41

Evaluating the Performance of
Software Cache Coherence

by Susan Owicki and Anant Agarwal

March 31, 1989

clilgliltlall

Systems Research Center
130 Lytton Avenue
Palo Alto. California 94301

Systems Research Center

DEC’s business and technology objectives require a strong research program. The Systems
Research Center (SRC) and three other research laboratories are committed to filling that need.

SRC began recruiting its first research scientists in 1984 — their charter, to advance the state
of knowledge in all aspects of computer systems research. Our current work includes exploring
high-performance personal computing, distributed computing, programming environments,
system modelling techniques, specification technology, and tightly-coupled multiprocessors.

Our approach to both hardware and software research is to create and use real systems so
that we can investigate their properties fully. Complex systems cannot be evaluated solely in
the abstract. Based on this belief, our strategy is to demonstrate the technical and practical
feasibility of our ideas by building prototypes and using them as daily tools. The experience
we gain is useful in the short term in enabling us to refine our designs, and invaluable in the
long term in helping us to advance the state of knowledge about those systems. Most of the
major advances in information systems have come through this strategy, including time-sharing,
the ArpaNet, and distributed personal computing.

SRC also performs work of a more mathematical flavor which complements our systems research.
Some of this work is in established fields of theoretical computer science, such as the analysis
of algorithms, computational geometry, and logics of programming. The rest of this work explores
new ground motivated by problems that arise in our systems research.

DEC has a strong commitment to communicating the results and experience gained through
pursuing these activities. The Company values the improved understanding that comes with
exposing and testing our ideas within the research community. SRC will therefore report results
in conferences, in professional journals, and in our research report series. We will seek users
for our prototype systems among those with whom we have common research interests, and
we will encourage collaboration with university researchers.

Robert W. Taylor, Director

Evaluating the Performance of Software Cache Coherence

Susan Owicki and Anant Agarwal

March 31, 1989

Anant Agarwal is a member of the Laboratory for Computer Science at the
Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139.

©Digital Equipment Corporation 1989

This work may not be copied or reproduced in whole or in part for any commercial
purpose. Permission to copy in whole or in part without payment of fee is granted
for nonprofit educational and research purposes provided that all such whole or par-
tial copies include the following: a notice that such copying is by permission of the
Systems Research Center of Digital Equipment Corporation in Palo Alto, California;
an acknowledgment of the authors and individual contributors to the work; and all
applicable portions of the copyright notice. Copying, reproducing, or republishing for
any other purpose shall require a license with payment of fee to the Systems Research
Center. All rights reserved.

Authors’ abstract

In a shared-memory multiprocessor with private caches, cached copies of a data item
must be kept consistent. This is called cache coherence. Both hardware and software
coherence schemes have been proposed. Software techniques are attractive because
they avoid hardware complexity and can be used with any processor-memory inter-
connection. This paper presents an analytical model of the performance of two soft-
ware coherence schemes and, for comparison, snoopy-cache hardware. The model is
validated against address traces from a bus-based multiprocessor. The behavior of the
coherence schemes under various workloads is compared, and their sensitivity to vari-
ations in workload parameters is assessed. The analysis shows that the performance
of software schemes is critically determined by certain parameters of the workload:
the proportion of data accesses, the fraction of shared references, and the number of
times a shared block is accessed before it is purged from the cache. Snoopy caches
are more resilient to variations in these parameters. Thus, when evaluating a software
scheme as a design alternative, it is essential to consider the characteristics of the
expected workload. The performance of the two software schemes with a multistage
interconnection network is also evaluated, and it is determined that both scale well.

Susan Owicki and Anant Agarwal

Contents

1 Introduction
2 The Model
2.1 System Model
2.2 Workload Model
2.2.1 Base
2.2.2 No-Cache
2.2.3 Software-Flush

2.2.4 Dragon
2.3 Contention Model
Validation

Sensitivity Analysis
Bus Performance
5.1 Variations between Coherence Schemes
5.2 Effect of [s and shd
5.3 Effect of apl
6 Interconnection Network Performance
6.1 The Network .
6.2 The Network Contention Model
6.3 Network Performance Results
7 Conclusion
Acknowledgements

References

© O ~1 O O Ot Wb W =

R R U I T T St O o e
[T O A N RO N~ ;W O

1 Introduction

Shared-memory multiprocessors often use per-processor caches to reduce memory
latency and to avoid contention on the network between the processors and main
memory. In such a system there must be some mechanism to ensure that two
processors reading the same address from their caches will see the same value. Most
schemes for maintaining this cache coherence use one of three approaches: snoopy
caches, directories, or software techniques.

Snoopy cache methods (12, 15, 18, 22, 31] are the most commonly used. A snoopy
cache-controller listens to transactions between main memory and the other caches
and updates its state based on what it hears. The nature of the update varies from
one snoopy-cache scheme to another. For example, on hearing that some cache has
modified the value of a block, the other caches could either invalidate or update their
own copy. Because all caches in the system must observe memory transactions, a
shared bus is the typical medium of communication.

Another class of techniques associates a directory entry with each block of main
memory; the entry records the current locations of each memory block {30, 5, 2].
Memory operations query the directory to determine whether cache-coherence ac-

tions are necessary. Directory schemes can be used with an arbitrary interconnection
network.

Both snoopy cache and directory schemes involve increased hardware complex-
ity. However, the caches are invisible at the software level, which greatly simplifies
programming these machines. As an alternative, cache coherence can be enforced
in software, trading software complexity for hardware complexity. Software schemes
have been proposed by Smith [29] and Cytron [8] and are part of the design or
implementation of the Elxsi System 6400 [24, 23], NYU Ultracomputer [9], IBM
RP3 [4, 11], Cedar [6], and VMP [7].

Software schemes are attractive not only because they require minimal hardware
support, but also because they can scale beyond the limits imposed by a bus. We
will examine two sorts of software schemes in this paper.

The simplest approach is to prohibit caching of shared blocks. Shared variables
are identified by the programmer or the compiler. They are stored in regions that
are marked as non-cachable, typically by a tag or a bit in the page table. Loads
and stores to those regions bypass the cache and go directly to main memory, while
references to non-shared variables are satisfied in the cache. Such a scheme was used
in C.mmp (13] and the Elxsi System 6400 [24, 23]. We refer to this approach as the
No-Cache scheme.

In another software approach, which we will call Software-Flush, shared variables
can be removed from the cache by explicit flush instructions. These instructions may

be placed in the program by the compiler or the programmer. A typical pattern is to
operate on a set of shared variables within a critical section and to flush them before
leaving the critical section. This will force any modified variables to be written back
to memory. Then the next reference to a shared variable in any processor will cause
a miss that fetches the variable from memory. A more sophisticated scheme might
allow multiple read copies of blocks, and have processes explicitly synchronize and
flush cache blocks when performing a write.! If the flush instructions are to be
inserted by the compiler, it must be possible to detect shared variables and the
boundaries of execution within which a shared variable can remain in the local
cache. Such regions can be made explicit in the language or detected by compile-
time analysis of programs [8]. Except when there is very little shared data, good
performance from the Software-Flush scheme places considerable demands on the
compiler.

This paper analyses the performance of the No-Cache and Software-Flush
schemes. For comparison, we also examine a snoopy-cache scheme, which we call
Dragon, and the Base scheme, which does not take any action to preserve coherence.
The questions we address include: What sort of performance can we expect from
such schemes? How is their performance affected by scaling? Are there differences
in performance between systems based on a bus and a multistage interconnection
network? How do variations in the workload affect performance?

