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Abstract

We define a simple collection of operations for creating and manipulating record
structures, where records are intended as finite associations of values to labels. A
second-order type system over these operations supports both subtyping and
polymor phism. We provide typechecking algorithms and limited semantic models.

Our approach unifies and extends previous notions of records, bounded
guantification, record extension, and parametrization by row-variables. The general aim
is to provide foundations for concepts found in object-oriented languages, within a
framework based on typed lambda-cal culus.
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1. Introduction

Object-oriented programming is based on record structures (called objects) intended
as named collections of values (attributes) and functions (methods). Collections of
objects form classes. A subclass relation is defined on classes with the intention that
methods work “appropriately” on all members belonging to the subclasses of a given
class. This property is important in software engineering because it permits after-the-fact
extensions of systems by subclasses, without requiring modifications to the systems
themselves.

The first object-oriented language, Simula67, and most of the more recent ones (see
references) are typed by using simple extensions of the type rules for Pascal-like
languages. These extensions mainly involve a notion of subtyping. In addition to
subtyping, we are interested here in more powerful type systems that smoothly
incorporate parametric polymor phism.

Type systems for record structures have recently received much attention. They
provide foundations for typing in object-oriented languages, data base languages, and
their extensions. In [Cardelli 88] the basic notions of record types, as intended here, were
defined in the context of a first-order type system for fixed-size records. Then Wand
[Wand 87] introduced the concept of row-variables while trying to solve the type inference
problem for records; thisled to a system with extensible records and limited second-order
typing. His system was later refined and shown to have principal types in [Jategaonkar
Mitchell 88], [Rémy 89], and again in [Wand 89]. The resulting system provides a flexible
integration of record types and Milner-style type inference [Milner 78].

Meanwhile [Cardelli Wegner 85] defined a full second-order extension of the system
with fixed-size records, based on techniques from [Mitchell 84]. In that system, a program
can work polymorphically over all the subtypes B of a given record type A, and it can
preserve the “unknown” fields (the ones in B but not in A) of record parameters from
input to output. However, some natural functions are not expressible. For example, by the
nature of fixed-size records there is no way to add afield to a record and preserve al its
unknown fields. Less obviously, a function that updates a record field, in the purely
applicative sense of making a modified copy of it, is forced to remove all the unknown
fields from the result. Imperative update also requires a careful typing analysis.

In this paper we describe a second-order type system that incorporates extensible
records and solves the problem of expressing the natural functions mentioned above. We
believe this second-order approach makes the presentation of record types more natural.
The general ideais to extend a standard second-order (or even higher-order) type system
with a notion of subtyping at all types. Record types are then introduced as specialized
type constructions with some specialized subtyping rules. These new constructions
interact well with the rest of the system. For example, row-variables fall out naturally
from second-order type variables, and contravariance of function spaces and universal
guantifiers mixes well with record subtyping.
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In moving to second-order typing we give up the principal type property of weaker
type systems, in exchange for some additional expressiveness. But most importantly for
us, we gain some perspective on the space of possible operations on records and record
types, unencumbered (at least temporarily) by questions about type inference. Sinceit is
not clear yet where the bounds of expressiveness may lie, this perspective should prove
useful for comparisons and further understanding.

Thefirst part of the paper isinformal and introduces the main concepts and problems
by means of examples. Then we formalize our intuitions by a collection of type rules. We
give anormalization procedure for record types, and we show soundness of the rules with
respect to a simple semantics for the pure calculus of records. Finally, we discuss
applications and extensions of the basic calculus.

2. Informal development

Before looking at a formal system, we describe informally the desired operations on
records and we justify the rules that are expected to hold. The final formal system is
rather subtle, so these explanations should be useful in understanding it.

We aso give simple examples of how records and their operations can be used in the
context of object-oriented languages.

2.1 Record values

A record valueisintended to represent, in some intuitive semantic sense, afinite map
from labels to values where the values may belong to different types. Syntactically, a
record value is a collection of fields, where each field is alabeled value. To capture the
notion of a map, the labels in a given record must be distinct. Hence the labels can be
used to identify the fields, and the fields can be taken to be unordered. Thisis the notation
we use:

() the empty record.

(x=3, y=true) arecord with two fields, labeled x and y,
equivalent to (y=true, x=3).

There are three basic operations on record values.

« Extension (r|x=a) ; addsafield of label x and value a to arecord r, provided afield of
label x is not already present. (This condition will be enforced statically.) We write
(rlx=al]y=b) for {{r|x=a)ly=h).

« Restriction r\x ; removes the field of label x, if any, from the record r. We write r\xy
for r\x\y.

« Extraction r.x ; extracts the value corresponding to the label x from the record r,
provided afield having that label is present. (This condition will be enforced statically.)
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We have chosen these three operations because they seem to be the fundamental
constituents of more complex operations. An aternative, considered in [wand 87], would
be to replace extension and restriction by a single operation that either modifies or adds a
field of label x, depending on whether another field of label x is already present. In our
system, the extension operation is not required to check whether a new field is already
present in arecord: its absence is guaranteed statically. The restriction operation has the
task of removing unwanted fields and fulfilling that guarantee. This separation of tasks
has advantages for efficiency, and for static error detection since fields cannot be
overwritten unintentionally by extension alone. Based on a comparison between the
systems of [Wand 87] and [Jategaonkar Mitchell 88], it also seems possible that a reasonable
fragment of our language will have a practical type inference algorithm.

Here are some simple examples. The symbol <> (value equivalence) means that two
expressions denote the same value.

(Ox=3) < (x=3) extension
(x=3)|y=true) <> (x=3, y=true)
(x=3, y=true)ly <> (x=3) restriction  (cancellingy)
(x=3,y=true)\z <> (x=3, y=true) (no effect)
(x=3, y=true)x <> 3 extraction
((x=3)|x=4) invalid extension
(x=3).y invalid extraction

Some useful derived operators can be defined in terms of the ones above.

« Renaming r[x<-y] =, (Nx|y=r.x): changes the name of arecord field.

o Overriding (r < x=a) =, (r'\x|x=a): if x is present in r, overriding replaces its value
with one of a possibly unrelated type, otherwise extends r (compare with [Wand 89]).
Given adequate type restrictions, this can be seen as an updating operator, or a method
overriding operator. We write (r <= x=a < y=h) for {{r < x=a) <- y=b).

Obviously, al records can be constructed from the empty record using extension
operations. In fact, in the formal presentation of the calculus, we regard the syntax for a
record of many fields as an abbreviation for iterated extensions of the empty record, e.g.:

(x=3) = (Ox=3)
(x=3, y=true) = (Ox=3)|y=true)

This definition allows us to express the fundamental properties of records in terms of
combinations of simple operators of fixed arity, as opposed to n-ary operators. Hence, we
never have to use schemas with ellipses, such as (x,=a, , ..., x,=a,), in our formal
treatment.

Since r\x <= r whenever r lacks a field of label x, we can formulate the definition
above using any of the following expressions:
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(O x=3ly=true) <> {(MN\x|x=3)\y|]y=true) <> ({) < x=3 < y=true)

The latter forms match better a similar definition for record types, given in the next
section.

2.2 Record types

In describing operations on record values we made positive assumptions of the form
“afield of label x must occur inrecord r” and negative assumptions of the form “afield of
label x must not occur inrecordr”.

These constraints will be verified statically by embedding them in a type system,
hence record types will convey both positive and negative information. Positive
information describes the fields that members of arecord type must have. (Members may
have additional fields.) Negative information describes the fields the members of that
type must not have. (Members may lack additional fields.)

Note that both positive and negative information expresses constraints, hence
increasing either kind of information will lead to smaller sets of values. The smallest
amount of information is expressed by the record type with no fields, (), which therefore
denotes the collection of all records, since all records have at least no fields and lack at
least no fields. Thistypeis called the total record type.

@ the type of all records.
Contains, e.g.: (), {(x=3).

\x the type of al records which lack fields of
label x. E.g.: (), {y=true), but not (x=3).

{x:Int, y:Bool} the type of all records which haveat least fields
of labelsx and y, with values of types Int and
Bool. E.g.: (x=3, y=true), (x=3, y=true, z="str"),
but not (x=3, y=4), (x=3).

O Inth\y the type of al records which haveat least afield
of label x and type Int, and no field of label y.
E.g. (x=3, z="str"), but not (x=3, y=true).

Hence arecord type is characterized by afinite collection of (positive) type fields (i.e.
labeled types) and negative type fields (i.e. labels)l. We often simply say “fields’ for
“type fields’. The positive fields must have distinct labels and are unordered. Negative
fields are also unordered. We have assumed so far that types are normalized so that
positive and negative labels are distinct, otherwise positive and negative fields may
cancel, as described shortly.

Lin this section we consider only ground record types, i.e., those containing no record type variables.
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Aswith record values, we have three basic operations on record types.

« Extension (R[x:A) : This type denotes the collection obtained from R by adding x fields
with values in A in al possible ways (provided that none of the elements of R has x
fields). More precisely, this is the collection of those records (r|x=a) such that r isin R
and a isin A, provided that a positive type field x is not already present in R. (This
condition will be enforced statically.) We sometimes write (R[x:Aly:B) for ({R|x:AD|y:B).
« Restriction R\x : this type denotes the collection obtained from R by removing the field
x (if any) from al its elements. More precisely, thisis the collection of those records r\x
such that r isin R. We write R\xy for R\x\y.

« Extraction Rx : this type denotes the type associated with label x in R, provided R has
such apositive field. (This condition will be enforced statically.)

Again, derived operators can be defined in terms of the ones above.

« Renaming R[x<-y] =, (R\x]y=Rx): changes the name of arecord type field.

o Overriding (R<- x:A) =, (R\x|xA): if atype field x is present in R, overriding
replaces it with afield x of type A, otherwise extends R. Given adequate type restrictions,
this can be used to override a method type in a class signature (i.e. record type) with a
more specialized one, to produce a subclass signature.

The crucial formal difference between these operators on types and the similar ones
on values is that type restrictions do not cancel as easily, for example: ()\y # (), (xAl\y
# (xA), etc., since (D\yisasmaller set than (). As a conseguence, one must always make
atype restriction before making a type extension, as can be seen in the examples below,
because the extension operator needs proof that the extension label is missing. The
symbol <= (type equivalence) means also that two type expressions denote the same type.

(O\x|xInt) <= {xInt) extension
(@x:Int)\yly:Bool) <= {xInt, y:Bool)
{xInt,y:Bool)\ly <= {xIntd\y restriction  (cancelling y)
{xInt,y:Bool)\z <= {xInt, y:Bool)\z (no effect on x,y)
{xInt,y:Bool) x <= Int extraction
€@ pcintd invalid extension
(Oc:Intd]xIntd invalid extension
xInt).y invalid extraction

It helps to read these examples in terms of the collections they represent. For
example, the first example for restriction says that if we take the collection of records that
have x and y (and possibly more) fields, and remove the y field from all the elementsin
the collection, then we obtain the collection of records that have an x field (and possibly
more fields) but no y field. In particular, we do not obtain the collection of records that
have x and possibly more fields, because those would include'y.
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The way positive and negative information is formally manipulated is easier to
understand if we regard record types as abbreviations, as we did for record values, e.g.:

{xInt) = (O\x:Int)
{xInt,y:Bool) =, {COQ\X|xInt)\y]y:Bool)

Then, when considering {y:Bool)\y we actually have the expansion ({)\y|y:Bool )\y. If we
allow the outside positive and negative y labels to cancel, we are still left with (J\y. In
other words, the inner y restriction reminds us that y fields have been eliminated.

Remark. It is deceptive to think that every record in {R|x A} has at least the fields
of some record in R (i.e., that {R|x:A) has “more type fields’ than R), since
(R|x:A) is not necessarily contained in R. For example, if R=(}\x the two
collections are incomparable.

