
A Logic of Authentication

Michael Burrows Mart��n Abadi Roger Needham

Questions of belief are essential in analyzing protocols for the authentication of prin-

cipals in distributed computing systems. In this paper we motivate, set out, and

exemplify a logic speci�cally designed for this analysis; we show how various protocols

di�er subtly with respect to the required initial assumptions of the participants and

their �nal beliefs. Our formalism has enabled us to isolate and express these di�erences

with a precision that was not previously possible. It has drawn attention to features

of protocols of which we and their authors were previously unaware, and allowed us to

suggest improvements to the protocols. The reasoning about some protocols has been

mechanically veri�ed.

This paper starts with an informal account of the problem, goes on to explain

the formalism to be used, and gives examples of its application to protocols from the

literature, both with shared-key cryptography and with public-key cryptography. Some

of the examples are chosen because of their practical importance, while others serve to

illustrate subtle points of the logic and to explain how we use it. We discuss extensions

of the logic motivated by actual practice|for example, in order to account for the use

of hash functions in signatures. The �nal sections contain a formal semantics of the

logic and some conclusions.

SRC Research Report 39 was originally published on February 28, 1989, and revised

on February 22, 1990. This is the main body of the revised version. An appendix to

the revised version is available separately.

c
Digital Equipment Corporation 1989, 1990

This work may not be copied or reproduced in whole or in part for any commercial

purpose. Permission to copy in whole or in part without payment of fee is granted

for nonpro�t educational and research purposes provided that all such whole or par-

tial copies include the following: a notice that such copying is by permission of the

Systems Research Center of Digital Equipment Corporation in Palo Alto, California;

an acknowledgment of the authors and individual contributors to the work; and all

applicable portions of the copyright notice. Copying, reproducing, or republishing for

any other purpose shall require a license with payment of fee to the Systems Research

Center. All rights reserved.

1. The Problem

In distributed computing systems and similar networks of computers it is necessary

to have procedures by which various pairs of principals (people, computers, services)

satisfy themselves mutually about each other's identity. A common way to approach

this is by means of secrets, usually encryption keys. In barest outline, an authentication

protocol guarantees that if the principals really are who they say they are then they will

end up in possession of one or more shared secrets, or at least they will become able to

recognize the use of other principals' secrets (see, for example, Needham & Schroeder

1978). For example, some authentication protocols establish shared encryption keys

that principals can use in subsequent communication. Other authentication protocols,

based on public-key cryptography (see, for example, Rivest et al. 1978), �rst distribute

the public keys of principals, and then use them to establish shared secrets.

Protocols involving shared-key cryptography use an authentication server which

shares a key with each principal and typically generates new session keys for communi-

cation between the principals. Public-key protocols use a certi�cation authority which

has a well-known public key and is trusted to pass on the public keys of the principals.

Both authentication servers and certi�cation authorities are trusted to make proper use

of the data they hold when executing authentication protocols; authentication servers

are often also trusted to generate new secrets in a proper manner|for example, not to

issue the same one every time.

Authentication would be straightforward in a su�ciently benign environment.

Such cannot usually be assumed, and it is particularly necessary to take precautions

against confusion caused by the reissue of old messages. Speci�cally, one must ensure

that a replay cannot force the use of an old and possibly compromised secret. A good

part of the work in the literature is devoted to ensuring that the information upon

which the protocols act is timely. The style of the precautions taken has caused it

to be recognized for a long time that we are dealing with questions of belief, trust,

and delegation; however, this has been recognized only imprecisely rather than in any

formalism.

As a result of varied design decisions appropriate to di�erent circumstances, a va-

riety of authentication protocols exist. Therefore, there is a perceived need to explicate

them formally to understand to what extent they really achieve the same results. They

di�er subtly in their �nal states, and sometimes a protocol may be shown to depend on

assumptions that one might not care to make. We de�ne a logic of authentication in

order to explain the protocols step by step, with all initial assumptions made explicit

and with the �nal states clearly set out.

1

These are examples of the sort of questions we would like to be able to answer

with the help of formal methods:

What does this protocol achieve?

Does this protocol need more assumptions than another one?

Does this protocol do anything unnecessary that could be left out without

weakening it?

Does this protocol encrypt something that could be sent in clear without

weakening it?

In later sections, we show how the logic is able to help us answer these questions for a

number of example protocols.

It is important to note that certain aspects of authentication protocols have been

deliberately ignored in our treatment. Since we operate at an abstract level, we do not

consider errors introduced by concrete implementations of a protocol, such as deadlocks,

or even inappropriate use of cryptosystems (as in Voydock & Kent 1983). Furthermore,

while we allow for the possibility of hostile intruders, there is no attempt to deal with

the authentication of an untrustworthy principal, nor to detect weaknesses of encryption

schemes or unauthorized release of secrets (as in Dolev & Yao 1983; Millen et al. 1987).

Rather, our study concentrates on the beliefs of trustworthy parties involved in the

protocols and on the evolution of these beliefs as a consequence of communication.

Our experience with authentication protocols has indicated that this kind of study is

one of the most needed by current protocol designers.

We focus on fairly standard uses of encryption and secrets. We also discuss some

variants of practical importance, and how they can be explained logically. Our treat-

ment includes both shared-key cryptography and public-key cryptography. (Shared-key

cryptography can be treated in isolation, as in (Burrows et al. 1988); on the other hand,

a logic for public keys should include one for shared keys: for economic reasons, many

practical schemes based on public keys use some shared keys.)

Our goal, however, is not to provide a logic that would explain every authenti-

cation method, but rather a logic that would explain most of the central concepts in

authentication. This logic may serve both as a basic tool and for illustrative purposes.

It is hoped that protocol designers will adapt it to suit their speci�c needs.

Before introducing the notation and technical terminology, it may be worth stating

some of the main principles in the vernacular. They cannot be regarded as precise, of

course.

2

If you've sent Joe a number that you have never used for this purpose before

and if you subsequently receive from Joe something that depends on know-

ing that number, then you ought to believe that Joe's message originated

recently|in fact, after yours.

If you believe that only you and Joe know K, then you ought to believe that

anything you receive encrypted with K as key comes originally from Joe.

If you believe that K is Joe's public key, then you should believe that any

message that you can decrypt with K comes originally from Joe.

If you believe that only you and Joe know X, then you ought to believe that

any encrypted message you receive containing X comes originally from Joe.

2. The Formalism

Authentication protocols are typically described by listing the messages sent between

the principals, and by symbolically showing the source, the destination, and the con-

tents of each message. This conventional notation is not convenient for manipulation

in a logic, since we wish to attach exact meanings to each part of each message and

these meanings are not always apparent from the data contained in the messages. In

order to introduce a more useful notation whilst preserving correspondence with the

original description of the protocols, we transform each message into a logical formula.

This logical formula is an idealized version of the original message. Then we annotate

each idealized protocol with assertions, much as in a proof in Hoare logic (Hoare 1969).

These assertions are expressed in the same notation used to write messages. An asser-

tion usually describes beliefs held by the principals at the point in the protocol where

the assertion is inserted.

In this section, we describe the informal syntax and semantics of our logic, its

rules of inference, the transformations that we apply to protocols before their formal

analysis, and the rules to annotate protocols.

