Pretending Atomicity

LeslieLamport and Fred B. Schneider

May 1, 1989

Systems Resear ch Center

DEC's business and technol ogy objectivesrequire a strong research program. The
Systems Research Center (SRC) and three other research laboratoriesarecommitted
to filling that need.

SRC began recruiting itsfirst research scientistsin 1984—their charter, to advance
the state of knowledge in all aspects of computer systems research. Our current
work includes exploring high-performance personal computing, distributed com-
puting, programming environments, system modelling techniques, specification
technology, and tightly-coupled multiprocessors.

Our approach to both hardware and software research is to create and use real
systemsso that wecaninvestigatetheir propertiesfully. Complex systemscannot be
evaluated soldly in the abstract. Based on thisbelief, our strategy isto demonstrate
the technical and practical feasibility of our ideas by building prototypesand using
them as daily tools. The experience we gain isuseful in the short term in enabling
usto refine our designs, and invaluablein thelong termin hel ping usto advance the
state of knowledgeabout those systems. Most of the major advancesininformation
systems have come through this strategy, including time-sharing, the ArpaNet, and
distributed persona computing.

SRC aso performs work of a more mathematical flavor which complements our
systemsresearch. Some of thiswork isin established fields of theoretical computer
science, such as the analysis of agorithms, computational geometry, and logics of
programming. The rest of thiswork explores new ground motivated by problems
that arise in our systemsresearch.

DEC has a strong commitment to communi cating the results and experience gained
through pursuing these activities. The Company vauestheimproved understanding
that comes with exposing and testing our ideas within the research community.
SRC will therefore report results in conferences, in professiona journals, and in
our research report series. We will seek users for our prototype systems among
those with whom we have common research interests, and we will encourage
collaboration with university researchers.

Robert W. Taylor, Director

Pretending Atomicity

Ledie Lamport and Fred B. Schneider
May 1, 1989

Fred B. Schneider isamember of thefaculty inthe Computer Science Department of
Cornell University. Hiswork was supportedin part by the Office of Naval Research
under contract NO0014-86-K-0092, the National Science Foundation under Grant
No. CCR-8701103, and Digital Equipment Corporation. Any opinions, findings,
and conclusions or recommendations expressed in this publication are those of the
authors and do not reflect the views of these agencies.

©Digital Equipment Cor poration 1989

Thiswork may not be copied or reproduced in wholeor in part for any commercial
purpose. Permission to copy in whole or in part without payment of feeis granted
for nonprofit educational and research purposes provided that al such whole or
partial copies include the following: a notice that such copying is by permission
of the Systems Research Center of Digital Equipment Corporation in Palo Alto,
Cdlifornia; an acknowledgment of the authors and individua contributors to the
work; and all applicable portions of the copyright notice. Copying, reproducing,
or republishing for any other purpose shall require alicense with payment of feeto
the Systems Research Center. All rightsreserved.

Author’s Abstract

We present atheorem for deriving properties of aconcurrent program by reasoning
about a simpler, coarser-grained version. The theorem generalizes a result that

Lipton proved for partia correctness and deadlock-freedom. Our theorem applies
to all safety properties.

Contents
1 Introduction
2 Lipton’s Theorem

3 A General Reduction Theorem
31 Définitions
311 Programs. e e
312 Histories
313 Commutativity
3.14 Predicatesand Safety Properties
315 Operations
3.1.6 Sequentiadd Composition
317 PossibleTermination.
3.2 TheReduction Theoremand Corollaries
321 Reduction
3.22 TheReduction TheoremandaCorollary
3.23 DerivingLipton'sTheorem
33 AnExample

4 Constraints
5 Discussion
Appendix: Proof of the Reduction Theorem

References

Vi

17

20

20

29

1 Introduction

To specify a concurrent program, one must specify what its atomic actions are. If
X 1= X + lisexecuted asasingle atomic action, then

cobegin x := x + 10x := x + 1 coend
increments x by 2; if each read and store of x is a separate atomic action, then it

increments x by 1 or 2.

We specify that a statement is executed as a single atomic action by enclosing it
in angle brackets. For example, (X := x 4+ 1) is a statement that is executed as
one atomic action. A statement x := x + 1 in which each read and store of x isa
separate atomic action can be written as

(t:i=x)(t:=t4+1);(x:=t)

wheret isanew variablethat islocal tothe processand representsan “ accumul ator”.

Representing a program using fewer atomic actions simplifies reasoning about it.
Oneway to reduce the number of atomic actionsin aprogram isto combinetwo or
more atomic actionsinto asinglelarger one. Thisis often done by pretending that
astatement isatomic if its execution containsat most one access (read or write) of
ashared variable, tacitly applying what we will call the single-action rule. For the
example above, applying this rule would alow

(ti=x)(t:=t+1)

to be combined into the singleatomic action (t := x + 1).

The single-action rule cannot always be applied. For example, it would imply that
any operation can be considered atomic in a single-process program, because no
variable is shared. Thiswould mean that a property of the program

(y=x+1)(x:=y) 1)
could be established by proving it for the program
(y=x+1Lx:=y) 2

Thisreasoningiswrong. The following property holdsfor the second program but
not thefirst.

If the program is started in a statewith x =y, then x = y holdsin al
states reached during execution.

Execution of (1) reaches an intermediate state in which x # y—a state that does
not occur when executing (2).

In this paper, we derive a general rule for combining atomic actions. It includesa
correct version of thesingle-actionruleasacorollary. Our ruleappliesonly to safety
properties, which include partial correctness, mutua exclusion, and deadlock-
freedom, but not to liveness properties, such astermination and starvation-freedom.
A safety property asserts that “ something bad does not happen”, soif itisviolated,
thenit isviolated by afinite portion of a(possibly infinite) execution of the program.

Theideaof combining atomic actionsis probably as old as the study of concurrent
agorithms. To our knowledge, the single-action rule was first mentioned in print
by Owicki and Gries [10], where it was informally claimed for partia correctness
properties. In [9], Lipton formally proved a closdly related theorem for partia
correctness and deadl ock-freedom. However, Liptonwas primarily concerned with
semaphore operations, and it was not widely recognized that the single-action rule
is a corollary of his results. Doeppner [4] extended Lipton’s partial-correctness
result to a somewhat larger class of safety properties. In this paper, we extend
Lipton’sand Doeppner’s results to a more genera class of safety properties.

2 Lipton’s Theorem

Before describing our result, we give an informal review of Lipton’swork [9]. The
hypotheses of his main theorem involve commuitativity relations between atomic
actions. We begin by defining these relations, departing somewhat from Lipton’'s
original notation.

