imports, 33
IN (asct), 46
INC, 28, 49
index type, of array, 4
initialization
during allocation, 42
modaulcs, 34
of variables in interfaces, 32
variables, 29
INLINE, 55
INTEGER, 3
interfaces, 32, 33
exporting, 34
safe, 35
variable initializers in, 33
intersection, set, 43
intrinsically safc, 35
ISO-Latin-1, 3
ISTYPE, 47

join, 51

keyword binding, 19
keywords, complete list, 54

67

68

LAST, 46
literals
character, 40
numgric, 40
syntax, 59
text, 40
local procedures, 9
as parameters, 19
assignment of, 18
location, 1
LOCK statement, 28
LONGFLOAT, 44
LONGREAL, 4
converling to, 44
literals, 40
LOOP, 22
exiting, 23
LOOPHOLE, 48

main module, 35

masked ficld, 13

MAX, 45

member, 1

method suite, 11

methods
declaring, 12
default, 39
invoking, 20
overriding, 12

specifying in NEW, 42

MIN, 45
MOD, 44

mode, see parameter mode

modules, 32, 34
initialization, 34
safe, 35

multi-dimensional arrays, 5

multiplication, 43
MUTEX, 16, 51

NARROW, 47

NEW, 42

newling, in literals, 40
NIL, 41

normal outcome, 17
NOT, 46

NULL, 8

NUMBER, 46
numbers, literal, 40

objects, 11

INDEX

accessing ficlds and methods, 11

allocating, 42
branded, 12
default methods, 39
field selection, 39

invoking methods, 20
method declarations, 12
opaque, 31

overriding methods, 12

subtyping rules, 16
types, 8

octal literal, 40

opaque types, 2, 31

open arrays, 4
allocating, 42

as formal parameters, 19

loopholing to, 48
subtyping rules, 15
open reference type, 8
operators
complete list, 55
precedence, 38
tokenizing, 59
OR, 46
ORD, 46
order (<, > ...),45

order of evaluation, expressions, 36

ordinal types

first and last elements, 46

subtyping rules, 15
ordinal value, 3
overflow, 43

ovcerloading, of operation, 37

overriding methods, 12

package, see module
packed types, 7

INDEX

VAR parameters, 19
parameter mode, 10
parameter passing, 19
partial expansion, 2
partial revelation, 31
pointer, see reference
positional binding, 19
pragmas, 55
precedence, of operators, 38
procedural operation, 38
procedure call, 19
procedures, 9

RETURN, 23

assignment of local, 18

constant, 9

declarations, 30

discarding results, 20

exporting to interface, 34

inline, 55

parameter passing, 10, 19

raises set, 9

signatures, 9

subtyping rules, 16
process, see thread
program, definition of, 34
proper procedure, 9

qualificd identifier, 33
qualified import, 33

RAISE, 21
RAISES, 10
dangling, 11

raising unlisted exception, 19

raises sct, of procedure, 9
rcadonly designator, 1, 38
READONLY paramcters, 19
REAL, 4
conversions 10, 44
converting to integers, 45
literal, 40
real division, 44
records, 6
constructors for, 41

defaulting ficlds, 6
field selection, 39
recursive declarations, 31
REFANY, 8
reference class, 8
references, 8
TYPECASE, 27
assigning ADDRESSes, 49

automatic dereferencing, 39

dereferencing, 39
generating with NEW, 42
reference class, 8
subtyping rules, 15
typecode of, 47
referent, 8
referent type, 8
relational operators, 45
remainder, see MOD
REPEAT statement, 24
exiting, 23
required interfaces, 50
result type, of procedure, 10
RETURN statement, 23
return-exception, 17, 23
REVEAL, 31
revelations, 31
imported, 33
ROOT, 12
ROUND, 45
runtime error, 2

safe, 35
satisfy a method declaration, 11

scale factors, in numeric literals, 40

scope, 28
block statement, 20
exceptions, 30
import, 33
locals in FOR, 25
locals in TRY EXCEPT, 22
locals in TYPECASE, 27
locals in WITH, 25
of formal paramcters, 30
of identifier, 1

