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that we can investigate their properties fully. Complex systems cannot be evaluated solely in
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Author’s abstract

Traditionally, C programmers have used specially designated return codes to indicate
exception conditions arising during program execution. More modern languages offer
alternative mechanisms that integrate exception handling into the control structure.
This approach has several advantages over the use of return codes: it increases the
likelihood that programming errors will be detected, makes it easier to structure the
specification of an abstraction, and improves the readability of the implementation
by providing better syntactic separation between handling of conventional and excep-
tional cases. This paper describes a set of language extensions to support exception
handling in C, and a preprocessor-based implementation of those extensions that
demonstrates both the feasibility and the portability of this approach.

Eric S. Roberts
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1. Introduction

In designing an abstraction, it is important to define how it behaves, not only under “normal” condi-
tions, but also when unusual or exceptional conditions occur. For example, a file handling package that
implements functions like open, read, and write must define the semantics of those routines, not only
when all is well, but also in response to such conditions as file-not-found and data-error. Some condi-
tions represent errors; others represent events that are expected to happen, but that are nonetheless dis-
tinct from the *“main-line” behavior of the abstraction, such as end-of-file during a call to read. Col-
lectively, both types of conditions are called exceptions.

Historically, C programmers adhere to the Unix tradition of reporting exceptions via specially desig-
nated return codes. For example, the fopen function in the standard /O library [Kemighan78] returns
NULL if the requested file cannot be opened. Similarly, the getc function indicates the end-of-file con-
dition by returning the special value EOF. This approach, however, has several deficiencies and has
been described as ‘‘perhaps the most primitive form of exceptional condition handling mechanism”’
[Levin77]. Various authors [Levin77, Goodenough75, Yemini85) have described higher-level constructs
for reporting and handling exceptions that address these shortcomings.

This paper describes a general exception facility for use with C. This facility provides significantly
increased functionality and makes it possible to separate, syntactically as well as logically, the
specification of the usual behavior of an abstraction from the exception conditions that might arise. It
is based on the exception-handling mechanisms in Modula-2+ and Modula-3 [Rovner8S, Cardelli88] and
is historically related to similar mechanisms in Ada and CLU [ADA82, Liskov84]. The paradigm itself
is not new; the main contribution of this paper lies in demonstrating that this mechanism can be imple-
mented in C without requiring language changes or otherwise sacrificing portability,

Although its genesis is independent, this work is also similar to an earlier mechanism reported by Eric
Allman and David Been at the 1985 USENIX conference {Allman85]. It shares the overall goal of pro-
viding a portable implementation of exceptions in C; moreover, both packages use the C preprocessor
to achieve that portability, although the earlier package requires some system-specific assembly code.
The work described in this paper makes additional contributions in four areas: (1) no assembly code is
required, (2) the syntactic presentation emphasizes the connection between exception-handling code and
the program region over which that exception-handling code is active, (3) exception handlers can access
local variables in the scope of the exception body, and (4) this facility includes a mechanism for speci-
fying “finalization™ actions (see section 3.3).

In this paper, section 2 outlines the deficiencies of the return-code mechanism traditionally used in C,
and section 3 introduces an alternative paradigm. Section 4 provides a syntactic definition of the
mechanism. Section 5 discusses the implementation of the exception facility. To achieve portability,
this implementation is based on the C preprocessor and makes minimal assumptions about the operating
environment. In a particular environment, considerable improvements in efficiency can be obtained by
incorporating this syntax directly into the compiler, as discussed in section 5.2. As long as these
extended compilers remain compatible with the preprocessor-based implementation, programmers can
rely on that preprocessor implementation to maintain portability.