Henceforth, we refer to atomic actions simply as actions. Formally, an action « is
aset of pairs of program states, where (t, u) € « means that executing « in statet
can produce state u. We say that o isenabled in statet iff (if and only if) thereisa
state u such that (t, u) € «. Wewritet — u to denotethat (t, u) isan e ement of
«. For example, a semaphore operation P (sem) is represented by an action « that
isenabled in statet iff control isat that operation and the value of semis positive.
For thisaction, t — u holdsiiff (i) « isenabled in state t and (ii) state u is the
same ast, except that control isafter the semaphore operation and the value of sem
isonelessthanitsvalueint.

The program stateincludescontrol information, in additionto thevaluesof program
variables. Thus, twoinstancesof astatement (X := X+1) inaprogramaredifferent
actions because they have different effects on the control components of the state.

If & and B are actions, then 8 isdefined to bethe action such that t —2> u iff there
exislsav suchthat t — v and v — u. An action p right commutes with an
action o iff t = uimpliest — u, for every pair of statest, u. In other words,
p right commutes with « means that if it is possibleto executefirst p then «, then
it ispossibleto produce the same state by executing first « then p. Similarly, A left
commutes with « iff t = uimpliest — u for every pair of statest, u. Thus, p
right commutes with A iff A left commutes with p. Two actions commute iff each
one left commutes and right commutes with the other.

The hypotheses of Lipton’s main theorem involve commuitativity between actions
in different processes. An action p in aprocessis called aright mover iff it right
commutes with the actions of every other process. An action X isaleft mover iff it
left commutes with the actions in every other process.

Lipton observed that, if semaphore operations are represented as atomic actions,
then P actionsareright moversand V actionsare left movers. To seethat P actions
are right movers, let p be a P(sem) action, let A be an action in another process,
and assume that executing p then A from state t can produce state u. There are
three cases to consider.

e A does not access the semaphore sem. In this case, p can obviously be
executed after A to produce the same state u.

e) is another P(sem) action. Executing the two P(sem) actions in either
order must produce the same state.

e) isaV(sem) action. Inthis case, executing A from state t produces a state
with sem > 0, so p can then be executed to produce state u. (Note that p
does not |eft commute with A because, in astate with sem = 0, itis possible
to execute a V (sem) followed by a P(sem), but not a P(sem) followed by
aV(sem).)

Similar reasoning showsthat every V action is aleft mover.

To combine actions, Lipton introduced the notion of reducing a program by a
statement. Let S be a sequence (S); (S); .. .; (&) of statements in a program
I1. Program IT reduced by S, denoted T1/S, is the program obtained from TI
by replacing S with the single atomic statement (S; ...; &). Lipton proved the
following result.

Lipton’s Theorem Let IT bea programand Shavetheform(S); (S); .. .; (X),
where, for somei:

1. S,..., S_;areright movers.
2. Si1,..., & areleft movers.

3. From any program state in which execution of S has begun but not termi-
nated, it is possible, by executing only actionsin S, to reach a statein which
Shas terminated.

Then, programs IT and IT/S satisfy the same partial correctness and deadlock-
freedom properties.

The single-action rule asserts that, if S contains at most one access to a shared
variable, then we can prove a property of program IT by proving it for IT1/S. If
an action o does not access any variable that is accessed by any other process,
then « is both a left and a right mover. Letting (S) be the single statement in
S that accesses a shared variable (or any statement if S does not access a shared
variable), Lipton’s Theorem implies the single-action rule for reasoning about
partial correctness and deadlock freedom—except that the single-action rule does
not require hypothesis 3. We will show that hypothesis 3 is not needed in Lipton’s
Theorem for partial correctness properties, so the single-action rule is valid for
partial correctness.

Partial correctnessrelatesinitia and final states, but makes no assertion about states
in which control isinside S. Doeppner extended Lipton’s result to a more general
class of safety properties that also assert nothing when control is within S. A
precise statement of Doeppner’sresult is given below.

To use Lipton’s Theorem (or Doeppner’s extension), one usually performs many
reductions to decrease the number of separate actions in a program. \We now
show that these reductions can all be done at once. Let Sand S be two digjoint
sequences of statements. We show that if Sand S both satisfy the hypotheses
of Lipton’s Theorem, then (T1/S)/S, which equals (T1/S)/S, and IT satisfy the
same partia correctness and deadlock-freedom properties. Since S satisfies the
hypotheses, I1/S and IT satisfy the same properties. An action that eft or right
commutes with every action of Sin program IT must left or right commute with
(S inprogram I1/S. Therefore, if S satisfiesthe hypothesesof Lipton’s Theorem
in program TIT, then it also satisfies these hypothesesin T1/S. Hence, a second
application of Lipton's Theorem shows that (I1/S)/S and IT satisfy the same

4

partial correctness and deadl ock-freedom properties. Generalizing to an arbitrary
number of reductionsis abvious.

3 A General Reduction Theorem

We begin by defining the concepts needed to formalize the notion of reduction.
Then, in Section 3.2, we state a generalization of Lipton’s Theorem; its proof is
in the appendix. We derive Doeppner’s result as a corollary, and use it to prove
Lipton’s Theorem. The section closes with an example of the use of our theorem.

3.1 Definitions
3.11 Programs

Thusfar, we have viewed aprogram IT as a set of statesand a set of actions. (Recall
that an [atomic] action isaset of pairs of states.) However, what matters for safety
propertiesis not the set of actions, but the program’s next-state relation, which is
the union of al the program’s actions. For example, replacing the single program
action

(X:=|X|+1)

by the pair of actions
if (x>0 x=x+1)0(x<0— x:=—x+1)fi

yields an equivalent program.

We therefore formally define a program IT to consist of a set of statesand asingle
action T1, where II is the next-state relation. (The next-state relation, being the
union of actions, isitself an action.) Observe that, although the specification of a
program usually describesits possible starting states, we do not include any special
starting or terminating states in our formal definition—they are irrelevant to our
results.

3.1.2 Histories

A historyof ITisafinite, nonempty sequencet,, . . ., t, of statessuchthat t,_; LN ti,
for 0 < i < n. Thishistory represents a partial execution (possibly complete) of

I1, starting in state t, and reaching statet,. Only such finite partial executions need
be considered when proving safety properties, even of nonterminating programs,
sinceasafety property is, by definition, onethat is satisfied by an infinite execution
iff it is satisfied by every finite prefix [1].

3.1.3 Commutativity

Recall that an action p right commutes with an action A (and A left commutes with
p)iff t = uimpliest =% u for all statest and u. It followsfrom this definition
that, if p equals the union of actions p; and A equals the union of actions 1, then
p right commutes with X if every p; right commutes with every 2;.