We define an analytical multiprocessor cache model, and use it to predict the
overhead of the four cache-coherence schemes over a wide range of workload param-
eters. We chose this approach, rather than simulation, for several reasons. Trace-
based simulation was impossible due to the lack of suitable traces. Simulation with
a synthetic workload was possible, and would have allowed us to model more de-
tailed features of the coherence schemes. However, there seems to be little benefit
in doing this; we can see significant variation among the schemes even without this
detail. Evaluating the analytic model is much faster than performing either type
of simulation, which allows us to study the schemes over a wide range of workload
parameters. This is especially useful for software schemes, where there is as yet little
workload data. However, because the results of analytical models are always subject
to doubt, we have validated our model against simulation with real address traces
from a small multiprocessor system.

We observed that the performance of the software schemes was affected most
by the frequency of data references, degree of sharing, and number of references
to a shared datum between fetching and flushing. These parameters impact the
performance of software schemes much more dramatically than the Dragon scheme.
Software caching works well in favorable regions of the parameters above, but does
badly in other regions. Therefore, it is critical to estimate the expected range of

1Some schemes even allow temporary inconsistency to reduce serialization penalties [8].

these parameters when evaluating a software scheme.

Both the Software-Flush scheme and the No-Cache scheme scale to systems with
general memory interconnection networks. In such systems, the efficiency of the
Software-Flush scheme drops heavily when the workload is heavy, while the efficiency
of the No-Cache scheme becomes abysmal even with moderate workload.

Previous cache-coherence studies have focused on the performance of hardware-
based schemes. Archibald and Baer [3] evaluate a number of snoopy-cache schemes
using simulation from a synthetic workload. A similar analysis using timed Petri
nets was performed by Vernon et al. [32]. A mean value analysis of snoopy cache
coherence protocols was presented by Vernon, Lazowska and Zahorjan [33]. They
were able to achieve very good agreement between the earlier Petri net simulation
and an analytic model that was much less computationally demanding. The ap-
proach taken in this last paper is the closest to ours. Greenberg and Mitrani [16]
use a slightly different probabilistic model to analyze several snoopy cache proto-
cols. Models characterizing multiprocessor references and their impact on snoopy
schemes are presented by Eggers and Katz [10], and Agarwal and Gupta [1]. Direc-
tory schemes are evaluated by Agarwal et al. [2] using simulation with multiprocessor
address traces.

The rest of the paper is organized as follows: Section 2 presents the cache model
for bus-based multiprocessors, and the following section describes its validation.
Section 4 performs a sensitivity analysis to determine the critical parameters in the
various schemes. The results of the analyses for buses are presented in Section 5.
Section 6 gives the model and analysis of a multiprocessor with a multistage inter-
connection network.

2 The Model

We wish to compare the cost of cache activity in the No-Cache, Software-Flush,
Dragon, and Base schemes. Cache overhead consists of the time spent in handling
cache misses and implementing cache coherence. Processor utilization U is the
fraction of time spent in “productive” (non-overhead) computation. An n-processor
machine has processing power n x U, and we use processing power as the basis for
our comparisons.

Our analytic model for estimating processing power has three components. The
system model defines the cost of the operations provided by the hardware. The work-
load model gives the frequency with which these operations are invoked, expressed
in terms of various workload parameters. From these two models it is possible to
determine the average processor and bus time required by an instruction. Additional
time is lost to contention for the shared bus or the interconnection network, and this

is estimated by the contention model. Only the bus model is defined in this section;
the network model is defined in Section 6.2.

2.1 System Model

Table 1 lists the operations in the model. In addition to instruction execution, clean
miss, and dirty miss, they include specific operations for each coherence scheme.
For No-Cache, there are read-through and write-through operations to access a
word in main memory rather than a word in the cache. For Software-Flush, a
flush instruction invalidates a block in the cache and writes the block back to main
memory if it is dirty. Finally, the Dragon scheme has write-broadcast, a miss (clean
or dirty) satisfied from another cache, and cycle-stealing by the cache controller.
Note that executing an instruction corresponds to one or more operations: one for
the instruction itself, and possibly others for cache or memory activity.

Table 1 also gives the CPU and bus time, in cycles, for each operation. Here
CPU time is the total time required for the operation in the absence of contention,

and bus time is the part of that time during which the bus is held. (Bus and CPU
cycle time are assumed to be the same.)

Operation CPU Time Bus Time
Instruction execution
(except flush) 1 0
Clean miss (mem) 10 7
Dirty miss (mem) 14 11
Read through 5 4
Write through 2 1
Clean flush 1 0
Dirty flush 6 4
Write broadcast 2 1
Clean miss (cache) 9 6
Dirty miss (cache) 13 10
Cycle stealing 1 0

Table 1: System model: CPU and bus time for hardware operations

The operation costs are based on a hypothetical RISC machine with a combined
instruction and data cache. Each instruction takes one cycle, plus the time for any
cache operations it triggers. The cost of cache operations is based on a block size of
four words. Thus, for example, a load which causes a clean miss from memory needs

4

7 cycles of bus time, 1 to send the address, 2 for memory access, and 4 to get the
4 words of data. Processor time to detect and process the miss adds 3 CPU cycles
for a total of 10. Finally, the load itself is performed, adding one more CPU cycle
for instruction execution. A read-through takes only 4 cycles of bus time, because
only 1 data word is transmitted. It requires 5 CPU cycles: 4 for bus activity, plus
1 for setting up the memory request. The times for other operations are derived in
a similar way.

2.2 Workload Model

The workload model determines the frequency of the operations defined in the system
model. The operation frequencies are expressed in terms of the parameters listed
in Table 2. The “shared data” in this table means slightly different things in the
software and Dragon schemes. For No-Cache and Software-Flush, an item is shared
if it is treated as shared by the cache coherence algorithm; this is determined by the
compiler or programmer. For the Dragon scheme, an item is shared if it is actually
referenced by more than one processor. These interpretations should not lead to
widely differing values.

For all schemes
ls probability an instruction is a load or store
msdat miss rate for data
msins miss rate for instructions

md probability a miss replaces a dirty block
shd probability a load or store refers to shared data
wr probability a shared load or store is a store
For Software-Flush only
apl number of references to a shared block

before it is flushed

mdshd probability a shared block is modified
before it is flushed

For Dragon only

oclean on miss of a shared block in one cache,
probability it is not dirty in another

opres on reference to a shared block in one cache,
probability it is present in another

nshd on write-broadcast, number of caches
containing a shared block

Table 2: Parameters for the Workload Model

Some of these parameters are functions of the underlying system as well as of

the program workload. For example, miss rates depend on block size, cache size,
and so on. We don’t try to model those effects, since they are not relevant to cache
coherence. It is enough to consider a range of values for those parameters.

The remainder of this section describes the workloads of the four cache-coherence
schemes. The information here, combined with the system model, makes it possible
to compute the average rate and service time of bus transactions. Let o denote a
hardware operation, fregq, scheme the frequency of that operation in the workload
model for scheme, cpu, the CPU time for o, and bus, the bus time for o in the
system model. Then an instruction takes an average of

c= Z fT€gs,scheme X CPUo (1)

CPU cycles and
b= Z freqo scheme X bus, (2)
o

bus cycles. Thus bus transactions are generated at an average rate of one every
¢ — b CPU cycles, and each transaction requires an average of b bus cycles. In the
contention models, b is the transaction service time, and 1/(c — b) is the transaction
rate.