Basic notation

Our formalism is built on a many-sortedmodal logic. In the logic, we distinguish several

sorts of objects: principals, encryption keys, and formulas (also called statements). We

identify messages with statements in the logic. Typically, the symbols A, B, and S

denote speci�c principals; Kab, Kas, and Kbs denote speci�c shared keys; Ka, Kb, and

Ks denote speci�c public keys, and K�1
a , K�1

b , and K�1
s denote the corresponding

3

secret keys; Na, Nb, and Nc denote speci�c statements. The symbols P , Q, and R

range over principals; X and Y range over statements; K ranges over encryption keys.

All these may be used either as metasymbols (to write schemata) or as free variables

(with an implicit universal quanti�cation); this minor confusion is essentially harmless.

The only propositional connective is conjunction, denoted by a comma. Through-

out, we treat conjunctions as sets and take for granted properties such as associativity

and commutativity. In addition to conjunction, we use the following constructs:

P j� X: P believes X, or P would be entitled to believe X. In particular, the principal

P may act as though X is true. This construct is central to the logic.

P / X: P sees X. Someone has sent a message containing X to P , who can read and

repeat X (possibly after doing some decryption).

P j� X: P once said X. The principal P at some time sent a message including the

statementX. It is not known whether the message was sent long ago or during

the current run of the protocol, but it is known that P believed X when he

sent the message.

P) X: P has jurisdiction overX. The principal P is an authority onX and should be

trusted on this matter. This construct is used when a principal has delegated

authority over some statement. For example, encryption keys need to be

generated with some care, and in some protocols certain servers are trusted to

do this properly. This may be expressed by the assumption that the principals

believe that the server has jurisdiction over statements about the quality of

keys.

](X): The formula X is fresh, that is, X has not been sent in a message at any time

before the current run of the protocol. This is usually true for nonces, that

is, expressions generated for the purpose of being fresh. Nonces commonly

include a timestamp or a number that is used only once, such as a sequence

number.

P
K
$Q: P and Q may use the shared key K to communicate. The key K is good, in

that it will never be discovered by any principal except P or Q, or a principal

trusted by either P or Q.
K
7!P : P has K as a public key. The matching secret key (the inverse of K, denoted

K�1) will never be discovered by any principal except P , or a principal trusted

by P .

P
X
*)Q: The formula X is a secret known only to P and Q, and possibly to principals

trusted by them. Only P and Q may use X to prove their identities to one

4

another. Often, X is fresh as well as secret. An example of a shared secret is

a password.

fXgK : This represents the formula X encrypted under the key K. Formally, fXgK

is an abbreviation for an expression of the form fXgK from P . We make the

realistic assumption that each principal is able to recognize and ignore his

own messages; the originator of each message is mentioned for this purpose.

In the interests of brevity, we typically omit this in our examples.

hXiY : This represents X combined with the formula Y ; it is intended that Y be a

secret, and that its presence prove the identity of whoever utters hXiY . In

implementations,X is simply concatenated with the password Y ; our notation

highlights that Y plays a special rôle, as proof of origin for X. The notation

is intentionally reminiscent of that for encryption, which also guarantees the

identity of the source of a message through knowledge of a certain kind of

secret.

A more formal treatment of the semantics of these constructs can be found below.

Here, we simply give and motivate the rules of inference that characterize them.

Logical postulates

Some informal preliminaries are useful to understand the rules of inference of our logic.

In the study of authentication, we are concerned with the distinction between

two epochs: the past and the present . The present epoch begins at the start of the

particular run of the protocol under consideration. All messages sent before this time

are considered to be in the past, and the authentication protocol should be careful

to prevent any such messages from being accepted as recent. All beliefs held in the

present are stable for the entirety of the protocol run; furthermore, we assume that

when principal P says X then he actually believes X. However, beliefs held in the past

are not necessarily carried forward into the present. The simple division of time into

past and present su�ces for our purposes.

An encrypted message is represented as a logical statement bound together and

encrypted with an encryption key. It is assumed that the encryption is done in such

a way that we know the whole message was sent at once. If two separate encrypted

sections are included in one message, we treat them as though they arrived in separate

messages. A message cannot be understood by a principal who does not know the key

(or, in the case of public-key cryptography, by a principal who does not know the inverse

of the key); the key cannot be deduced from the encrypted message. Each encrypted

5

message contains su�cient redundancy to allow a principal who decrypts it to verify

that he has used the right key. In addition, messages contain su�cient information for

a principal to detect (and ignore) his own messages.

Now we are ready to discuss the logical postulates. We do not present the postu-

lates in the most general form possible; our main concern is to have enough machinery

to carry out some realistic examples and to explain the essence of our method.

� The message-meaning rules concern the interpretation of messages. Two of the

three concern the interpretation of encrypted messages, and the third concerns

the interpretation of messages with secrets. They all explain how to derive beliefs

about the origin of messages.

For shared keys, we postulate:

P j� Q
K
$P; P / fXgK

P j� Q j� X

That is, if P believes that the key K is shared with Q and sees a message X

encrypted under K, then P believes that Q once said X. For this rule to be

sound, we must guarantee that P did not send X himself; it su�ces to recall

that fXgK stands for a formula of the form fXgK from R, and to require

that R 6= P .

Similarly, for public keys, we postulate:

P j�
K
7!Q; P / fXgK�1

P j� Q j� X

For shared secrets, we postulate:

P j� Q
Y
*)P; P / hXiY
P j� Q j� X

That is, if P believes that the secret Y is shared with Q and sees hXiY , then

P believes that Q once said X. This postulate is sound because the rules for

/, given below, guarantee that hXiY was not just uttered by P himself.

In real life the decryption of a message to yield a content says, in and of itself, only

that the content was produced at some time in the past; we have no idea whether

it is new or the result of a replay.

� The nonce-veri�cation rule expresses the check that a message is recent, and hence

that the sender still believes in it:

P j�](X); P j� Q j� X

P j� Q j� X

6

That is, if P believes that X could have been uttered only recently and that Q

once said X, then P believes that Q believes X. For the sake of simplicity,X must

be \cleartext," that is, it should not include any subformula of the form fY gK .

(When this restriction is not met, we can conclude only that Q has recently said

X. We might introduce a \has recently said" operator to express this conclusion,

should the need arise in an example.)

This is the only postulate that promotes from j� to j�. It re
ects in an abstract and

timeless way the practice of protocol designers of using challenges and responses.

One participant issues a fresh statement as a challenge. Since the challenge has

been generated recently, any message containing it is accepted as timely and taken

seriously. In general, challenges need not be encrypted but responses must be.

� The jurisdiction rule states that if P believes that Q has jurisdiction over X then

P trusts Q on the truth of X:

P j� Q) X; P j� Q j� X

P j� X

� A necessary property of the belief operator is that P believes a set of statements

if and only if P believes each individual statement separately. This justi�es the

following rules:

P j� X; P j� Y

P j� (X;Y)

P j� (X;Y)

P j� X

P j� Q j� (X;Y)

P j� Q j� X

Other similar rules could be introduced as required.

� A similar rule applies to the operator j�:

P j� Q j� (X;Y)

P j� Q j� X

Note that if P j� Q j� X and P j� Q j� Y it does not follow that P j� Q j� (X;Y),

since this would imply that the two parts X and Y were uttered at the same time.