If there are no states s, t, and u such that s — t — U, S0 & cannot be executed
immediately after p, then p right commutes with «. Hence, if p isan action in
a process of a concurrent program, then p right commutes with every action in
that process, except the action immediately following it. Hypothesis 1 of Lipton’s
theorem is therefore equivalent to the hypothesisthat S, ..., S_; right commute
with every program action not in S. Similarly, an action left commutes with every
action in the same process except the action immediately preceding it.

For any action «, we define == to bethereflexive, transitiveclosureof — . Thus,
t = uiff t = u or there existsastate v such thatt — v = u. In other words,
t = uiff itis possibleto go from state t to state u by “executing” action « zero
or more times. We adopt the usual convention of writingt == v == u to denote
that t == v and v == u hold.

3.14 Predicates and Safety Properties

A predicate is a Boolean-valued function on the set of states. The value Q(t) of
predicate Q on statet iswrittent = Q. An action « is defined to leave predicate
Qinvariant iff t = Q impliesu = Q whenever t — u. It follows from this
definition that, if & equals the union of actions «;, then « leaves Q invariant iff
every «o; does. Notethat if t = Q impliesthat o« cannot be executed in state t, so
there is no state u such that t — u, then « trivially leaves Q invariant. Thus, if
U isthe predicate asserting that « is enabled, then o leaves —U invariant.

If Init and Q are predicates, then aprogram IT stisfies the temporal 1ogic formula
Init = OQ iff the following holds: for any history to, . .., t, of I, if ty &= Init

thent = Q,for 0 <i <n. Thisproperty isequivalent to

For al statest and u: if t — uandt k= Init, thenu = Q.

Properties of theform Init = OQ are proved with the Owicki-Gries method [10]
and similar assertional methods [2, 6]. Moreover, by adding auxiliary variables to
the program, any safety property can be expressed in thisform.

3.1.5 Operations

The notion of a statement is meaningful only in the context of a programming
language. To make our results independent of any language, we will define re-
duction with respect to operations rather than statements. The intuitive view is
that an operation S consists of a collection of related actions from a single process.
Actions are “related” iff, from the time the first action of Sis executed until the
entire operation compl etes, the process can execute actionsonly from S. Executing
the first action of S moves control inside S, and executing the last action moves
control outside S. Only actions of S can move control inside or outside of S.

Formally, an operation S of program IT consists of a subset S of the next-state
reI atlon §i together with a predicate £(S) (where £ stands for externaJ) such that
l‘I Sleaves both £(S) and =& (S) invariant. Being subsets of I, an action, Sand
M- Sae themselves actions. Thisformal definition corresponds to the intuitive
view above, where Siis the union of the actions congtituting S, and £(S) is the
predicate asserting that control isoutside S

We now define what it means for an operation to be atomic. We could define A
to be atomic iff £(A) holdsin all states. However, we want IT and T1/Sto satisfy
the same properties, so we want them to have the same set of states; this means
that TT/Smay contain statesin which £((S)) is false even though it has (S) as an
atomic action. Therefore, we adopt the more general definition that an operation
A of program IT is atomic iff £(A) isleft invariant by . Consequently, if Ais
atomic, then control will remain outside A throughout any history that startsin a
state with control outside A.

Observe that the concept of a process is not used in our forma definition of an
operation, and nothing prevents actions of different processes from being part of a
single operation. For example, a matching pair of communication statementsin a
CSP program can be represented by a single atomic operation [8].

1In the notation of [5], £(S) = at(S) v —in(S).

3.1.6 Sequential Composition

Our reduction theorem involves the sequential composition T; U of operations T
and U. Compositionisusualy defined for statementsin a programming language.
A precisedefinition for sequential composition of operationsis complicated. How-
ever, thecomposition T; U hasthe expected meaning if (i) control cannot beinside
both T and U, and (ii) any execution of T; U consistsof a (possibly null) sequence
of executionsof T followed by a (possibly null) sequence of executionsof U. For
example, in the statement

if bthen T; U,
ese U,
fi

the then and else clauses together define asingle operation T; U, where the oper-
ation U isdefinedby U = U; UU, and £(U) = £(Uy) A £(U,). By our definition
of atomicity, if each U; isatomic, then U isatomic.

For a general definition of the sequential composition of operations, we must use
E(TM), EW), T, and | U to characterize when operation T; U isdefined and, when it
is defined, what T Uand&(T; U) are. Such adefmltlon is compllcated the only
simple part is that when T; U is defined, T: U equaIsT U U. Therefore, instead
of giving aformal definition, we just list in the appendix properties of sequential
composition that we require.

If T isnull, meaning that fistheemptysetand E(T) isidentically true, then T; U
equalsU. Similarly, if U isnull, then T; U equals T.

3.1.7 Possible Termination

Hypothesis 3 of Lipton’s Theorem assertsthat it ispossiblefor Sto terminate from
any state in which control isinside S. Control being inside S means that —=£(S)
holds. Terminationof Smeansreaching astateinwhich £(S) holds. Thus, Lipton’'s
hypothesis 3 asserts that, for every statet, if t = —£(S) then there existsa state u

suchthatt = uandu = £(9).

3.2 TheReduction Theorem and Corollaries
3.2.1 Reduction

The purpose of our reduction theorem isto justify pretending that an operation is
atomic. To define what this pretense means, we first define the operation (S) for
an arbitrary operation S in a program IT. This requires defining action (S) and
predicate £((S)). We define £((S)) to equal £(S). Our definition of (§) should
assert that t —> u iff a complete execution of S can take state t to state u. A
“complete execution” is one that starts with control outside S and ends as soon as
control leaves S. We define (§) to consist of al pairs (t,u) suchthatt = £(9),
u = £(9), and there exist statesty, . . ., t,, with 0 < n, such that

ety —>t —> ... —> g —>t, = U

andt; = —-&(9 for0O<i <n.

For any action o, definet = u to mean that there exist states ty, . . ., t,, with
S
0 < n, such that
t=tg—t — ... — t_;1 — t,=u

andt; = =£(S for0 <i <n. Then,t = uimpliest = s. If u = =&(S),
thent = uandu = vimply t = v.

To see the relation between the two actions S 9nd (§) suppose t = £(5 and
u = £(S). Thedefinition of (S) impliesthat t = u ifft —> uort = u. Thisin

turn impliesthat t =5 uifft = u.