69

70

of imported symbols, 34
of variablc initializations, 29
revelations, 31
selection of fields, 39
sequential composition, 21
sets, 7
IN operator, 46
constructors for, 41
difference, 43
equality, 45
interscction, 43
subset, 45
symmetric set difference, 44
union, 43
shape, of array, 4
shared variables, 51
sign inversion, 43
signature, 9
covers, 10
single quote, in literals, 40
size, of type, 47
statements, 17
static crror, 2
static type, of expression, 1
storage allocation, 42
DISPOSE, 49
strings, 40, 50
structural equivalence, 2
SUBARRAY, 39
subranges, 3
subtyping rules, 15
subscript operator, 39
subset opcration, 45
subtraction, 43
subtype relation, 15
supertype (subtyping relation), 15
symmctric sct difference, 44
syntax, 56

lab, in literals, 40

task, see thrcad
termination of program, 35
TEXT, 16

Text interface, 50

INDEX

texts, 50
concatenating, 48
escape sequences, 40
literals, 40

Thread interface, 51

tokenizing, 59

top-level procedure, 9

traced
object types, 12
references, 8
types, 8

TRUE, 3

TRUNC, 45

TRY EXCEPT, 21

TRY FINALLY, 22

type, 2
assignable, 17
dcclaration of, 29
empty, 2
of expression, 1
of variable, 1
opaque, 31
traced, 8

type coercions
checked, 47
unchecked, 48

type identification, see rcvelation

TYPECASE, 27

TYPECODE, 47

unchecked runtime errors, 2, 48
undefined procedure, 19
undcrflow, 43
union, of sets, 43
UNSAFE, 35
unsafc fcaturcs, 48
unsigned integers, 53
UNTRACED
in reference declarations, 8
in unsafe modulcs, 49
UNTRACED ROQT, 12

VAL, 46
value, 1

INDEX

VALUE parametcrs, 19
type checking, 19
VAR parameters, 19
packed types, 19
variables, 1, 29
initialization, 29
initialized in interfaces, 33
procedure, 9
visibility, see scope

WHILE statement, 24
exiting, 23

WITH statcment, 25

Word interface, 53

word size, of type, 47

writable designator, 1, 38

zero, division by, 43

1

Twelve Changes to Modula-3
19 Dec 90

The Modula-3 committee has made twelve final changes to the language definition, described
in this message.

On behalf of the Modula-3 committee I would like to thank Bob Ayers, Michel Gangnet, David
Goldberg, Sam Harbison, Christian Jacobi, Nick Maclaren, Eric Muller, and Thomas Roemke
for their helpful comments on these changes. ---Greg Nelson

Contents

Section 1 List of changes
Section 2 Rationale

Section 3 Details of generics

Section 4 Details of floating-point

Section 1. List of changes

1.1 The language will be extended to support generic interfaces and modules. The detailed se-
mantics of generics are in Section 3, below.

1.2 In addition to REAL and LONGREAL the language will support the new floating point
type EXTENDED. New required interfaces will allow clients to use IEEE floating point if the
implementation supports it. The behavior of the interfaces is also defined for non-IEEE imple-
mentations. Listing of these interfaces, and other details, are in Section 4, below.

1.3 The default raises clause will be the empty set instead of the set of all exceptions. RAISES
ANY will be used to indicate that a procedure can raise any exception.

1.4 The sentence:
The declaration of an object type has the form
TYPE T = ST OBJECT FieldList METHODS MethodList END

where ST is an optional supertype, FieldList is a list of field declarations, exactly
as in a record type, and MethodList is a list of "method declarations” and "method
overrides”.

will be changed to
The declaration of an object type has the form
TYPE T = ST OBJECT Fields METHODS Methods OVERRIDES Overrides END

where ST is an optional supertype, Fields is a list of field declarations, exactly as in
a record type, Methods is a list of "method declarations" and Overrides is a list of
"method overrides".

