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DEC’s business and technology objectives require a strong research program. The Systems
Research Center (SRC) and three other research laboratories are committed to filling that need.

SRC began recruiting its first research scientists in 1984 — their charter, to advance the state
of knowledge in all aspects of computer systems research. Our current work includes exploring
high-performance personal computing, distributed computing, programming environments,
system modelling techniques, specification technology, and tightly-coupled multiprocessors.

Our approach to both hardware and software research is to create and use real systems so
that we can investigate their properties fully. Complex systems cannot be evaluated solely in
the abstract. Based on this belief, our strategy is to demonstrate the technical and practical
feasibility of our ideas by building prototypes and using them as daily tools. The experience
we gain is useful in the short term in enabling us to refine our designs, and invaluable in the
long term in helping us to advance the state of knowledge about those systems. Most of the
major advances in information systems have come through this strategy, including time-sharing,
the ArpaNet, and distributed personal computing.

SRC also performs work of a more mathematical flavor which complements our systems research.
Some of this work is in established fields of theoretical computer science, such as the analysis
of algorithms, computational geometry, and logics of programming. The rest of this work explores
new ground motivated by problems that arise in our systems research.

DEC has a strong commitment to communicating the results and experience gained through
pursuing these activities. The Company values the improved understanding that comes with
exposing and testing our ideas within the research community. SRC will therefore report results
in conferences, in professional journals, and in our research report series. We will seek users
for our prototype systems among those with whom we have common research interests, and
we will encourage collaboration with university researchers.

Robert W. Taylor, Director
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Author’s abstract

Commercial multiprocessors are used successfully for a range of applications, includ-
ing intensive numeric computations, time-sharing, and shared servers. The value of
multiprocessing in a single-user workstation is not so obvious, especially in an environ-
ment where numeric problems do not dominate. The Digital Equipment Corporation
Systems Research Center has had several years of experience using the five-processor
Firefly workstation in such an environment. This report is an initial assessment of
how much is gained from multiprocessing on the Firefly.

Reported here are measurements of speedup and utilization for a variety of pro-
grams. They illustrate four sources of concurrency: between independent tasks, within
a server, between client and server, and within an application. The nature of the par-
allelism in each example is explored, as well as the factors, if any, that constrain
multiprocessing. The examples cover a wide range of multiprocessing, with speedups
on a five-processor machine varying from slightly over 1 to nearly 6. Most uses de-
rive most of their speedup from two or three processors, but there are important
applications that can effectively use five or more.

Susan Owicki
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1 Introduction

Commercial multiprocessors are used successfully for a range of applications, including intensive
numeric computations, time-sharing, and shared servers. In these uses, there is abundant scope for
multiprocessing in handling simultaneous requests from separate users or in single-user computa-
tions where there is substantial concurrency in the structure of the problems.

The value of multiprocessing in a single-user workstation is not so obvious, especially in an en-
vironment where numeric problems do not dominate. Can other applications besides scientific com-
putation exploit multiple processors? Are multiple users essential to generate a reasonable workload
for the system?

For several years, the Firefly multiprocessor workstation [9] has been the primary source of
computing at the Digital Equipment Corporation, Systems Research Center (SRC). Software for the
Firefly spans a wide range of systems and applications programs. Most Firefly programs are written
in an extension of Modula-2 [12] called Modula-2+ [7], which provides threads and synchronization
primitives for concurrent programming. The Firefly workload does not include the sort of lengthy
numeric calculations that have traditionally benefited from concurrency. Nevertheless, much of the
software has been designed to take advantage of multiprocessing. Thus, there has been substantial
experience at SRC with using multiprocessor workstations for non-numeric computation, and it
seems appropriate now to assess their value. To do so, a number of instances of multiprocessing
on the Firefly were examined. This report gives measures of concurrency for these examples, and
describes the sources and limits of their parallelism.

The Firefly used for these measurements has five 1-MIP MicroVAX processors, so it is called
a 5-MIP machine. In actual use, though, the Firefly has less computational power than a 5-MIP
uniprocessor. This is partly because some of the software was originally written for a uniprocessor.
But even code written for the Firefly seldom exploits all the concurrency that the processors pro-
vide. There are many reasons: some problems have limited parallelism, sometimes the overhead of
concurrency is too high, sometimes another part of the machine is a bottleneck, and sometimes the
implementor chose to avoid the complexity of concurrent programming.