2. Weaknesses in the return-code paradigm

As a general technique, return codes have several deficiencies. First, it is often difficult to find an
appropriate return code to indicate an exception when the function also returns data. In some cases, the
need to find such a value leads to a counterintuitive weakening of the type system. One would expect,
for example, that a function named getc would return a value of type char; to accommodate the end-
of-file code, getc is defined to return an int.
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Second, using a single return code to indicate an exception often means that any additional data provid-
ing the specific details that gave rise to the exception must be passed outside of the return code
mechanism. In the standard Unix libraries, this is usually done with the special variable errno. Unfor-
tunately, this strategy is not reentrant and complicates the design of packages that support multiple
threads of control in a single address space.

Third, and most importantly, indicating exception conditions via return codes makes them too easy for
programmers to ignore. This is particularly true in the development of hierarchical software packages,
since each layer must check for the condition explicitly, deciding whether to handle it internally or to
propagate it back to its caller. If a layer in the abstraction hierarchy fails to check for the condition,
any trace of the exception is lost. This problem lies at the root of many hard-to-detect bugs in tradi-
tional C code.

3. Exceptions viewed as control structure

An alternative paradigm is to consider exception handling as part of the control structure. When an
exception condition is detected, the program indicates that event by transferring control to a dynami-
cally enclosing section of code specifically designated to react to that condition. The transfer of control
is called raising an exception, and the code that detects and responds to the condition is called an
exception handler.

For concreteness, imagine that a new file management package has been designed using this control-
based exception paradigm. A client might then open the file test.dat using the following code:

TRY

file = newopen("test.dat”, "r");
EXCEPT(OpenError)

printf("Cannot open the file test.dat\n");
ENDTRY;

The statement forms themselves are described in the the next section, but the example illustrates the
mechanism. If the file test.dat exists and is readable, newopen returns normally and passes back a han-
dle which is assigned to file. If, however, some problem is detected, the implementation of newopen
can raise the OpenError exception. This causes control to be passed immediately to the printf in the
EXCEPT handler.

Note that the statement which raises the OpenError exception can be nested arbitrarily deeply within
the implementation of the file management package. When the exception is raised, the control stack is
unwound to the level of the exception handler, and control proceeds from there. Finding no appropriate
handler when an exception is raised constitutes a fatal error. This means that conditions that may
safely be ignored must be specified explicitly in the code, thereby reducing the likelihood of error
through a careless oversight.

As described below, the package offers considerably more functionality than is illustrated by the simple
example above. For example, a TRY-EXCEPT statement can specify several independent exceptions
and is not limited to a single handler. Each exception has its own handler body, so that the response to
each condition is clearly indicated in the code. When an exception is raised, it is possible to pass addi-
tional data back to the handler. Thus, in the example above, the file handling package could pass an
indication of the error type, so that the client could differentiate conditions like nonexistent file, protec-
tion violations, and so forth. This is handled in a reentrant fashion without requiring the use of a global
variable such as errno. The package also provides a mechanism for specifying a “finalization” action
for those cases in which an intervening software layer needs to ensure that some actions are performed
even when an exception causes control to pass through this layer. This is discussed in more detail
below under the description of the TRY-FINALLY statement.
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4. Syntactic forms

This section describes the new “‘statement forms” that are defined as preprocessor macros in order to
implement the exception facility in C. To use the package, it is necessary to read in the exception
header file by including the line

#include "exception.h”

4.1 Declaring exceptions

In the exception package, a new exception is declared by using the type definition exception, as in
exception name;

Like any other variable declaration in C, the scope of an exception may be restricted by the use of the
keyword static, or imported into another module by using extern. An exception is uniquely identified
by its address; its value and the concrete type actually used are irrelevant to the operation of the pack-
age. In a typical implementation, the concrete type used for an exception will be a struct to ensure
that lint will detect type errors in the use of exceptions.

4.2 TRY-EXCEPT statements

Once the exceptions are declared, a TRY-EXCEPT statement is used to associate one or more excep-
tion handlers with a sequence of statements. The TRY-EXCEPT statement has the form

TRY
statements
EXCEPT(name-1)
statements
EXCEPT (name-2)
statements

ENDTRY
where any number of EXCEPT clauses may appear (up to an implementation-determined maximum).