The syntax for individual method declarations and individual method overrides remains the
same.

1.5 The semantics of method overrides supplied at NEW time will be defined by the following
rewriting:

NEW(T,m:=P)

1s sugar for

NEW(T OBJECT OVERRIDES m := P END).

As a consequence, the method overrides are restricted to procedure constants, and the methods
of an object are determined by its allocated type. It is no longer necessary to refer to "T’s de-
fault m method", you can just say "T’s m method".

1.6 On page 48, the last sentence in the section "Constant Expressions” will be changed from

"All literals are legal in constant expressions; procedure constants are not"

to
"Literals and top-level procedure constants are legal in constant expressions”

Procedure application remains illegal in constant expressions, except for the required proce-
dures in the Word interface.

1.7 The word "not" will be removed from the sentence "T.m is not a procedure constant” on
page 39, and the grammar will be changed to allow the syntax T.m as a method default.

1.8 The prohibition against NEWing an opaque object type will be removed. The procedures
Thread. NewMutex and Thread.NewCondition will be removed from the Thread interface and
replaced by comments to the effect that a newly-allocated Mutex is in the unlocked state and a
newly-allocated Condition has no threads waiting on it.

1.9 The following sentence will be added to the "revelations" section:

In any scope, the revealed supertypes of an opaque type must be totally ordered by
the subtype relation. For example, in a scope where it is revealed that T <: S1 and
that T <: S2, it must also be revealed either that S1 <: S2 or that S2 <: S1.

1.10 The sentence

The pragma <*EXTERNAL L*> precedes a procedure declaration to indicate that
the procedure is implemented in the language L, or precedes an interface to indi
cate that the entire interface is implemented in the language L.

will be changed to

The pragma <* EXTERNAL N:L *> precedes an interface or a declaration in an
interface to indicate that the entity it precedes is implemented by the language L,
where it has the name N. If ":L" is omitted, then the implementation’s default ex
ternal language is assumed. If "N" is omitted, then the external name is determined
from the Modula-3 name in some implementation-dependent way.

1.11 The result type of the built-in function TYPECODE will be changed from INTEGER to
CARDINAL.

1.12 Changes to the syntax of text, character, and integer literals, as follows: On page 59, "To-
ken Productions”, the lines

CharLiteral = "’" (PrintingChar | Escape) """

TextLiteral = DQUOTE { PrintingChar | Escape } DQUOTE
will be changed to

CharLiteral = "’" (PrintingChar | Escape | DQUOTE) """

TextLiteral = DQUOTE { PrintingChar | Escape | "’" } DQUOTE

The effect is to allow "Don’t" instead of "Don\’t" and ’*" instead of \'"’. In the section on inte-
ger literals, we will add the words

If no base is present, the value of the literal must be at most LAST(INTEGER); if
an explicit base is present, the value of the literal must be less than 2AWord.Size,
and its interpretation as a signed integer is implementation-dependent. For exam
ple, on a sixteen-bit two’s complement machine, 16_ffff and -1 represent the same
value.

Section 2. Rationale

2.1 In regard to generics: several programmers have invented ad-hoc schemes for working
around the absence of generics. We have found a simple design that seems to be in the Modula
spirit, is easy to implement, and has essentially no impact on the rest of the language.

2.2 In regard to floating-point revisions: Jorge Stolfi and Stephen Harrison have reported on
their use of Modula-3 for floating-point graphics computations, and David Goldberg has given
us a critique of Modula-3 from the point of view of a numerical analyst. We have used this
feedback to try to make Modula-3 better for floating-point computations, an issue that was not
taken too seriously in the original design.

2.3 In regard to the default raises clause, RAISES {} is far more frequent than RAISES ANY,
so it should be the default. This change is not backward-compatible: conversion will require

Finding occurrences of RAISES {} and deleting them. This is easy to do, and is not
essential, since RAISES {} is still meaningful and legal, although now redundant.