Based on this example, one might then think that {R\x|x:A) has more type
fields than R, and this is indeed true for R=(). However, in general this fails; for
example R={)\x makes the collections incomparable, and R=¢{}\x|x:A) causes the
two collections to have the same fields.

It is also deceptive to think that R\x has fewer type fields than R, since Risin
general not contained in R\x. This containment is true for R=()\x, but false for
R=() where the opposite is true, and R={{)\x|x:A} makes the two collections
incomparable.

These observations might appear to conflict with our previous assertion that
positive and negative information always makes things smaller. The assertion is
true for normalized record types, but not for arbitrary applications of operators
which may later cancel out. We shall study the normalization process in a later
section.

2.3 Record value variables

Now that we have a first understanding of record types, we can introduce record value
variables which are declared to have some record type. For example, r:{)\y means that r
must not have afield y, and r:{xA) means that r must have afield x of type A. The well-
formed record expressions can now be formulated more precisely:

(rix=a}  wherer:{)\x
r\x wherer:()
r.x wherer:{x:A) for someA

Record value variables can now be used to write function abstractions. Here we have
afunction that increments afield of arecord, and adds another field to it:

let f(r: Ex:Inth\y) : C:Int, y:Int) =
(r < x=r.x+1|y=0)
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This function requires an argument with afield x and no field y; it has type:
f: xInt)y — {x:Int, y:Int)
and can be used as follows:

f((x=3)) < (x=4,y=0):{xInt, y:Int)
f((x=3, z=true)) < (x=4,y=0, z=true) : {xInt, y:Int)

The first application uses the non-trivial fact that (x=3) : {x:Int)\y. We could also have
matched the parameter type precisely by f((x=3)\y), which is of course equivalent. The
second application is noticeable for several reasons. First, it uses the non-trivial fact that
(x=3, z=true) : {x:Int)\y. Second, the “extra’ field z is preserved in the result value,
because of the way f is defined. Third, the “extra’ field z is not preserved in the result
type, because f has a fixed result type; we shall come back to this problem.

Remark. An alternative syntactic notation, along the lines of [Jategaonkar Mitchell
88], could use pattern matching of record parameters:

let f({rr\yjx=rx)) : {xInt, y:Int) =
(rrperx+1|y=0)

Here the actual parameter must match the shape of a record with afield x and a
collection of remaining components that lack y. The variables rr and rx are bound
to the appropriate components and then used in the body of f, where rr acquires
the assumption that it does not contain either x or y fields. There are some non-
trivial details to pattern matching in the presence of subtyping. Since our main
objectiveisto illustrate the fundamental ideas, we choose the simpler syntax.

2.4 Record typevariables

In the previous section we introduced record value variables, and we used record
types to impose restrictions on the values which could be bound to such variables. Now
we want to introduce record type variables in order to write programs that are
polymorphic over a collection of record types. We similarly need to express restrictions
on the admissible types that these variables can be bound to; these restrictions are written
as subtype specifications.

To write subtype specifications, we use a predicate A<:B meaning that A is asubtype
of B: in other words, every value of A is also avalue of B. The typing rule based on this
condition is called subsumption, and will play a central role in the formal system.

Using subtype assumptions, we can better formulate the restrictions on the record type
operators:
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(RIxA) whereR <: {)\x
R\x whereR <: ()
R.x whereR <: {x A) for someA

We may now write a polymorphic version of the function f of the previous section:

let f(R<:Ox Int\y)(r:R) : (R|y:Int) =
(r < x=r.x+1|y=0)

This function expects first a type parameter R which must be a subtype of {x:Intj\y, and
then an actual value parameter of type R. An example applicationis:

f({x:Int, zzBool D\y)((x=3, z=true)) <>
(x=4, y=0, z=true) : {xInt, y:Int, z.Bool

First, note that R is bound to {x:Int, zz.Bool)\y, which is a subtype of {x:Int)\y as required.
Second, (x=3, z=true) has type {xInt, zBool)\y as required. Third, the result type,
obtained by instantiating R, is ({xInt, z.Bool)\y|y:Int), which is the same as {x:Int, y:Int,
z:Bool) by definition. Finally, note that the “extra’ field z has not been forgotten in the
result type this time, because all the “extra’ fields are carried over from input to output
type by the type variable R. Thisis the advantage of writing f in polymorphic style.

What is the type of f then? We cannot write this type with simple function arrows,
because we have a free variable R to bind. Moreover, we want to mark the precise
location where this binding occurs, because this permits more types to be expressed.
Hence, we use an explicit bounded universal quantifier:

f: V(R<:{x:Int)\y) R— (R]y:Int}

This reads rather naturally: “for all types R which are subtypes of {x:Int)\y, fisafunction
from R to {RJy:Int)”. (The scope of a quantifier extends to the right as much as possible.)

Remark. Notice that we have freedom in the typing of the polymorphic function
f, for example, we could have chosen the typing:

let f(R<:(O\x y)(r:{R]x:IntD) : (R|x:Int]y:Int) =
(r < x=r.x+1|y=0)

f({zBool )\x y)({x=3, z=true)) : {x:Int, y:Int, zBool)

This typing turns out to be incomparable with the previous one; in general we do
not seem to have a “best” way of typing an expression. However, we have not
studied this aspect of the system carefully.
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2.5 Subtype hierarchies

Our operations on record types and record values make it easy to define new types
and values by reusing previously defined types and values.

For example, we want to express the subtype hierarchy shown in the diagram below,
where various entities can have a combination of coordinates x and y, radius r, and color
C.

First, we could define each type independently:

let Point = {x:Real, y:Real)

let ColorPoint = {x:Real, y:Real, c:Color)

let Disc = {x Real, y:Real, r:Real)

let ColorDisc = (x Real, y:Real, r:Real, c:Color)

But these explicit definitions do not scale up easily to large hierarchies; it is much
more convenient to define each type in terms of previous ones, e.g:

let Point = {x:Real, y:Real)

let ColorPoint = {Point < c:Color)

let Disc = {Point < r:Real)

let ColorDisc = {ColorPoint < r:Real}

Note that {Point|c:Color) would not be well-formed here, since members of Point may
have ac label. In section 4.3 we shall examine another way of defining this hierarchy, for
example deriving Point from ColorPoint by “retracting” the c field.

Point
Xy
ColorPoint Disc
Xyc Xyr

N S

ColorDisc
Xyrc

Similarly, record values can be defined by reusing available values:

let p:Point = (x=3, y=4)

let cp: ColorPoint =(p < c=green)
let cd: ColorDisc =(cp <= r=1)

let d:Disc = cd\c

We should notice here that the subtyping relation depends only on the structure of the
types, and not on how the types are named or constructed. Similarly, record values belong
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to record types uniquely based on their structure, independently of how they are declared
or constructed.

Another observation, which we already made in a more abstract context, is that
Point\r <: Point since Point does not contain r, but Point\y is incomparable with Point
since Point requires y:Int while Point\y forbids it.

2.6 The update problem

The type system for records we have described in the previous sections was initially
motivated by a single example which involves typing an update function. Here updating
isintended in the functional sense of creating a copy of arecord with amodified field, but
the discussion is also relevant to imperative updating.

The problem is to define a function that updates a field of a record and returns the
new record; the type of this function should be such that when an argument of the
function has a subtype of the expected input type, the result has arelated subtype. That is,
no type information regarding additional fields should be lost in updating. (We have
aready seen that bounded quantification can be useful in this respect.)

It is pretty clear what the body of such afunction should look like; for example for an
input r and a boolean field b which has to be negated, we would write:

(r <= b=not(r.b)) (an abbreviation for (r\b|b=not(r.b)) )

The overriding operator here preserves the additional fields of r.
One might expect the following typing, which seems to preserve subtype information
asdesired:

let update(R<:{b:Bool})(r:R): R=
(r <= b=not(r.b))

In words, we expect update to be a function from Rto R, for any subtype R of {b:Bool}.
But this typing is not derivable from our rules and, worse, it is semantically unsound. To
see this, assume we have atype True<: Bool with unique element true, as follows?:

true: True<: Bool
not : Bool — Bool (alternatively, not : V(A<:Bool)A—Bool)

update({b:True))((b=true)) <= (b=false): {b:True)

This use of update produces an obviously incorrect result type. In general, a function with
result type R has a fixed range; it cannot restrict its output to an arbitrary subtype of R,
even when this subtype is given as a parameter.

2AIthough the singleton type True may seem artificial, this argument can be reformulated with any proper inclusion between
two types.
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To avoid this problem, we must update the result type as well as the result. The
correct typing comes naturally from typechecking the body of update according to the
rules for each construct involved; note how the shape of the result type matches the shape
of the body of the function:

let update(R<:{b:Bool})(r:R): {R<b:Bool}) =
(r <= b=not(r.b))

update((b:True))((b=true)) <
(b=false) : ({{b:Trued<-b:Bool) <= {b:Bool})

The outcome is that the overriding operator on types, which involves manipulation of
negative information, is necessary to express the type of update functions. Bounded
guantification by itself is not sufficient.

The type V(B<:A) B — B turns out to contain only the identity function on A in many
natural semantic models, such as [Bruce Longo 88]. For example take A=Int and let the
subranges [n..m] be subtypes of Int. Then any function of type V(B<:Int) B — B can be
instantiated to [n..n] — [n..n], hence it must be the identity on [n..n] for any n, and hence
the identity over al of Int.

A further complication manifests itself when updating acts deep in a structure,
because then we have to preserve type information with subtyping occurring at multiple
levels. Here is the body of a function that negates the s.a.b field of a record s of type
{a:{b:Bool )} :

(s—a=(s.a<-b=not(s.a.b)))

The following is a correct typing which does not lose information on subtypes (simpler
typings would). Here we need to introduce an additional type parameter in order to use
two type variables in the result type and to avoid two possible ways of losing type
information:

let deepUpdate(R<:(b:Bool))(S<:(a:R})(s S): (S—a:(R<-b:Bool}) =
(s—a=(s.a<—b=not(s.a.b)))

Of course thisisrather clumsy; we need one additional type parameter for each additional
depth level of updating. Fortunately, we can avoid the extra type parameters by using
extraction types S.a. Again, the following typing comes naturally from typechecking the
body of deepUpdate according to the rules for each construct:

let deepUpdate(S<:(a:{b:Bool }D)(s:S): (S—a:{Sa<h:Bool)) =
(s«<—a=(s.a<-b=not(s.a.b)))

The output type is still complex (it could be inferred) but the input is more natural. Here
isause of thisfunction:
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deepUpdate({a:{b:True, c.C}, d:D))({a=(b=true, c=v), d=w)) <>
(a=(b=false, c=v), d=w) : {a:{b:Booal, c:C), d:D)

Here we have provided an argument type that is a subtype of {a:{b:Bool)? in “all possible
ways’.

Finally, we should remark that the complexity of the update problem seems to
manifests itself only in the functional case, while simpler solutions are available in the
imperative case. Simpler type systems for records, such as the one in [Cardelli Wegner 85],
may be adequate for imperative languages when properly extended with imperative
constructs, as sketched below.

The imperative updating operator := has the additional constraint that the new record
should have the same type as the old record, since intuitively updating is done “in place’.
This requirement produces something very similar to the typing we have initially shown
to be unsound. Here assignable fields are identified by var:

let update(R<:{var b:Bool))(r:R): R=
r.b :=not(r.b)

Soundness is then recovered by requiring that assignable fields be both covariant and
contravariant. Hence, True <: Bool does not imply {var b:True) <: {var b:Bool}, thereby
blocking the counterexamples to soundness.

Imperative update, with the natural requirement of not changing the type of a record,
leads to simpler typing. However, this approach does not completely solve the problem
we have discussed in this section. Imperative update alone does not provide the
functionality of polymorphically extending existing records; when this is added, al the
problems discussed above about functional update resurface.