The semantics of the TRY-EXCEPT statement are as follows. First, the statements associated with the
TRY body are evaluated. If no exception conditions are encountered before control reaches the end of
that statement sequence, the exception scope is exited and control passes to the end of the entire block.
If, however, any of these statements (or any statement of a procedure dynamically nested within this
block) raises an exception, control is passed immediately to the statements in the TRY-EXCEPT
handler with a matching exception name.

Exceptions are raised by calling
RAISE(name, value);

where name is a declared exception and value is an int to be communicated back to the handler scope.
When the RAISE statement is encountered, the dynamic stack of TRY scopes is searched for the inner-
most TRY-EXCEPT that declares a handler for this exception, or any handler for the predeclared
exception ANY, which matches any exception. If none is found, an error exit occurs. If an appropriate
handler is found, control retumns to this stack context, and the statements associated with the appropriate
handler are executed. These statements are executed outside of the local exception scope, so that any
RAISE statements inside a handler propagate the exception back to the next higher level.
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In a handler, the argument value passed to RAISE may be retrieved by using the name
exception_value, which is automatically declared as an int in the scope of the exception handler. In
most cases, this value will not be needed. Even so, the value argument must still be specified in
RAISE, since RAISE is implemented as a macro and not as a procedure.

4.3 TRY-FINALLY statements

A second use of the TRY facility is to associate finalization code with a statement sequence in order to
ensure that this code is executed even if the statement body terminates abnormally through an exception
condition. This is accomplished using the TRY-FINALLY statement, which has the form

TRY
statements

FINALLY
statements

ENDTRY

In this form, the standard operation is to execute the TRY statement body followed by the statements in
the FINALLY clause. The FINALLY body is also executed if the statements in the TRY body. gen-
erate an exception that would pass control through this scope. When this occurs, the FINALLY clause
is executed, and the exception is again raised, so that it is eventually caught by the appropriate handler.

For example, assume that acquire(res) and release(res) acquire and release some resource which
requires exclusive access. The code fragment

acquire(res);
TRY
... code for accessing the resource ...
FINALLY
release(res);
ENDTRY

guarantees that the resource is released, even if the accessing code raises an exception. It is the
programmer’s responsibility to ensure that this does not violate data integrity conditions in the data
structures that manage the resource.

Note that explicit transfers of control out of a TRY-FINALLY statement cannot be intercepted without
changing the compiler; only exceptions are correctly handled here. For example, it would be very con-
venient to write

acquire(res);
TRY

return (res->data);
FINALLY

release(res);
ENDTRY

in the hopes that returning from the TRY-FINALLY body would invoke the FINALLY clause (this is
indeed the semantics in Modula-2+ and Modula-3), but this is not feasible in a portable implementation.
Instead, it is necessary to assign the result to a temporary variable and write the return statement out-
side the TRY body.
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5. Implementation of the exception facility

As noted in the introduction, the main purpose of this implementation is to demonstrate that writing a
portable exception-handling facility in C is feasible. This implementation uses the C preprocessor to
replace the syntactic forms used for exceptions with the actual code required to register and respond to

the exception condition. The code is reproduced in full at the end of this paper, but it is best illustrated
using a simple example.

5.1 Example of preprocessor expansion
Consider the simple TRY-EXCEPT example below:

#include "exception.h”
exception e;

Test()
{
TRY
Body();
EXCEPT(e)
Handler();
ENDTRY
}

The expanded form of the Test procedure is given at the top of page 6.

The expanded TRY body begins by declaring a local context block _ctx in the stack frame for the pro-
cedure, initializing the appropriate fields, and then linking this block into a chain of active exceptions.
On the first pass, the variable _es is set to ES_Initialize. This variable can take on two other values:
ES_EvalBody in the second iteration of the while loop, and ES_Exception if control returns to the
setjmp via a call to RAISE.