� If a principal sees a formula then he also sees its components, provided he knows

the necessary keys:

P / (X;Y)

P / X

P / hXiY
P / X

P j� Q
K
$P; P / fXgK

P / X

P j�
K
7!P; P / fXgK

P / X

P j�
K
7!Q; P / fXgK�1

P / X

7

Recall that fXgK stands for a formula of the form fXgK from R. As a side

condition, it is required that R 6= P , that is, fXgK is not from P himself. A

similar statement applies to fXgK�1 :

The �rst rule in the second line is justi�ed by the implicit assumption that if P

believes that K is his public key, then P knows the corresponding secret key, K�1.

Note that if P / X and P / Y it does not follow that P / (X;Y), since this would

imply that X and Y were uttered at the same time.

� If one part of a formula is known to be fresh, then the entire formula must also be

fresh:
P j�](X)

P j�](X;Y)

Other similar rules can be written, for instance to show that if X is fresh then

fXgK is fresh; we do not need these rules in our examples.

� The same key is used between a pair of principals in either direction. We write

the following two rules to re
ect this property:

P j� R
K
$R0

P j� R0 K$R

P j� Q j� R
K
$R0

P j� Q j� R0 K$R

� Similarly, a secret can be used between a pair of principals in either direction. We

write the following two rules to re
ect this property:

P j� R
X
*)R

0

P j� R0 X*)R

P j� Q j� R
X
*)R

0

P j� Q j� R0 X*)R

Given the postulates, we can construct proofs in the logic. A formulaX is provable

in the logic from a formula Y if there is a sequence of formulasZ0; : : : ; Zn where Z0 = Y ,

Zn = X, and each Zi+1 can be obtained from previous ones by the application of a

rule. As usual, this can be generalized to prove schemata.

On quanti�ers in delegations

Delegation statements typically mention one or more variables. For example, prin-

cipal A may let the server S generate an arbitrary shared key for A and B. We can

express this as

A j� S) A
K
$B

8

Here the key K is universally quanti�ed, and we can make explicit this quanti�cation

by writing

A j� 8K:(S) A
K
$B)

For complex delegation statements, it is generally necessary to write quanti�ers

explicitly in order to avoid ambiguities. For example, the reader can verify that the

two formulas

A j� 8K:(S) B) A
K
$B)

A j� S) 8K:(B) A
K
$B)

convey di�erent meanings.

In some of our earlier work on the logic, this need was not recognized, and in fact

it does not arise in any of the examples treated here (there are no nested jurisdiction

statements). Therefore, we leave quanti�ers implicit in this paper.

Our formal manipulation of quanti�ers is quite straightforward. All we use is the

ability to instantiate variables in jurisdiction statements, as re
ected by the rule

P j� 8V1 : : : Vn:(Q) X)

P j� Q0) X 0

where Q0) X 0 is the result of simultaneously instantiating the variables V1; : : : ; Vn in

Q) X.

Idealized protocols

In the literature, each protocol step is typically written in the form

P ! Q : message

This denotes that the principal P sends the message and that the principal Q receives

it. The message is presented in an informal notation designed to suggest the bit-string

that a concrete implementation would use. Unfortunately, this presentation is often

ambiguous and obscure in its meaning, and is not an appropriate basis for formal

analysis.

Therefore, we transform each protocol step into an idealized form. A message in

the idealized protocol is a formula. For instance, in the literature we may �nd the

protocol step

A! B : fA; KabgKbs

9

This may tell B, who knows the key Kbs, that Kab is a key to communicate with A.

This step should then be idealized as

A! B : fA
Kab

$BgKbs

When the message is sent to B, we may deduce that the formula

B / fA
Kab

$BgKbs

holds, indicating that the receiving principal becomes aware of the message and can

act upon it.

In this idealized form, we omit parts of the message that do not contribute to the

beliefs of the recipient. In particular, we remove hints that are added to an implemen-

tation to allow it to proceed in a timely fashion, but whose presence would not a�ect

the result of the protocol if each host were to act spontaneously. For instance, we may

omit a message used as a hint that communication is to be initiated.

The idealized protocols of the examples given below do not include cleartext mes-

sage parts; idealized messages are of the form fX1gK1
; : : : ; fXngKn

, where each en-

crypted part is treated separately. We have omitted cleartext communication simply

because it can be forged, and so its contribution to an authentication protocol is mostly

one of providing hints as to what might be placed in encrypted messages.

We view the idealized protocols as clearer and more complete speci�cations than

the traditional descriptions found in the literature, which we view merely as implemen-

tation-dependent encodings of the protocols. Therefore, we recommend the use of the

idealized forms when generating and describing protocols. Though not entirely trivial,

deriving a practical encoding from an idealized protocol is far less time consuming and

error prone than understanding the meaning of a particular informal encoding.

Nevertheless, in order to study protocols from the existing literature, we must �rst

generate idealized forms for each protocol. In general, it is easy to generate a useful

logical form for a protocol once it is intuitively understood. However, the idealized form

of each message cannot be determined by looking merely at a single protocol step by

itself. Only knowledge of the entire protocol can determine the essential logical contents

of the message. There are guidelines to control what transformations are possible, and

these help in determining the idealized form for a particular protocol step. Roughly,

a real message m can be interpreted as a formula X if whenever the recipient gets m

he may deduce that the sender must have believed X when he sent m. Real nonces

are transformed into arbitrary new formulas; throughout, we assume that the sender

10

believes these formulas. The notation hXiY , which denotes the use of Y as a secret, can

be introduced only when the secret is intended as a proof of identity. Most important,

for the sake of soundness, we always want to guarantee that each principal believes the

formulas that he generates as messages.

Protocol analysis

From a practical viewpoint, the analysis of a protocol is performed as follows:

� The idealized protocol is derived from the original one.

� Assumptions about the initial state are written.

� Logical formulas are attached to the statements of the protocol, as assertions about

the state of the system after each statement.

� The logical postulates are applied to the assumptions and the assertions, in order

to discover the beliefs held by the parties in the protocol.

This procedure may be repeated as new assumptions are found to be necessary

and as the idealized protocol is re�ned.

More precisely, we annotate idealized protocols with formulas andmanipulate these

formulas with the postulates. A protocol is a sequence of \send" statements S1; : : : ; Sn,

each of the form P ! Q : X with P 6= Q. An annotation for a protocol consists of a

sequence of assertions inserted before the �rst statement and after each statement; the

assertions we use are conjunctions of formulas of the forms P j� X and P /X. The �rst

assertion contains the assumptions, while the last assertion contains the conclusions.

Roughly, annotations can be understood as simple formulas in Hoare logic. We write

them in the familiar form

[assumptions] S1 [assertion 1] : : : [assertion n� 1] Sn [conclusions]

(In the examples below, however, we do not demonstrate the use of this notation, since

we wish to concentrate on the assumptions and conclusions.)

We want annotations to be valid in the following sense: if the assumptions hold

initially, then each assertion holds after the execution of the protocol pre�x that it

follows. Clearly, validity is a semantic concept. Its syntactic counterpart is derivability;

we give rules to derive legal annotations to protocols:

� For single protocol steps: the annotation [Y] (P ! Q : X) [Y; Q / X] is legal. All

formulas that hold before a message is sent still hold afterwards; the only new

development is that the recipient sees the message.