3. Formal development

Now that we have acquired some intuitions, we can discuss the formal type inference
rulesin detail. We first define judgment forms and environment structures. Then we look
at inference rules individually, and we analyze their properties. Finally, we provide a set-
theoretical semantics for the pure calculus of records.

3.1 Judgments and inferences
A judgment is an inductively defined predicate between environments, value terms,
and type terms. The following judgments are used in formalizing our system:

FE env E is an environment
EF Atype Aisatype
EFA<B Alisasubtype of B
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EFa: A a hastype A

EFA<B equivalent types
EFa<b:A equivalent values of type A

The formal system is given by a set of inference rules below, each expressed as a
finite set of antecedent judgments and side conditions (above a horizontal line) and a
single conclusion judgment (below the line). Most inference rules are actually rule
schemas, where meta-variables must be instantiated to obtain concrete inferences. For
typographical reasons, we write the side conditions for these schemas as part of the
antecedent.

3.2 Environments

An environment E is a finite sequence of (a) unconstrained type variables, (b) type
variables constrained to be subtypes of a given type, and (c) value variables associated
with their type.

We use dom(E) for the set of type and value variables defined in an environment.

(ENV1) (ENV?2) (ENV3) (ENVA4)
X¢dom(E) EFAtype X¢dom(E) EF Atype x¢dom(E)
Fgenv FE, Xenv F E, X<:Aenv FE, x:Aenv

Hence, a legal environment is obtained by starting with the empty environment g and
extending it with a finite set of assumptions for type and value variables. Note that the
assumptions involve distinct variables; we could perhaps allow multiple assumptions
(e.g., ¢, X<tA, X<:B) but this would push us into the more general discipline of
conjunctive types.

Assumptions about variables can then be extracted from well-formed environments:

(VAR1) (VAR2) (VAR3) (VAR4)
FEXE env F EX<:AJE' env F E X<:AE' env F ExAE env

EXE FXtype  EX<AEFXtype  EX<AEFX<A  EXAEFxA

All legal inferences take place in (well-formed) environments. All judgments are
recursively defined in terms of other judgments. For example, above we have used the
typing judgment E + Atype in constructing environments; vice versa, well-formed
environments are involved in constructing types.

We now consider the remaining judgments in turn.

3.3 Record type formation
The following collection of rules determines when record types are well-formed.
There is some interdependence between this section and the following ones, since
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equivalence rules have assumption that involve subtyping, which is discussed later.
Fortunately, these assumptions are fairly simple, so a full understanding of the subtype
relation is not required at this point.

(F1) (F2) (F3) (F4)
FEenv EF R<()\x EF Atype EF R<:() EF R<:{Sx:Ad<:()
EF @) type EF (R|xA) type EF R\x type EF Rxtype

As shown above, and already discussed informally, the legal record types are: the type
of all records, (?; arecord type variable X, (because of (var2) in the previous section); an
extension (R|xA) of arecord typeR, provided R does not have x; and arestriction R\x
of arecord type R. Moreover, extracting a component R.x of a record type R that has a
label x, produces alegal type.

In general, if R does not have x, then Rwill be a subtype of the type {)\x of all records
without x. This explains the hypothesis of rule (2. In rule F4) we use R<:{Sx:A) to
guarantee that every record in R has an x field.

3.4 Record type equivalence

When are two record types equivalent? We discuss here the formal rules for
answering such a question. Type equivalence, as arelation, is reflexive (over well-formed
expressions), symmetric, and transitive; it is denoted by the symbol <=. Substituting two
equivalent types in a third type should produce an equivalent result; this is called the
congruence property, and requires a number of rules to be fully formalized (these are
listed in section 3.7). We now consider, by cases, the equivalence of extended, restricted
and extracted record types.

Two extended record types are equivalent if we can reorder their fields to make them
identical (or, recursively, equivalent). This simple fact is expressed by the following rule.
A number of applications of thisrule, and of the congruence property, may be necessary
to adequately reorder the fields of arecord type.

(TEL)
EFR<{)\xy EFABtype xzy

EF ({Rjx:A)|y:B) <= ({R]y:B}|x:Ad

Similarly, we can reorder restrictions. Moreover, a double restriction R\xx reduces to R\x.
This fact is expressed in glightly more general form below, since the assumption that R
does not have x is sufficient to deduce that R\x is the same as R:

(TE2) (TE3)
E+ R<:()\x EF R<:()
EFRx< R EF R\xy <= R\yx
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The most interesting rules concern the distribution of restriction over extension. An
outside restriction and inner extension of the same variable can cancel each other.
Otherwise, a restriction can be pushed inside or outside of an extension of a different
variable.

(TE5) (TE6)
EFR<:()\x EF Atype EFR<:(0\x EF Atype xty

EF (RxAl\x< R EF (R|xAl\y <= (Ry|xA}

Note however that in a situation like {R\x|x A) no cancellation or swap can occur. The
inner restriction may be needed to guarantee that the extension is sensible, and so neither
is redundant.

Finally, arecord extraction is equivalent to the extracted type:

(TE7) (TES)
EF R<:()\x EF Atype EF R<(SyB)\x<:() EF Atype x2y
EF (R|xA).X < A EF (R|xA)y <= Ry
(TE4)
EF R<:(Sy:B)<:() xzy
EF Rxy< Ry

These equivalence rules can be given a direction and interpreted as rewrite rules
producing a normal form for record types; normalization isinvestigated in alater section.

3.5 Record subtyping

We have seen that subtyping is central to the notion of abstracting over record type
variables, and we have intuitively justified some of the valid subtype assertions. In this
section we take a more rigorous look at the subtype relation.

Subtyping should at least be a pre-order: a reflexive and transitive relation. Given a
substitutive type equivalence relation <=, such as the one discussed in the previous
section, we require:

(G1) (G2)
EFA<B EFA<B EFB<C
EFA<B EFA<C

Reflexivity isaspecia case of (G1).

It would be natural to require subtyping to be anti-symmetric, hence obtaining a
partial order. A reasonable semantics of subtyping will in fact construct such a partial
order. However, it might be too strong to require anti-symmetry as a type rule. In some
systems anti-symmetry may introduce obscure ways of proving type equivalence, while
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in other systems it may be provable from the other rules. Moreover, anti-symmetry does
not seem very useful for typechecking, hence we do not include it.

The basic intuition about subtyping is that it behaves much like the subset relation;
this is expressed by the subsumption rule, which claims that if A<:B and a is an element
of A, then aisalso an element of B.

(G3)
EFaA EFA<B

Era:B

We feel strongly that subsumption should be included in the type system, since this rule
gives object-oriented programming much of its flavor. One should not be satisfied, for
programming purposes, with emulating subsumption by explicit coercions. The latter
technique is interesting and adequate for providing semantics to a language with
subsumption [Breazu-Tannen Coquand Gunter Scedrov 89] [Curien Ghelli 91], but even then it
would seem more satisfactory to exhibit amodel that satisfies subsumption directly.

Combining (1) and (c3) we obtain another standard type rule:

E-FaA EFA<B
ErFa:B

Thisruleisnormally taken as primitive, but hereit is derived.

We are now ready to talk about subtyping between record types. It helps if we break
this problem into pieces and ask what are the subtypes of: (1) the total record type (), (2)
an extended record type (R|xA), (3) arestricted record type R\x, and (4) a record type
extraction R.x.

Case (1). Every record type should be a subtype of the total record type. Hence, we
have three subcases: (1a) the total record type is of course a subtype of itself, and thisis
simply a consequence of (c1); (1b) any well-formed extended record type is a subtype of
{D; and (1c) any well-formed restricted record type is a subtype of (). Hence we have the
following rules corresponding to 1b and 1c respectively:

(SD) (S2)
EF R<()\x EF Atype EF R<:()

EF (RjxA) <: (D EFRWx<: ()

Case (2). A subtype of an extended record type will be another extended record type,
provided all respective components are in the subtype relation:
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(S3)
EFR<S:()\x EF A<B

EF (R|xA) <: {Sx:B)

The condition A<:B says that we can produce a subtype by weakening the type of a given
field. The condition R<:Stells us that we can produce a subtype either (a) by weakening
other fields inductively, because of (s3) itself, or (b) by requiring the presence of
additional components, because of (s, or (¢) by requiring the absence of additional
components, for example y, because from (s2) we are able to derive (D\yx <: {D\x.

Case (3). The subtype rule for restricted types is semantically straightforward: if every
r inRoccursin S then every r\xin R\x occursin Sx:

(4
EF R<:S:()

EFR\x <: S\x

Remark. Although this rule looks innocent, it hides some interesting subtlety in
its assumption. Let us analyze R<:Shy cases.

The cases when R and S are themselves restrictions (either of x or of some
other variable) are straightforward. Similarly simple are the cases when R and S
are matching extensions, both of them either containing or not containing an x
field.

Suppose however that R has a positive x field and S does not, for example
R=(T|x:A) and S=T. In that case, if we had R<:Swe would erroneously conclude
that Rix= (T x:A)\x <= T <: T\x= S\ix(which isfalse for T=(}).

Fortunately there was a flaw in this argument; the assumption for (ss) requires
R = (T|xA) <: T = S but this is false (for T=()\X). Note also that taking
R=(T\x|x:A) and S=T leads to asimilar contradiction for T={})\x.

A legal instance of the assumption is R = {{)\x|x A} <: {}) = S from which we
conclude that R\x = {@)\x|x:Ad\x <= D\x <: (D\x = S, which is correct.

Case (4). We have to consider the subtypes of record type extractions; that is
situations of the form R.x <: T.x, or more generally Rx <: A under an assumption R <:
{S|x:B). If R can be converted to the form R=(R|x:A), then the extraction R.x simplifies
and no specia ruleisrequired to deduce R.x<:A. But if Ris atype variable, for example,
the following ruleis necessary:

(S9)
EF R<:(Sx:A)<:(D
EFRx< A

Thissaysthat if R has an x field of type A, then R.x is a subtype of A (and possibly equal
to A).
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Finally, there is a another subtyping rule that we must consider. If every record r in R
has an x field, then any such r is described also by the type (R\x|xRX), since r\x is
described by R\x and the x field of r is described by Rx. Therefore we have the
following inclusion:

(S6)

EF R<{Sx:A)<()
EF R < (RX|xRX?

The inverse inclusion is not necessarily valid, although it might seem natural to require it
aswe shall seelater.

The rule (ss) can be used in the following derivation, which provides a“symmetrical”
version of (s5) asaderived rule:

EF R<S<(Tx Ad<:(D
) EF S<{Sx|xSx)
G2 EF R<({Sx[x:Sx)
(59 EFRXx<:SXx

In absence of (ss), the derived rule above would have to be taken as primitive, replacing
(S5).

3.6 Record typing and equivalence

Now that we have seen the rules for type equivalence and subtyping, the rules for
record values follow rather naturally. The only subtle point is about the empty record. We
must be able to assign it a type which lacks any given set of labels. Thisis obtained by
repeatedly applying the following two rules:

(1) (12)
FEenv EF O\xg..x, : R<:()

EF O\xg.x,: €D EF O\xg.x, : Rly

The remaining constructions on record values are typed by the corresponding
constructions on record types, given the appropriate assumptions:

() (E1) (€2
EFrR<()\x EFaA EF riR<:() EF ridRIxA)<:()

EF (r|x=a) : (R|x:A) EF r\x: R\x EFrx:A

Aswe did in the previous section, we can use the rule (ss) to derive a*symmetrical”
version of (2):
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EF r:R<:{gx:Ad<:(D
) EF R<:(RX|xR.x)
@3 EFr:{R\xx:Rx)
€2 EFrx:RXx

Finally, we have to examine the rules for record value equivalence. These rules are
formally very similar to the ones aready discussed for record type equivalence; record
extensions can be permuted, record components can be extracted, and restrictions can be
permuted and pushed inside extensions, sometimes cancelling each other.

The main formal difference between these and the rules for typesis that we equate ()\x
<> (). Hence, restriction can always be completely eliminated from variable-free records.