The body of the TRY is not executed on the first iteration of the loop, which simply initializes the
array of exceptions which are handled by this TRY-EXCEPT. The second pass evaluates the body. If
RAISE is called, this is translated into a call on —Raise_Exception, which searches through the excep-
tion stack to find the appropriate handler and then uses longjmp to return to this context. When this

occurs, _es is set to ES_Exception and the conditionals in the expanded EXCEPT clauses select the
correct handler.

5.2 Preprocessor-based implementation vs. compiler support

The preprocessor-based implementation illustrated above does not generate particularly efficient code,
mostly because the implementation relies on macro expansion and has no opportunity to perform
context-sensitive expansion or to reorder the code. A compiler could do much better.

Implementing this facility directly within the compiler is certainly an option. A compiler can recognize
this syntax and generate considerably more efficient code. In particular, a compiler can reduce
significantly the overhead required to enter an exception scope by moving much of that work into the
code for raising the exception; since most applications will use the exception for the less frequent cases,
this tradeoff improves overall performance. By itself, a strategy that involves compiler changes
sacrifices portability. However, as long as a preprocessor-based implementation exists, it is certainly
reasonable to extend specific compilers to provide this facility with a much lower overhead.
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Test()
(
{

context_block _ctx;
int _es = ES_Initialize;
_ctx.nx = 0;
_ctx.link = NULL;
_ctx.finally = 0;
_ctx.link = exceptionStack;
exceptionStack = &_ctx;
if (setymp(_ctx.jmp) != 0) _es = ES_Exception;
while (1) {

if (_es == ES_EvalBody) {

Body(;
if (_es == ES_EvalBody) exceptionStack = _ctx.link;
break;

)

if (_es == ES_Initialize) {
if (_ctx.nx >= MaxExceptionsPerScope)

exit(ETooManyExceptClauses);
_ctx.array[_ctx.nx++] = &e;

] else if (_ctx.id == &e || &e == &ANY) {
int exception_value = _ctx.value;
exceptionStack = _ctx.link;

Handler();

if Cctx.finally && _es == ES_Exception)
_RaiseException(_ctx.id, _ctx.value);

break;

)

_es = ES_EvalBody;

)
}

Figure 1
Expansion of Test procedure

The overhead cost incurred by the preprocessor implementation is illustrated in the expanded form of
the Test procedure given above. Much of the overhead arises because the preprocessor cannot take
contextual information into account. For example, given a TRY statement with two EXCEPT clauses,
a compiler would generate different code in each position, since the operations required at the end of
the TRY body differ from those required at the end of the first EXCEPT clause. Unfortunately, the
preprocessor cannot do this. All it can do is expand the EXCEPT macro in a context-independent way.
This gives rise to redundant tests, like the

if (_es == ES_EvalBody)

conditional after the main body. If the code reaches here, the condition must be true, although it will
be false when the same macro is expanded at the end of an EXCEPT clause. Integrating this syntax
into the compiler would make it possible to eliminate such redundancy.
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Another advantage of the compiler-based implementation is that it can certainly provide better checking
for syntactic emrors. Like most macro-based extensions, relying on the C preprocessor means that some
syntactic errors will be able to pass through without detection and that any errors that are detected will
be reported in the context of the expanded forms.

5.3 Implementation dependencies

The implementation depends on the existence of the library routines setymp and longjmp to effect the
actual transfer of control. These routines are supported in many non-Unix implementations of C, so
that this dependency should not significantly reduce the portability of the package. In particular, no
assumptions are made about the internal structure of a jmp_buf as defined in the header file setjmp.h.

Even so, it is important to be aware that some systems impose implementation-dependent restrictions on
the use of setjmp and longjmp, particularly when the compiler tries to be too clever. If such restric-
tions exist, this exception package may not be usable. We consider such “implementations”’ of setjmp
and longjmp to be buggy and do not believe that compiler and language changes should be introduced
to accommodate these environments.