However, the Firefly doesn’t have to provide a full 5 MIPS of computing power to be cost-
effective, since it is generally cheaper to build a multiprocessor than a uniprocessor with the same
MIPS rating. Building a multiprocessor with, say, three to thirty processors may not cost a great deal
more than building a uniprocessor with the same CPU. Thus, the multiprocessor may be economi-
cally attractive even if its processors are not always fully utilized. The benefit gained from greater
computing power must be weighed against the increased cost of the multiprocessor.

This report is concerned with assessing the benefit side of the cost-benefit equation. Benefit is
estimated using the standard metrics speedup and processor utilization. These metrics, which are
discussed in Section 2, are less than ideal, but they do give some feeling for the degree of success in
exploiting multiprocessing.



Four sources of concurrency were identified in day-to-day workstation activities:

e single-user time-sharing: concurrency between independent tasks. A user may undertake
several tasks in parallel, such as editing or reading mail while a compilation is in progress.

e concurrency within a server. The window system, the file system, and other basic services are
implemented with algorithms that use multiprocessing.

e concurrency between client and server. Sometimes a server can return an immediate answer
to a request, then compute in parallel with its client to complete processing the request.

e concurrency within an application: some application programs are coded with multiple threads
for performance.

Note that the first three sources of concurrency are available in all uses of the workstation, without
requiring an application programmer to write multi-threaded code. So multiprocessors in a work-
station can be useful even when running applications that do not attempt to exploit concurrency.

Sections 3 to 6 contain speedup and utilization data for a number of examples from each of
the arcas above. All the measurements were taken on a 5-processor, 16 Megabyte Firefly, unless
otherwise noted.

2 Metrics

Parallel sorting will be used as an example to illustrate speedup and processor utilization. Figure 1
gives graphs of speedup and utilization for a Quicksort program [11] working on an array of 10000
integers. The algorithm sequentially partitions the array and then recursively applies Quicksort in
parallel to the two subarrays.

The speedup reported in Figure 1a is defined in the conventional way: speedup for n processors
is

S(n) =T(1)/T(n), (1)
where T'(k) is the execution time when the program is run using k processors. Speedup is determined
using an option of Taos, the Firefly operating system, that restricts the set of processors available to
the scheduler. Thus, T'(k) is measured by disabling all but & processors and noting the elapsed time
to execute the program. Since elapsed time can fluctuate due to other activities in the system, T'(k)
was taken as the median elapsed time of three to five runs.

The dotted line in Figure 1a represents the theoretical "perfect” speedup. For two and three
processors, Quicksort has a nearly optimal speedup. There is some additional benefit from the fourth
and fifth processors, but it is less significant. The amount of parallel computation is limited by the
structure of the algorithm: during the initial partitioning, for example, only one thread is active.
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Figure 1: Quicksort of 10000 integers.

Processor utilization for a five-processor run of Quicksort is shown in Figure 1b. The height
of the kth bar represents the fraction of the time when exactly & processors were busy. There was
essentially no time when all processors were idle, which is to be expected in a compute-bound task
like sorting an array. All five processors were busy for more than 40% of the time. This is somewhat
surprising, given that the speedup figures for four to five processors were not impressive. With five
processors, the highly parallel parts of the run keep all the processors busy, leaving a substantial
amount of time when only one processor is busy. With fewer processors, sequential segments in
one partition are more likely to overlap parallel segments of another, and each processor is busy a
larger fraction of the time. The average processor utilization on a five-processor Firefly was 3.4.

Processor utilization was measured by instrumenting the operating system to record the amount
of time spent with & processors busy. Once this instrumentation has been done, measuring utilization
is much easier than measuring speedup, because speedup requires multiple runs for each value of n.

There is a correspondence between speedup and average processor utilization. If a program does
the same amount of work when run with 1 processor or with n processors, its speedup and average
utilization should be equal. When they are different, utilization is usually higher, due to overhead in
the parallel version. For Quicksort, however, speedup is higher than utilization. This is because of
background activity in the operating system, which averages about 20% of a processor, regardless
of workload or number of available processors. Background work directly contributes to processor
utilization. It also increases speedup, because the 0.2 CPU lost to background activity slows a one-
processor computation more than a five-processor computation. For Quicksort, background activity
increases speedup more than utilization.