11

� For sequences of protocol steps: if the annotations [X]S1 : : : [Y] and [Y]S01 : : : [Z]

are legal then so is [X]S1 : : : [Y]S
0
1 : : : [Z]. Thus, annotations can be concatenated.

� Logical postulates are used:

� If X is an assertion (but not the assumptions) in a legal annotation A, if X 0

is provable from X, and if A0 is the result of substituting X 0 for X in A, then

A0 is a legal annotation. Thus, new assertions can be derived from established

ones.

� If X is the assumptions of a legal annotation A, if X 0 is provable from X,

and if A0 is the result of substituting (X;X 0) for X in A, then A0 is a legal

annotation. Thus, the consequences of the original assumptions can be written

down explicitly next to the original assumptions.

A legal annotation of a protocol is much like a sequence of comments about the

states of belief of principals in the course of authentication. Step by step, we can follow

the evolution from the original assumptions to the conclusions|from the initial beliefs

to the �nal ones.

On time

Note that our logic has not, and does not need, any notion of time to be associated

with individual statements. The requirement to deal with time is entirely satis�ed

by the division of time into past and present, and by the semantics of the constructs

themselves. This is possible because we found it su�cient to reason with stable for-

mulas, that is, formulas that stay true for the whole run of the protocol once they

become true. In addition, we represent protocols as sequential algorithms and ignore

concurrency issues. As in the published protocols, a partial ordering of algorithmic

steps is imposed by functional dependence.

It was a conscious decision to avoid the explicit use of time in the logic presented,

and we found it unnecessary for describing the protocols investigated so far. We feel

that, though this approach might seem simple-minded, it has greatly increased the

ease with which the logic can be manipulated. More ambitious proofs may require

�ner temporal distinctions, re
ected by constructs to reason about additional epochs,

or even general-purpose temporal operators (see, for example, Nguyen & Perry; Halpern

& Vardi 1986). However, it is not clear that such proofs would o�er greater insight into

the workings of the protocols, nor be simple enough to construct without considerable

expertise.

12

It should be noted that some authentication protocols make use of timestamps,

but this does not require time to be made explicit in the logic. As for nonces in general,

the only important property of timestamps is whether they are known to be fresh.

3. The Goals of Authentication, Formalized

Initial assumptions must invariably be made to guarantee the success of each protocol.

Typically, the assumptions state what keys are initially shared between the principals,

which principals have generated fresh nonces, and which principals are trusted in certain

ways. In most cases, the assumptions are standard and obvious for the type of protocol

being considered. Occasionally, however, analysis of a protocol suggests that further

assumptions are made. Once all the assumptions have been written, the veri�cation of

a protocol amounts to proving that some formulas hold as conclusions.

There is room for debate about what should be the goals of authentication pro-

tocols that these conclusions describe. Often authentication is a precursor to some

communication protected by a shared session key, so we might desire conclusions that

describe the situation at the start of such a communication. Thus, we might deem that

authentication is complete between A and B if there is a K such that:

A j� A
K
$B

B j� A
K
$B

Some authentication protocols achieve more than this. In particular, many achieve, in

addition:

A j� B j� A
K
$B

B j� A j� A
K
$B

However, common belief in the goodness of K is never required|that is, A and B need

not believe that they both believe that they both believe that : : : they both believe that

K is good. Some protocols may attain only weaker goals, as for example A j� B j� X,

for some X, which re
ects only that A believes that B has recently sent messages and

exists at present.

Some public-key protocols are not intended to result in the exchange of a shared

key, but instead transfer some other piece of data. For example, the interaction of a

principal with the certi�cation authority might be intended to transfer a single public

key:

A j�
K
7!B

13

In addition, principals may establish some shared secrets:

A j� A
Na

*)B

In such cases, the required goals are generally obvious from the context.

In the following sections, we examine a number of protocols and determine the

nature of the guarantees they o�er.

4. The Otway-Rees Protocol

Otway and Rees proposed a shared-key authentication protocol which involves two

principals and an authentication server (1987). The protocol is attractive in that it

provides good timeliness guarantees in a small number of messages. Moreover, it makes

no use of synchronized clocks, and is easily implemented as two nested remote procedure

calls. Although not widely used, it is a well designed protocol that may have application

in certain environments.

We give the protocol below, with A and B as the two principals, Kas and Kbs as

their private keys, S as the authentication server. The principals A and B generate

the nonces Na, Nb, andM ; the server S generates Kab, which becomes the session key

between A and B.

Message 1 A! B: M; A; B; fNa; M; A; BgKas

Message 2 B ! S: M; A; B; fNa; M; A; BgKas
; fNb; M; A; BgKbs

Message 3 S ! B: M; fNa; KabgKas
; fNb; KabgKbs

Message 4 B ! A: M; fNa; KabgKas

This message sequence is represented in the diagram below.

A passes to B some encrypted material useful only to the server, together with

enough information for B to make up a similar encrypted message. B forwards both

to the server, who decrypts and checks whether the components M , A, and B match

in the encrypted messages. If so, S generates Kab and embeds it in two encrypted

messages, one for each participant, accompanied by the appropriate nonces. Both are

sent to B, who forwards the appropriate part to A. Then A and B decrypt, check their

nonces, and if satis�ed proceed to use Kab.

14

S

A B

3: M; fNa; KabgKas
; 2: M; A; B; fNa; M; A; BgKas

;

fNb; KabgKbs
fNb; M; A; BgKbs

1: M; A; B; fNa; M; A; BgKas

4: M; fNa; KabgKas

The Otway-Rees Protocol

Now we transform the protocol. The nonce Nc corresponds to M , A, B in the

protocol description above.

Message 1 A! B: fNa; NcgKas

Message 2 B ! S: fNa; NcgKas
; fNb; NcgKbs

Message 3 S ! B: fNa; (A
Kab

$B); (B j� Nc)gKas
;

fNb; (A
Kab

$B); (A j� Nc)gKbs

Message 4 B ! A: fNa; (A
Kab

$B); (B j� Nc)gKas

The idealized messages correspond quite closely to the messages described in the

published protocol. We omit cleartext communication throughout, since it provides no

guarantees of any kind.

Further di�erences can be seen in the idealized forms of messages 3 and 4. The

concrete protocol mentions the key Kab, which in this sequence has been replaced by

the statement that A and B can use Kab to communicate. This interpretation of the

messages is possible only because we know how the information in the messages should

be understood. For example, when A receives Na and Kab, he can deduce that the

key Kab is intended for use in talking to B, because the nonce Na appears both in this

message and in A's request for such a key.

15

Even more interesting are the statements A j� Nc and B j� Nc. These do not

appear to correspond to anything in the concrete protocol; they represent the fact that

the messages are sent at all, because if the common nonces had not matched nothing

would ever have happened.

At this point, we can convince ourselves that the idealized protocol accurately

represents the actual one and that the guidelines for constructing idealized protocols

are not violated.