We can now formally define program T1/S. We want T1/S to be the program
obtained by replacing S by an atomic action, so I1/S is defined to have the same
set of states as IT and to have its next-state relation H/Sequal to (1‘1 S) U (S)
To show that (S) is an atomic operation of I1/S, we must show that H/Sleaves
EUS) |nvar|ant By definition of what it means for Sto be an operatlon of IT,
action TI — S leaves E(S) |nvar|ant By definition of (S) action (S) leaves £(S)
invariant. Therefore, (l‘I S) U (S) which equals H/s leaves invariant £(S),
which equals£((S)).

The useful part of the reduction theorem states that, for certain operations S, if a
safety property is satisfied by T1/Sthen it is satisfied by TT. The converse, that a
safety property is satisfied by IT/Sif it issatisfied by IT, istrue for any S.

9

Lemmal If Init = OQ issatisfied by programIT then it is satisfied by program
/s

Proof of Lemma

1.

For any statest and u, if t = u and t = Init, thenu = Q.
Proof: By the hypothesisthat IT satisfies Init = O Q.

.Foranyﬁatestandu,ift“:75>uthent:ﬁ>u.

Proof : By definition of reduction, since [T/S— (S < Tl and v -2 w implies
v == w.

/s

. For any statest and u, if t = u andt = Init thenu = Q.

Proof: By 1 and 2.

. Program I1/Ssatisfies Init = 0Q.

Proof: By 3 and the definition of what it meansfor IT1/Sto satisfy Init = OQ.

End Proof of Lemma

3.2.2 TheReduction Theorem and a Corollary

We now state our reduction theorem, which is proved in the appendix, and derive
acorollary.

Reduction Theorem Let IT be a program, I nit and Q be predicates, and Sbe an
operation of IT havingtheform R; (A); L, where

0. Initimplies&(9).
1. (a) Action R right commuteswith action IT — S,

(b) For all statestand u: ift = uandt = (QAE(S) thenu = (QVE(S)).
2. (a) Action L left commutes with action IT — S,

(b) For all statest and u: ift = uandt = (=Q A =&£(S) then
Uk (=QV —E(9).

3. For all statest: ift =(—=QAER; (A) A=E(9) thenthere exists a state
usuchthatt = uandu = £(9).2

28(R; (A) A —£(S) assertsthat control is either inside L or at its entry point.

10

Then, Init = OQ issatisfied by IT iff it issatisfied by IT/S.

Observe that hypothesis 1(b) holds if R leaves Q invariant, and hypothesis 2(b)
holdsif L leaves —Q invariant. Thus, both of these hypothesesholdif R and L do
not change any part of the state on which Q depends.

The conclusion of our reduction theorem asserts that if Q holds throughout the
execution of IT/Sthen it holdsthroughout the execution of IT. Weaker hypotheses
lead to the weaker conclusion that, in the execution of IT, predicate Q holds only
when control isexternal to S, giving aresult obtained by Doeppner [4].

Corollary (Doeppner) Let IT beaprogramand ShavetheformR; (A); L, where

0. Initimplies&(9).
1. Action R right commutes with action TT — S,

2. Action L left commutes with action IT — S.
Then, Init = O(Q Vv —&(9) issatisfied by ITiff Init = OQ issatisfiedby IT/S.

Proof of Corollary
1. Init = O(Q vV —&(9) issatisfied by IT iff itis satisfied by IT/S.

Proof: Apply the Reduction Theorem with Q v =£(S) substituted for Q.
Hypotheses 0, 1(a), and 2(a) of the theorem follow from hypotheses 0-2 of the
corollary. Hypothesis1(b) of the theorem holdstrivially because (Qv —=£(S)) v
£(9) isidentically true. Hypothesis2(b) of thetheorem holdsvacuously because
—(QV —&(9) A—E(S) isidentically false. Hypothesis3 also holds vacuously
because —=(Q v =E(9) A E(R; (A)) A =E(S) isidenticaly false.

2. TI/Ssatisfies Init = O&£(S).
Proof: By hypothesisO, since ﬁ/\SIeavesé’(S), which equals£((S)), invariant.
3. T/Ssatisfies Init = O(Q v —£(9)) iff it satisfies Init = OQ.

Proof: Followsfrom 2 and the definition of what it means for I1/Sto satisfy a
formulaof theform Init = OP.

End Proof of Corollary

The corollary provides a correct statement of the single-action rule. The incorrect
version of the rule assertsthat if the reduced program setisfies a property then the

11

original program does. The correct version asserts that if the reduced program
satisfies a property Init = OQ, then the original program satisfies the related
property Init = O(Q v —=&£(S)). Only if =£(S) implies Q does the original
program satisfy the same property as the reduced program.

3.2.3 Deriving Lipton’s Theorem

We now derive Lipton’s Theorem from the corollary. Lipton’s Theorem concerns
partial correctness and deadlock freedom properties. We consider each of them
separately.

The partial correctness property {Pre}TT{Post} can be expressed in the form
Init = OQbyletting I nit bethepredicateasserting that control isat thebeginning
of IT and Pre holds, and letting Q be Term = Post, where Term is the predicate
asserting that IT has terminated—that is, Term asserts that control is at the end of
the program. Since control at the end of IT impliesthat £(S) holds, =& (S) implies
Q,s0 Qv —&(9 isequivalentto Q. Hence, the corollary impliesthat, under the
hypotheses of Lipton's Theorem, TT satisfies { Pre}T1{Post} iff IT1/S does. This
proves Lipton’s Theorem for partial correctness. Moreover, we have strengthened
this part of Lipton’s Theorem by eliminating hypothesis 3. In so doing, we have
shown that the single-actionruleisvalid for partial correctness properties.

We next show that the deadlock-freedom part of Lipton’s Theorem follows from
the corollary. A program is deadlocked iff it has not terminated and no program
action isenabled. Program IT has terminated iff program I'T/ S has. Thus, we need
show only that an action of IT is aways enabled iff an action of I1/S is aways
enabled. Let Init be the predicate asserting that control is at the beginning of I1
and let D F; bethe predicate asserting that some action of TT isenabled. Similarly,
define DF ;s to assert that some action of IT/S is enabled. The conclusion of
Lipton’s Theorem states, in our notation, that IT satisfies Init = ODFy iff I1/S
satisfies Init = ODFp,s. We use the corollary to show that this conclusion is
implied by the hypotheses of Lipton’s Theorem.

1. T satisfies Init = O(DFp sV —&£(9) iff [1/Ssdtisfies Init = ODFps.
Proof: Apply the Corollary with D Fp;, s substituted for Q.
2. DFp sV —=&(S implies DFp.
2.1. DFp simpliesDFp.
Proof: By definition of T1/S, if an action of I1/Sis enabled then an action

12

of IT must be enabled.
22. =E(S) impliesDFy.
Proof: By hypothesis 3 of Lipton’s Theorem.
3. DFpimpliesDFp sV —&(S).