Neither of the metrics discussed so far is ideal. The problem with utilization is that it measures
consumption of processor cycles, but not the benefit obtained. A program that uses extra proces-



sors inefficiently may show large processor utilization but very little speedup. Even though speedup
is more relevant in assessing the benefits of multiple processors, sometimes only utilization is re-
ported here. This is because speedup is harder to measure. For some programs, interactive ones in
particular, speedup cannot be measured at all because the timing of runs is not reproducible.

Unfortunately, high speedup numbers can be misleading as well. The problem is that a parallel
program may perform badly when run on one processor. Introducing parallelism entails overhead:
creating threads, dividing the workload, synchronization operations, and so on. When a parallel
program is run on a single processor, it is likely to be slower than a good sequential algorithm.
Overhead leads to a large value for T'(1), and this inflates the speedup figures. Ideally, speedup
would be measured against a good single-processor solution to the problem. For most of the exam-
ples in this report, no such solution was available, so the speedup reported is based on the formula
in equation 1. Speedup over a good sequential program is reported whenever possible; usually this
is because the concurrent program was derived from an earlier sequential version.

One other speedup measure is used in this report. Some of the programs studied have a variable
number of threads, and speedup can be measured by comparing the elapsed time for n threads with
the time for 1 thread, with the number of processors kept constant. Computing speedup in this way
measures the advantage obtained from program structure rather than from multiprocessors. Thread-
based speedup may be higher or lower than processor-based speedup. It may be higher because a
program can benefit from overlapping computation with some other activity, such as I/O. This re-
quires multiple threads, but not multiple processors. It may be lower because there can be concurrent
processing in the system (within the file server, for example) while even a single-threaded program
is executed. Processor-based speedup is more relevant to evaluating multiprocessor workstations,
but in some cases thread-based speedup is reported because it is the only data available.

3 Single-user Timesharing

A workstation often operates like a single-user time-sharing system. A user can pursue several
activities at once — perhaps compiling a program, running a simulation, and reading mail at the same
time. Having a multiprocessor workstation makes it possible to do this without suffering degraded
performance.

The primary constraint on this sort of concurrency is the user’s ability to juggle multiple active
tasks. Doing two things at once is common, and doing three is not unusual. While a module is
compiling, for example, a user typically does something else, such as edit another module, read
mail, or examine an online calendar. A long-running computation may provide a third activity. One
researcher regularly commits one processor on his Firefly to a symbolic computation which can take
days to complete a single problem. This CPU-intensive background program does not significantly
degrade the performance of his workstation for day-to-day activities. However, he is using a Firefly
with 32 Megabytes of memory. The symbolic computation requires a good deal of memory, and



running it in the background with a 16 Megabyte Firefly led to unacceptable thrashing.

The Firefly operating system also takes advantage of the UNIX! pipe construction to obtain
command-level parallelism. A pipe is a way to direct the output of one program to the input of
another. For example, the command

Is | wc -1

directs the output of Is, a list of files in the current directory, to the program wc, which counts the
number of lines in its input. Thus, the result is a count of the number of files in the current directory.
On a Firefly, the stages in such a pipeline are executed in parallel whenever possible.

To get a feeling for the level of multiprocessing arising from independent tasks, CPU utiliza-
tion was monitored on one Firefly during several days of ordinary use. Speedup was not measured
because much of the activity was interactive, and the timing of mouse motions and key strokes is
too hard to reproduce. The most common parallel activity was editing while compiling. Editing is
not a CPU-intensive activity, and editing while compiling used scarcely more processor-power than
compiling alone. However, other parallel activity led to significant multiprocessing. In one fairly
typical sequence, the user began a remote login to a time-sharing machine. Since remote login is
annoyingly slow, the user filled in the time by checking for new mail. This also required communi-
cation with a remote server. While waiting, the user requested a new typescript window. Figure 2
shows the processor utilization graph for this set of operations. Average processor utilization was
over 2, and at least 10% of the time there were 5 processors busy.

1.0~
os L average=2.2
0.64
0.4}

0.2 +

0 1 2 3 4 5
Processor Utilization

Figure 2: Set of Independent Tasks.

Another example arose very naturally when logging in to the Firefly. At login, this Firefly was
configured to start two programs, the text editor Ivy and the mail system Postcard. Both require a fair

1UNIX is a trademark of AT&T Bell Laboratories.



amount of file access and computation at startup. Ivy recovers the state of all files that were being
edited when the server was last running. Postcard checks the status of a number of mail folders and
scans one of them to build a list of its current messages. Running both initializations in parallel led
to an average processor utilization of 2.0.