5.4 Implementation on a multiprocessor

The implementation described in this paper uses the global variable exceptionStack as a pointer t0 a
chain of active exception blocks. This is appropriate in a conventional Unix envrionmnent, but would
fail in a concurrent environment in which multiple independent lightweight processes (threads) share a
single address space [Rovner85, Cooper88, Birreli89). If threads are supported by the operating system,
it is necessary to maintain separate copies of this pointer for each thread. If the implementation of con-
currency provides for a thread-specific data area, the chain pointer would presumably be placed there.
Otherwise, it will be necessary to simulate this by, for example, hashing on the thread id.

5.5 Other tradeoff considerations in the implementation

In this implementation, the context_block structure uses an array of exceptions rather than a linked list
to avoid the cost of dynamic allocation when exceptions are registered. This has the negative effect of
placing a fixed upper bound on the number of exceptions per scope, but this is not likely to become a
serious problem in practice.

In the code for _Raise_Exception, two loops are executed: one to determine whether any exception
handler exists, and a second to execute the FINALLY clauses. A single loop could be used here, but
the two-loop strategy has the advantage that the EUnhandledException error occurs at the original
stack context, making it easier to find unhandled exceptions in the debugger.

6. Conclusions

This package demonstrates that an exception-handling facility can be implemented in C without requir-
ing extensions to the compiler or non-standard assumptions about the operating environment. This
means that programs written to use exceptions will be portable to a wide variety of architectures,
operating systems, and compilers. If greater efficiency is required, this syntax can be integrated into the
compiler, maintaining portability through the preprocessor-based implementation.

7. Acknowledgments

I am indebted to Garret Swart for reading through several drafts of this paper and for providing the ini-
tial push that got me to write a report on this work.






8. References

[ADAS2]

[Allman85]

[Birrell89]

[Cardelli88]

[Cooper88]

[Goodenough75]

[Kernighan78]

[Levin77]

[Liskov84]
[Rovner85]

[Yemini85)

Implementing Exceptionsin C - 9

United States Department of Defense. Reference Manual for the Ada Programming
Language. AdaTEC, July 1982.

Eric Allman and David Been. “An Exception Handler for C,” Proceedings of the
1985 Summer USENIX Conference. Portland, Oregon, 1985.

Andrew Birrell. “An introduction to programming with threads,” Research Report
#35, Systems Research Center, January 6, 1989.

Luca Cardelli, James Donahue, Lucille Glassman, Mick Jordan, Bill Kalsow and Greg
Nelson. “Modula-3 report,” Research Report #31, Systems Research Center, August
25, 1988.

Eric Cooper and Richard Draves. “C threads,” Technical Report CMU-CS-88-154,
Department of Computer Science, Carnegie Mellon University, June 1988.

John B. Goodenough. “Exception handling: issues and a proposed notation,” Com-
munications of the ACM. Vol. 18, no. 12, December 1975.

Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. Engle-
wood Cliffs, NJ: Prentice-Hall, 1978.

Roy Levin. “Program structures for exceptional condition handling,” Department of
Computer Science Technical Report, Carnegie-Mellon University, June 1977,

Barbara Liskov, et al. CLU Reference Manual. Springer Verlag, 1984.

Paul Rovner, Roy Levin and John Wick. “On extending Modula-2 for building large,
integrated systems,” Research Report #3, Systems Research Center, January 11, 1985.

Shaula Yemini and Daniel Berry. ““A modular verifiable exception-handling mechan-
ism,” Transactions on Programming Languages and Systems. Vol. 7, no. 2, April
1985.






/+ Copyright 1989 Digital Equipment Corporation.

/+ Distributed only by permission.

Implementing Exceptions in C

11

*/
*/

/**##t##*t‘*#*3#**#*‘**tt*######t#*#t**#t###*#t#**####t##*#*#*#“*##‘##t#####tt/

/* File: exception.h

/+ Last modified on Wed Mar 15 16:40:41 PST 1989 by roberts

/%

/+ The exception package provides a general exception handling mechanism

/+ for use with C that is portable across a variety of compilers and

/+ operating systems. The design of this facility is based on the

/+ exception handling mechanism used in the Modula~2+ language at DEC/SRC
/+ and is described in detail in the paper in the documents directory.