Proof: It sufficestoprovethat DFy and £(S) imply D Fr,s. For this, it suffices
to prove that for any state t, if there exists a state u such that t = £(S) and

/s

TN u, then there exists a state v such that t LY V.

Sincet s u, eithert ﬁ—? uordset — u. Ift =5 u, then we can let v
equal u. Assumethatt —> u. If u = =£(S), then hypothesis 3 of Lipton's
Theorem implies that there exists a state v such that v |= £(S) and u = v. If

u = £(S), thenlet v equal u. Ineither case, t = v, t = £(S), and v = £(9),
sot -2 .

4. T1 satisfies Init = ODFp iff IT/Ssatisfies Init = ODFpys.
Proof: By 1, since2and 3imply DFy = DFp,sVv —&£(S).

Thesingle-actionruleisnot valid for deadlock freedom. For example, let IT bethe
single-process program
(x:=0o0r1); (await x = 0)

where the assignment nondeterministically sets x to O or 1, and the await delays
forever if x = 1. Since every variable is local, a naive single-action rule would
assert that this program is equivalent to

(x:=0o0r1;await x =0)

which, by our definition of (S), isequivalent to

Thereduced program isdeadl ock free, but the original programisnot—it deadl ocks
if the assignment statement sets x to 1.

One might be ableto find an alternate definition of (S) that makes the single-action
rulevalid for deadlock freedom. However, we believe that such a definition would
be unnatural, and unlikely to be of any practical use.

13

Program IT;

variables
inp : infinite sequence of value;
out : sequence of value;
buf : array[0...N — 1] of value,

X,y :value
fp, fc: Natural;
cobegin
Producer: loop
Dp: (X,inp:=head(inp), tail (inp));
Ay: (await (fp— fc) < N);
Bp: (buf[fp mod NJ] :=x);
Co: (fp:=fp+1)
end loop
I
Consumer: loop
A.: (await (fp — fc) > 0);
Be: (y:=buf[fcmod NJ);
C.. (fci="fc+1);
D¢: (out:=outoy)
end loop
coend

Figure 1: A simple producer/consumer program.

14

3.3 An Example

Program T1; of Figure 1 is a two-process concurrent program, where head and
tail are the usua operators on sequences, and o denotes concatenation. Using a
bounded buffer, aproducer process communicates an infinite sequence of valuesto
aconsumer process. The safety property of interest is that the sequence of values
out received by the consumer is a prefix of the initial value of the sequence inp.
Thisproperty isformulated as I nit = 0OQ, where

e Init assertsthat buf isempty, inp hassomeinitial valueinp,,,, fp = fc=
0, and at(Dy) and at(A;) hold, where at(¢) is a predicate that is true iff
control isat action €.

e Q assertsthat out isaninitial prefix of inp; ;.

To prove that I, satisfies this property, the Reduction Theorem is applied twice.
First, Program I1; is reduced by A,; By; C,, resulting in a program where the
producer has only two actions—D, and (A,; By; Cp). Then, that program is
reduced by A.; Be; C., resultingin afina program having just four atomic actions.
Aswe observed at the end of Section 2, these two reductions can be done at once.
This is because a consumer action left (right) commutes with each of the actions
Ay, By, and C, iff it left (right) commutes with the single action (Ay; By; Cp).

For the first reduction, the theorem is applied with A, for R, B, for (A), and C,
for L. We now show that the four hypotheses of the theorem are satisfied.

Hypothesis0. Init implies £(Ay; By; Cp).
Proof: Thisfollowsfrom the definition of Init and &£, because Init implies
at(Dp), and at(D,) impliesthat control isexternal to Ay; By; C,.
Hypothesis 1. (a) Action R right commutes with action 1 — S, where S is
Ay By Cp.
(b) For all statest and u, if t == uandt = (QAE(S) thenu = (QVE(S)).
1. A, right commutes with D,,.
Proof: D, cannot be executed immediately after A,.
2. ’A\p right commutes with 70; 'B\C and ’D\C

Proof: Actions A, and A, commute because neither modifiesany variable
accessed by the other, and A, commutes with B, and with D, for the same
reason.

15

3. A, right commutes with C,.

31 1fs 25 tands <3 ¢/, thent = t.
Proof: From the definitions of Ks and @

3.2. If itis possibleto execute first A\B\then C. onastate s, thenitisalso
possibleto executefirst C. then Ay on's.

Proof: It is possibleto execute A, then C; on s iff

skEat(A) Aat(Co) A (fp— fc < N) 3
It is possibleto execute C, then A, on s iff
S = at(A) Aat(Co A (fp— (fe+ 1) < N) 4

Obvioudly, (3) implies (4).
33.1f s 25 tthens =53 t
Proof: By 3.1and 3.2.
4. Hypothesis 1(a) holds.
Proof: By 1, 2, and 3, since [T — S equals the union of Dy, A, B, C.,
and D..
5. Hypothesis 1(b) holds.

Proof: Action A\p does not modify any part of the state on which Q
depends, so it leaves Q invariant.

Hypothesis2. (a) Action C\p |left commutes with action TT — S.

(b) For dl statest and u, if t == uandt = (=Q A —&(9)) thenu =
(—Q Vv =E(9)).

Proof: The proof of thisis similar to the proof of hypothesis 1. The key
step in the proof that C, left commutes with A; isthe observation that (i) it
is possible to execute A; then C, on astate s iff s = (at(Ac) A at(Cp) A
(fp — fc > 0)), and (ii) it is possible to execute C, then A; on s iff
s k= (at(Ac) A at(Cy) A (fp — fc > 0)). Hypothesis 2(b) holds because
action C, does not change any part of the state on which Q depends, so it
leaves —Q invariant.

Hypothesis 3. For all statest: if t = (—Q A at(C,)) then C, can terminate from
t.

Proof: C, can terminate from any statet for whicht = (at(C,)).

16

The justification of the second reduction is similar to that of the first with p and

C subscripts interchanged. We must prove that A.C left commutes and C, right

commutes with the four actions Ap, Bp, Cp, and D (Recall that thisimplies that
/\

they left and right commute with (A,; Bp; Cp).) Proving the symmetric versions
of statements 0-3 in the proof of the first reduction allows our theorem to be
applied to the second reduction. We omit the proofs. (Note that the proofs of the
commutativity relations between A, and Cp, and between C; and Ap appeared in
the proof of thefirst reduction.)