Finding procedures without raises clauses and adding RAISES ANY (or, more
likely, noticing that they were incorrectly annotated and that the correct clause is
RAISES {} in which case they can be left alone). Since RAISES ANY is rare, this
change should be necessary in very few places, e.g., for mapping functions.

2.4 In regard to the explicit OVERRIDES keyword: several programmers have acciden
tally declared a new method when they meant to override an existing one, strongly suggesting

that the current syntax does not distinguish between methods and over rides strongly enough.
This change is not backwards compatible, but existing programs can be converted easily, by

sorting the method declarations in front of the method overrides and adding the word "OVER-
RIDES" between the two groups.

2.5 In regard to defining the semantics of method overriding at NEW time by syntactic sugar:
the advantage of this change is that the method suite becomes a constant function of the type.
That is, we no longer have to talk about "T’s default m method", we can just say "T’s m
method". For example, this is convenient for the implementation of type-safe persistent storage
(pickles), which can recreate an object’s method suite trivially, by asking the runtime system
for the method suite associated with the type. (This is in fact what is done by both the Olivetti
and the SRC pickles packages: adopting the rewriting semantics above will make both packages
correct.)

The obvious cost of the change is that a procedure variable can no longer be used as a method
override. However, no programs are known to use this facility. Furthermore, a strong argument
can be made that this facility is not useful. For example, consider the following program, which
does use a procedure variable as a method override:

PROCEDURE New(

h: PROCEDURE(t: Table.T, k: Key.T): INTEGER)
: Table.T =
BEGIN

NEW (Table.T, hashMethod := h)
END New.

This is poor code: it would be better to make the hash method a procedure-valued field in the
table, since the usual argument for making something a method rather than a procedure data
field doesn’t apply here: New cannot be used to construct a subtype of Table.T with a hash
method specific to that subtype, because New’s signature requires that h accept any Table.T as
an argument. Consequently there is no flexibility gained by using a method. Furthermore, if the
hash procedure is stored in the data part of the object, hash tables with different hash proce-
dures can share method suites, and thus save space.

This change is not strictly backwards-compatible, but as no programs are known to override
methods at NEW time with non-constant procedures, it is expected to be backwards compatible
in practice.

2.6 Inregard to the change that allows procedure constants in constant expressions: this allows
procedure constants as default parameters, which is a convenience. And it does not seem to be
difficult for implementations, or any less principled to allow procedure constants in constant ex-
pressions than to allow TEXT literals.

2.7 In regard to allowing "T.m" as a procedure constant: you could already write T.m to denote
the m method of type T, but because this expression was not considered a procedure constant, it
couldn’t be used as a method default. That usually meant that an interface exporting T would
also have to export each of T’s methods by name, since somebody defining a related class
might reuse some of the methods. Thus this change allows less cluttered interfaces.

Allowing T.m as a procedure constant raises the following question:

Are U and V the same after

TYPE T = OBJECT METHODS m() := P END
TYPE

U =T OBJECT METHODS m := P END;

V =T OBJECT METHODS m := T.m END;

Answering "yes" would be hard on the implementation, since although in this case the identity
of T.m with P is manifest, this would not be true in general.

So we will define U and V to be different, on the grounds that the expanded form of U contains
"P" where the expanded form of V contains "(expanded form of T).m". With respect to struc-
tural equivalence, the implementation should treat the occurrence of "T.m" the same as it would
treat a record field "m: T".

2.8 Inregard to NEW(T) for opaque types T: If an opaque type requires initializations over and
above what can be done with default field values, then the implementor of the type must pro-
vide a procedure for doing the initialization. He might provide a New procedure that allocates,
initializes, and returns a value of the type, but this New procedure couldn’t be used by anybody
implementing a subtypes of the opaque type, since it allocates the wrong type of object. Thus
when you declare an opaque type that is intended to be subclassed, you owe it to your clients to
provide an init routine that takes an object that has already been allocated, or to comment that
no initialization in necessary beyond what is automatically provided by default field values. In
either case, the effect of NEWing the opaque type will be well-specified in the interface, and
the old rule against it is revealed as an attempt to legislate style.