2.2.1 Base

The Base scheme, which does not implement coherence, is included to give an upper
bound on performance. Its workload is characterized in Table 3.

clean miss (Is x msdat + msins) X (1 — md)
dirty miss (Is x msdat + msins) X md

Table 3: Workload model: Base scheme

The formulae give the frequency of clean and dirty misses per instruction. A data
miss occurs when a load or store instruction (probability [s) refers to an address that
is not present in the cache (probability msdat). An instruction miss occurs with
probability msins. In either case, if the block to be replaced is dirty (probability
md) the miss is dirty, if not (probability 1 — md) it is clean.

2.2.2 No-Cache

In this scheme, shared variables are identified by the programmer or the compiler.
They are stored in memory regions that are marked as non-cachable, typically by a
tag or a bit in the page table. Loads and stores to those regions bypass the cache
and go directly to main memory.

Table 4 gives the frequencies of cache operations for the No-Cache scheme. The
probability of a data miss is reduced from the Base scheme by a factor of 1 — shd,
because only unshared data is kept in the cache. In addition, all loads (stores) to
shared variables require a read-through (write-through) operation.

clean miss (ls X msdat X (1 — shd) + msins)
x(1 = md)

dirty miss (Is x msdat x (1 — shd) + msins)
xmd

read-thru [s X shd x (1 — wr)

write-thru [s x shd x wr

Table 4: Workload model: No-Cache

2.2.3 Software-Flush

In this approach, shared variables can be removed from the cache by explicit flush
instructions. These instructions may be placed in the program by the compiler or
the programmer. A typical pattern is to operate on a set of shared variables within
a critical section, and to flush them before leaving the critical section. This will
force any variables modified in the critical section to be written back to memory.
Then the first reference to a shared variable within the next critical section will
cause a miss that fetches the variable from memory. If the flush instructions are to
be inserted by the compiler, it must be possible to detect shared variables and the
boundaries of execution within which a shared variable can remain locally cached.
Such regions can be made explicit in the language or detected by compile-time
analysis of programs (8, 6]. A mechanism must also exist to flush all the blocks of
a process from a cache if the process migrates to another processor (e.g., purge the
entire cache). Our analysis does not consider the effects of process migration, but
in general, process migration has a harmful impact on any cache coherence scheme.
(See {27] for results on the effect of process migration on snoopy caches.)

Table 5 gives the frequency of operations for Software-Flush. Non-shared vari-
ables generate the same number of clean and dirty misses as in the No-Cache scheme.
Shared variables are handled by inserting flush instructions at an average rate of one
per apl references to shared variables, that is, with frequency shdx ls/apl. The extra
flushes increase operation frequencies in three ways. First, a flush instruction causes
a dirty flush with probability mdshd and a clean flush with probability 1 — mdshd.
Second, there is approximately one clean miss for each flush instruction, namely, the
miss which brought the flushed block into the cache. This approximation assumes
that the probability of the block’s being replaced in the cache before it is flushed is
low enough to be ignored. Finally, the added flush instructions increase the number

of instruction misses: the probability that a flush causes a miss is msins. Note that
Table 5 reports operation frequencies per non-flush instruction. This is because flush
instructions are part of the cache-coherence overhead, and their cost is amortized
over the other instructions.

clean miss (Is X msdat X (1 — shd) + msins)
X(1 — md)+ (Is x shd/apl)
+(ls x shd/apl) x msins x (1 — md)
dirty miss (I8 x msdat X (1 — shd) + msins) x md
+(Is x shd/apl) X msins x md
clean flush Is X shd x (1 — mdshd)/apl
dirty flush Is x shd x mdshd/apl

Table 5: Workload model: Software-Flush

Both No-Cache and Software-Flush may be available on the same machine. On
the Elxsi 6400 [24, 23], the programmer determines whether a particular shared
variable is kept coherent by the No-Cache or Software-Flush scheme. In the Multi-
Titan [17], locks are not cached, and other shared variables are kept coherent by
Software-Flush. In the scheme proposed by Cytron [8], the compiler determines
which variables are cached.

Although the details of Software-Flush schemes vary, many can be handled
by slight modifications of our model. For example, in the scheme proposed by
Cytron [8], the compiler uses data-dependence information to determine when to
insert instructions for cache management. The instructions are post, which writes
a block to memory, invalidate, which removes a block from the cache, and flush,
which does both. Let the workload parameter apl be the average number of refer-
ences to a shared block before it is flushed or invalidated. Let p be the frequency
of post instructions. Then the workload model for Cytron’s scheme is the same as
Table 5, with the addition of p full-block write-through operations and p x msins
misses.

Cheong and Veidenbaum [6] propose a somewhat different mechanism for taking
advantage of data-dependence information. They use write-through to keep main
memory current and an invalidation mechanism that avoids flushing individual lines.
Let apl be the average number of references to a shared block each time it is read to
the cache from memory. Let inv be the frequency of invalidate and clear instructions.
Then for the workload model in Cheong’s scheme, clean miss = s x msdat x (1 —
shd) + msins + (Is x shd/apl) + inv x msins, and write-thru = Is x wr. There
are tnv invalidate/clear instructions, each costing one CPU cycle; no bus activity is
involved. Note that there are no dirty flushes, because of the write-through policy.

2.2.4 Dragon

We have modeled one snoopy bus protocol to provide a comparison point for the
software mechanisms. A Dragon-like scheme [22] was selected because Archibald
and Baer [3] found its performance to be among the best.

The following is a slightly simplified description of the relevant aspects of the
Dragon protocol. From listening to bus traffic, a cache knows if an address is valid
in another cache. When a store refers to an address that is in another cache, the
address and new value are broadcast on the bus, and any cache that has this address
updates its value accordingly. All stores to non-shared addresses are performed in
the local cache. On a cache miss, main memory supplies the block unless it is dirty
in another cache; in the latter case, that cache supplies the block.

Table 6 gives the frequency of operations for the Dragon model. There are three
effects to consider. First, the write-broadcast occurs once per shd x opres writes.
Second, some misses will be satisfied from a cache instead of from main memory; this
happens on a miss with probability shd x (1 — oclean). Finally, a write-broadcast
may cause other caches to steal cycles from their processors as they update their
own copy of the variable. This occurs with frequency nshd on each write-broadcast.
As it happens, the last two effects are small and could have been omitted from the
model without significantly affecting our results.

clean miss ls x msdat X (1 — shd X (1 — oclean)
from mem +msins) x (1 — md)

dirty miss Is x msdat x (1 — shd x (1 - oclean)
from mem +msins) X md

write broadcast [s x shd X wr X opres

clean miss ls x msdat X shd x (1 — oclean)
from cache X (1 — md)

dirty miss ls x msdat x shd x (1 — oclean)
from cache xmd

steal cycle Is X shd X wr X opres x nshd

Table 6: Workload model: Dragon

2.3 Contention Model

An n-processor system can be modeled as a closed queuing network with a single
server (the bus) and n customers (the processors). Such a network is characterized
by two parameters: the average service time and average rate of bus transactions.?

21f a multistage interconnection network is used, the multistage network is represented as a
load-dependent service center characterized by its service rate at various loads.