4 Constraints

We can replace the unbounded integer variables fp and f c of Program I1; by in-
tegers modulo 2N, to obtain producer/consumer program I, of Figure 2. Program
[T, can be viewed as an implementation of I1; in which the “left-most bits” of fp
and f c have been eliminated. We would, therefore, expect to be able to reduce I,
to a program with only four atomic actions, just as we reduced IT;. Unfortunately,
we cannot. The action pairs Ap, C. and A, C of IT, do not satisfy the required
commutativity relations. For example if t |sastate|n which fp = fc then there

arestatesu and v suchthatt —> u —> v, but no stateu’ suchthatt —> U’ —> v
because —1 mod 2N equals2N — 1, whichisgreater than or equal to N. (Executing
C. when fp= fcdlsablesA .) Thus, A does not right commute with C.

Program IT, admits “irreducible” histories—onesthat are not equivalent to any of
the reduced program’s histories. However, theseirreducible historiesareirrelevant
because they cannot arise when I, is started in a “proper” initial state. The
property we want to proveis Init = 0Q, which assertsthat Q is adwaystrue for
any execution started in a state satisfying the predicate Init, and it turns out that
thereisno irreduciblehistory beginningwith astatethat satisfiesInit. For example,
histories containing a statein which fp = fc and both A and C, are enabled, so
A does not right commute with C, are irrelevant because such a state cannot be
reached when Program IT; is started with Init true.

Wewill dispensewiththeseirrel evant historiesby modifying I, to eliminatethem.®
We constrainthe program by apredicate | to eliminate historiesinwhich | becomes
fase[7]. If theorigina program satisfies Init = O1, then only irrelevant histories

3We could define these histories out of existence by including the initial state in the formal
definition of a program, but this would complicate our definitions without making it any easier to
actually prove properties of programs.

17

Program IT,

variables
inp : infinite sequence of value;
out : sequence of value;
buf :array[0...N — 1] of value,

X,y :value
fp,fc: {0...2N — 1};
cobegin
Producer: loop
Dp: (X,inp:=head(inp), tail (inp));
Ay: (await (fp — fc) mod 2N < N);
Bp: (buf[fp mod NJ] :=x);
Co: (fp:=fp+1mod2N)
end loop
{
Consumer: loop
A.: (await (fp — fc) mod 2N > 0);
B.: (y:=buf[fcmod N]);
Ce.. (fc:=fc+1mod2N);
o (out:=outoy)
end loop
coend

Figure 2: Another simple producer/consumer program.

18

are eiminated.

For an action « and a predicate |, define «|, (read « constrained by I) to be the
action {(s,t) e a : (S= 1) A(t = 1)}. Thus, s =5 tiffs = tand | holds
in states s and t. For a program IT we define IT|, to be the program whose states
are the states of IT that satisfy |, and whose next-state relation is ﬁ||. If Sisan
operation of I1, then §|, isthe operation of IT|, such that éﬂ equals§|| and £(Y]))
equals £(S) withitsdomain restricted to the states of 1], .

The next-state relation ﬁ] is enabled only in states satisfying I, and ﬁr can
produce only states satisfying |. The histories of IT|, consist of the histories of T1
in which all states satisfy 1. Thisimpliesthat every history of T1|, isahistory of
IT.

Suppose that Init = Ol holdsfor a program I1. Then, | istruefor al statesin
any history of IT beginning in a state with Init true. Therefore, any history of I1
beginning with Init true is aso a history of I1},. If TT satisfies Init = Ol then
I1 satisfies Init = OQ iff IT|, does. The property Init = Ol can be proved by
ordinary assertional methods. Usually, | isan invariant of IT.

To definethe predicate | for IT,, wefirst define afunction W, on the set of program
states:

U - 1 ifat(Bp) vat(Cpy)
P 7 |0 otherwise

We define W, similarly, replacing p by c. The predicate | isdefined to equal
V. < (fp—fcymod2N < N — ¥,

That | isan invariant of T can be established in the usual way. It isalso easy to
check that Init implies |. Therefore, to provethat Init = OQ issatisfied by IT,
we need to show only that it is satisfied by IT,|,.

Wecan now apply our Reduction Theoremto IT,|,, reducingitfirstby Ap|i; Byli; Cpli
and then by A.|;; Beli; Cc|;. The proof is almoa identical to that for I, glven
above. Themajor differenceisin the proof thatA [} right commuteswnhc [i. As
in step 3.2 above, we must show that if it is p0$|bleto execute A |, followed by
C.l, |, from astatet, thenltlsalso possubletoexecutec |, followed byA |, fromt.
It ispossibleto executeA |, followed byC [, fromt iff

t=1 Anat(Ay) Aat(Ce) A ((fp— fc)y mod 2N < N) 5)
and it ispossibleto execute C.|, followed by A,], from t iff
t= 1 Anat(Ap) nat(Ce) A ((fp— (fc+1)) mod 2N < N) (6)

19

Since | Aat(Ap) Aat(C.) impliesthat 1 < fp — fcmod 2N < N, it followsthat
(5) implies (6).

5 Discussion

We have given a reduction theorem for proving that a safety property of the form
Init = OQ holds for a program TIT if it holds for the coarser-grained program
I1/S. In genera, areduction theorem allows one to conclude that IT satisfies a
property P if I1/S satisfies a related property P’. It is proved by showing that
for any history X of II, thereis a corresponding history X’ of IT1/S such that ¥
satisfies P if ¥’ satisfies P’. The history X’ is derived from X by commuting
actions and completing or eliminating any unfinished execution of S. Hypotheses
about commutativity and the possible termination of L make it possibleto derive
¥’. Additional hypotheses may be needed to guarantee that if X’ satisfies P’ then
Y. satisfies P. In our reduction theorem, these are hypotheses 1(b) and 2(b).

A reduction theorem is tailored to a particular class of properties. We chose
the hypotheses of our reduction theorem to be as weak as possible for properties
of the form Init = OQ. Lipton considered partial correctness and deadlock-
freedom properties, and Doeppner considered properties closely related to partial
correctness. We do not know of asimilar reduction theorem for liveness properties.
We do know that such a theorem would need different hypotheses. For example,
the hypotheses of Lipton’s Theorem are satisfied if S equals P(sem); V(sem), in
which case (S) leaves sem unchanged. Suppose a program IT contains a process
that repeatedly executes S. Then TT1/S might satisfy a progress property that is
not satisfied by IT because the repeated decrementing and incrementing of sem
prevents some other process from making progress. Thus, the hypotheses of
Lipton’s Theorem are not sufficient for deriving liveness properties.

Back [3] does give a reduction theorem for total correctness—the conjunction
of partial correctness (a safety property) and termination (a liveness property).
However, his hypothesesinvolve commutativity relations between actions outside
S, so thetheoremis not closely related to either our reduction theorem or Lipton’s.