A more systematic exploitation of single-user time-sharing is illustrated by the program par-
make [6]. Parmake is a variant of the UNIX utility make (4], which builds a software object, such
as a load module, following instructions found in a file. The difference is that, wherever possible,
parmake builds components in parallel. (Parmake can enlist idle workstations in this task, as well as
using multiple processors on the Firefly where it is invoked. For this report, only the single-machine
behavior is important.) Parmake was measured on a large-scale recompilation consisting of 238
Modula-2+ files (65,000 source lines) drawn from various library packages at SRC. Speedup was
measured by varying the number of threads, that is, the number of parallel compilations, rather than
the number of processors. The maximum speedup in this benchmark was 2.2, attained by running
three compilations in parallel. Running more compilations in parallel led to a severe degradation in
performance, because of memory thrashing. Subsequently, the measurements were repeated on a
Firefly with twice as much memory, (and faster processors, as well). The speedup was only slightly
better: 2.3 for three threads, and 2.4 for four threads. It appears that the bottleneck for parmake on
the larger machine is file I/O to the single local disk. A large part of the demand comes from loading
the 4 Megabyte compiler once for each source file.

It should be noted that there were almost no dependencies among the modules compiled in this
test. Thus, most compilations could logically proceed in parallel, and speedup was limited by the
resources of the machine. Bubenik and Zwaenepoel [2] found that when make is used for program
development, dependencies substantially constrained the available parallelism.

A final example concems a theorem-prover called Reve. As an experiment, up to five copies
of Reve were run in parallel on the same test case. (This gives an indication of how much might
be gained by splitting a large proof into independent components and running them concurrently.)
The test case was very compute-intensive. Two copies of Reve were able to run in nearly the same
time as one, giving a speedup of 1.91. Improvement was less than linear as the number of copies
increased: still, the speedup with 5 copies was 4.05.

4 Concurrency within a Server

Software at SRC makes frequent use of the client/server program structure. Typically, servers and
clients run in different address spaces or even on different machines, with communication by remote
procedure call. There are also some servers that operate in the same address space as their clients,
with communication by ordinary procedure call.

The Taos operating system is the most important server. Taos runs in its own address space. It
provides a number of operating system facilitics: display management, file system, and so on. Taos



itself is multi-threaded, and its interface allows multi-threaded programs to make parallel requests
to the operating system [5].

There are also other servers in the Taos address space. The Trestle window system provides a
powerful set of operations for managing windows on the Firefly displays. The File Server allows
files on one Firefly to be accessed from another. Other servers run in their own address space: most
Fireflies run the monarch server for remote login, and the dp server, which allows an idle Firefly
to be used by distributed computations. The Ivy text editor also runs as a server in its own address
space.

When a server is multi-threaded, as many are, its client programs can get improved performance
on a multiprocessor, even if the clients are single-threaded. This effect can be observed in copying
a set of files in the Firefly’s local file system. The concurrency of copy was measured by invoking
the operation from the command line, on a directory containing 9.5 megabytes in 89 files. This led
to one call on the Taos Copy command for each file in the directory. Figure 3 shows the processor
utilization and speedup for this operation. Even though copying files is an I/O intensive activity,
there is about 50% speedup in going from one to two processors, and a slight increase in going from
two to three. The utilization graph shows that two processors are in use about 30% of the time. The
dip in speedup at 4 processors is a measurement artifact.
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Figure 3: Concurrency within a server: copying files.

The concurrency in the Copy operation comes from the activity of five threads. Two are created
by the Copy procedure: one to read the input file to a buffer and the other to write the output file
from the buffer. At a lower level, the file system maintains a read cache filled by two read-ahead
threads, and a write buffer emptied by one writer thread. In spite of these five threads, however,
average processor utilization is only 1.6. The low-level threads spend most of their time waiting for
the disk: multiple threads are used to keep the disk busy, not the processors.