In our system, the average service time is b cycles and the average rate is 1/(c — b)
transactions per cycle, where ¢ and b are defined in equations 1 and 2 respectively.
Solving the queuing model [21] yields w, the contention cycles per instruction. Thus
the total time per instruction is c+w. In the absence of cache activity, an instruction
would take 1 cycle, so the CPU utilization is

U=1/(c+w) 3)

This contention model is very similar to the one used by Vernon et al. [33] in ana-
lyzing snoopy-cache protocols.

3 Validation

This section compares model predictions against simulation results for the Base
scheme and Dragon schemes. We developed a trace-driven multiprocessor cache and
bus simulator that can compute statistics like cache miss rates, cycles lost to bus
contention, and processor-utilization, for a variety of coherence schemes, cache sizes
and processor numbers.

The address traces used in the validation were obtained using ATUM-2, a multi-
processor tracing technique described in Sites and Agarwal {27]. The traces contain
interleaved memory references from the processors. Three of the traces (POPS,
THOR, and PEROQO) were taken on a four-processor VAX 8350 running the MACH
operating system. We also used an 8-processor trace of PERO, which was obtained
from a parallel tracer that used the VAX T-bit. The four-processor traces include
operating system references, and none of the traces include process migration. Sites
and Agarwal describe the applications and details of the traces.

We simulated 16K, 64K, and 256K-byte caches with a fixed block size of 16 bytes
and the same transfer block size. The hardware model used is summarized in Table 1.
The model was validated only for the Base and the Dragon schemes. Meaningfully
validating the software schemes was not possible because the traces were from a
multiprocessor that used hardware for cache coherence. Because the multiprocessor
model used in the simulations was different from the traced machine model, the
order of references from different processors may have been slightly distorted in
the simulation. However, we expect that this effect is not large, because the timing
differences between the two multiprocessor models affect the address streams from all
the processors uniformly. Also, the cache statistics we obtained matched those from
simulating a multiprocessor model that retained the exact order of the references in
the trace.

For a multiprocessor cache model to be useful, it is important that the workload
parameter values are valid over the range in which the model is exercised. For

10

example, suppose a parameter like miss rate tends to increase with the number of
processors. Then, in analyzing the performance of systems with different numbers
of processors, one must either explicitly model the variation in miss rate, or input
the miss rate for each point considered. In most cases, the parameters we chose are
expected to be nearly constant as the number of processors increases, and we verified
that they are nearly constant in the trace-driven simulations. However, there are two
parameters, oclean and opres, which can vary with the number of processors in a
way that depends on program structure. In our traces, we did observe some random
variations in these parameters, but they were small enough that the model was still
accurate. A comparative evaluation of snoopy caches should somehow account for
the variations in oclean and opres.> But our focus is on software cache coherence,
and we can safely ignore this issue.

The model results closely match simulations in most cases. Figures 1 and 2
present a sampling of our experiments comparing the model predictions to simula-
tions. Figure 1 depicts averages over the four-processor traces, and those in Figure 2
represent the eight-processor trace. We will address potential sources of inaccuracies
in the ensuing discussion.

P T

% S.
— Sim Base
&

0 | | J
1 2 3 4
Processors

Figure 1: A performance comparison of the Base and the Dragon schemes using simulation
and the analytical model for 64K-byte caches.

Figure 1 plots the system power using 64K-byte caches for the Base and Dragon
schemes. While the model exactly captures the relative difference between the per-
formance of Base and Dragon schemes, it consistently overestimates bus contention.

3For invalidation-based snoopy caches, the miss rate also falls in this category.

11

This is because the bus model is based on exponential service times, while the sim-
ulations use fixed bus service times for the different bus operations.

Figure 2 shows the model and simulation results for three cache sizes for the
Dragon scheme. Minor inconsistencies between the model and simulation results
for single processors can be attributed to the difference in the values of oclean and
opres for one and four processors.

8y
g 512K Bytes

7+ — Sim
~== Model

16K Bytes

Figure 2: Impact of the cache size on the performance of the Dragon scheme for eight or
fewer processors.

We were unable to validate the Software-Flush schemes because we did not have
access to suitable traces. The workload model is straightforward, and seems to
capture adequately the costs of the sort of software coherence scheme we assume.
The contention model is the same as for Base and Dragon, so their validations can
give us some confidence about its use in the Software-Flush scheme. The principal
question about its application is that, in Software-Flush, a processor’s bus activity
is likely to be clustered about the end of critical sections. Thus, the bus requests
are likely to be more bursty than with Base and Dragon.

To assess the possible impact of this pattern, we simulated a simplified processor-
bus system. In this simulation, processors had bursts of bus activity with exponential
interarrival times. Each burst consisted of k£ bus requests, where k was geometrically
distributed. Service times were exponentially distributed. We compared the results
to a simulation in which the same number of bus-requests were generated by a simple
Poisson process at each processor. Over a variety of parameter values, we found at
most a few percent difference between response times. Thus, we have some reason

12

for confidence that the contention model is valid for Software-Flush.

4 Sensitivity Analysis

The workload model uses a number of parameters to characterize the program'’s
workload. One would expect some of them to be quite important, and others to have
little impact on cache performance. This section describes the sensitivity analysis
that we used to estimate the importance of each parameter.

The significance of a parameter was assessed from the change in execution time
when that parameter was varied and all others were held constant. We chose low,
middle, and high values for each parameter, representing the range of values likely to
be seen in programs. The ranges are given in Table 7. They were derived from the

minimum, average, and maximum values observed in the large-cache traces, except
as follows.

There was not enough data in the traces to determine apl, so it was estimated
by counting the number of references of a cache-line by one processor (at least one
of which was a write) between references by another processor. This is an optimistic
estimate, so the upper bound of 1/apl was taken to be 1, the maximum possible.
The values of md from the trace were artificially low, because the traces were not
long enough to fill up the large caches. The measured high value was 0.25, but
0.5 was used as the high value in the sensitivity analysis; values of this magnitude
have been measured by Smith [28]. Finally, the range for Is is typical for RISC
architectures rather than the CISC machine on which the traces were taken.

Parameter Low Middle High

Is 0.2 0.3 04
msdat 0.004 0.014 0.024
msins 0.0014 0.0022 0.0034
md 0.14 0.20 0.50
shd 0.08 0.25 0.42
wr 0.10 0.25 0.40
mdshd 0.0 0.25 0.5
1/apl 0.04 0.13 1.0
oclean 0.60 0.84 0.976
opres 0.63 0.79 0.94
nshd 1.0 1.0 7.0

Table 7: Parameter ranges

Table 8 shows the results of the sensitivity analysis. For each parameter, we
computed the percent change in execution time when the parameter changes from

13

low to high, with all other parameters held constant. (Note that in all cases execution
time is greater for the low value of the parameter.) This computation was performed
for three settings of the other parameters: low, middle, and high. The maximum
percent change is reported in the table.

Base No-Cache | Soft-Flush Dragon
msdat 17 | shd 65 | 1/apl 88 |ls 19
Is 111§ 1s 48 | shd 74 | msdat 17
msins 4 | msdat 10 | Is 49 | shd 11
md 4 | msins 4 | msdat 10 | opr 4

md 1 | mdshd 4 | msins 4
wr <1 | msins 4 | md 4
md 1 | nshd 4

wr 3

oclean <1

Table 8: Sensitivity to parameter variation, depicted by the percent change in execution
time when the parameter changes from low to high, with all other parameters held constant.