The protocol analyzed

To analyze this protocol, we �rst give the assumptions:

A j� A
Kas

$ S B j� B
Kbs

$S

S j� A
Kas

$ S S j� B
Kbs

$S

S j� A
Kab

$B

A j� (S) A
K
$B) B j� (S) A

K
$B)

A j� (S) (B j� X)) B j� (S) (A j� X))

A j�](Na) B j�](Nb)

A j�](Nc)

The �rst group of four is about shared keys between the clients and the server. The

�fth indicates that the server initially knows a key which is to become a shared secret

between A and B. The next group of four indicates the trust that A and B have in

the server to generate a good encryption key and to forward a message from the other

client honestly. The �nal three assumptions show that three nonces have been invented

by various principals who consider them to be fresh.

Once we have the assumptions and the idealized version of the protocol, we can

proceed to verify it. The rest of the procedure consists merely of applying the postulates

of the logic and the annotation rules to the formulas available. It would be excessive

to give the detailed deductions that we have checked mechanically|however, we would

be happy to provide details of our formal proofs to readers interested in constructing

their own. The proof may be brie
y outlined as follows.

A sends his message to B. Now B sees the message, but does not understand it:

B / fNa; NcgKas

16

B is able to generate a message of the same form and to pass it on to S along with

A's message. On receiving the message, S can decrypt each encrypted part according

to the relevant message-meaning postulate, and so deduce that both A and B have

encrypted the nonce Nc in their messages:

S j� A j� (Na;Nc)

S j� B j� (Nb;Nc)

Note that S cannot tell whether this message is a replay or not, since there is nothing

in the message that he knows to be fresh. S emits a message containing two encrypted

messages to B. One of the parts is intended for A, and B passes it on.

At this point, both A and B have received a message from the server containing

a new encryption key and a nonce. We successively apply the postulates on message

meaning, nonce veri�cation, and jurisdiction, and emerge with the following �nal be-

liefs:

A j� A
Kab

$B B j� A
Kab

$B

A j� B j� Nc B j� A j� Nc

It is interesting to note that this protocol does not make use ofKab as an encryption

key, so neither principal can know whether the key is known to the other. A is in a

slightly better position than B, in that A has been told that B emitted a message

containing a nonce that A believes to be fresh. This allows A to infer that B has sent

a message recently|B exists. B has been told by the server that A has used a nonce,

but B has no idea whether this is a replay of an old message or not.

In addition, we may notice that there are various forms of redundancy in the

protocol. Two nonces are generated by A; however the veri�cation using Na could just

as well have been done using Nc. Therefore, Na can be eliminated, so reducing the

amount of encryption in the protocol. Moreover, it is clear from the analysis that Nb

need not be encrypted in the second message. As these possibilities are explored, we

rapidly move towards an improved protocol of di�erent structure.

5. The Needham-Schroeder Protocol (with shared keys)

Many existing authentication protocols are derived from the Needham-Schroeder pro-

tocol (1978). The original protocol is interesting, both because so much work has been

based on it, and also because it has a serious weakness.

17

This protocol has the same cast of players as the Otway-Rees protocol.

Message 1 A! S: A; B; Na

Message 2 S ! A: fNa; B; Kab; fKab; AgKbs
gKas

Message 3 A! B: fKab; AgKbs

Message 4 B ! A: fNbgKab

Message 5 A! B: fNb � 1gKab

Here only A makes contact with the server, who provides A with the session key,

Kab, and a certi�cate encrypted with B's key conveying the session key and A's identity

to B. Then B decrypts this certi�cate and carries out a nonce handshake with A to be

assured that A is present currently, since the certi�cate might have been a replay. The

use of Nb � 1 in the last message is conventional. Almost any function of Nb would

do, as long as B can distinguish his message from A's|thus, subtraction is used to

indicate that the message is from A, rather than from B.

S

A B

1: A; B; Na

2: fNa; B; Kab; fKab; AgKbs
gKas

3: fKab; AgKbs

4: fNbgKab

5: fNb � 1gKab

The Needham-Schroeder Protocol (with shared keys)

The idealized protocol is as follows:

Message 2 S ! A: fNa; (A
Kab

$B);](A
Kab

$B); fA
Kab

$BgKbs
gKas

Message 3 A! B: fA
Kab

$BgKbs

18

Message 4 B ! A: fNb; (A
Kab

$B)gKab
from B

Message 5 A! B: fNb; (A
Kab

$B)gKab
from A

The �rst message is omitted, since it does not contribute to the logical properties

of the protocol. The result is as if S acted spontaneously. The last two messages of

the idealized protocol are written in full, including the senders' names. This is merely

to distinguish the two messages, which might otherwise be confused. In this case, the

concrete realization of this distinction is, of course, the subtraction in the �nal message.

The additional statements about the key Kab in messages 2, 4, and 5 are present

to assure A that the key can be used as a nonce and to assure each principal that

the other believes the key is good. These statements can be included because neither

message would have been sent if the statements were not believed.

The protocol analyzed

To start, we give some assumptions:

A j� A
Kas

$ S B j� B
Kbs

$S

S j� A
Kas

$ S S j� B
Kbs

$S

S j� A
Kab

$B

A j� (S) A
K
$B) B j� (S) A

K
$B)

A j� (S)](A
K
$B))

A j�](Na) B j�](Nb)

S j�](A
Kab

$B) B j�](A
K
$B)

Most of the assumptions are routine. The �rst group of �ve describes the keys initially

known to the principals. The next three indicate exactly what the clients trust the

server to do. As before, S is trusted to make new keys for A and B, but here A also

trusts S to generate a key which has the properties of a nonce. In fact, one can argue

that a good encryption key is very likely to make a good nonce in any case. However,

the need for this assumption has highlighted the need for this feature in the protocol.

The last assumption, B j�](A
K
$B), is unusual. As discussed below, the protocol

has been criticized for using this assumption, and the authors did not realize they were

making it. The proof outlined here shows how this added assumption is needed to

attain authentication.

19

Again the detail in the veri�cation is suppressed. First, A sends a cleartext message

containing a nonce. This can be seen by the server, who repeats the nonce in the reply.

The reply from S also contains the new key to be used between A and B. Then A sees

the entire message,

A / fNa; (A
Kab

$B);](A
Kab

$B); fA
Kab

$BgKbs
gKas

which he decrypts. Since A knows Na to be fresh, we can also apply the nonce-

veri�cation postulate, leading to:

A j� S j� A
Kab

$B

A j� S j�](A
Kab

$B)

The jurisdiction postulate enables us to infer:

A j� A
Kab

$B

A j�](A
Kab

$B)

Also, A has seen the part of the message encrypted under B's private key,

A / fA
Kab

$BgKbs

This allows A to send this as a message to B. At this point, B decrypts the message,

and from the appropriate message-meaning postulate, we obtain:

B j� S j� A
Kab

$B

Unlike A, however, B is unable to proceed unless we resort to the dubious assumption

set out above. B knows of nothing in the message which is fresh, so he cannot tell

when this message was generated. B simply assumes that the message from the server

is fresh.

If we make the necessary assumption, the rest of the protocol proceeds without

any problem. We immediately obtain

B j� A
Kab

$B

via the postulates of nonce veri�cation and jurisdiction.

The last two messages cause A and B each to become convinced that the other

exists (that is, he has sent messages recently) and is in possession of the key. B �rst

encrypts his nonce and sends it to A, who can deduce that B believes in the key,

A j� B j� A
Kab

$B

20

because he has been guaranteed the freshness of the key by S. Then A replies similarly,

and B can deduce that A also believes in the key,

B j� A j� A
Kab

$B

Note that the freshness of the nonce Nb is su�cient for B to deduce this. It is not

necessary to reuse the dubious assumption.