Appendix: Proof of the Reduction Theorem

Our proof relies on the following properties of sequential composition and atomic
operations, where Sequals T; U.

20

SC1. Forany actione, if v == w, thenthereexistsastatex suchthat v == x =% w.

S T U
[When executing S: first, actionsin T or not in S are executed until control exits T;
then, actionsin U or not in S are executed until control exits S.]

SC2. £(S implies&(T) A EU).
[If control isexternal to S, then it isexterna to its components T and U .]

SC3. =&(T) A=E(U) isidentically fase.
[Control cannot beinternal to both T and U .]

SC4. —&(T) impliesthat U is not enabled.
[U cannot be executed when control isinternal to T.]

SC5. If U isan atomic operation and v % wthenw = £(S).
[When control exits U, control is external to S; and control exits an atomic action
when itis executed.]

Lemma 2 (a) Let « and p be actions such that p right commuteswith @ — p. For
statest and u, if t = u then there exists a state v such thatt = v == u.

(b) Let o and A be actions such that A |eft commutes witha — A. For statest and
u, ift == u then there existsa state v such that t = v == u.

Proof of Lemma
We prove part (a); the proof of part (b) issimilar. The hypothesis asserts that

t=tg—t — ... —t,; —t,=u (7)

for some statest;, with0 < n. If w — X, then either w — x or w —> X. By
the right-commutativity hypothesis, if w — x —5 'y, then there exists x’ such
that w —> x’ —> y. Thus, by repeatedly replacing — x —> with —> x’ -,
we can deduce from (7) the existence of k and of statest such that

a—p a—p P P

t=tg—t,—>... 5>t —>...—>t=u

Thisimpliest = v == u, wherev = t;.
End Proof of Lemma

Lemma 3 Assume hypotheses 0-3 of the Reduction Theorem and the additional
hypotheses that, for statest and u:

21

4.t = E(9
5. U= &(S)

6.t:ﬁ>u

n/s

Thent = u.

Proof of Lemma
We prove by induction on n that, for any statest and u, if there exist statesty, . . .,
t, such that

=ty -t —> ...ty —>t,=u (8)

thent ”:75> u. Thebasecasen = Qistrivia, sincethent = u and thereation ”275>
isreflexive.

We now prove the induction step, as§uming n > 0. Assume states ty, ..., t,
satisfying (8) exist. The proof that t == u is split into two cases, depending upon
whether or not t; = £(S) holdsfor some0 < i < n.

1. If t; = £(S) holdsfor some0 < i < n, thent == u.
Proof: Sincet = t; and t; == u, the induction hypothesisimpliest == t

n/s

andt; = u. Thus, t == u holds by transitivity of LY
2.1ft, = —£(S) holdsforal 0 < i < n, thent == u.

2.1. Chooseastate v suchthat t —— v =25 y,
R:(A) L

Proof: State v existsby SC1, sincet u by hypothesis6, sot LY by
the antecedent of 2.

2.2. Choose astate w such that t T2 1 28 Z53 .

R (A) L

Proof: State w existsby 2.1 and SC1.

23 w2 vorwi vorw =v.
231 w E E(A)
Propf: By hypothesis4 and SC2,t = £({A)); proof step 2.2 implies
t = w; and I leaves £((A)) invariant by definition of atomicity.
2.3.2. Choose states wy, ..., wy, for 0 < m, such that w = wy oo g

([-D-R

Wy. . Wm1 —— wp=vandw; E—=EW(A) for0< j <m.

22

24.

25.

Proof: By 2.2.
233. w EE(A) for0< j <m.
Proof: By 2.3.1 and the definition of atomicity.
234. m<1
Proof: By 2.3.2 (w; = =£((A)) for0 < j <m)and 2.3.3.

235 w25 vorw "5 vorw=v
Proof: By 2.3.2and 2.3.4, since (I - L) - R= (I - S U (A).

If w -2 v then there exist states x and y such that t == x == w -2
v£>y§>u

(f-0)-

Proof: Step 2.2 and the antecedent imply t 00 A 58 4. The
existence of x follows from hypothesis 1(a) and part (a) of Lemma 2, and
the existence of y foll follows from hypotheas 2(a) and part (b) of Lemma 2,
since (IM—L) — (A) — Rand (T — R; (A)) — L bothequal T1 — S.

If w —’>};prw = v then there exist states x and y such that t 22 x =5
v£>y§>u.

(fi-0)— n-s N-R(A)

Proof: Step 2.2 and the antecedent |mply t w v — Uu.

(f-0)-

This impliest =% v =24 y, sincell — S < (I — L) — (A). The
existence of x follows from hypothesis 1(a) and part (a) of Lemma 2, and
the existence of y follows from hypothesis 2(a) and part (b) of Lemma 2,
since (IM—L) — (A) — Rand (T — R; (A)) — L bothequal T1 — S.

23

2.6. Choose x and y such that t xS ow Sy y =R yor
S X = 0= Yy = U.
Proof: By 2.3, 2.4, and 2.5.
2.7.t“=75>xandy”=75>u.
Proof: By 2.6, since (ﬁ — §) C ﬁTs
28. Xy
281 X = &(9

Proof: By hypothesis4 and 2.6, since every action of IT — Sleaves
E(S) invariant.

282y E £(S

Proof: By hypothesis5 and 2.6, since every action of IT — Sleaves
=£(S) invariant.

283. x =2y

Proof: By 2.6 (which implies x =), 2.8.1, and 2.8.2, and the
definition of (S).

29.t = u
Proof: By 2.6, 2.7, and 2.8, since (S) € T1/S.
3.t 5y
Proof: By 1 and 2.
End Proof of Lemma

Lemma 4 Assume hypotheses 0—-3 of the Reduction Theorem, and the additional
hypotheses that, for statest and u:

4. T1/Ssatisfies Init = 0Q
5. t = Init

6.t == u

7. UuE&(S

Thenu &= Q.

24

Proof of Lemma

1.t = &S

Proof: t = Init by hypothesis 5, and Init = £(S) by hypothesis O of the
Reduction Theorem.

n/s

2.t=

Proof: By hypotheses6 and 7, and Lemma 3.
BuEQ

Proof: By 1, 2, and hypothesis4.
End Proof of Lemma

Proof of Theorem
The “only if” part follows from Lemma 1. To prove the “if” part, it suffices to
assume, for statest and u:

4. T1/Ssdtisfies Init = 0Q
5. t = Init
6.t == u

and show that u = Q.

The proof considers separately the casesu = £(S) and u = —£(S). The second
caseisfurther splitintothecasesu = £(R; (A)) andu = —&(R; (A)), yiddinga
total of three separate cases.