Trestle, the primary Firefly window system, is more able to exploit multi-processing. Trestle
uses parallelism in two ways. The first is a 4-stage pipeline that handles paint requests. The first
stage combines client paint requests into batches; it operates in the client address space. The second
stage is the remote procedure call to send a batch of requests to the Trestle server, usually on the
same Firefly. The third stage’s main task is clipping, and the fourth stage translates the batch into
display-controller commands. A benchmark program that blackens a large number of rectangles on
the screen showed that the pipeline gave a speedup of 4.0, according to the naive speedup definition
of equation 1. To obtain a more realistic measure, Trestle was reconfigured for a uniprocessor by
removing all pipeline code. This resulted in a speedup measure of 3.1.

The second source of concurrency in Trestle can be seen when a window is re-configured. A
window may contain subwindows, which may have subwindows of their own, and so on. When a
window is reconfigured, its subwindows are processed in parallel. A benchmark program called the
Tiling Monster builds and then reconfigures a window with many nested subwindows. Measure-
ments of the Tiling Monster showed a speedup of 4.7, or nearly the entire processing power of the
Firefly. Once again, it was possible to measure the performance of a good sequential algorithm;
using the sequential algorithm as a basis, the speedup was 3.7.

Of course, both of the Trestle benchmarks were designed to take full advantage of the potential
concurrency in Trestle’s algorithms. A workstation user typically does not drive the window system
so hard. But the power is available to graphics-oriented applications.

Another server, Facades, is a windowing package that incorporates a desktop paradigm for dis-
play management. It provides some of the functionality of Trestle, but has better performance when
bound into the same address space as the client. The goal of Facades is to make it easier to write
applications that use windows for an interactive user-interface. Like Trestle, Facades uses a pipeline
to handle paint requests. It has three stages. The first stage accepts a request and checks whether the
window to which it applies is on-screen. If it is, the request is passed to the second stage. The second
stage relocates the request to the screen and clips it to the visible portions of the window. The third
stage transforms the relocated and clipped paint actions into commands to the screen controller, For
a long sequence of easy requests, these pipeline stages took 100, 100, and 60 microseconds respec-
tively. This suggests a CPU utilization of about 2.6 by the pipeline. To evaluate speedup, Facades
can be compared to a good sequential program, which would not contain code to buffer requests
between pipeline stages. Based on experimentation and instruction counting, it was estimated that
the speedup over such an implementation would be less than two.

Zeus, a system for algorithm animation, provides yet another example of concurrency within
a server. Zeus allows a user to observe multiple views of a program’s execution. All views are
updated in parallel as the program runs. It is also possible to have multiple threads in the program
being animated. For a single-threaded algorithm, the concurrency in a Zeus run comes from Zeus's
updating multiple views in parallel, and from the concurrency provided by the Trestle server.

In an animation of insertion sort for 500 random integers, CPU utilization was 2.4 when only
one view was displayed. The sort algorithm itself is sequential, so the concurrency here must be due



to Trestle. With two views, CPU utilization increased to 3.3, while with four views it rose to 4.1.
Further increasing the number of views led to slower execution rather than greater CPU utilization.

The final example in this section shows that multiprocessing can sometimes speed up a com-
putation by reducing overhead. Benchmark measurements of a single thread making inter-machine
remote procedure calls show a speedup of 1.33 when the calling machine uses 2 processors [8].
(Adding more processors gives a very small additional speedup.) This is surprising, given that the
calls are made sequentially and there is no concurrency in the RPC implementation. The explanation
involves the background activity mentioned in section 2. Part of the speedup comes from processing
RPC'’s in parallel with background tasks. But that is not enough to account for the whole change. It
appears that additional speedup comes from reducing the number of context switches. The Firefly
scheduler allows a waiting thread to remain in an idle loop as long as its processor is not needed by
another thread. In RPC, the calling thread must wait to receive a response from the server machine.
With one processor, the odds are good that the waiting thread will lose its processor to a background
thread. Then, when the response arrives, the RPC thread will have to be rescheduled. Having two
processors makes it more likely that the RPC thread will still be scheduled on a processor when the
response is received.

5 Concurrency between Client and Server

The procedure-call interface between client and server is synchronous, that is, the client is delayed
until the call returns. But sometimes the semantics of an operation allow a server to return control
to the client before the work is completed. The client can continue while one or more threads in the
server complete the work.

Trestle provides an example of this sort of concurrency. The Trestle pipeline operates in such a
way that requests to paint the screen return control to the client early on, while the paint request is
moving its way through the pipeline. This effect can be seen in the execution of the program Forest,
Forest recursively draws a picture of an attractive tree whose shape is determined randomly. It is
typical of graphics applications that perform some computation and call on Trestle to display the
results on the screen. Forest is completely compute-bound, and its single-threaded computation is
the limiting factor in the performance of the program.