In fact, the old rule interfered with a style that seems attractive: for each object type T, define a
method T.init that initializes the object and returns it. Then the call

NEW(T).init(args)

allocates, initializes, and returns an object of type T. If T is an subtype of some type S, and the
implementer of S uses the same style, then within T.init(self, ...) there will be a call of the form
EVAL S.init(self, ...) to initialize the supertype part of the object. Note that this style involves
NEWing the opaque object type T.

2.9 Inregard to the requirement that the revealed supertypes of an opaque type must be totally
ordered by the subtype relation: this rule was present in the original version of the report, and
somehow got deleted from the revised version, probably by an editing error, without the com-
mittee ever deliberately rescinding it. The advantage of the rule is that the information about an
opaque type in a scope is determined by a single type, its "<:-least upper bound", rather than by
a set of types. This simplifies the compiler; in fact, both the SRC and Olivetti compilers depend
on this rule. Theoretically this is not a backwards-compatible change, but since it is bringing the
language into conformance with the two compilers that are in use, obviously it won’t require
conversion by clients.

2.10 In regard to the EXTERNAL pragma: in producing the Modula-3 interfaces to the X li-
brary the need for renaming as part of the external declaration was acute.

2.11 Changing the result type of TYPECODE to CARDINAL is no burden on the implementa-
tion, and the guarantee that negative integers cannot be confused with typecodes is often con-
venient.

2.12 Allowing "Don’t" instead of "Don\'t" makes programs more readable. Allowing integer
literals whose high-order bit is set is useful both in graphics applications, where masks are be-
ing constructed, and in low-level systems code, where integers are being loopholed into ad-
dresses that may be in the high half of memory.

Section 3. Details of generics

Before describing the generics proposal proper, we describe two minor changes that are associ-
ated with generics: allowing renamed imports, and allowing text constants to be brands.

3.1 Allowing renamed imports.

IMPORT I AS N means "import the interface I and give it the local name N". The name I is not
introduced into the importing scope.

The imported interfaces are all looked up before any of the local names are bound; thus
IMPORTIASJ,JAST;
imports the two interfaces I and J, perversely giving them the local names J and I respectively.
It is illegal to use the same local name twice:
IMPORTJASL, K ASI;
is a static error, and would be even if J and K were the same.
The old form IMPORT I is short for IMPORT I AS L.

FROM I IMPORT X introduces X as the local name for the entity named X in the interface I. A
local binding for I takes precedence over a global binding for I. For example,

IMPORTI AS J,J AS I; FROM I IMPORT X;

simultaneously introduces local names I, J, and X for the entities whose global names are J, I,
and J.X, respectively.

3.2 Allowing text constants as brands.
The words from the section on Reference types:

... can optionally be preceded by "BRANDED b", where b is a text literal called
the "brand".

will be changed to

... can optionally be preceded by "BRANDED b", where b is a text constant called
the "brand".

This allows generic modules to use an imported text constant as the brand.
3.3 Generics proper.

In a generic interface or module, some of the imported or exported interface names are treated
as formal parameters, to be bound to actual interfaces when the generic is instantiated.

A generic interface has the form
GENERIC INTERFACE G(F_1, ..., F_n); Body END G.

where G is an identifier that names the generic, F_1, ..., F_n is a list of identifiers, called the
formal imports of G, and Body is a sequence of imports followed by a sequence of declarations,
exactly as in a non-generic interface. An instance of G has the form

INTERFACEI=G(A_l, ..,A_n)ENDIL

where I is the name of the instance and A_1, ..., A_nis a list of "actual” interfaces to which the
formal imports of G are bound. The semantics are defined precisely by the following rewriting:

INTERFACETI; IMPORT A_1 ASF_1,..,A_nAS F_n; Body END L.
A generic module has the form
GENERIC MODULE G(F_1, ..., F_n); Body END G.

where G is an identifier that names the generic, F_1, ..., F_n is a list of identifiers, called the
formal imports of G, and Body is a sequence of imports followed by a block, exactly as in a
non-generic module. An instance of a G has the form

MODULEI EXPORTSE=G(A_1l,..,A n)ENDL

where I is the name of the instance, E is a list of interfaces exported by I, and A_1, ..., A_nis a
list of actual interfaces to which the formal imports of G are bound. "EXPORTS E" can be
omitted, in which case it defaults to "EXPORTS I". The semantics are defined precisely by the
following rewriting:

MODULE I EXPORTS E; IMPORT A_1 ASF_1,..,A_n ASF_n; Body END L.