The numbers from the sensitivity analysis must be interpreted with care, since
the choice of range affects how important a parameter appears. For example, our
traces show a small variation in miss rates, and miss rate shows only a modest effect
in the sensitivity analysis. Had our traces exhibited greater variation in miss rate,
it would have appeared to be much more significant. In addition, changing the miss
rate range can change the apparent significance of other parameters, because their
effect is estimated at high, low and middle values of miss rate. A wide range may
represent a parameter that is observed to vary widely in practice (e.g., shd) or a
parameter about which we have little information (e.g., apl).

In spite of these caveats, certain parameters are clearly more important than
others. For the Software-Flush scheme, apl has a huge effect; this is due to both its
central importance in the scheme and its wide range. The impact of shd is almost as
great, and [s is significant as well. Miss rate has a noticeably smaller effect, and the
other parameters are relatively unimportant. The No-Cache scheme is essentially
the same, except that apl is not relevant. In the Dragon scheme, the overall hit rate
is more important than the level of sharing, even though its range is quite small,
because the cost of shared references is relatively low.

In the next section we will analyze the effect of apl, Is and shd in more detail.
The effect of Is is primarily as a multiplier of shd and msdat, so the analyses of Is
and shd will be combined by varying them jointly. Parameters mdshd and wr, which
are specific to the Software-Flush and No-Cache schemes, were examined further in
spite of their low showing in the sensitivity analysis. When allowed to vary over a
wider range, mdshd had a small but noticeable effect on the Software-Flush scheme,

14

but wr was unimportant even with a wide range.

5 Bus Performance

5.1 Variations between Coherence Schemes

Figures 3 through 5 show the relative performance of the four cache coherence
schemes for three settings of /s and shd. The dotted line is the theoretical up-
per bound on processing power. It represents the case in which each processor is
fully utilized, and there is no delay due to memory activity. All schemes fall be-
low this line, because a processor is delayed when it uses the bus in handling cache
misses and references to shared data. With multiple processors, the cost of bus
operations increases because contention can add a significant delay. For this reason,
the incremental benefit of adding a processor is smaller for large systems than small
ones.

!u
i

Q@ - N W A e N o

L g {1 ¢+ | ¢ 4 | | 1 3 |) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18
Processors

Figure 3: Performance of cache-coherence schemes with low shd and Is; all other parameters
at medium values

Comparing the schemes, we find that Base performs best as long as Is > 0; this
is to be expected, since the others incur overhead in processing shared data. (If
Is = 0 the schemes are identical.) In most cases Dragon’s performance is close to
Base. It incurs sharing overhead only when data are simultaneously in the caches
of two or more processors, and then only on write operations, that is, once every
shd x opr x wr references. Moreover, the overhead is relatively small, since only

15

- -
a o

Systemn Power
233

-
Q

© = N W & U & v © ©

Lt)]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Processore

Figure 4: Performance of cache-coherence schemes with medium shd and Is; all cther
parameters at medium values

-
o o

System Power
- wh
e &

e
S I N

D - N W A & N & ©

[T G R N B B
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Proceseors

Figure 5: Performance of cache-coherence schemes with high shd and Is; all other param-
eters at medium values

16

one word needs to be transmitted on the bus. No-Cache is much more costly than
Dragon, because the processor must go to main memory on every reference to a
potentially-shared variable, that is, once every shd references. Software-Flush’s
performance is drastically affected by the value of apl, because there is a main
memory operation on every 1/apl references to shared data. As we will illustrate in
Section 5.3, Software-Flush’s performance is usually between Dragon and No-Cache
but it can be better than Dragon or worse than No-Cache.

ki

5.2 Effect of Is and shd

Parameter /s has a significant impact on all schemes, and shd is important for all
but Base. Both affect the frequency of memory activity: /s determines the frequency
of data references in the instruction stream, while shd determines the proportion
that go to shared data items. Thus, increasing /s has a double effect on overhead: it
increases both the frequency of misses and the frequency of shared data references.

At low values of Is and shd (Figure 3), Base, Dragon, and Software-Flush perform
well, and there is not much difference between them. (Recall that the Software-Flush
scheme is evaluated with a medium ap! value.) Even No-Cache performs well for
a moderate number of processors. Low levels of sharing can be expected in some
situations: for example, if a multiprocessor is used as a time sharing system, so
that separate processors run unrelated jobs, or if communication is done through
messages rather than shared memory [24]. In such environments No-Cache is a
viable alternative.

Even with middle values of s and shd (Figure 4), No-Cache performs accept-
ably with a small number of processors. Dragon performs very well even with 16
processors. With medium apl, Software-Flush does well with up to 8-10 processors;
from then on, adding processors only slightly increases processing power.

With high Is and shd (Figure 5), Dragon still gives good performance. No-Cache
does badly; it saturates the bus with a processing power less than 2. Software-Flush
performs acceptably for a small number of processors; it saturates the bus with
processing power less than 5. Even in this high sharing region, however, Software-
Flush can perform well if apl is high.

5.3 Effect of apl

The performance of Software-Flush is drastically affected by the value of apl. Fig-
ure 6 illustrates the variation that can occur. When apl = 1, every reference to a
shared variable requires a flush (possibly dirty) and a miss. This means that both
CPU and bus demands are heavier than for No-Cache, and indeed, Software-Flush’s
performance is worse. On the other hand, very high values of ap! make sharing

17

overhead very small, especially if mdshd is not high. In this case, Software-Flush
can perform as well as Dragon, or even better.

16
15
4
13
12
11

System Power

-~
Q

Q - N W AL e N o

[I [N TR W NN SN I (NN DRV NN NI S R |
1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16
Processors

Figure 6: Effect of varying apl; other parameters at medium values

Figures 7 and 8 show the variation of processing power with apl for two levels
of sharing. With low sharing, performance is very sensitive to apl at low values,
but quickly reaches its maximum as apl is increased. With medium sharing levels,
performance is sensitive to variations in apl even at relatively high values.

The range for apl reported from our traces is optimistic: it assumes that data
is flushed only when absolutely necessary. As our measurements show, the number
of uninterrupted references to a shared-written object by a processor can be quite
large in practice. It remains to be seen whether a compiler can generate code that
takes advantage of these long runs. Doing so is crucial if software schemes are to be
used in the presence of even moderate amounts of shared data.

6 Interconnection Network
Performance

Unlike the snoopy schemes, the software schemes can be used in a network environ-
ment where there is no mechanism for a cache to observe all the processor-memory
traffic. In this section we explore the scalability of software schemes in such an
environment. Some of the questions we address are: Is caching shared data in a

18

System Power

apl

o x
T

Q - N W A LN o

apl

Figure 8: Effect of apl with medium sharing; other parameters at medium values

19

network environment worthwhile? Can software schemes scale to a large number of
processors?

The analysis uses a multistage interconnection network model to evaluate the
system performance of a cache-based multiprocessor. The workload model is the
same as before, and new models for hardware timing and network contention are
discussed in the next sections. As in our bus analysis, we first compute the aver-
age transaction rate and transaction time for the network, then use the contention
model to compute the network delay. From these, system processing power can be
computed as before.