This results in the following beliefs:

A j� A
Kab

$B B j� A
Kab

$B

A j� B j� A
Kab

$B B j� A j� A
Kab

$B

In fact, we could extend the idealized protocol, adding A j� B j� A
Kab

$B to the last

message, and obtain even

B j� A j� B j� A
Kab

$B

This conclusion, however, seems to be of little importance for the subsequent use of

the session key.

This is a stronger outcome than in the Otway-Rees protocol, but it is reached at

the cost of the extra assumption that B accepts the key as new. Denning and Sacco

pointed out that compromise of a session key can have very bad results: an intruder has

unlimited time to �nd an old session key and to reuse it as though it were fresh (1981).

Bauer, Berson, and Feiertag pointed out that there are even more drastic consequences

if A's private key is compromised: an intruder can use A's key to obtain session keys to

talk to many other principals, and can continue to use these session keys even after A's

key has been changed (1983). It is comforting that the logical analysis makes explicit

the assumption.

Clearly, the problem is that B has no interaction with S that starts with B's

initiative. It is possible to rectify this by starting with B rather than A, and this

was done by Needham and Schroeder (1987). The note by Needham and Schroeder

was published adjacent to the paper by Otway and Rees. Perhaps for the lack of

a calculus to describe these protocols, none of the people involved realized that the

proposals were essentially the same. The only signi�cant di�erence is that the second

Needham-Schroeder protocol goes on to use the session key (Kab) explicitly, thereby

assuring each principal that the other knows the key, while Otway and Rees allow these

�nal stages to be combined with the �rst transmissions of data.

21

A slight peculiarity in the original Needham-Schroeder protocol is that the cer-

ti�cate fKab; AgKbs
is encrypted with A's key in the second message. Looking back

through the formal analysis, one sees that this does not a�ect the properties of the

protocol, since the certi�cate is sent to B immediately afterwards without further en-

cryption. It may also be noticed that in message 4 a nonce is being sent encrypted

when this is in general not necessary. However, in this instance, if the nonce were sent

unencrypted it would be necessary to send something else encrypted in order for A to

deduce that B knows the session key.

6. The Kerberos Protocol

The Kerberos protocol was developed as part of Project Athena at MIT (Miller et al.

1987), and is now being used by a number of other organizations. It is based on the

Needham-Schroeder protocol, but makes use of timestamps as nonces to remove the

problems shown in the last section and to reduce the total number of messages required.

A slightly simpli�ed version of the protocol is shown below:

Message 1 A! S: A; B

Message 2 S ! A: fTs; L; Kab; B; fTs; L; Kab; AgKbs
gKas

Message 3 A! B: fTs; L; Kab; AgKbs
; fA; TagKab

Message 4 B ! A: fTa + 1gKab

Here, Ts and Ta are timestamps, and L is a lifetime. The protocol description

states that the fourth message is used only if mutual authentication is required.

We idealize the protocol as follows:

Message 2 S ! A: fTs; (A
Kab

$B); fTs; A
Kab

$BgKbs
gKas

Message 3 A! B: fTs; A
Kab

$BgKbs
; fTa; A

Kab

$BgKab
from A

Message 4 B ! A: fTa; A
Kab

$BgKab
from B

As in the Needham-Schroeder protocol, the �rst message is omitted, since it does

not contribute to the logical properties of the protocol. For simplicity, the lifetime L

has been combined with the timestamp Ts, and is treated just like a nonce.

22

S

A B

1: A; B
2: fTs; L; Kab; B; fTs; L; Kab; AgKbs

gKas

3: fTs; L; Kab; AgKbs
; fA; TagKab

4: fTa + 1gKab

The Kerberos Protocol

There is some potential for confusion between the second half of the third message

and the last message. In the idealized protocol, we avoid this confusion by mentioning

the originators explicitly. In the concrete protocol, either the mention of A in the third

message or the addition in the fourth su�ce to distinguish the two. There is no obvious

reason for the use both features, though it seems likely that the second was inherited

from the Needham-Schroeder protocol, in which a nonce is incremented in order to

distinguish two messages that are otherwise identical.

The protocol analyzed

First we write the assumptions, which are quite standard:

A j� A
Kas

$ S B j� B
Kbs

$S

S j� A
Kas

$ S S j� B
Kbs

$S

S j� A
Kab

$B

A j� (S) A
K
$B) B j� (S) A

K
$B)

A j�](Ts) B j�](Ts)

B j�](Ta)

It is clear from the last three assumptions that the protocol relies heavily on the use of

synchronized clocks, since each principal believes that timestamps generated elsewhere

23

are fresh.

The analysis is straightforward. A receives message 2, and from the rules of mes-

sage meaning and nonce veri�cation, we obtain:

A j� A
Kab

$B

A / fTs; A
Kab

$BgKbs

A passes on the encrypted message from the authentication server, together with

another message containing a timestamp. Initially, B can decrypt only one part:

B j� A
Kab

$B

Knowledge of the new key allows B to decrypt the rest of the message; we thus obtain:

B j� A j� A
Kab

$B

The fourth message simply assures A that B believes in the key, and received A's last

message. The �nal result is:

A j� A
Kab

$B B j� A
Kab

$B

A j� B j� A
Kab

$B B j� A j� A
Kab

$B

If only the �rst three messages are used, A j� B j� A
Kab

$B is not generated.

That is, the three-message protocol does not convince A of B's existence. As with the

Needham-Schroeder protocol, we can obtain

A j� B j� A j� A
Kab

$B

by adding B j� A j� A
Kab

$B to the fourth message of the idealized protocol. Again,

this conclusion seems to be of little importance for the subsequent use of the session

key.

This result is similar to that for the Needham-Schroeder protocol. However, a

major assumption in the Kerberos protocol is that the principals' clocks are synchro-

nized with the server's clock. In practice, the e�ect of totally synchronized clocks is

obtained by synchronizing clocks to within a few minutes with a secure time server, and

detecting replays within the synchronization interval. However, actual implementations

do not always include this check and so provide only weaker guarantees. Also, as in the

Needham-Schroeder protocol, we can obtain the same �nal beliefs without the double

encryption in message 2.

24

7. The Wide-mouthed-frog Protocol

The following unpublished protocol was proposed by one of us (M.B.), and is perhaps

the simplest protocol that uses shared-key cryptography and an authentication server.

It transfers a key from A to B via S in only two messages by using synchronized clocks,

and by allowing A to choose the session key:

Message 1 A! S: A; fTa; B; KabgKas

Message 2 S ! B: fTs; A; KabgKbs

S

A B

1: A; fTa; B; KabgKas
2: fTs; A; KabgKbs

The Wide-mouthed-frog Protocol

A sends a session key to S, including a timestamp Ta. S checks that the �rst

message is timely, and if it is, it forwards the message to B, together with its own

timestamp Ts. B then checks that the timestamp from S is later than any other it

has received from S. Since all timestamps are either checked or generated by S, each

principal need only record the di�erence between his own clock and S's clock, updating

it whenever clock drift causes an authentication message to be rejected.