Notice that the generic module itself has no exports or UNSAFE indication; they can be sup-
plied only when it is instantiated.

For example, consider
GENERIC INTERFACE Dynarray(Elem),
(* Extendible arrays of Elem.T, which can be any type except an open array type. *)
TYPE T = REF ARRAY OF Elem.T;
PROCEDURE Extend(VAR v: T);
(* Extend v’s length, preserving its current contents. *)

END Dynarray.

GENERIC MODULE Dynarray(Elem);

PROCEDURE Extend(VAR v: T) =

VAR w: T;
BEGIN
IF v = NIL OR NUMBER(v?) = 0 THEN

w = NEW(T, 5)
ELSE
w = NEW(T, NUMBER(v/*) * 2),
FOR i := 0 TO LAST(v*) DO w(i] := v[i] END
END;
vVi=w
END Extend;

END Dynarray.

To instantiate these generics to produce dynamic arrays of integers:
INTERFACE Integer; TYPE T = INTEGER END Integer.
INTERFACE IntArray = Dynarray(Integer) END IntArray.
MODULE IntArray = Dynarray(Integer) END IntArray.

Implementations are not expected to share code between different instances of a generic mod-
ule, since this will not be possible in general.

There is no typechecking associated with generics: implementations are expected to expand the
instantiation and typecheck the result. For example, if one made the following mistake:

INTERFACE String; TYPE T = ARRAY OF CHAR END String.
INTERFACE StringArray = Dynarray(String) END StringArray.
MODULE StringArray = Dynarray(String) END StringArray.

Everything would go well until the last line, when the compiler would attempt to compile a ver-
sion of Dynarray in which the element type was an open array. It would then complain that the
"NEW" call in Extend does not have enough parameters.

Section 4. Details of floating-point

The new built-in floating-point type EXTENDED will be added. The character "x" will be used
in place of "d" or "e" to denote EXTENDED constants.

FIRST(T) and LAST(T) will be defined for the floating point types. In IEEE implementations,
these are minus and plus infinity, respectively.

MOD will be extended to floating point types by the rule
xMOD y=x-y*FLOOR(x/y).

Implementations may compute this as a Modula-3 expression, or by a method that avoids over-
flow if x is much greater than y.

All the built-in operations that take REAL and LONGREAL will take EXTENDED arguments
as well. (To make the language specification shorter and more readable, we will use the type
class "Float" to represent any floating point type. For example:

+ (x,y: INTEGER) : INTEGER
(x,y: Float) : Float

The sum of x and y. If x and y are floats, they must have the same type, and the
result is the same type as both.

LONGFLOAT will be removed and FLOAT will be changed to:
FLOAT(x: INTEGER; T: Type :=REAL): T
FLOAT(x: Float; T: Type :=REAL): T
Convert x to have type T, which must be a floating-point type.

Thus FLOAT(x) means the same thing it means today; FLOAT(x, LONGREAL) means what
LONGFLOAT(x) means today.

We will add to the expressions chapter a note that the rounding behavior of floating-point op-
erations is specified in the required interface FloatMode, as well as a note that implementations
are only allowed to rearrange computations if the rearrangement has no effect on the semantics;
e.g., (x+y)+z should not in general be changed to x+(y+z), since addition is not associative. The
arithmetic operators are left-associative; thus x+y+z is short for (x+y)+z. The behavior of over-
flows and other exceptional numeric conditions will also be determined by the interface Float-
Mode. Finally, we will change the definition of the built-in equality operation on floating-point
numbers so that it is implementation-dependent, adding a note that in IEEE implementations,
+0 equals -0 and Nan does not equal Nan.