6.1 The Network

Our analysis applies to the general class of multistage interconnection networks
called Banyan [14], Omega [20], or Delta [26]. For our analysis in this paper we
consider an unbuffered, circuit-switched network composed of 2x2 crossbars, with
unit dilation factor. (We will also summarize our analytical results for a packet-
switched network, with infinite buffering at the switches.) The analysis can be
extended easily to dilated networks or crossbar switches with a larger dimension. A
request accepted by the network travels through n switch stages (corresponding to
a system with 2" processors) to the memory; the response from the memory returns
on the path established by the request. If multiple messages are simultaneously
routed to the same output port, a randomly-chosen one is forwarded and the other
is dropped. The source is responsible for retransmitting dropped messages. A switch
cycle is assumed to be the same as a processor cycle. The network paths are assumed
to be one word (4 bytes) wide,? and a cache block is 4 words long, as before.

We have tried to keep the network timing model consistent with the bus where
possible. Table 9 gives the network timing model. The network delay (without
contention) for a clean miss is 6 + 2n cycles: n to set up the path, 1 to send the
address to memory, 2 for memory access, n for the return of the first data word, and
3 for the remaining 3 words. (We will sometimes refer to the network service time
minus 2n as the message size.) Similarly, a dirty miss costs 94 2n cycles: n to set up
the path, 1 to send the address to memory, 2 for memory access (overlapped with
getting the address of the dirty block and one data word), 3 cycles for the remaining
dirty words, n for the return of the first word, and 3 for the remaining 3 words.

*The wide path is one of the reasons we use 2x2 switches, because larger dimension switches will
not fit easily into a single chip with current technology.

20

Operation CPU Time Network Time
Instruction execution

(Except flush) 1 0
Clean miss 94 2n 6+ 2n
Dirty miss 12 + 2n 94 2n
Clean flush 1 0
Dirty flush 74+ 2n 54 2n
Write through 3+ 2n 24 2n
Read through 44+ 2n 3+ 2n

Table 9: System model for a network with n stages

6.2 The Network Contention Model

Our network analysis uses the model due to Patel [25]. Patel’s model has been
used extensively in the literature. We are not aware of any validation of this model
against multiprocessor traces, although it has been tested using simulations based
on synthetic reference patterns.’

Our analysis requires certain assumptions for tractability that are similar to the
ones typically made in the literature [25, 19]. We assume that the requests are
independent and uniformly distributed over all the memory modules. An average
transaction rate m and an average transaction size t is computed for each of the
cache coherence schemes; these correspond to 1/(c — b) and b from equations 1
and 2 in the bus analysis. The network delay can be estimated using the unit-
request approrimation, in which the transaction rate is taken to be m x t and the
transaction size to be 1. It is as if the processor splits up a t-unit memory request
into t independent and uniformly distributed unit-time sub-requests. Patel validates
the accuracy of this approximation through simulation.

Let m; be the probability of a request at a particular input at the nt* stage of the
network in any given cycle. Then, the effective processor utilization U, and hence
system processing power, can be computed using the following system of equations.

U = ™
mt
My = 1—(1—%)2 0<i<n
mo = 1-U

*We also estimated multiprocessor performance in a manner analogous to our bus analysis by
representing the network as a load-dependent service center. The contention delay is computed
using the queuing models described in [21]. This model gave virtually the same results as Patel’s
model.

21

In this model, a processor is involved in a network access whenever it is not executing
instructions. Using the unit-request approximation, each such cycle corresponds to
a request, yielding mg = 1 — U. The rate m;, at an output of a level ¢ switch is the
probability that at least one of the level i input requests is routed to this port. In the
steady state, the request rate at the output of the network (m,) must equal the rate
at which requests are injected into the network by the processor (U x m x t). The
value of m, in the equations is obtained recursively for successive stages starting
with the input request rate of mg. The equations can be solved using standard
iterative numerical techniques.

6.3 Network Performance Results

Before we analyze the network for various ranges of parameter values, it is instructive
to compare bus and network performance in small-scale systems (see Figure 9).
As reported in the previous section, the Dragon scheme attains near perfect bus
performance relative to the Base scheme for fewer than 16 processors and middle
parameter ranges, while the Software-Flush and No-Cache schemes saturate the bus
at 8 and 4 processors respectively. Because the network bandwidth increases with
the number of processors, network performance becomes superior to buses when
the bus begins to saturate. Both the Software-Flush scheme and the No-Cache
scheme scale with the number of processors, though the Software-Flush scheme is
clearly more efficient. The No-Cache scheme is poorer despite its smaller message
size, due to its higher request rate. Still, it scales with the number of processors
and is a feasible choice if a designer wants to minimize hardware cost and software
complexity. In a circuit-switched network, the request rate plays a more important
role than the message size because of the high fixed cost of setting up the path to
memory.

Because the network bandwidth scales with the number of processors (to first
order), plotting processor utilization for a network of a given size is more interesting
than in a bus-based system. Let us consider a network with 256 processors. Figure 10
shows processor utilization with various request rates for several choices of average
message sizes. (Note that 2n must be added to the message size to get the network
time per message.) Nine points are marked on the figure; they correspond to the
performance of Base, Software-Flush, and No-Cache schemes with low, middle, and
high parameter settings. The first letter in the label (B, S, or N) refers to the scheme,
and the second letter (1, m, or h) refers to the range.

The first striking observation is the importance of keeping the network reference
rate low. Even for a cache-miss rate as low as 3% in the 256-processor system
and a message size of 4 words (corresponding to a unit-time service request rate

22

(]
)
>
|
>

Base, Net
O0—==0 Software, Net

System Power

3} o—0 No-Cache, Net
Areses & Base, Bus

2L o o Snoopy, Bus
Ocvnen o Software, Bus

xL o No-Cache, Bus

16

124

0.8
0.5
04
0.3
02

0.1
Message Size 16

0.0 I bbbl I Lol d L i 1] Il
0.001 0.010 0.100 1.000
Reference Rale

Figure 10: Bus performance for various request rates and with message sizes of 1, 2, 4,
8 and 16 words. The performance of the Base, Software-Flush, and No-Cache schemes is
marked with two letter codes, the first letter (B, S, or N) corresponds to the scheme, and
the second letter corresponds to a low, middle, or high (I, m, or h) range.

23

of 3% x (16 + 4) = 60%), the processor utilization is halved. In a circuit-switched
network, a change in the reference rate impacts system performance more than a
proportional change in the blocksize. Of course, using a faster network, or using
larger switches, will increase the reference rate at which the network latency begins
to increase sharply.

The nine points fall into two performance classes. The Base scheme in all ranges,
the Software-Flush scheme in its low and middle range, and the No-Cache scheme in
its low range, fall into a reasonable performance category, and the other combinations
are much poorer. While the Software-Flush scheme is usable even with medium
sharing, the No-Cache scheme is efficient only if sharing is very low. Put another
way, a system that does not cache shared data (and more so a system that does not
cache any data) will need to use a much faster network relative to the processor to
sustain reasonable performance. The performance of the Software-Flush scheme for
the low range approximates the performance of hardware-based directory schemes.
If Software-Flush schemes can attain a high value for apl, they have the potential
to compete with hardware schemes in large-scale networks.

We also modeled buffered packet switched networks for the three ranges of pa-
rameters above. We used the model described in Kruskal and Snir [19] to compute
the network latency of a memory request for a given processor request rate, and
iteratively computed the processor utilization in a manner similar to our circuit-
switched network analysis. The relative performance for the nine ranges turns out
to be similar to circuit switching, with the difference that the processor utilizations
for the No-Cache low range is slightly better than for Base high. In addition, because
packet switching favors small packet sizes, the performance of No-cache is generally
better than its performance with circuit switching in the three ranges.