The idealized protocol is shown below:

Message 1 A! S: fTa; (A
Kab

$B)gKas

Message 2 S ! B: fTs; A j� A
Kab

$BgKbs

25

The protocol analyzed

The assumptions are as follows:

A j� A
Kas

$ S B j� B
Kbs

$S

S j� A
Kas

$ S S j� B
Kbs

$S

A j� A
Kab

$B B j� (A) A
K
$B)

B j� (S) A j� A
K
$B)

S j�](Ta) B j�](Ts)

As in the Kerberos protocol, synchronized clocks are required. The more unusual

assumptions are that A knows the session key in advance, and that B trusts A to

invent good keys.

The analysis is almost trivial. S receives the �rst message, and we deduce:

S j� A j� A
Kab

$B

S then sends the second message, which B receives and interprets. From the rules

of message meaning, nonce veri�cation, and jurisdiction, we obtain the �nal beliefs:

A j� A
Kab

$B B j� A
Kab

$B

B j� A j� A
Kab

$B

The most dubious assumption in this protocol is that B trusts A to invent good

keys. None of the protocols presented in this paper attempt to deal with malice on the

part of one of the principals|either principal could simply reveal his keys to a third

party. However, in this case, A is being trusted to be competent, rather than to be

non-malicious. If the generation of session keys requires more care than A is expected

to take, one might be unwilling to use this protocol. Of course, this assumption can

be avoided, but only at the cost of an extra message, which allows B to pass on to A

a session key invented by S.

8. The Andrew Secure RPC Handshake

An early version of the Andrew secure RPC protocol uses an authentication handshake

between two principals whenever a client binds to a new server (Satyanarayanan 1987).

The handshake is intended to allow a client, which we call A, to obtain a new session

key K 0
ab from a server B, given that they already share a key, Kab. This protocol is

vulnerable to an attack similar to that observed in the Needham-Schroeder protocol;

it is no longer used.

26

We discuss it here as an illustration of how easily such problems can be missed,

and of how they manifest themselves in the logic.

Message 1 A! B: A; fNagKab

Message 2 B ! A: fNa + 1; NbgKab

Message 3 A! B: fNb + 1gKab

Message 4 B ! A: fK 0
ab; N

0
bgKab

Na and Nb are nonces; N
0
b is an initial sequence number to be used in subsequent

communication. The �rst message simply transfers a nonce, which B returns in the

second message. If A is satis�ed with the reply, he returns B's nonce. After B receives

and checks the third message, he sends a new session key to A. As in the Kerberos

protocol, nonces are returned incremented by one, even though there is no danger of

generating identical messages during the protocol.

A B

1: A; fNagKab

2: fNa + 1; NbgKab

3: fNb + 1gKab

4: fK 0
ab; N

0
bgKab

The Andrew Secure RPC Handshake

The idealized protocol closely resembles the real one:

Message 1 A! B: fNagKab

Message 2 B ! A: fNa; NbgKab

Message 3 A! B: fNbgKab

Message 4 B ! A: fA
K0

ab

$B; N 0
bgKab

27

The protocol analyzed

First, we write the assumptions:

A j� A
Kab

$B B j� A
Kab

$B

A j� (B) A
K
$B) B j� A

K0

ab$B

A j�](Na) B j�](Nb)

B j�](N 0
b)

The �rst group of two indicates that A and B initially share a key. The next two show

that B has invented a new key, and that A trusts B to invent good keys. Finally, each

client is able to generate fresh nonces.

We can now proceed with the analysis. The �rst message gives, simply:

B j� A j� Na

B / Na

The second message contains a nonce that A believes is fresh, so we can deduce:

A j� B j� (Na;Nb)

Hence, A knows that B exists. Similarly, the third message gives us:

B j� A j� Nb

B, now assured of A's existence, sends the new key, and we obtain the �nal beliefs:

B j� A
K0

ab$B

A j� B j� (A
K0

ab

$B; N 0
b)

B j� A j� Nb

A j� B j� (Na; Nb)

Unfortunately, we cannot proceed further. We cannot obtain A j� B j� A
K0

ab

$B

because there is nothing in the fourth message that A believes to be fresh. We must

conclude that the protocol su�ers from the weakness that an intruder can replay an

old message as the last message in the protocol, and convince A to use an old, possibly

compromised session key. This problem is similar to that found in the Needham-

Schroeder protocol. Fortunately, the problem can be �xed simply by adding the nonce

Na to the last message:

Message 4 B ! A: fK 0
ab; N

0
b; NagKab

28

In fact, more substantial changes to the protocol can also reduce the total amount

of encryption needed. The nonces are not used as secrets, and so need not be encrypted

when �rst mentioned. Similarly, the starting sequence number N 0
b could just as easily

be sent in clear, or identi�ed with one of the other nonces.

We arrive at a stronger protocol than the original one, but use less encryption. It

su�ces for B to send a key K 0
ab (along with a nonce Na),

B ! A: fNa; A
K0

ab

$BgKab

In a concrete implementation, Na may be a timestamp or a nonce that A sent to B in

a recent unencrypted message. A must reply with an acknowledgement that K 0
ab has

been accepted,

A! B: fA
K0

ab

$BgK0

ab

B believes this message is timely because K 0
ab is fresh, B j�](A

K0

ab

$B). Optionally, B

can go on to send an initial sequence number N 0
b in clear.

If this new protocol is analyzed, we obtain the �nal beliefs:

A j� A
K0

ab

$B B j� A
K0

ab

$B

A j� B j� A
K
0

ab

$B B j� A j� A
K
0

ab

$B

As a concrete realization of the protocol, we propose:

Message 1 A! B: A; Na

Message 2 B ! A: fNa; K
0
abgKab

Message 3 A! B: fNagK0

ab

Message 4 B ! A: N 0
b

In message 3, the use of Na is arbitrary; any predictable message will assure B that A

has encrypted something with the new key.

29

9. The Yahalom Protocol

The logic as we have described it serves in the analysis of a variety of protocols. On

occasion, however, we have had to integrate new mechanisms for reasoning about some

intriguing protocols. This section exempli�es how we adapt the logic, in this case to

handle uncerti�ed keys, and also illustrates the use of secrets. Once more, the logic

guides us in understanding the operation of a protocol and in suggesting improvements

to it. We consider the following ingenious protocol, due to Yahalom (personal commu-

nication 1988).

Message 1 A! B: A; Na

Message 2 B ! S: B; fA; Na; NbgKbs

Message 3 S ! A: fB; Kab; Na; NbgKas
; fA; KabgKbs

Message 4 A! B: fA; KabgKbs
; fNbgKab

S

A B

3: fB; Kab; Na; NbgKas
; 2: B; fA; Na; NbgKbs

fA; KabgKbs

1: A; Na

4: fA; KabgKbs
; fNbgKab

The Yahalom Protocol

The cast is the usual one. The novelty here is that the unusual sequence of messages

results in strong guarantees for both A and B with few messages: A sends a nonce Na

to S, indirectly, then gets it back with the key Kab, and B sends a nonce Nb to S, then

gets it back with the key Kab, indirectly.