Because of the formal similarity we omit a detailed discussion; the complete set of
rules for our type system follows in the next section.

3.7 Typerules

We can now summarize and complete the rules for record types and values, aong
with selected auxiliary rules. These rules are designed to be immersed in a second-order
A-calculus with bounded quantification (see [Cardelli Wegner 85]), and possibly with
recursive values and types.

We only list the names of the rules that have already been discussed.

Environments
(ENV1)...(ENV4), (VARD)...(VAR4)
General properties of <: and <
(G1)..(G3)

(G4) (G5)
EFA<B EFA<B EFB<C

EFB<A EFA<C

(G6) (G7)
EFa<b:A E-Fa<b:A EFb<c:A

EFb<a:A EFa<cCc:A

Formation
(F1)..(F4
Subtyping

(S1)...(S6)
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| ntroduction/Elimination

(1D)..(13), (ED), (E2)

Type Congruence
(TC1) (TC2) (TC3)
F E env E+ Xtype EFR<S<{()\x EFA<B
EFQ <= O EFX <X EF (R|xA) <= (SxB)
(TC4) (TCH)
EFR < S<: () EF R < S<: (T|xA)<:(D
EF R\x <= Sx EF Rx < Sx

Type Equivalence
(TE1)...(TE8)
Value Congruence

(VC1la) (vC2) (vC3)
FEenv EFx: A EFr—s:R<{)\x EFa<b:A

EFO0<=0:€) EkFx<x:A EF (r[x=a) <> (s|x=b) : (R|x A}

(VC4) (VCY)
EFr<s:R<() EFr < s:R<{(gxA)<:()

EF r\x < s\x: R\x EFrx< sx:RX

Value Equivalence

(VED) (VE2)
EFrR<{\xy EFaA EFDbB xzy F E env

EF {(r|x=a)ly=b) <= {r|y=b)|x=a) : ((R|x:A)|y:B) EFO\x<(: 0
(VE3) (VE4) (VES5)

EF r:R<:(\x EF r:iR<:() EFr{RixA)<:{) xzy
EFr\x<r:R EF r\xy <= r\yx: R\xy EFr\lyx<rx:A
(VES) (VET7)

EFrR<{\x EFaA EFrR<{\x EFaA xty

EF{rix=al\x<>r:R EF (r|x=ally <= (r\y|x=a) : {R|xAd\y
(VES) (VE9)

EFrR<(\x EFaA EFr{Rly.BI\x<:() EFaA xzy

EF(r|x=a)x<>a:A EF(rix=aly<>r.y:B
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(VE10)
EF r:R<:{gx:Ad<:(D
EFr < {nxx=rx:R

Special rules
In the following sections we discuss the rules (vcib) and (te9) below; these are valid
only with respect to particular semantic interpretations.

(VC1b) (TE9)
EFr:{d? EFs EF R<:(Sx:A)<:()
EFr<s: () EF R < (RX|xRX)

In presence of (Teg), the rule (ss) is redundant, and the rules (rcs) and (vcs) are implied by
the ssmpler (rcsb) and (vesb) below.

(TC5b) (VC5b)
EF R < (gxA)<:() EFr < s: (RxA)<:(
EFRXx<A EFrx< sx:A
Properties
Lemma 3.7.1:

(1) If EF Atype, then F Eenv.
(2 If EFA<: B, then - Eenv.

Proof

O

Simple simultaneous induction on derivations, with (F1) as the base case.

Lemma 3.7.2:

() If EFA<B, then EF Atype and E Btype.
(2 If EFA<:B, then EF Atype and E |- B type.

Proof
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Show (1) and (2) simultaneously by induction on derivations. The hardest case is
(te1). The next hardest is (tes). All the others are substantially simpler. We prove
(te1) below and leave the remaining cases to the reader.

To prove (1) for (te1), we assume E F R<:{)\xy and E+ AB type. Using (s2)
and (s2) we may derive E+ {D\xy<:{)\x and so by transitivity and (-2 we have E
(R|x:A) type. The next goal isto show that (R|xA) is a subtype of {\y. Using (s2)
and (s») we have E F R<:{D\y by transitivity, and so by (te2, E - Rly <= R. The
type congruence rules give E F (R|x:A) <= (R\y|x:A). By (Tee) and transitivity we
now have E F (R|x:A) <= {R|xAlNy. From (s1 and the origina hypotheses, it is
easy to show E F (R|xA) <: () and so by (ss), E - {Rx:Al\y <: {)\y. This allows
us to derive E F (R|x:A) <: {D\y, from which we may finally obtain E +
(R|xAd]y:B) type.



The proof of EF {¢R|y:B) [x:A) typeissimilar.
O

Sample derivations
We show the main steps of some derivations that can be carried out in this system,
assuming rules for typing basic constants.

Thefirst example ssimply builds arecord of two fields, with its natural type.

(1) m

(E1) O\x: @\x (const) 3:Int

(13) (NX|x=3) : CD\x|x:Int)

(E1) X3y = (x| Intd\y (const) true : Bool
(13) {N\XPp=3y|y=true) : (CEI\x|x Int)\y]y: Bool)

(def) (x=3, y=true) : {xInt, y:Bool)

Next, we derive a non-trivial type inclusion. To construct record types of different
lengths on the two sides of <:, we start with the basic asymmetry of (s1) and we build up
symmetrically from there (there is no more direct way).

(G1) @< O

() MMx<: O\x

(s O\ Int) <: €@

(S4) O\ Intdly <: @y @1  Bool <: Bool
) €EE\x|x Inth\y|y:Bool ) <: {{D\y]y:Bool)

(def) {xInt, y:Bool) <: {y:Bool)

Now we show that a given record lacks a given label. This time the key rule is (2.
Some type equivalence rules are used to rearrange the type into a standard form.

(1) 0@

(12 (0Ol s Dy< O

EY) O\ @\ s OWx<: (\x (consty 3:Int
(3) (NX]x=3) : CO\Wx]x:Int)

E3Tc36163)  (M\X[x=3) : CO\X\y|x Int)
(TE6,GLG3) (\x|x=3) : CO\x|x:Int)\y
(def) (x=3) : {(x:Int)\y

Finally, we show that by removing alabel we obtain a subtype. The basic asymmetry
here is provided by ().
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(G1) @<

(2) My <: ©
() \Wx < @\x Gy Int<:Int
() (O\W\Xx:Intd <: €E\x|x Int)

me3tc26162)  (O\X\y|xInt) <: ¢O\x|x:Int)
(TE6,GLG2) CO\X|x: Intd\y <: €O\x|x:Int)
(def) (xInthly <: €xInt)

3.8 Semantics of the pure calculus of records

Our stated intent is to define a second-order type system for record structures.
However, models of such a system are rather complex, and outside the scope of this
paper.

In this section we provide a simple set-theoretical model of the pure calculus of
records, without any additional functional or polymorphic structure. The intent here is to
show the plausibility of the inference rules for records, by proving their soundness with
respect to a natural model.

This model is natural because it embodies the strong set-theoretical intuitions of
subtyping seen as a subset relation, and of records seen as finite tuples. Although this
model does not extend to more complex language features, it exhibits the kind of simple-
minded but (usually) sound reasoning that guides the design and implementation of
object-oriented languages.

Syntax

We start with the language implied by the type rules of section 3.7. Since no basic
non-record values are expressible in this calculus, we must make some arbitrary choices
to get started. To this end, we will consider an extension of the pure calculus with any
collection G, , G, , ... of basic (ground) type symbols and an arbitrary collection of
subtype relations G; <: G; between them. To incorporate these new symbols into the
calculus, we add the following two rules (which preserve lemmas 3.7.1 and 3.7.2):

FEenv FEenv
EF G, type EFG <G, (asappropriate)
For simplicity, we do not introduce value constants; instead we work with environments

containing assumptions of theformk: G; .
We will now construct amodel of the extended calculus.

Semantic domains
In the following, we rely largely on context to distinguish between syntactic
expressions and semantic expressions, and we often identify terms with their denotations.
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We start by choosing some fixed set of labels L, and a collection of setsG, , G, , ...
corresponding to the type symbols G, , G, , ... such that G, O G, if G < G, isa
subtyping axiom.

For simplicity, we assume that no element of any G, is afinite partial function on L
(i.e. arecord, as we shall see shortly). This assumption is useful when we define the
subtype relations of sections 3.9 and 3.10.

Since () serves as atype of al records, we will need some value space closed under
record formation. This property may be accomplished by regarding records as finite
functions from L to values, and using ranked values with rank < w. We use A —. B for
the set of partia functions from A to B with finite domain, f(X) 1 to indicate that the partial
function f is undefined at x, and f(x)| to indicate that f is defined at x.

Defineset R, of records of rank i, and set V. of values of rank i, as follows:

Vo = UjGj Vi = ROV
Ro = L=V Riss = L = Vi
R = Ui<oR; the set of records

\ = U< Vi the set of values

The essentia properties of this construction are summarized by the relationship:
R = (L —;,V) OV

Itisclear by constructionthat R, 0 V,,, andsoR V. Toseethat R =L —, V, wefirst
showthat L -,V O R.IfrelL —,V, then since dom(r) is finite there is some i with
range(r) OV, ; hencer e R, O R. The converse follows from the fact that if reR , thenr €
Ri=(L—=gV) O L=V

We now summarize the notation used to describe the semantic interpretation of
syntactic constants and operators:

@ = AyeL. 1
r-x = ot AyelL. if y=xthen 1 dser(y)
provided reR and xe L
r[x=aj = et AyeL. if y=xthen a elser(y)
provided reR, xeL, aeV, and x¢ dom(r).
r(x) iswell-defined,

provided reR , xeL, and xedom(r).

Lemma 3.8.1:
(1) The empty record g isan element of R .
(2) For any reR we have r-xeR .
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(3) If reR isnot defined on x, then for any aeV we haver[x=a]eR .
(4) If reR isdefined on x, then r(x)eV.
Proof
(1) The empty function is afinite function.
(2) If reR then r-x remains afinite partial functioninR.
(3) Suppose reR with x ¢ dom(r), and aeV.
Then r[x=a] iswell-defined (is afunction) and belongsto R .
(4)IfreR=L—, Vandr(x) isdefinedthenr(x) e V.
O

Types and type operations

Types are interpreted as subsets of our global value set; hence we have a type of all
values, and atype of all records. Subtyping isinterpreted as set inclusion.

We introduce the following notation for operations on record types:

R-x = et {r-x|reR}

ifROR
Rx:A] = et {r[x=a] | reR, acA}

if ROR -x (Rundefined onx) and AV
R(X) = def {r(x) [reR}

if RO gx:A] forsomeSOR andA OV

Lemma 3.8.2:
Under the conditions stated above, the sets R-x and R[x:A] are subsets
of R, and the sets R(x) are subsets of V.
Proof
(1) If ROR, then Rx={r-x |reR} O R, by 3.8.1.
(2) If RO R -x, then Risaset of functionsre L — V withx ¢ dom(r).
Hencefor any A V,R[xA] ={r[x=a] | reR, acA} IR , by 3.8.1.
(3) If RO gx:A], thenfor any reR, regx A] = {g[x=a] | «S aeA};
so that r(x)eA. HenceR(x) = {r(x) |reR} O AO V.
O

I nter pretation of judgments

An assignment p is a partial map from type variables to subsets of V, and from
ordinary variablesto elements of V. We say that an assignment p satisfies an environment
E if the following conditions are satisfied:

If X in E, then p(X) OV
If X<:AinE, then p(X) DA, OV
If x:AinE, then p(x) e Ap OV
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where A, is the type defined by A under the assignment p. Similarly, by a, we indicate
the value of aterm a under an assignment p for its free variables.

The judgments of our system are interpreted as follows.

FEenv x for every initial segment E', X<:A or E',xA of E,
if p satisfies E' then Ay O V.