In the future we hope to examine reference patterns in large-scale parallel appli-
cations, both to get a better understanding of different workloads, and to validate
our methodology against simulation. Traditionally, simulations have used synthet-
ically generated traces, but a synthetic trace cannot capture workload-dependent
effects such as hot-spot activity (or lack thereof) or locality of references. We are
currently working on the generation of large multiprocessor traces and evaluation
techniques for these studies. While we focused on a simple network architecture in
this paper, we are interested in extending our results to other network architectures
as well.

7 Conclusion
Software cache-coherence schemes have been proposed and implemented because

they have two advantages over typical hardware schemes: they do not require com-
plex hardware, and they do not have the obvious scalability problem of a shared

24

bus. However, to our knowledge, the performance of software-caching has not been
analyzed before. In this paper we used an analytic model to predict caching over-
head for several coherence schemes. The model was validated against multiprocessor
trace data, and its sensitivity to variations in parameter values was studied.

First let us consider performance on bus-based systems. For almost all workloads,
the snoopy cache scheme had the lowest overhead. Its performance was good for
all workloads, while the software schemes showed great variation as the workload
parameters changed. With a light workload (low memory reference rate and little
sharing), the Software-Flush scheme was almost as good as snoopy cache, and even
the No-Cache approach was feasible. Performance of the No-Cache method fell off
dramatically as the workload increased. The performance of the Software-Flush
method also deteriorated, though not as drastically.

We also evaluated the software schemes on a circuit-switched multistage inter-
connection network. Both software schemes scale well, as expected. Software-Flush
does considerably better than No-Cache because it causes fewer memory requests,
although the requests are longer. Use of packet-switching would be more favorable

to No-Cache.

In both network and bus environments, the performance of Software-Flush is
largely determined by the number of references to a block before it is flushed from
a cache. This is a affected by program structure and by compiler technology. For
example, the compiler can optimize performance by allocating related variables to
the same block, and by flushing data as infrequently as possible. But if a shared
variable is frequently updated by different processors, it is likely to have about two
references per flush, no matter how sophisticated the compiler. At present we lack
the workload data and compiler experience that would allow us to predict what is
achievable here.

Acknowledgements

Dick Sites, Digital Equipment Corporation, lent the ATUM microcode to us, and
Roberto Bisiani and the Speech Group at CMU allowed us the use of their VAX
8350 to obtain traces. Forest Baskett of Silicon Graphics suggested analytical mod-
eling of software cache coherence, and Jeremy Dion, Digital Equipment Corporation,
gave valuable advice on the software workload model. The T-bit tracer for parallel
applications was implemented by Steve Goldschmidt at Stanford. Partial support
for the research reported in this paper was provided by DARPA under contract
N00014-87-K-0825.

25

References

[1]

(2]

[3]

[4]

[9]

[10]

[11]

Anant Agarwal and Anoop Gupta. Memory-Reference Characteristics of Mul-
tiprocessor Applications under MACH. In Proceedings of SIGMETRICS 1988,
May 1988.

Anant Agarwal, Richard Simoni, John Hennessy, and Mark Horowitz. An Eval-
uation of Directory Schemes for Cache Coherence. In Proceedings of the 15th
International Symposium on Computer Architecture, June 1988.

James Archibald and Jean-Loup Baer. Cache Coherence Protocols: Evaluation
Using a Multiprocessor Simulation Model. ACM Transactions on Computer
Systems, 4(4):273-298, November 1986.

W. C. Brantley, K. P. McAuliffe, and J. Weiss. RP3 Processor-Memory Element.
In Proceedings 1985 Int’l Conference on Parallel Processing, pages 782-789,
1985.

Lucien M. Censier and Paul Feautrier. A New Solution to Coherence Problems
in Multicache Systems. IEEE Transactions on Computers, c-27(12):1112-1118,
December 1978.

H. Cheong and A. V. Veidenbaum. A Cache Coherence Scheme with Fast
Selective Invalidation. In Proceedings of the 15th International Symposium on
Computer Architecture, June 1988,

David R. Cheriton, Gert A. Slavenberg, and Patrick D. Boyle. Software-
Controlled Caches in the VMP Multiprocessor. In Proceedings of the 13th
Annual Symposium on Computer Architecture, pages 367-374, June 1986.

Ron Cytron, Steve Karlovsky, and Kevin P. McAuliffe. Automatic Management
of Programmable Caches. In Proceedings ICPP, August 1988.

Jan Edler et al. Issues related to MIMD shared-memory computers: the NYU
Ultracomputer Approach. In Proceedings 12th Annual Int’l Symp. on Computer
Architecture, pages 126-135, June 1985.

S.J. Eggers and R. H. Katz. A Characterization of Sharing in Parallel Programs
and Its Application to Coherency Protocol Evaluation. In Proceedings of the
15th International Symposium on Computer Architecture, June 1988.

G. F. Pfister et al. The IBM Research Parallel Processor Prototype (RP3):
Introduction and Architecture. In Proceedings ICPP, pages 764-771, August
1985.

27

(12] S. J. Frank. Tightly Coupled Multiprocessor System Speeds Up Memory Access
Times. Electronics, 57, 1, January 1984.

(13] S. H. Fuller and S. P. Harbison. The C.mmp Multiprocessor. Technical Report,
Carnegie-Mellon University, October 1978.

[14] G. R. Goke and G. J. Lipovski. Banyan Networks for Partitioning Multipro-
cessor Systems. In Proceedings of the 1st Annual Symposium on Computer
Architecture, pages 21-28, 1973.

[15] James R. Goodman. Using Cache Memory to Reduce Processor-Memory Traf-
fic. In Proceedings of the 10th Annual Symposium on Computer Architecture,
pages 124131, June 1983.

(16] Albert G. Greenberg, Isi Mitrani, and Larry Rudolph. Analysis of snooping
caches. In Proceedings of Performance 87, 12th Int’l Symp. on Computer Per-
formance, December 1987.

(17] Norman P. Jouppi, Jeremy Dion, and Michael J. K. Nielsen. MultiTitan: four
architecture papers. Technical Report 86/2, Digital Western Research Labora-
tory, Palo Alto, California, September 1986.

(18] R. H. Katz, S. J. Eggers, D. A. Wood, C. L. Perkins, and R. G. Sheldon. Imple-
menting a Cache Consistency Protocol. In Proceedings of the 12th International
Symposium on Computer Architecture, pages 276283, June 1985.

[19] Clyde P. Kruskal and Marc Snir. The Performance of Multistage Intercon-
nection Networks for Multiprocessors. IEEE Transactions on Computers, c-
32(12):1091-1098, December 1983.

[20] D. H. Lawrie. Access and Alignment of Data in an Array Processor. IEEE
Transactions on Computers, c-24:1145-1155, 1975.

[21] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik.
Quantitative System Performance. Prentice Hall, 1984.

[22] E. McCreight. The Dragon Computer System: An Early Overview. Technical
Report, Xerox Corp., September 1984.

[23] Steve McGrogan, Robert Olson, and Neil Toda. Parallelizing large existing
programs - methodology and experiences. In Proceedings of Spring COMPCON,
pages 458-466, March 1986.

[24] Robert Olson. Parallel Processing in a Message-Based Operating System. IEEE
Software, July 1985.

28

25]

[26]

(27]

(28]

[29]

[30]

31)

[32]

(33]

Janak H. Patel. Analysis of Multiprocessors with Private Cache Memories.
IEEFE Transactions on Computers, ¢-31(4):296-304, April 1982.