Modula-3 systems will be required to implement the following interfaces related to floating-
point numbers. The interfaces give clients access to the power of IEEE floating point if the im-
plementation has it, but can also be implemented with other floating point systems. For defini-
tions of the terms used in the comments, see the IEEE Standard for Binary Floating-Point Arith-
metic (ANSI/IEEE Std. 754-1985).

INTERFACE Real;

TYPE T =REAL,;
CONST
Base: INTEGER = ..

(* The radix of the floating-point representation for T *)
Precision: INTEGER;

(* The number of digits of precision in the given Base for T. *)
MaxFinite: T=...;

(* The maximum finite value in T. For non-IEEE implementations, this is the same as
LAST(T). *)

MinPos: T=...;
(* The minimum positive value in T. *)
MinPosNommal: T = ...;

(* The minimum positive "normal” value in T; differs from MinPos only for implementations
with denormalized numbers. *)

END Real.

INTERFACE LongReal;
TYPE T = LONGREAL;
CONST

Base: INTEGER = ...;

Precision: INTEGER = ...;

MaxFinite: T = ...;

MinPos: T =..,;

MinPosNormal: T = ...;

(* Like the corresponding constants in Real. *)

END LongReal.

INTERFACE Extended;

TYPE T = EXTENDED;

10

CONST

Base: INTEGER = ...;

Precision: INTEGER = ...;

MaxFinite: T = ...;

MinPos: T = ..

MinPosNormal: T = ...;

(* Like the corresponding constants in Real. *)
END Extended.

INTERFACE RealFloat = Float(Real) END RealFloat.
INTERFACE LongFloat = Float(LongReal) END LongFloat.
INTERFACE ExtendedFloat = Float(Extended) END ExtendedFloat.

GENERIC INTERFACE Float(Real);

TYPE T =Real.T;

(* The purpose of the interface is to provide access to the floating-point operations required or
recommended by the IEEE floating-point standard. Consult the standard for the
precise specifications of the procedures, including when their arguments are NaNs,
infnities, and signed zeros, and including what exceptions they can raise. Our
comments specify their effect when the arguments are ordinary numbers and no ex-
ception is raised. Implementations on non-IEEE machines that have values similar
to NaNs and infinities should explain how those values behave for IsNaN, Finite,
etc. in an implementation guide *)

PROCEDURE Scalb(x: T; n: INTEGER): T;

(* Return x * (2 ** n). *)

PROCEDURE Logb(x: T): T;

(* Return the exponent of x. More precisely, return the unique n such that ABS(x) / Base ** n
is in the range [1..Base-1], unless x is denormalized, in which case return MinExp-1, where
MinExp is the minimum exponent value for T. *)

PROCEDURE ILogb(x: T): INTEGER;

(* Like Logb, but returns an integer, never raises an exception, and always returns the n such
that ABS(x)/Base**N is in [1..Base-1] even for denormalized numbers. *)

11

PROCEDURE NextAfter(x, y: T): T;

(* Return the next representable neighbor of x in the direction towards y. If x =y, return x *)

PROCEDURE CopySign(x, y: T): T;

(* Return x with the sign of y. *)

PROCEDURE Finite(x: T): BOOLEAN;

(* Return TRUE if x is strictly between -infinity and +infinity. This always retuns TRUE on
non-IEEE machines. *)

PROCEDURE IsNaN(x: T): BOOLEAN,

(* Return FALSE if x represents a numerical (possibly infinite) value, and TRUE if x does not

represent a numerical value. For example, on IEEE implementations, retuns TRUE if x is a

NaN, FALSE otherwise; on Vaxes, returns TRUE of x is a reserved operand, FALSE other
wise. *)

PROCEDURE Sign(x: T): [0..1];

(* Return the sign bit x. For non-IEEE implementations, this is the same as ORD(x >= 0); for
IEEE implementations, Sign(-0) = 1, Sign(+0) = 0. *)