Figure 4 shows the speedup and utilization mcasurements for a program called Forest. Forest
itself keeps one processor busy at all times, so utilization never falls below 1. When two or more
processors are busy, it is because of concurrency between Forest and Trestle. When three or more
processors are busy, it is because of additional concurrency within Trestle. The speedup graph
shows that using more than three processors does not improve performance, and most of the benefit
is achieved with two.

Another example of client/server concurrency occurs in Zeus, when the algorithm to be animated
continues to run one or more threads while Zeus is updating the display. This possibility is exploited
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Figure 4: Concurrency between client and server: Forest.

in the animation of a multi-level hashing scheme [1]. The animation shows the filling of hash tables
as a series of keys are entered. The algorithm’s behavior is most interesting when there are many
collisions. In order to illustrate this case, keys are selected in a way that gives a high probability
of collision. Finding such keys requires more computation than the hashing algorithm itself. From
one to three producer threads find the keys, while a single consumer thread uses them to drive the
animation. CPU utilization averages about 3.8 when presenting a single view of the algorithm,
compared with an average utilization of 2.4 for animating a single view of insertion sort.

A final example of concurrency between client and server is concurrent garbage collection. A
garbage collector is not a typical server, because it is part of the runtime system, and because its ac-
tions are not explicitly invoked by the program. Nevertheless, it provides a service to the application
program which can be a source of concurrency, so it is included in this section.

The Modula-2+ garbage collector is a reference-counting collector which runs in a thread of its
own, in parallel with the application program, or mutator. Each mutator assignment that changes
a reference count causes an entry to be enqueued for the collector. When a collection is initiated,
the collector processes the queue and updates reference counts. This updating, plus the detection
and reclaiming of garbage, take place in parallel with mutator operations. Measurements on several
single-threaded applications showed that the collector thread ran about 40-70% of the time. The
mutator thread ran most of the time, though it incurred a few percent overhead in synchronization
operations. If these figures are typical for Modula-2+ programs, the collector thread must use about
55% of a CPU to keep up with one compute-bound mutator thread. This suggests that, on a five-
processor Firefly, a multi-threaded mutator could have an average CPU utilization of over 3 and still
leave adequate CPU available to the collector.

An experimental copying collector for the programming language ML has also been imple-
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mented on the Firefly [3]. On one benchmark, a program using the concurrent version of this collec-
tor ran 18% faster than one using a sequential version. The collector thread was active about 40%
of the time.

6 Concurrency within an Application

Quite anumber of the applications written for the Firefly are multi-threaded. In fact, about 40% of the
software packages at SRC fork one or more threads. (Packages vary in size, but typically contain
code for a single application program or a library of related procedures.) Often the threads are
created for program structure rather than performance; a rough estimate is that 20% of the packages
use threads to gain performance through multiprocessing.

Simulation is an application area that seems especially suited to concurrency, although some-
times speedup may be harder to achieve than it first appears. Regsim, a register-level simulator for
synchronous digital logic, is able to successfully exploit the parallelism in its input. The circuits
input to Regsim are composed of connected objects. In each simulation phase, some fraction of
the objects are evaluated. Certain objects must be evaluated every phase; others are evaluated on
demand. When more than one thread is used for evaluation, the synchronization is such that some
objects may be evaluated more than once.

Figure 5 shows the processor utilization and speedup for the simulation phase of Regsim on a
circuit consisting of about 5000 objects. (The simulation phase, which took 1693 seconds with five
processors, was preceded by a largely sequential initialization phase that took 99 seconds.) In this
case, the number of threads was a parameter. For the speedup measurements it was set to give the best
performance; this meant » threads when running on » processors, except that with five processors,
four threads was optimal. In the utilization graph, note that 90% of the time there are four or five
processors busy. Clearly Regsim contains enough parallelism to keep the Firefly processors busy.
Moreover, they are being used productively, as illustrated by the speedup diagram. In fact, the
speedup is better than linear.