Janak H. Patel. Performance of Processor-Memory Interconnections for Multi-
processors. IEEE Transactions on Computers, c-30(10):771-780, October 1981.

Richard L. Sites and Anant Agarwal. Multiprocessor Cache Analysis using

ATUM. In Proceedings of the 15th International Symposium on Computer Ar-
chitecture, June 1988.

Alan Jay Smith. Cache Memories. ACM Computing Surveys, 14(3):473-530,
September 1982.

Alan Jay Smith. CPU Cache Consistency with Software Support and Using
One Time Identifiers. In Proceedings of the Pacific Computer Communications
Symposium, October 1985.

C. K. Tang. Cache Design in the Tightly Coupled Multiprocessor System.
In AFIPS Conference Proceedings, National Computer Conference, NY, NY,
pages 749~753, June 1976.

Charles P. Thacker and Lawrence C. Stewart. Firefly: a Multiprocessor Work-
station. In Proceedings of ASPLOS II, pages 164-172, October 1987.

M. K. Vernon and M. A. Holliday. Performance Analysis of Multiprocessor

Cache Consistency Protocols Using Generalized Timed Petri Nets. In Proceed-
ings of SIGMETRICS 1986, May 1986.

M. K. Vernon, E. D. Lazowska, and J. Zahorjan. An Accurate and Efficient Per-
formance Analysis Technique for Multiprocessor Snooping Cache-Consistency
Protocols. In Proceedings of the 15th International Symposium on Computer
Architecture, June 1988.

29

SRC Reports

“A Kernel Language for Modules and Abstract Data
Types.”

R. Burstall and B. Lampson.

Research Report 1, September 1, 1984,

“Optimal Point Location in a Monotone
Subdivision.”
Herbert Edelsbrunner, Leo J. Guibas, and Jorge
Stolfi.
Research Report 2, October 25, 1984.

“On Extending Modula-2 for Building Large,
Integrated Systems.”

Paul Rovner, Roy Levin, John Wick.

Research Report 3, January 11, 1985.

“Eliminating go to’s while Preserving Program
Structure.”
Lyle Ramshaw.
Research Report 4, July 15, 1985.

“Larch in Five Easy Pieces.”
J. V. Guttag, J. J. Horning, and J. M. Wing.
Research Report 5, July 24, 1985.

“A Caching File System for a Programmer’s
Workstation.”
Michael D. Schroeder, David K. Gifford, and Roger
M. Needham.

Research Report 6, October 19, 1985.

“A Fast Mutual Exclusion Algorithm.”
Leslie Lamport.
Research Report 7, November 14, 1985.

“On Interprocess Communication.”
Leslie Lamport.
Research Report 8, December 25, 1985.

“Topologically Sweeping an Arrangement.”
Herbert Edelsbrunner and Leonidas J. Guibas.
Research Report 9, April 1, 1986.

“A Polymorphic A-calculus with Type:Type.”
Luca Cardelli.
Research Report 10, May 1, 1986.

“Control Predicates Are Better Than Dummy
Variables For Reasoning About Program
Control.”

Leslie Lamport.
Research Report 11, May 5, 1986. -

“Fractional Cascading.”
Bernard Chazelle and Leonidas J. Guibas.
Research Report 12, June 23, 1986.

“Retiming Synchronous Circuitry.”
Charles E. Leiserson and James B. Saxe.
Research Report 13, August 20, 1986.

“An O(n?) Shortest Path Algorithm for a Non-
Rotating Convex Body.”
John Hershberger and Leonidas J. Guibas.
Research Report 14, November 27, 1986.

“A Simple Approach to Specifying Concurrent
Systems.”

Leslie Lamport.

Research Report 15, December 25, 1986. Revised
January 26, 1988

“A Generalization of Dijkstra’s Calculus.”
Greg Nelson.
Research Report 16, April 2, 1987.

“win and sin: Predicate Transformers for
Concurrency.”

Leslie Lamport.

Research Report 17, May 1, 1987. Revised
September 16, 1988.

“Synchronizing Time Servers.”
Leslie Lamport.
Research Report 18, June 1, 1987.

“Blossoming: A Connect-the-Dots Approach to
Splines.”
Lyle Ramshaw.
Research Report 19, June 21, 1987.

“Synchronization Primitives for a Multiprocessor:
A Formal Specification.”
A. D. Birrell, J. V. Guttag, J. J. Horning, R. Levin.
Research Report 20, August 20, 1987.

“Evolving the UNIX System Interface to Support
Multithreaded Programs.”
Paul R. McJones and Garret F. Swart.
Research Report 21, September 28, 1987.

“Building User Interfaces by Direct Manipulation.”
Luca Cardelli.
Research Report 22, October 2, 1987.

“Firefly: A Multiprocessor Workstation.”
C. P. Thacker, L. C. Stewart, and

E. H. Satterthwaite, Jr.
Research Report 23, December 30, 1987.

“A Simple and Efficient Implementation for Small
Databases.”

Andrew D. Birrell, Michael B. Jones, and
Edward P. Wobber.

Research Report 24, January 30, 1988.

“Real-time Concurrent Collection on Stock
Multiprocessors.”
John R. Ellis, Kai Li, and Andrew W. Appel.
Research Report 25, February 14, 1988.

“Parallel Compilation on a Tightly Coupled
Multiprocessor.”

Mark Thierry Vandevoorde.

Research Report 26, March 1, 1988.

“Concurrent Reading and Writing of Clocks.”
Leslie Lamport.
Research Report 27, April 1, 1988.

“A Theorem on Atomicity in Distributed
Algorithms.”
Leslie Lamport.
Research Report 28, May 1, 1988.

“The Existence of Refinement Mappings.”
Martin Abadi and Leslie Lamport.
Research Report 29, August 14, 1988.

“The Power of Temporal Proofs.”
Martin Abadi.
Research Report 30, August 15, 1988.

“Modula-3 Report.”
Luca Cardelli, James Donahue, Lucille Glassman,
Mick Jordan, Bill Kalsow, Greg Nelson.
Research Report 31, August 25, 1988.

“Bounds on the Cover Time.”
Andrei Broder and Anna Karlin.
Research Report 32, October 15, 1988.

“A Two-view Document Editor with User-definable
Document Structure.”
Kenneth Brooks.
Research Report 33, November 1, 1988.

“Blossoms are Polar Forms.”
Lyle Ramshaw.
Research Report 34, January 2, 1989.

“An Introduction to Programming with Threads.”
Andrew Birrell.
Research Report 35, January 6, 1989.

“Primitives for Computational Geometry.”
Jorge Stolfi.
Research Report 36, January 27, 1989.

“Ruler, Compass, and Computer:
The Design and Analysis of Geometric
Algorithms.”
Leonidas J. Guibas and Jorge Stolfi.
Research Report 37, February 14, 1989.

“Can fair choice be added to Dijkstra’s calculus?”
Manfred Broy and Greg Nelson.
Research Report 38, February 16, 1989.

“A Logic of Authentication.”
Michael Burrows, Martin Abadi, and Roger
Needham.

Research Report 39, February 28, 1989.

“Implementing Exceptions in C.”
Eric S. Roberts.
Research Report 40, March 21, 1989.

LR T S N LA e WS awasAdavtradew e wd

~— (™]
Software Cache Coherence
by Susan Owicki and Anant Agarwal

clilgliltiall

Systems Research Center

130 Lytton Avenue

Palo Alto, California 94301