EF Atype x A0V, for every p satisfying E.

EFA< B = Ao 0 Bp OV, for every p satisfying E.

EFA<B x Ap=Bp OV, for every p satisfying E.

EFa:A = ap€e Ap OV, forevery p satisfying E.

Ea<Db:A x ap=bp € Ap OV, forevery p satisfying E.

Type and value expressions are interpreted using:

@ X R

R\x = R-x

(R AD = R[x:A]

RX = R(x)

() ~ @

r\x = r-X

(r|x=a) = r[x=a]

r.x = r(x)
Soundness

Finally, we can show that this semantics satisfies the type rules. More precisely, we
consider the system Sl consisting of all the rules listed in section 3.7, except for the
special rules (vciv) and (TE9).

Theorem 3.8.3 (soundness):
The inference rules of system Sl are sound with respect to the
interpretation of judgments given in this section.

Proof
See appendix.

O

3.9 A construction giving R = R\ x | x:R.x)

The type equivalence rule below seems very natural semantically. It also ssimplifies
the types associated with the override operation, and has application to extensional
models studied in the next section.
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(TE9)
EF R<:(gx:Ad<:{D
EF R < (Rx[xRx}

In the simple model described in section 3.8, it is easy to see that if R {xA), then,
asrequired by (ss):

RO (Rx|xRx)

The reason is that every record r in R has an x component r(x) € R(x), and remaining
components r-x in R-x. However, it is not necessarily true that every combination of r-x
from R-x and r(x) from R(X) occur together in asingle record in R. For example, the set of
records:

R={{x=1, y=true), (x=0, y=false)}

is clearly a subset of {xInt). However, R # (R\x|xRx} since the records (x=1, y=false)
and (x=0, y=true) do not appear in R. In category-theoretic terms, the equation R =
{R\x|x R.x) saysthat Risthe product of R\x and R.x.

In this section we present a variant of the construction of section 3.8 in which rule
(Te9) is sound. Since we are ultimately interested in polymorphism and bounded
quantification, we construct a model with R = {R\x|x R.x) for every semantic type R with
Rx defined. The construction uses the same collection of values as before, but allows
only certain subsets of V as types. In this way we eliminate sets of records which violate
(TE9).

We use a value space satisfying:
R = (L —,V) OV

constructed as in section 3.8. Then for each natural number i, we define the collection T,
of subsets of V which we wish to consider types of stage i. At the first stage, we may
select any subsets of V, provided we include the given ground types GJ. . For definiteness,
let ustake:

T, = {G,,G,,...}

We now define record types over preceding types. At each stage we take all record
types defined by a finite set of |abeled component types, and a finite set of absent labels.
Each component type must belong to the preceding stage.

This construction may be clarified using an auxiliary definition. Suppose P: L —; T,
is afinite partial function from labels to types at stage i, and N [, L is a finite set of
labels disjoint from the domain of P. Then the set R”N of records with components
present according to P and components absent according to N is defined by:

T
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RPN = {reR |VxeL. (P(¥){ O r(x)eP(x)) O (xeN O r(x) 1)}

We define the set of record types at stage i+1 to be the set of all RPN for suitable
“present” function P and “absent” set N:

T,, = {RPN|P:L -, T, O NO, L O domP)nN=g} O T,

fin "i

Notethat R = R?# belongsto every T.

i+1°

Thecollection T of all typesis defined by:
T = U.<oT

Aswe have defined T, the set V of al valuesis not atype. However, it is possible to
includeV inT, if desired.

It is natural to consider any set of records RPN withP: L —. T and N[
“record type” over V. DefineRT to be the collection of all record types:

RT =, {RPN|P:L -, T,NO

fin L, asa

fin L, and dom(P)nN = g}
Note that R?# = | JRT , soRT has a maximal element. We may show that T is precisely
the union of T, and the record typesover V ; that isT =T, T RT.

Lemma 3.9.1:
IfP:L -, T andNO. Lwithdom(P)nN=g, thenR"NeT.
That is, RT OT.

Proof
Suppose P: L —; T andN O, L. Sincethe domain of P isfinite,

thereissomei withP: L—. T..Hence, R°PNeT  OT.
l

In this model we will interpret all judgments as before, except that type variables and
type expressions must denote elements of T. Since we consider only elements of T as
types, we define the relation A [I: B (A semantic subtype of B) as:

A0:B iff AOBandABeT

By the simplifying assumption in section 3.9 that no ground type contains records, we
know that every subtype of R will be an element of RT. If we had not made this
assumption, then we might have some subtype of R which “accidentally” could cause
(Te9) to fail.

We may show that for any non-empty Re RT, afunction P and set N with R=RPN are
determined uniquely.

Lemma 3.9.2:
Let Re RT benon-empty. Then R=RPNwhere:
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dom(P) = {xeL | VreR.r(x)!},
N={xeL | VreR.r(x)1}, and
P(x) =R(x) for al xedom(P)

Proof
Suppose Re RT isnon-empty and let rpeR.

We know that R = RPN for someP,N.

(1) By construction of R”N we have Vre R. dom(P) O dom(r).
Moreover, if VreR. r(X) |, then xedom(P), since x¢ dom(P) implies
ro-xeRand (rg-X)(x) 1. Consider the function f defined by:

f(x) = ro(¥) if VreR r(x), and T otherwise
This function belongsto R, and dom(f) = {xeL | VreR. r(x){} O dom(P).
Hence dom(P) =dom(f) = { xeL | VreR. r(x){}.

(2) By construction of R"N we have VreR N O T(r) =, {xeL | r(x)T}.
Moreover, if VreR r(x)T, then xeN (since x¢N implies either r(X)
or (ro[x:a])(x)i for an appropriately chosenr g[x=aleR).
Chooser, fromR, =, {reR| r(x)4} whenever R, # ¢, and define:

g¥) = Tif VreR r(x)1, and ry(x) otherwise
This function belongsto Rand 1(g) = {xeL |[VreR. r(x)1} O N.
Hence, N=1(g) ={xeL | VreR. r(x1}.

(3) Assume xedom(P).

R(X) =RPN(X) ={r(x) | reR , VyeL. r(y)eP(y)} (since x¢N)
={r(X) | reR , r(XeP(xX)} ={aeV | aeP(X)} = P(X)
O

This allows us to write each non-empty record type R € RT as R™N without
ambiguity. The lemma also demonstrates that whenever R(X) is defined, R(x) = RPN(x) =
P(x) e T isatype.

It is now straightforward to show that the record types are closed under restriction (R-
X) and extension (R[x:B]):

Lemma 3.9.3:
If R=RPNisany record type, then R-x=RP"N' where
P' = P-{<x—P(X)>} if P(X){, and P otherwise.
N =N O {x}
Proof
Straightforward.
U

Lemma 3.9.4:
If R=RPNwithxeN, and Be T, then R[x:B] = RPN, with:
P'= P 0O {<x—=B>}
N' = N-{x}
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Proof
By definition, R[x:B] ={r[x=b] | reR, beB}. It is easy to check
that every r[x=b] belongsto RN and conversely.

O

The semantic subtyping relation on record types R [I: R' is now determined by the
present and absent information.

Lemma 3.9.5:
RPN RPN jff
Vxedom(P). P(x){ O P(x) O: P'(x)
N O N
Proof
Assume RPN [0: RPN,
It is easy to check that N' O N by the definition of RPN,
Similarly, if P'(x) then we must have P(x){ O P(x) O P'(x).
By definition P(xX) and P'(x) are types.
The converse is straightforward.
O

Since the point of this model construction isto give R = (R-x)[x:R(X)] for every record
type R with R(X){, we must also prove this equation. Given the preceding lemmas, the
proof is almost immediate.

Lemma 3.9.6:
Let Re RT bearecord typewithr(x)| for all reR.
Then R = (R-X)[X:R(X)].
Proof
We know R =RPN for some finite function P and finite set N.
By preceding lemmas, we also have:
Rx = RPN
(RX)[xR(X)] = RPN
withP' =P - {<x—=R(X)>}, N'=N O {x}
andP" =P' 0 {<x—=R(X)>}, N"'=N'-{x}.
Since P' =P andN" = N, it follows that R = (R-X)[x: R(X)].
O

Finally, we have the soundness theorem. System 2 is system Sl of Theorem 3.8.3
plusthe rule (Teg).

Theorem 3.9.7 (soundness):
The inference rules of system S are sound with respect to the
interpretation of judgments given above.
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Proof
See appendix.
O

3.10 An extensional model construction
The following inference rule gives us an extensional equality between records:

(VC1b)
EFr:() EFs@
EFr<s:{

The intuitive reason for adopting this rule is that if r and s both belong to (D, thenr
and s are indistinguishable. In fact, assumer and s differ at some label x. We cannot use
r.x or s.x to distinguish them since neither is well-typed; if we use r\x or s\x then we
simply remove the difference.

In addition to giving us more equations between records of type (D, rule (vcib) implies
the following extensionality property: for any r,s : {x:A, , ..., X:A, we haver < s:
XA XcAD iff rx<>sx @ A fori = 1.k The straightforward proof of this uses
r\X;...% <> s\x...% : €} and the value congruence rules.

Recall that in the previous models a record type was simply a set of records, and
equality of records was independent of the type. Therefore, any two distinct records
would be unequal elements of (D, causing (vcib) to fail.

In this section, we will construct a model of the pure record calculus satisfying (Te9)
and (vcab). It will be clear from the construction that (Te9) is essential; we do not know
how to construct an extensional model satisfying (vciby without requiring that record types
satisfy R = (R\x]xRx). The main use of (teg) lies in showing that if R is arecord type
with extensional equality, then both R-x and R(x), when defined, are extensional record
types.

We begin with avalue space V satisfying:
R =(L~—;V) OV

constructed as in section 3.8, and define types as certain partial equivalence relations
(abbreviated PER'S) over V (see [Longo Moggi 88]). A PER is a binary relation which is
symmetric and transitive, but not necessarily reflexive. An element of atypeis defined as
an equivalence class of valuesin the PER.

Subtyping is based on set containment of partial equivalence relations, as in [Bruce
Longo 88], except that we consider only certain PER'S as types.

The type of al records () is interpreted by the PER R xR . This type has only one
element since there is a single equivalence classin R xR : while () contains all records,
all records are equivalent in () (hence (vcio) holds).
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The three operations on record types are defined as follows:

. IfRisaPERONR with r(x)1 for every record rRr, and A isa PER
onV, thenR[x:A] istherelationonR given by:

r RixA]l s iff r-xRsx and r(x) A9X)
Inwriting r(x) As(x) weimply that r(x){ and s(X)! .
« IfRisaPERONR , we definethe relation R-x by:
RX =4 {<rxsx>|rRg

. IfRisaPERONR ,withr(x)| whenever rRr, we define the
relation R(X) by:

RX) =4 {<r(¥),s(¥>|rRg

It is easy to show that under the hypotheses above, R[x:A] is a partial equivalence
relation on R . However, R-x and R(X) are not necessarily transitive. This will not cause
any problems, as it turns out, since by restricting the class of record types to some
collection satisfying (Te9), R-x and R(x) are guaranteed to be types (and hence PER'S).

The types over V will be defined in stages, as before. We begin with some collection:
T, = {E;,E,, ..}
of partial equivalence relations over V that do not relate any records to themselves. A
typical choice would be to begin with the identity relations on the ground typesG, , G, ,
Given any finite partial map P from L to PER'sover V and aset N [, L disoint from
the the domain of P, we define the PERRPN over R by:
rRPNs iff VxeL.(PG)V O r(X) P(x) x)) O (xeN O r(x)T0s(x)1)

Note the similarity to R™N for subsets of V ; if we represent a subset SV by the PER
(Sx9 O (V xV ), the two definitions coincide. It is easy to see that if each P(X) is a PER,
then so isRPN,

Following the earlier definition of record typesin stages, we define:

T, = {RPN|PiL —~ L O domP)nN=g} O T,
and let;
T = U<oT

This construction has much the same character as the previous non-extensional one,
although we have the added complication of establishing that R-x and R(x) (when

T. 0O NO

fin"i fin
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defined) are PER's whenever ReT. Since every ReT is easily seen to be a PER, we will do
this by showing R-xeT and R(X)€T.