Of course, no theoretical limit is really being exceeded. The anomaly occurs because of back-
ground activity on the Firefly, as mentioned in Section 2. Even when no user task is being executed,
about 20% of a processor, on average, is consumed with ethemet activity, operating system timers,
and so on. The level of background activity is essentially independent of the amount of work being
done on the Firefly. Thus, when one processor is available for computation, only about 0.8 proces-
sor can be used by an application program. When 5 processors are available, 4.8 can be used by the
application. This allows the application to speed up by a factor of 6 rather than 5.

Prf is another design automation tool that gains considerably from multiprocessing. Prf is a post-
processor for routed printed-circuit boards. Its input is produced by a router with an abstract model
of routing; prf adjusts the routing to conform to a more physically accurate model. For example,
it introduces jogs to route traces around holes and rounds off sharp corners. Prf can process traces
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Figure 5: Concurrency within an application: Regsim.

in parallel because the modifications it makes are strictly local to a trace. A typical run may have
about 900 traces, so there is ample scope for concurrency. In fact, the average utilization for the
processing phases of prf is 4.6, so nearly the full processing power of the Firefly is exploited. The
final output phase is also parallel; here the parallelism comes from independent processing of the
ten layers of the circuit board. In this phase, processor utilization averages 4.4. Unfortunately, the
overall performance of prf is not as good as these figures suggest. First, about 40% of execution
time is consumed by parsing the input file sequentially. In this phase, utilization is 1.6 because of
concurrency in the file system. It would probably be possible to parse the input file in parallel, but
this optimization has not been pursued. Second, some of the processing phases do not achieve as
much speedup as the utilization figures suggest, for reasons that are not yet known. For example,
the longest processing phase has a utilization of 4.7 and a speedup of 3.2. The result is that average
utilization for the entire program is reduced to 3.1, and speedup is 2.3.

Several multi-threaded compilers have been developed for the Firefly. The current Modula-2+
compiler exploits a limited amount of concurrency by running the lexical analyzer as a separate
thread. The lexical analyzer thread is able to produce tokens faster than they can be used, so the
main compiler thread never has to wait for a token. Thus, lexical analysis is essentially free so far
as elapsed time is concerned.

Michael Junkin and David Wortman, at the University of Toronto, have made considerable
progress in parallelizing the Modula-2+ compiler. The Toronto compiler gets parallelism from two
sources. First, scopes (procedures, main modules, and definition modules) are compiled in parallel.
The primary limits on this easy parallelism are fast recognition of scopes, and data-dependencies
between scopes. Second, some parallelism is exploited in compiling a single scope. This involves
pipelining lexical analysis and analyzing declarations in parallel with parsing statements. Prelim-
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inary measurements comparing the Toronto compiler with a traditional single-threaded compiler
show that, with one processor, the Toronto compiler is 1.3 times faster. The speedup is 3.1 for five
processors, and 3.3 for a specially configured Firefly with seven processors.

Figure 6 is a graphical illustration of the performance of the Toronto compiler. The figure is a
second-by-second display of the number of active processors during a sequence of compilations on
a seven-processor Firefly. The graph was obtained by repeatedly compiling the same module, first
with one processor, then with two, and so on. A 10 second idle period separates compilations. The
image illustrates both the use of multiple processors (the height of the bars) and the elapsed time for
each compilation (the width of the active periods).

Figure 6: Parallelism in the Toronto Modula-2+ Compiler.

There is also a parallel C compiler for the Firefly [10]. This compiler consists of a two-stage
pipeline. The first stage performs extended lexical analysis for the second stage, much like the
current SRC Modula-2+ compiler. The second stage does the parsing and assembly code generation.
It processes units of the source program concurrently; the unit granularity can vary from a single
statement to a procedure.

Experiments compared the concurrent compiler, with various granularities of concurrency, to a
sequential compiler on nine large source files (> 1200 lines). Pipelined scanning, with a sequential
second phase, gave a speedup of 1.07 to 1.18. With a concurrent second phase and the finest unit
of granularity, the compiler achieved a speedup of 2.5 to 3.3. Compiling with the finest granularity
never hurt performance. For six of the source files, most of the concurrency came from processing
procedures in parallel. For the remaining three, a finer granularity, at the statement level, gave a
significant increase over the procedure level.