/+ For more background on the underlying motivation for this design, see

/* SRC Research Report #3.

*/
*/
*/
*+/
*/
*/
*/
J
*/
*/

/#t##‘*#*tt###t###t##‘#t##*#t###ttt#ttt‘#tt#t#t##*t##tt###*#t##t#*##ttt#‘t##t#t/

#include <setjmp.h>

#define MaxExceptionsPerScope 10
#define ETooManyExceptClauses 101
#define EUnhandledException 102

#define ES_Initialize 0
#define ES_EvalBody 1
#define ES_Exception 2

typedef struct { char *name } exception;

typedef struct _ctx_block {
jmp_buf jmp;
int nx;
exception *array[MaxExceptionsPerScope];
exception *id;
int value;
int finally;
struct _ctx_block *link;
} context_block;

extern exception ANY;
extern context_block *exceptionStack;
extern void _RaiseException(/+ e, v #/);

#define RAISE(e, v) _RaiseException(&e, v)
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#define TRY \
{\
context_block _ctx; \
int _es = ES_Initialize; \
_ctxanx = 03\
_etxJink = NULL; \
_ctx.finally = 0; \
_ctxJink = exceptionStack; \
exceptionStack = &_ctx; \
if (setjmp(_ctx.jmp) != 0) _es = ES_Exception; \
while (1) {\
if (_es == ES_EvalBody) {

#define EXCEPT(e) \

if (_es == ES_EvalBody) exceptionStack = _ctx.link; \
break; \

| AN

if (_es == ES_Initialize) { \
if (_ctx.nx >= MaxExceptionsPerScope) \

exit(ETooManyExceptClauses); \

_ctx.array[_ctx.nx++] = &e; \

} else if (_ctx.id == &e || &e == &ANY) {\
int exception_value = _ctx.value; \
exceptionStack = _ctx.link;

#define FINALLY \

| AN

if (_es == ES_Initialize) { \
if (ctx.nx >= MaxExceptionsPerScope) \

exit(ETooManyExceptClauses); \

_ctx.finally = 15\

} else {\
exceptionStack = _ctx.link;

#define ENDTRY \
if (ctx.finally && _es == ES_Exception) \
_RaiseException(_ctx.id, _ctx.value); \
break; \
I\
_es = ES_EvaiBody; \
I\
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/+ Copyright 1989 Digital Equipment Corporation.
/* Distributed only by permission.
/##‘*######t#*#*t**#t###t**####*#*#*‘###**t**tt**####*‘*##*t###t####t########t#/
/* File: exception.c

/+ Last modified on Wed Mar 15 16:40:42 PST 1989 by roberts

/*

/+ Implementation of the C exception handler. Much of the real work is

/* done in the exception.h header file.
/"##*‘t#“t###‘ttt‘*t#*#*#t##**##*i“###‘####‘#**##**‘t**#‘#“‘#‘*#“**‘#*##*#/

#include <stdio.h>
#include "exception.h"

context_block *exceptionStack = NULL;

exception ANY;

void _RaiseException(e, v)
exception *e;

int v;

{

context_block *cb, *xb;
exception *t;
int i, found;

found = 0;
for (xb = exceptionStack; xb != NULL; xb = xb—>link) {
for (i = 0; i < xb—>nx; i++) {
= xb—>arrayli];
if (t == e || t == &ANY) {
found = 1;
break;
}
}
if (found) break;

}

if (xb == NULL) exit(EUnhandledException);

for (cb = exceptionStack; cb != xb && {cb—>finally; cb = cb->link);
exceptionStack = cb;

c¢b—>id = e;

cb—>value = v;

longjmp(cb->jmp, ES_Exception);

13

*/
*/

*/
*/
*/
*/
*/
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