PROCEDURE Differs(x, y: T): BOOLEAN;

(* RETURN (x <y OR y < x). Thus, for IEEE implementations, Differs(NaN, x) is always
FALSE; for non-IEEE implementations, Differs(x,y) is the same as x #y. *) PROCEDURE
Unordered(x, y: T): BOOLEAN; (* Return NOT (x <=y OR y <= x). For non-IEEE imple-

mentations, this always returns FALSE. *)

PROCEDURE Sqrt(x: T): T;
(* Return the square root of T. Must be correctly rounded if FloatMode.IEEE is TRUE. *)

TYPE IEEEClass =
{SignalingNaN, QuietNaN, Infinity, Normal, Denormal, Zero};

PROCEDURE Class(x: T): IEEEClass;

12

(* Retumn the IEEE number class containing x. On non-IEEE systems, the result will be Nor
mal or Zero. *)

END Float.

INTERFACE FloatMode;

(* This interface allows you to test the behavior of rounding and of numerical exceptions. On
some implementations it also allows you to change the behavior, on a per-thread basis. *)

CONST IEEE: BOOLEAN = ...,
(* TRUE for full IEEE implementations. *)

EXCEPTION Failure,

TYPE RoundingMode =
{MinusInfinity, PlusInfinity, Zero, Nearest, Vax, IBM370, Other};

(* Mode for rounding operations. The first four are the IEEE modes. *)

CONST RoundDefault: RoundingMode = ...;

(* Implementation-dependent: the default mode for rounding arithmetic operations, used by a
newly forked thread. This also specifies the behavior of the ROUND operation in half-way
cases. *)

PROCEDURE SetRounding(md: RoundingMode) RAISES {Failure};

(* Change the rounding mode for the calling thread to md, or raise the exception if this cannot
be done. This affects the implicit rounding in floating-point operations. Generally this is pos
sible only on IEEE implementations and only if md is an IEEE mode. *)

PROCEDURE GetRounding(): RoundingMode;
(* Return the rounding mode for the calling thread. *)
TYPE Flag =
{Invalid, Inexact, Overflow, Underflow, DivByZero, IntOverflow, IntDivByZero};

(* Associated with each thread is a set of boolean status flag recording whether the condition

represented by the flag has occurred in the thread since the flag has last been reset. The

meaning of the first five flags is defined precisely in the IEEE floating point standard,;
roughly they mean:

13

Invalid = invalid argument to an operation.

Inexact = an operation produced an inexact result.

Overflow = a floating-point operation produced a result whose absolute value is too large to

be represented.

Underflow = a floating-point operation produced a result whose absolute value is too small to

be represented.
DivByZero = floating-point division by zero.

The meaning of the last two flags is:

IntOverflow = an integer operation produced a result whose absolute value is too large to be

represented.

IntDivByZero = integer DIV or MOD by zero. *)

CONST NoFlags = SET OF Flags { };

PROCEDURE GetFlags(): SET OF Flag;

(* Retum the set of flags for the current thread *)

PROCEDURE SetFlags(s: SET OF Flag): SET OF Flag;

(* Set the flags for the current thread to s, and return their previous values. *)

PROCEDURE ClearFlag(f: Flag);
(* Tumn off the flag f for the current thread. *)

EXCEPTION Trap(Flag);

TYPE Behavior = {Trap, SetFlag, Ignore};

(* The behavior of an operation that causes one of the flag conditions is either
Ignore = return some result and do nothing.

SetFlag = return some result and set the condition flag. For IEEE implementations,
the result will be what the standard requires.

Trap = possibly set the condition flag; in any case raise the Trap exception with the
appropriate flag as the argument.

)

14

PROCEDURE SetBehavior(f: Flag; b: Behavior) RAISES {Failure};

(* Set the behavior of the current thread for the flag f to be b, or raise Failure if this cannot be
done. *)

PROCEDURE GetBehavior(f: Flag): Behavior;

(* Return the behavior of the current thread for the flag f. *)

END FloatMode.

15