It is easy to prove Lemma 3.9.1 for this model, showing that we need not consider
stages of the construction in later arguments.

Lemma 3.10.1:

IfP:L -, T andNO, L withdom(P)nN =g, then RPNeT.

fin
Define the collection of all record typesby RT ={RPN}.
Subtyping isinterpreted as before, with:

Al:B iff AUOBandABeT

We now use present functions and absent sets to show that for every Re RT, we have
R-xeT and R(X)eT if r(x){ for every rRr.

Lemma 3.10.2:
If Re RT, then R-xeT .
If Re RT withr(X)l whenever rRr, then R(X)eT .

Proof
Thelemmaistrivia if R= g, hence we assume R# ¢.

(1) Let R=RPN, Then R-x= RPN with P' = P - { <x—=P(x)>} and
N'=N [ {x}. To seethis, supposer R-x s. Then there must
berecordsr',seR with r'Rs and r=r'-x, s=s-x.

Since P'(y)! O r(y) P(y) s(y) and yeN' O r(y)T Osy)T,

it followsthat r RPN s,

To show the converse, we assumer RPN s and note that since
R# ¢, there must be some beV with b P(x) b. It is easy to see
that r[x=b] Rs[x=b], and sor R-xs.

(2) We now assume r(x){ whenever rRr. Since R=RPN, we have
P(X)€T. It remains to show that R(X)=P(x). If a R(x) b,
then there exist r and s with rRs and a=r(x), b=9x).
By definition of RPN it follows that a P(X) b.
For the converse, we assume a P(x) b; since R# g, there exist
r and swithr RPN s and r(x)=a, 3(x)=b. Hence a R(x) b.

O

Lemma 3.10.3:
If Re RT withr(x)T whenever rRr, and BeT, then R[x:B]eT .

Proof
The lemmaistrivia if R= g. Otherwise, we let R=RPN and show that
R[x:B]=RP'"N withP'=P O {<x—=B>} and N' = N-{x}.
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Thisis straightforward.
O

It is now an easy matter to show analogs of Lemma 3.9.2 and Lemma 3.9.6. These
conclude the basic properties of the construction. System S3 is system S1 of Theorem
3.8.3 plustherules (Teg) and (vcab).

Theorem 3.10.4 (soundness):
The inference rules of system S3 are sound for the PER model
construction.

Proof
See appendix.

O

3.11 The update operator

Extensional models are useful to characterize a natural form of record update, here
denoted by r.x:- afor functional update. The discussion is also relevant to the typing of
imperative update, r.x := a, although our models do not directly capture side-effects.

The functional update operator cannot be introduced by a simple definition. We want:

rx:-a = (NX[x=a)

but only provided that r.x exists, and that r.x :- a does not modify the type of the x field.
Sufficient assumptions are that r:R<:{) and aR.x; then we can derive the following

typing:
EFr:R<:{)
€y EF r\x: R\x EFaRXx
1y EF (nxx=a): (Rx|xRx}
@e)  EF rx:-a : (RxxRx)

This is not quite satisfactory, because we would expect the result type to be R,
meaning that the type of arecord is not modified by updating one of its fields (with a
value of the correct type).

Fortunately, by using (te9) ((R\x|x:R.x)<>R) we can derive the expected type rule:

(UPD)
EFrR<() EFaRXx

EFrx:-a: R

This seems to be a compelling reason for adopting (Te9), because of itsimpact on such an
important operator as updating.
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Note that the upp) rule is very strong; it applies even when Ris avariable. From it we
can derive a perhaps more natural but less general rule:

(UPD")
EFr{RxA<( EFaA

EFrx:-a: (RxAY

Remark. Here we might be tempted to weaken the assumption to E F a:A'<A,
and strengthen the conclusion to E + r.x :- a : (R|xA'). This is valid but
undesirable, since we might then be unable to update the x field again with its
original contents.

The strong uep) rule would not be expressible without R.x types; the following
apparently natural variation is unsound:

EF rR<(gxA) EFaA
EFrx:-a:R

For example, take A=Bool, R=(x:True}, and r=(x=true); then from r.x:Bool and false:Bool
we can derive r.x:-false : {x True).

3.12 Nor malization and decidability

Even though the basic ideas behind the record calculus are relatively simple, the
formal system has quite afew rules. As aconsequence, it isnot easy to see, by inspection,
how we could determine whether a supposed type A is well-formed, or whether a record
expression hastype R.

In this section, we show that all of the basic properties of the calculus are decidable,
using relatively natural algorithms. In the process, we show that every type expression
has a unique normal form (modulo permuting the order of fields) and every typable
record expression has a principal type in each suitable environment.

The first properties we consider are deciding whether a supposed environment E is
well-formed and whether a given A is awell-formed type expression in E. A quick glance
at the formation rules shows that in order to determine whether a type is well-formed we
must be able to decide the following apparently simple properties; assuming EF Rtypeis
derivable, we want to know whether E - R<:{)\x and whether there exist Sand A such
that E - R<:{S|xA). Therefore, we consider these first. Once we develop a simple
method for these, it is easy to check whether atype or environment is well-formed.

For each derivable E F R type, we define alabeled tree Tree(E F R type) with:

edges. labeled by field names
vertices. labeled by finite sets of field names

Page 36



If visavertex in Tree(E - Rtype), we call the finite set of field names at v the absent set
atv.

Intuitively, if p=xX, ... X, isapath from the root of Tree(E+ Rtype) andN ={y,, y,,
.., Y} isthe absent set of the vertex designated by this path, then:

EF (.(RX).X, ...).x type
EF(L(RX)X ...)x < O\yy, ..y,

A convenient notational shorthand is to write R.p for (..(RXx,).X, ... ).X., where p is the
path p = x X, ... X.. If p = €isthe empty path, then we may write Re for R. If eis an edge
leading from the root of atree to the root of some subtree, we call e aroot edge.

We define Tree(E F R type) by induction on the length of E. If E has length O then R
must be the type constant (). In this case, we define:

Tree(g - () type) = single node with empty absent set.

For context E = E',X<:A we use induction on the form of type expressions.
Tree(EF Ytype) = Tree(E'F Ytype) for Y #X
Tree(EF Xtype) = Tree(E' F Atype)

Tree(EF (S|x:B) type) isobtained from
T=Tree(E+ Stype) and T = Tree(EF B type)
by making T' a subtree of the root of T along aroot edge
labelled x, and removing x from the absent set of the
root of T (if there).

Tree(EF Sixtype) isobtained from Tree(E F Stype)
by deleting the subtree along the root edge labeled x (if there), and
adding x to the absent set of the root.

Tree(EF Sxtype) isthe subtree of Tree(E - Stype)
located along the root edge labeled x.

For context E = E',X the definition of Tree(E - R type) is the same as above, except for
the following case:

Tree(EXF Xtype) = empty tree.
For context E = E' . x A we let:
Tree(EF Rtype) = Tree(E I Rtype)

This concludes the definition.
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In the clauses defining Tree(E F (S|x:B) type) and Tree(E + Sx type), we have
assumed certain properties of Tree(E + S type). These are justified by the following
lemma.

Lemma 3.12.1:
Suppose E+ Rtypeand let T=Tree(E+ Rtype).
(D) If pisapathinT, then EF R.p type.
(2) If xisin the absent set of T at position p, then E+- Rp <: {()\x.
Proof
Induction on the derivation of T.
Caseg I () type. Trivial.
CasesE' X<:AF Ytypeand E' X} Y typewith Y£X.
Induction hypothesis and the property that if E+ J for
any judgment J, and E,E’ env, then E,E' I J.
CaseE' X<:AF Xtype
By induction hypothesis E'+ A.p type and E' - A.p <: {D\x.
The conclusion follows by repeated use of (F4) and (ss), and
transitivity of <: .
CaseE' X F X type. Vacuous.
Cases E' X<:A I (Sy:B) typeand E', X - {Sly: B} type.
Casep=-c. (1)istrivia.
(2) by induction hypothesis E+ S<: {)\xfor x in
the absent set of T (x2y). Hence, E+ (Sly:B) <: {)\x.
Casep =yp'. Use (te7) and induction hypothesis for E + B type.
Otherwise. Use (tes) and induction hypothesis for E+ R type.
CaseE' X<:AF Sytypeand E' X - Sy type.
Case p = €. Two subcases:
Case x=y. SinceE - Sy type must follow from (F3), we must
have E+ S<: (). The result follows by (s4).
Case x£y. Then xmust be in the absent set for Tree(E + Stype)
and so EF S<: {D\x. By (s2, EF Sy <: {D\xy, and we
know that {P\xy <: {D\x.
Casep # €. Then p must be apath in Tree(E F Stype) not beginning
withyy. It follows from the induction hypothesis that
EF S<: {T|zA) for z2y the first symbol of p. By (Te4), we have
EF Sz < Sy.z and the lemmafollows by the congruence rules.
CasesE' X<:AI Sytypeand E',XI Sy type.
Straightforward from induction hypothesis.
Case E' x:A Rtype. By induction hypothesis.
O
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The preceding lemma shows that the path and absent information provided by Tree(E
F Rtype) is“sound” with respect to the proof rules of the calculus. Since the proof rules
are sound with respect to our semantics, it follows that the assertions of the form E +
R<:{?\x and 3SA. EF R<:{Sx A} determined from Tree(E - R type) are semantically
sound.

We may also show that the assertions are semantically complete. It follows from the
preceding lemma that the proof rules are also semantically complete for deducing
assertions of the form: (1) E - R<:{)\x, and (2) if there exists Sand A with R<:{Sx:A) in
every assignment satisfying E, then EF R<:{S|xA') for some S and A'.

Lemma 3.12.2:
Suppose EF Rtypeand let T= Treg(E+ Rtype).
Thereis asemantic model M and assignment p such that:
(1) If pisasequenceof labelswhichisnot apathinT, then there
issome record r in Ry withr.p undefined.
(2) If pisapathinT withx absent from every recordin (Rp)p ,
then xisin the absent set of T at the vertex located at p.
Proof
We may use the model constructed in section 3.8 using asingle
ground type G=N, for example. For each environment E, we define
an assignment p. such that whenever E + Rtype, thereis somereR
withr.pl iff pisapathin Tree(E - Rtype). (Thisis straightforward.)
It is easy to verify that for any vertex vin any Tree(E+ Rtype), if xisin
the absent set at v, then thereis no child along any edge labeled x.
Thisand (1) imply part (2) of the lemma.
O

By constructing trees of absent sets, it is relatively easy to decide whether a purported
environment or type expression is well-formed. The basic ideais ssmply to check whether
FEenv or EF Rtype by reading the environment and formation rules backwards. This
gives us mutually recursive procedures which rely on Tree(E F R type) in checking the
hypotheses of (F2) and (F4).

Theorem 3.12.3:
Given environment E and expression A, there are mutually
recursive procedures which decide whether - E env and E A type.

The next problems to consider are, given well-formed typesE + A typeand E - B
type, whether E+ A<=B or E I A<:B. Since type equality may be used to prove subtyping
assertions, both depend on our choice of type equality rules. For definiteness, let us
assume we have (teg). Similar results seem to hold without (te9), but we have not checked
the details.
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If E F Rtype then it isevident that by directing type equality rules, we may rewrite R
to one of the following “normal” forms:

@ O
(2) X (atypevariable)
@) ((Ryx) ... X))y, ...y, whereR,iseither {) or atype variable.
(4 (R\X, ... x|ly;:A; .. YiAD  where, considering T = Tree(E - R type):
« R,iseither () or atype variable;
¢ Y.y are exactly the labels on the root edges of T;
. {yl...yj} O{x ... x};
o {X ...X} -{yl...yj} isthe absent set at theroot of T;
« A ..Aare also in normal form.