An important tool for insuring that Modula-2+ programs do not contain inconsistent versions of
component modules is the inter-module checker, or imc. It takes a list of separately compiled object
modules and libraries and checks that all the compilations used consistent versions of definitions
files. It is organized as a 4-stage pipeline. The first stage opens the files listed on the command line.
The second stage separates libraries into individual object modules. The third stage builds a list
of module version numbers, and the fourth stage merges the lists and checks them for consistency.
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After all stages have completed, a summary report is printed. Running on a set of 20 modules and 10
libraries, the concurrent version of the program exhibited a speedup of 1.3 over an earlier, sequential
version.

The program Proof allows a user to preview a typeset document on the Firefly display. A sub-
stantial amount of processing is required to transform the typesetter instructions into commands
to the Trestle window system. Proof is composed of three parallel tasks: building a display list of
characters and boxes (one thread), painting the display list (up to three threads, one for each page vis-
ible on the screen), and processing font descriptions (six threads). In addition, a background thread
converts the representation of frequently used fonts to speed up Trestle’s processing of characters.
Because Proof is used interactively, it is important to display the first page as soon as possible. To
achieve this, a painter thread can inform a font-loading thread that a certain character is needed im-
mediately. The font-loader will interrupt its current activity in order to load the requested character.
Processor utilization for Proof averages 3.9 while preparing to display the first page of a document.

The program treeupdate is used to update a Firefly’s local file system so that it has current copies
of the files stored in a shared file system. Treeupdate recursively descends the tree of directories
and files in the shared system, comparing with the local tree and doing any necessary updates. The
parallel version maintains a work queue of tree nodes to be updated, with a crew of N threads serving
the queue. Treeupdate is an example of "embarrassing parallelism” —except for the queue, there isno
synchronization necessary. (Here “embarrassing” means "overabundant,” as in “an embarrassment
of riches.”) Comparing this parallel version with the previous sequential one, a speedup of 3.7 was
observed when running over an already consistent file system. Presumably the speedup is due to the
overlapping of the overheads associated with getting the status of files in the local and remote file
systems, and with sorting of directory entries.

One further parallel application must be mentioned even though it derives much of its paral-
lelism from using multiple workstations. Factor is a program for factoring large numbers that runs
continuously at SRC. It is controlled by a single program that watches for Fireflies that have been
idle for some threshold period. When an idle machine is found, the control program adds it to the
pool of factoring machines and starts one factor program for each of its processors. Factor is able
to use virtually all of the available CPU cycles on a machine, because there is almost no synchro-
nization between the separate programs, and the CPU is almost the only resource required. The
number of Fireflies in the Factor pool fluctuates over the course of a day, with an average of about
40 machines at any time. On a typical day in January 1989, Factor executed approximately 10!3
VAX instructions at SRC. Compared to tuned code for factoring on Cray X-MP’s and NEC SX-2's,
the “idle” Fireflies are factoring numbers slightly faster than one dedicated supercomputer.
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7 Conclusion

The examples presented in the preceding sections should give a feel for the variety of ways in which
concurrency is exploited on the Firefly. A substantial part of SRC’s computing now is faster because
of multiprocessing.

Even when running a single sequential application, a Firefly user benefits from having two pro-
cessors, because of concurrency associated with servers. Submitting independent tasks in parallel is
a common activity; here two to three processors are of value. Thus, the benefits of having at least
three processors are very real, even for a user who runs no concurrent applications. A number of
applications exist that effectively use four to five processors, and could probably take advantage of
more. For those who frequently use such applications, having five or more processors gives a sub-
stantial increase in productivity. Other users would probably find that, most of the time, their work
was adequately supported by three processors.

Many of the application programs run on the Firefly are nearly sequential. Some were devel-
oped for a uniprocessor and later ported to the Firefly. But even among programs designed for the
Firefly, there are a number that take little advantage of multiprocessors. Some tasks are simply
not well suited to concurrency. In other cases, designers are primarily interested in exploring new
functionality, and do not want to spend their time on performance.

Still, as more applications are programmed for the Firefly, more of SRC’s computing will benefit
from concurrency. For example, Fireflies are often used for program development, so compiling is
a common activity. The current compiler has limited concurrency, but a more parallel compiler will
soon be available. In addition, a project to facilitate the development of large software systems will
provide facilities that resemble parmake but avoid some of the problems that currently limit its use.

Experience at SRC makes it clear that multiple processors can be used effectively in worksta-
tions. Although current measurements suggest that most users derive most of their benefit from the
first three processors, this should be considered a preliminary estimate. The use of concurrency for
speedup is increasing at SRC, and it will be some time before its limits can be determined.
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