1L IfukE &S thenu = Q.
Proof: By Lemma 4.

2. 1fu k= (E(R; (A) A—=E(9) thenu = Q.
Proof: The proof is by contradiction. We assumethat u = —Q.
2.1. Choose a state v such that u :E> vandv &= £(9).

Proof: State v exists by the assumptionthat u = —Q, the antecedent of 2,
and hypothesis 3.

22.t =S5
Proof: By 2.1 and assumption 6, which assertsthat t SN

25

2.3.

24.

25.

2.6.

vEQ

Proof: By 2.2 and Lemma4, sincev = £(S) by 2.1. (Substitute v for u in
the lemma.)

ukE (—QA—=E(S)

Proof: By the assumption that u = —Q and the antecedent of 2.

v E (—QV—E(Y)

Proof: By 2.1, 2.4, and hypothesis 2(b), substitutingu for t and v for u.
Contradiction.

Proof: 2.3,2.5,and 2.1 (v = £(9)).

AfuE (=E(R; (A) A=E(9) thenu E Q.

3.1

3.2

3.3.

34.

tEE&S
Proof: By hypotheses5 and 0.

Choose state v such that t == v —= u and v E £(S).

Proof: Hypothesis 6 asserts the existence of statest; suchthat t = t, I,

t, — ... —> t, = u. Let v bethelastt; suchthatt; = £(S). By 3.1, t;
exists.

-t f-R

Choose state w such that v — w :’TA& u.
R;(A) L

Proof: By SC1, since 3.2 asserts that v SN u, and S equas
(R: (9): L.)
If w # uthenw - uand w = —E(R; (A)).
34.1. Choose states wo, ..., wp such tha w = w, —
Wy .. Wh1 —3 w, =uandw; E-~&(L)for0< j <n.
Proof: The states w; exist by 3.3, which asserts that w ﬁ:TTAﬁ u.
342 ukE —£(R; (A)
Proof: Antecedent of 3.
343 wj E—ER; (A)for0<j <n

Proof: For j = n, this follows from 3.4.2 (since w, = u). For
j < n,itfollowsby induction since IT — R; (A) leaves £(R; (A))

26

3.5.

3.6.

3.7.

34.4.

345. w

3.4.6.

34.7.

-t

invariant.
0O<n<1
Proof: By 3.4.1 (w; = —&(L) for 0 < j < n). By 343, w; =
falsefor0 < j <n,since—&(L) A =E(R; (A)) = false by SC3.

O-R(A)
—> u

Proof: By 3.4.1 and 3.4.4, since w # u (the antecedent of 3.4)
impliesn # 0.

-8
w——>u

Proof: By 343, w = —&(R; (A). By SC4, this implies L is
notAer)abIed instate w. Since S = R; (A) U L, 3.4.5 then implies
w —> Uu.

Proof statement 3.4 holds.

Proof: By 3.4.3 and 3.4.6, since w = wy.

V=— U
Ri(A)

Proof :

By 3.3, which asserts v ——= w, and 3.4, sincell — SC 1 — L
R;(A)

([-0)-R

Choose state x such that v =28 x 2225 .,

Proof :

If x £
3.7.1.

3.7.2.

3.7.3.

(A)

From 3.5 by SC1.
U thenx —— u.
t =5 X
Proof: By 3.2 and 3.6.

X = E(A)

Proof: 3.1 and SC2 imply t = £({A)), and 3.7.1 and the definition
of atomicity then imply x &= £((A)).

(fi-D)-R
X

Proof: By 3.6, there exist states o, . . ., X, such that x = X LRy
Xp... Xp_1 ——= X, = uand x; = ~E((A) for0 < j < p. By
3.7.2 and the definition of atomicity, x; = £((A)) for0 < j < p.

Hence, p < 1, and since x # u (by the antecedent of 3.7), p = 1.

27

374.x > u
Proof: Sinceu = —&(R; (A)) (by the antecedent of 3),§§:5 implies

—_—

that if x — u, thenar & (A). Hence, 3.7.3impliesx 5 u, since
(M-D0)—R) — (A equasfi - S
38 v =5
Proof: 3.6 and 3.7 imply v =25 u,and M- Y UR= (T - L) — (A).
3.9. Choose state y such that v LS y ST
Proof: By 3.8 and Lemma 2.
310,y = &(S)

Proof: From 3.9, sincev = £(S) by 3.2, and IT — Sleaves £(S) invariant.
31L. y = Q

Proof: Sincet == v by 3.2 and v L y by 3.9, we havet SN y. Also,
y E £(S) by 3.10. Hence, Lemma 4, substituting y for u, impliesy &= Q.

312.uE= Q

Proof: By 3.9, 3.10, and 3.11, substituting y for t in hypothesis1(b) implies
Uk (QVE(9). Theantecedent of 3 assertsthat u = —£(9).

4ukE=Q
Proof: By 1, 2, and 3.
End Proof of Theorem

28

References

[1]

(2]

(3]

[4]

(3]

6]

[7]

8]

[9]

[10]

Bowen Alpern and Fred B. Schneider. Defining liveness. Information Pro-
cessing Letters, 21(4):181-185, October 1985.

E. A. Ashcroft. Proving assertions about paralel programs. Journal of
Computer and System Sciences, 10:110-135, February 1975.

R.J.R. Back. Refining atomicityin parallel algorithms. Reports on Computer
Scienceand Mathematics Ser. A, No 57, Swedish University of Abo, February
1988.

ThomasW. Doeppner, Jr. Parallel program correctness through refinement. In
Fourth Annual ACM Symposium on Principles of Programming Languages,
pages 155-169. ACM, January 1977.

LeslieLamport. The*Hoarelogic’ of concurrent programs. Acta Informatica,
14(1):21-37, 1980.

Leslie Lamport. Proving the correctness of multiprocess programs. |EEE
Transactions on Software Engineering, SE-3(2):125-143, March 1977.

Leslie Lamport and Fred B. Schneider. Constraints: A uniform approach to
aliasingand typing. In Proceedings of the Twel fth ACM Symposiumon Princi-
plesof Programming Languages, pages 205216, ACM SIGACT-SIGPLAN,
New Orleans, January 1985.

LeslieLamport and Fred B. Schneider. The*Hoarelogic” of CSP, and all that.
ACM Transactions on Programming Languages and Systems, 6(2):281—296,
April 1984.

Richard J. Lipton. Reduction: A method of proving properties of parallel
programs. Communications of the ACM, 18(12):717-721, December 1975.

S. Owicki and D. Gries. An axiomatic proof technique for parallel programs.
Acta Informatica, 6(4):319-340, 1976.

29