In the semantics of section 3.9, the meaning of a type expression of form (4) is a
record type RPN, where N={x, ... x} - {y; ... y}, dom(P) ={y, ...y}, and P(y,) isthe
meaning of A . Since we may construct models in which no type is empty, and
assignments in which each type variable denotes a different type, we may show that two
type expressions are provably and semantically equal iff they have the same normal
forms, modulo differences in the order of field names and component types. By lemma
3.9.5, we may also see that, semantically:

(R o Xy Ay oy AD O S\, oy fvyBy L viB))
iff

o ({uy...u}-{v,...v}) O ({x ... x} -{yl...yj})

o {v,..v} O{y,.. yj}

o if v.=y then A 0 B
This property alows us to decide semantic subtyping by normalizing type expressions,
comparing outer-most forms, and recursively examining corresponding component types.
Since all of the steps of the algorithm correspond to derivations in the proof system,
completeness of the proof rules (for type equality or subtyping assertions) follows.

Theorem 3.12.4:
Given E F Atypeand E - B type, there are straightforward algorithms
to determine whether E+ A<=B or E+ A<:B. Moreover, the proof rules
are semantically complete for deducing type equality and subtype
assertions.

The final algorithmic problem is, given E I R type and an expression r, determine
whether EFr:R.

Since we can decide whether one type is a subtype of another, it suffices to compute a
minimal type Swith E+ r:Sand check whether EF+ S<:R.
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However, most record expressions do not have a minimal type. This stems from the
fact that for any sequence x, ... x of labels, we have () : {)\x, ... X, and we can always
obtain a smaller type by adding more labels. To get around this problem, we use type
schemas that contain sequence variables. We show that each typable record expression r
has a scheme S such that every type for r is a supertype of some instance of S Thisalows
us to test whether a record expression has any given type. We usel, |, ... for sequence
variablesin schemas.

If Sisany scheme with sequence variable |, then we say E+ Stypeif E F S type for
every S obtained by replacing | with a sequence of |abels (including the empty sequence).
If E - Stype, then a useful algorithm is MakeAbsent(x,S) which attempts to compute a
substitution instance S (possibly containing sequence variables) such that E - S<:{)\x. If
such an instance exists, MakeAbsent(x,S) returns the smallest one. If no instance exists,
the algorithm fails. (Algorithm MakeAbsent uses an extension of Tree(E + R type) to
schemas; details are straighforward and omitted.)

Using MakeAbsent, we may compute a principal type schema PTSE,r), for any well-
formed environment E and expression r, as follows:

PTSE, () @\l (wherel is afresh sequence variable)
PTSE, x) E(X)

PTSE,rx) = PTYE,r).x if defined, elsefail

PTSE, r\x) = PTYE, r)\x

PTSE, (rjx=a)) = {MakeAbsent(x, PTSE, r))|xPTSE, a))

Theorem 3.12.5:
Givent E env and an expression r, if EF r:Rthen PTSE,r) succeeds,
producing Swith E S<:Rfor someinstance S of S. Otherwise,
PTSE,r) fails. Furthermore, given S= PTSE,r) and E - Rtype, itis
easy to compute the smallest instance S of Ssuch that if any instance
isasubtype of R, then EF S<:R.

This concludes our investigation of decidability properties. We leave extensions of
these properties to functions and polymorphism for further work.

4. Applications and extensions

One might ask why we should go to the trouble of defining the subtle extension and
restriction operators, instead of adopting the override operator as a primitive, asin [Wand
89]. In particular, our explicit handling of negative information seems to introduce much
complexity.
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One answer is that negative information seems necessary to a proper understanding of
the override operator. For example, the notion of absent fields is critical to Rémy's
account of overriding in [Rémy 89]. Hence, it seems worthwhile to investigate negative
information as formalized by a separate operator.

A more pragmatic answer is that overriding really performs two different actions in
different situations; it either extends a record or updates it. From a methodological point
of view, a single override operator is rather undesirable because it may silently destroy
information. A separate extension operator is preferable, because atype error occursif we
attempt to use it to destroy an existing field. A separate update operator is also preferable,
because normally we do not want to update afield with avalue of atotally different type.

Hence, in a programming language we would probably want to replace the override
operator by two separate operators. one for extension, which we have, and one for
updating, discussed in section 3.11. The restriction operator could still be used when we
really intend to delete afield.

Admittedly, restriction is still ambiguous, because it may or may not remove afield,
depending on whether the field is actually present. It is however possible to define a safe
restriction operator which produces a type error if the restricted field is not present.
Unfortunately, we could not find a way of completely eliminating the need for general
restriction (at least on types); this operator seems necessary to express crucial well-
formedness conditions.

This said, we are now ready to investigate some useful derived operators.

4.1 Theoverride operator

The override operator {r <— x=a) =, (r\x|x=a) is certainly very natural, in fact we
have used it amost exclusively in our examples. The derived type rules for this operator,
described below, are also very simple, especially if we consider the subsystem with only
overriding and extraction. The rules mixing overriding with restriction are still rather
interesting.

Werecall the definition of the override operator:

(r < x=a) = (r\x|x=a)
(Re—xA) = (RX|xA)

The following rules are all simply derivable from the rules for our basic operators (we
assume (Te9)); with these, extension need not be a primitive.

Formation
EFR<() EF Atype EF R<{S—x A<D
EF (R<xA) type E+ Rxtype
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Subtyping

EF R<:() EF Atype

EFR<&() EFA<B
EF (Re—xA) <: ()

EF (R—xA) <: (S—x:B)

EF R<:(S—xA)<:{)

EF R<:{(S—xA)<:{)
EFRx<: A

EF R <! (R—xRX)

I ntroduction/Elimination

EFrR<:{) EFaA

EF r:{R<—xA)<:()
EF (rex=a) : (R—xA)

EFrx: A

Type Congruence

EFR<S<:{() EFA<B
EF (R—xA) <= (S—xB)

Type Equivalence

EF R < (S—x:A)<:{()
EFRx<=A

EFR<() EFABtype xty
Et ((R—xA)<y:B) <> ({R<y.B)<xA)

EFR<({) EF Atype
EF (R—xA)\Xx <= R\x

EF R<:(S—x:A)<: ()
EF R < (R—xRX)

EFR<({) EFAtype xzy
EF (R—xAlly <= (Ry<—x:A)

EFR<({) EIl Atype
EF (R—xA).x< A

EF R<{S—y.B)<() EF Atype xty
EF (Re=xA)y< Ry

Value Congruence
EFr<s:R<() EFa<b:A
EF (rex=a) <> (s=x=b) : (Rex A)

Value Equivalence

EFr < s: (R—xA)<{)
EFrx< sx:A

EFrR<{) EFaA EFbB xty
E H{(r<—x=a)<y=b) <= {{r<y=h)<—x=a) : ((R<—x:A)<y:B)
EFrR<({) EFaA
EF (rex=al\x <= r\x: R\x

EFrR<() EFaA xty
EF (re—x=ally <= (r\y«—x=a) : {R—xAl\y

EFrR<() EFaA
EF (rex=a).x<> a: A

EFr{R<yB)<({) EFaA xzy
EF({rex=a)ly<ry:B
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EF ri{R—xA)<{) xzy EF rR<{S—x:A)<()
EFrlyx<rx:A EFr<(rex=rx:R

4.2 The rename oper ator
We may consider arename operator, that shows another interesting use of R.x types.

rx<yl =4 (NXxly=r.x)
Rix<yl =4, (RX]y:Rx)

The rules for this operator are easily derived. The only interesting questions are whether
renaming with an identical variable produces an equivalent value or type:

rx<~x < r ?
Rx<~X < R ?

These equivalences are derivable for arbitrary r and R, by using:

(VE10) (TE9)
EF r:R<:{Sx Ad<:(D EF R<:{Sx:Ad<:(D
EFr<{nxpx=rx:R EF R < (Rix|x:Rx)

Recall that (ve1o) is satisfied in all our models, but (Teg) only holds in the latter two.
These are similar to the surjective pairing rules in A-calculus. An alternative, not
involving surjective pairing, isto axiomatize the renaming operators independently.

4.3 Theretraction operator: forgetting information

We have seen that even negative information should be considered as “additional”
information. So, one might ask whether there is any way to retract information, both
positive and negative. This would seem to be more a convenience than a necessity, since
one could avoid introducing information in the first place, rather then retracting it later.
However, it is still interesting to investigate the possibilities.

We have not been able to formulate operators that independently retract positive and
negative information, but we can describe an operator that retracts al information about a
given label in a type. This operator works purely on type information; there is no
corresponding operator on values.

The retraction operator, R~x, means “forget everything about x in record type R”; the
following rules enforce the cancellation of al the x information in R.

Formation/Subtyping
EF R<:( EF R<S:() EF R<:)
EF R~xtype EF R~Xx<: Sx EFR<:R~x
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Type Equivalence

FEenv EF R<:( EF R<:()
EFOQ~x< O EF R~xX <= R~X EF R~xy <= R~yx
EF R<:() EFR<() xzy
EF R\X~X <= R~x EF R\X~y <= R~\\x
EF R<()\x EF Atype EFR<\x EFAtype xzy
EF (R|}XA)~X <= R~X EF (RIxA)~y <= (R~y|xA)

The main consequences for values involve the rule R <: R~x together with the
subsumption rule: if r:R, then we are allowed to forget some information about r and
concluder:R~x.

Here are some interesting inferences:

EF R<:() EF R<:()

EF R—x<: {D~x EFrrR EFR</ R
EF Rx<: () EFr:R~x

EFr:R EFr:R<{@\x Era:A
EFr\x: R\x EF (r|x=a) : (R|x:A)

EF r\x: R\x~x EF (r|x=a) : (R}x:A)~x

EF r\x: R~ EF (rx=a) : R~x

The conclusion r\x : R~x above seems to say that restriction on values can be seen as a
retraction operator, as well as arestriction operator.

Going back to a previous example from section 2.5, we can see the usefulness of the
retraction operator for defining hierarchiesin “inverse” order:

let ColorDisc = {x Real, y:Real, r:Real, c:Color)
let ColorPoint = ColorDisc~r

let Disc = ColorDisc~c

let Point = ColorPoint~c

Note that the restriction operator would not produce the desired results.

4.4 The concatenation oper ator

Concatenation is a prime candidate for a primitive operator for a calculus of records.
Unfortunately this operator is very difficult to handle; so difficult that we have instead
chosen extension and restriction as our primitive notions. Here we discuss the main
problems.
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Type hierarchies are naturally expressed by a concatenation operator Rl S on types,
for example we would like to define:

let ColorDisc = ColorPoint Il Disc

Given a corresponding operator of values, r Il s of type RIl Sfor r:Rand s S, we would
like to guarantee that if we can deriver Il s: R Il Sthen there is a succesful and
unambiguous way to execute r Il s at run-time.

Under these conditions, we can see that concatenation is in fundamental conflict with
the subsumption rule. Consider the function:

let f1(X<:{x Int))(Y<:{y:Bool))(r:X)(sY) : XIIY=rl's
f1(€x:Int, zInt))({y:Bool, zBoolD)({x=3, =4))({(x=3, z=true)) < ? : ?

There is no explicit conflict in the definition of f1, so it should typecheck. But when
f1isused as above, we have to decide which z field to produce, both in the result type and
in the result value. A popular choice is to have X Il Y perform a left-to-right (or right-to-
left) overriding of common fields; similarly for r Il s at run-time. However, run-time
overriding can run into difficulties:

let f2(r:{x:Int))(s (y:Bool}) : {xInt, y:Bool) =r II's
f2((x=3, y=4))({y=true, x=falsg)) < ?

Let us assume here that, whatever definition we give to Il, it satisfies the equation:
{xInt) Il ¢y:Bool) = {xInt, y:Bool}; then f2 is well-typed. Could we use run-time
overriding in the invocation of f2 above? According to the result type of f2, the left x
should override the right x, while the right y should override the left y, so monodirectional
overriding will not work.

An option here is to give a run-time error, but this seems to defeat the purpose of
typechecking r Il s Another option might be to compile special code for r Il s, according to
the types of r and s, so as to pick the x field from r and the y field from s, and to do
overriding on the additional fields (to deal with the polymorphic case, below). This idea
however runsinto further difficulties:

f1(Cx:Int, y:Int, zInt))(€y: Bool, x:Booal, z Bool))
((x=3, y=4, =4)({y=true, x=false, z=trug)) < ? : ?

If XII'Y is computed by overriding, here, we get the wrong result. Making XII'Y
compatible with the behavior of r Il sabove, would require violating some basic rules,
such as the beta-conversion rules for type parameters.

Because of all these difficulties, we should now feel compelled to define RIl S only
when R and Sare digoint: that is when any field present in an element of Ris absent from
every element of S and vice versa. Unfortunately, there is no way to axiomatize this
notion without drastically changing our type system: any two record types R and Shave a
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non-empty intersection, and an element of this intersection can be exhibited via the
subsumption rule.

5. Conclusions

We have investigated a theory of record operations in presence of type variables and
subtyping. The intent is to embed this record calculus in a polymorphic A-calculus, thus
providing a full second-order theory of record structures and their types. Although we
have not investigated the type inference problem for this calculus, we have provided
typechecking and subtyping algorithms. We have also presented several models of the
basic record calculus; afull second-order model isleft for future work.

The result is a very flexible system for typing programs that manipulate records. In
particular, polymorphism and subtyping are incorporated in full generality. We expect
that this theory will be useful in analyzing fundamental aspects of object-oriented
programming.
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Appendix
This appendix contains soundness proofs for the semantic interpretations given in the
paper.

Semantics of the pure calculus of records
System Sl consists of all the rules listed in section 3.7, except for the special rules
(vcib) and (Te9).

Theorem 3.8.3 (soundness):
The inference rules of systems Sl are sound with respect to the
interpretation of judgments given in section 3.8.

Proof
By induction on the length of the derivation of the judgments.

Environments

(Env1). Vacuously true.

(ENv2). Vacuously true.

(ENv3). By hypothesis, EF Atypeand so A, O V for any p satisfying E.
Moreover, E iswell-formed by lemma 3.7.1, hence E, X<:Aisaso
well-formed.

(ENv4). Similar to Enva).

Variables
(vARy). If p satisfies E,X,E', then by definition p(X) O V.
(var2). If = EX<:A,E" env, then for any p satisfying E we have A, O V.
Thus any p satisfying E,X<:A,E' must yield p(X) OA; 0 V.
(VAR3). Similar to (var2).
(vArg). If H EXAE' env, then for any p satisfying E we have p(x) € Ay
0 V. Thusany p satisfying E,x:A,E' must yield p(x) € Ap O V.

Genera
. If, for every p satisfying E, Ap=Bp I V then Ay [ By,
(G2). By transitivity of subset.
G3). If, for every p satisfying E, ape Ag and A [1 By then apeBy,.
(G4). By symmetry of equality.
(G5). By trangitivity of equality.
o). If, for every p satisfying E, ap=bp € Ap then bp=ag € Ap.
@7). If, for every p satisfying E, ap=bp € Ap and bp=c, € Ap

then ap=Cp € Ap.
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Formation
Fy.R OV
2. If, for every p satisfying E, R, 1 R -xand Ap O V
then Ro[xAp] O R 0OV, by Lemma3.8.2.
F3). If Ry O R, then Ry-x O ROV, by Lemma3.8.2.
Fa. If Rp O S[xAp] O R, then Ay I V; hence Ry(x) 'V by Lemma 3.8.2.

Subtyping

sy. If, for every p satisfying E, Ry I R -, then R, is aset of finite
functionsr e L - V withx ¢ dom(r). For each suchr, and any
ae ApJV,wehaver[x=a] e L -, V. Thus Ro[x Ap] I R..

2. If Ry O R, then Rp-x O Ry IR

(s9). Suppose Ry [ § T R -xand Ap [1 Bp [ V. LetreRp[x Ap].
Thismeans dscRp withr = §x=a]. Since seS, andAp U By,
we have §x=a] € $[x:Bp]. Hence Rp[x: Ap] LI S[x:Bp].

(s4). Suppose Ry 0 § O R . If r'eRp-x, then r' = r-x for somereR,,.
SincereS,, it followsthat r' = r-x € S-x.

(s5). Suppose Ry [ S[x:Ap] U R, then for any reRy, reS[x Ap] = {x=4] |
SeSy, aeAp}; S0 that r(x)eAp. Hence Ry(X) = {r(x) | reRp} L Ap.

(s8). Suppose Ry U S[x:Ap] U R, then for any re Ry, reS[x:A], so that
r=s[x=a] for some seS, and ac A,. We havea=r(x)eRp(X), and
s=r-xe Ry, hence r=(r-x)[x=r(x)]e(Ro-X[Xx:Rp(X)]. It follows that

RpU(Ro-X)[X:Rp(X)].

Introduction
. g e R OV.
(2. If, for every p satisfying E, the empty functionge Ry R,
theng =g -X;.X,€ Rp-yOR.
(13). If rpeRp withx ¢ dom(rp) and apeAp, then rp[x=ap] is well-defined,
by Lemma 3.8.1, and belongsto Ry[x Ap] [ R, by Lemma 3.8.2.

Elimination
€. If, for every p satisfying E, rpeRp I R, then x ¢ dom(rp-X).
Hence rp-xe Ry-x [ R, by Lemma3.8.2.
E2). If rpeRp[X Ap] O R, then Ap 0V, and rp is arecord withr p(x)e Ap.

Type congruence
(tcy.R =R OV.
(tc2). For every p satisfying E, Xp =X OV.
(Tc3). Suppose Ry=%,, S 0 R -x, and Ap=Bp U V.
Then Ry[x:Ap] =S[xBp] DR OV.
(rc4). Suppose Ry=5, [ R, then Ry-x=S,-x R 0OV.
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(rcs). Suppose Ry=5, 0 Tp[xAp] R
Then both R, and S, are sets of functionsr with x ¢ dom(r).

Hence Ro(¥) = {r(X) | reRo} ={r(x) | reSp} = () OV.

Type equivalence
(TE). Suppose, for every p satisfyingE, Ry [ (R -X)-y, Ap,Bp 'V,
and x,y € L. For each reRy, X,y ¢ dom(r). Then,
Rolx Aol [y:Bp] =
{dy=b] | se{r[x=a] | reRp, acAp}, beBp} =
{r[x=a][y=Db] | reRpaeAp,beBp} = {r[y=b][x=a] |reRp,beBp,acAp}=
{dx=a] | se{r[y=Db] | reRp, beBp}, acAp} =
Roly:Bpl[XAp] O R OIV.
(re2). If Ry O R -X, then Ry isaset of r with x ¢ dom(r). Hence Ryx= Rp.
(e3). If Ry O R then (RyX)-y = (Rp-y)-x.
(TE4). Suppose Ry [ S[y:Bp] U R and x#y.
For each reRy, y ¢ dom(r). Then,
(Ro))(y) =
{sly) ['se{r-x|reRp}} ={(r-X)(y) | reRp} ={r(y) | reRp} =
Ro(y) O V.
(TEs). Suppose Ry I R -xand Ap O V.,
Then Ry[x: Ap] = {r[x=a] | reRp, aeAp}.
S0 (Ro[XAp])-x={r [ reRp} =Ry.
(TE6). Suppose Ry LI R -X, Ap [0V, and x#y. Then,
(Rob<Ap])y =
{(r[x=al)-y | reRp, aeAp} = {(r-y)[x=a] | reRp, acAp} =
(Roy)[x:Ap] UR OV.
(TE7). Suppose Ry L1 R -xand Ap ' V.,
Then Ry[x:Ap] = {r[x=a] | reRy, aeAp}.
Hence (Rp[x Ap])(¥) = {(r[x=a])(x) | reRy, aeAp} = Ap I V.
(Te). Suppose Ry L SH[y:Bp]x O R, Ap 00V, and x2y. Then,
(RoDAp])) = { (1x=al)(y) | reRy, aeAg} ={r(y) | reRp} = Ro(y) DIV.

Vaue congruence
(rey. g=¢g R
(rca). If, for every p satisfying E, p(X) € Ap 'V, then p(x)=p(X) € A.
(Tc3). Suppose rp= € Rp [ R -xand ap=bp e Ap I V.
Then x ¢ dom(r p)Cdom(sp). Hence rp[x=ay] = $p[x=bp] € Rp[xAp] U R,
by case (13).
(Tc4). Suppose rp=s, € Ry O R . Thenrp-x=sp-x € Ry-x O R, by case (.
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(TCs). SUppPose Ip=s, € Rp 1 S[xAp] IR
Then Ry O (Ro-X)[X:Rp(X)] (by case (s9)), and rp,Sp € (Rp-X)[X:Rp(X)].
Hence, by case e2), rp(X)=Sp(X) € Ro(x) O V.

Value equivalence
(ven). Suppose, for every p satisfying E, rpeRy O R -x-y, apeAs 'V,
bpeBp 'V, and x2y. Then, X,y ¢ dom(rp), and
rolx=ap][y=bp] = rply=bp][x=ap] € Rp[Xx:Ap][y:Bp] LI R .
(VE2. @ -X=g€eR.
(VE3). Suppose rpeRy L R -X. Since X ¢ dom(rp), rp-X=rp,.
(VE4). SupposerpeRy R . (rp-X)-y = (rp-y)-X € (Ro-X)-y OR.
(VES). Suppose rpeRy[X Ap] [ R and x2y.
Then x e dom(rp) and rp-y.x=rp.xe Ag V.
(vee). SupposerpeR, [ R -x and apeAp V.
Then x ¢ dom(rp) and rp[x=ap]-X=rp.
(VE?). SupposerpeRy L R -X, apeAg IV and x2y.
Then x ¢ dom(rp) and (rp[x=ap])-y = (rp-y)[x=ap] € (Rp[xAp])-yOR.
(ves). SupposerpeR, [ R -x, and apeAp I V.
Then x ¢ dom(rp) and (rp[x=ap])(X) = ap.
(vE9). Suppose rpeRy[Y:Bp] X O R, apeAp L'V and x2y.

Then By 00V, x ¢ dom(rp), y € dom(rp), and (rp[x=ap])(y) = rp(y) € Bp.

(VE10). SUPPOSE IpeRy I S[xAp] R .
Then rpe$[x Ap], so that rp=gx=a] for some s S, and ae A,.
We have a=r p(X)e Ry(X), and s=r p-xe Ry, hence r p=(rp-X)[X=r p(X)],
which is well-formed (is amember of (Ry-X[X:Ro(X)]).
O

A construction giving R = {(R\x|x:R.x}
System 2 is system Sl of Theorem 3.8.3 plus the rule (Te9).

Theorem 3.9.7 (soundness):
The inference rules of system S2 are sound with respect to the
interpretation of judgments given in section 3.9.

Proof
The proof follows the general pattern of Theorem 3.8.3. The main new
properties that are needed are proved as lemmasin section 3.9.
In particular, (teg) follows from Lemma 3.9.6. The formation rules
come from Lemmas 3.9.2, 3.9.3, 3.9.4, and 3.9.5.

O
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An extensional model construction
System S3 is system Sl of Theorem 3.8.3 plus the rules (teg) and (vcab).

Theorem 3.10.4 (soundness):
The inference rules of system S3 are sound for the PER model
construction given in section 3.10.

Proof
The proof follows the general pattern of Theorem 3.8.3, using the lemmas
proved in section 3.10

O
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