30

As the idealized version of this protocol, we propose:

Message 2 B ! S: fNa; NbgKbs

Message 3 S ! A: fA
Kab

$B;](A
Kab

$B); Na; Nb; B j� NagKas
;

fA
Kab

$BgKbs

Message 4 A! B: fA
Kab

$BgKbs
; fhNb; A

Kab

$B; S j�](A
Kab

$B)iNb

gKab

The �rst message is omitted, since it does not a�ect the logical analysis. The

result is as if B acted spontaneously. In the third and fourth messages it is necessary

to make explicit that the server asserts that the key Kab is fresh; this does not alter the

essence of the protocol in any signi�cant way|a good key should probably share the

properties of a nonce. An unusual feature of the protocol is the use of Nb as a shared

secret in the fourth message.

The protocol analyzed

Most of the initial assumptions here are the same as for the Otway-Rees and

Needham-Schroeder protocols:

A j� A
Kas

$ S B j� B
Kbs

$ S

S j� A
Kas

$ S S j� B
Kbs

$S

S j� A
Kab

$B

A j� (S) A
K
$B) B j� (S) A

K
$B)

A j�](Na) B j�](Nb)

However, several additional assumptions are also made in this protocol:

S j�](A
Kab

$B)

B j� (S)](A
K
$B))

B j� (A) S j�](A
K
$B))

A j� (S) B j� N)

B j� A
Nb

*)B

The �rst three additional assumptions are needed because B must know that the session

key is fresh in order to deduce the timeliness of the fourth message. The next represents

A's trust in S to pass on a nonce from B. The last assumption is interesting in that it

was surprising to the author of the protocol. The protocol actually uses Nb as a shared

secret, although it was thought of simply as a nonce when the protocol was designed.

31

The second message produces:

S j� B j� (Na; Nb)

From the third message, using the message-meaning, nonce-veri�cation, and juris-

diction rules, we derive:

A / Nb

A j� A
Kab

$B

A j� S j�](A
Kab

$B)

A j� B j� Na

The fourth message is more complicated. We obtain:

B j� S j� A
Kab

$B

B / A
Kab

$B

However, we cannot proceed further. The protocol leads B to use the key Kab

before ascertaining that it is a good key. That it is a good key is con�rmed only after

its �rst use, with the second part of the fourth message. We discuss below how we

extend the logic to handle uncerti�ed keys. For now, we proceed as if we could derive:

B / hNb; A
Kab

$B; S j�](A
Kab

$B)iNb

Notice that use of the uncerti�ed key allows B to see the contents of the message, but

not to deduce the sender. Since B believes Nb to be both a secret and fresh, we have:

B j� A j� (A
Kab

$B; S j�](A
Kab

$B))

B trusts both S and A in statements about the freshness of the key, so:

B j�](A
Kab

$B)

This allows us to perform nonce veri�cation on the other part of the message,

leading eventually to:

B j� A
Kab

$B

So the �nal beliefs are:

A j� A
Kab

$B B j� A
Kab

$B

32

A j� B j� Na B j� A j� A
Kab

$B

The session key has been distributed, and each principal is aware that the other exists.

The analysis shows two interesting points: Nb is used as a shared secret, and B

trusts A to pass on a statement about the freshness of the key. If A chose to replay

an old key to B in message 4, B could not detect the fraud. This does not represent a

major
aw in the protocol, since the principals are assumed not to be malicious, but

merely highlights an assumption that was not clear at �rst.

A simple change to the protocol removes these features, strengthening the protocol

and simplifying the analysis at the same time. The concrete protocol becomes:

Message 1 A! B: A; Na

Message 2 B ! S: B; Nb; fA; NagKbs

Message 3 S ! A: Nb; fB; Kab; NagKas
; fA; Kab; NbgKbs

Message 4 A! B: fA; Kab; NbgKbs
; fNbgKab

In the analysis of this variant, there is no need to use an uncerti�ed key, because

the timeliness of the last message is guaranteed by the nonce Nb. Moreover, Nb no

longer need be kept secret, so it need not be encrypted in message 2 and the �rst half

of message 3. The resulting protocol has the same outcome, but with less encryption

and considerably fewer assumptions.

On using uncerti�ed keys

As was discovered above, the logic presented so far does not provide any mechanism

for decryption with keys that are not known to be good. Formally, the message-meaning

rules and the rules for / apply only to keys believed good for some speci�ed principal.

Fortunately, it is straightforward to modify the logic and remedy this situation. It

su�ces to make the rules for / more liberal; concretely, we may supplement the rule

P j� Q
K
$P; P / fXgK

P / X

with the rule

P j� R j� Q
K
$P; P / fXgK

P / X

33

Intuitively, this new rule re
ects the fact that P may try any key mentioned to him.

The proposed solution handles this particular protocol, but it fails to handle other more

intricate protocols. In fact, there seems to be no natural place to stop in making the

logic stronger and stronger in this sense, by changing the rules for /.

A more thorough solution requires a fairly serious change in the logic, which we

describe brie
y. Protocol descriptions can be changed to include not only a sequence of

message exchanges but explicit statements for decryption. It becomes the responsibility

of the protocol writer to say which keys should be tried for decryptions. The rules for

annotations would then be extended, to say that the decrypter sees the inside of the

messages he decrypts. The additional complexity of this solution seems unnecessary,

since none of the published protocols we have encountered requires it.

10. The Needham-Schroeder Public-Key Protocol

In their original paper, Needham and Schroeder also proposed a protocol based on

public-key cryptography (1978). This protocol allows two principals to exchange two

independent, secret numbers. This is unlike most other public-key protocols, which

allow the principals to exchange a shared session key. A weakness in the protocol

allows a replay attack in the interactions with the certi�cation authority if a key is

compromised, much as in the Needham-Schroeder protocol discussed in section 5.

The cast remains the usual one, but S operates only as a certi�cation authority;

Ka, Kb, and Ks are the public keys of A, B, and S, respectively; K
�1
s is the secret key

that matches Ks; �nally, Na and Nb are nonce identi�ers.

The message exchange goes as follows:

Message 1 A! S: A; B

Message 2 S ! A: fKb; BgK�1

s

Message 3 A! B: fNa; AgKb

Message 4 B ! S: B; A

Message 5 S ! B: fKa; AgK�1

s

Message 6 B ! A: fNa; NbgKa

Message 7 A! B: fNbgKb

34

S

A B

1: A; B
2: fKb; BgK�1

s

5: fKa; AgK�1

s

4: B; A

3: fNa; AgKb

6: fNa; NbgKa

7: fNbgKb

The Needham-Schroeder Public-Key Protocol

The protocol has two rather independent but interleaved components. It is ex-

pected that, initially, both A and B hold S's public key Ks. Therefore, the principals

A and B can obtain each other's public keys from S. Messages 1, 2, 4, and 5 accomplish

this purpose. In a second component, in messages 3, 6, and 7, A and B use the public

keys obtained. They communicate the secret nonce identi�ersNa andNb. These secrets

can be used later, for signing further messages. For example, if B receives a message

fX; NagKb
, then B may deduce that A sent X.

The idealized protocol is as follows:

Message 2 S ! A: f
Kb

7!BgK�1

s

Message 3 A! B: fNagKb

Message 5 S ! B: f
Ka7!Ag

K
�1

s

Message 6 B ! A: fhA
Nb

*)BiNa

gKa

Message 7 A! B: fhA
Na

*)B; B j� (A
Nb

*)B)iNb

gKb

Messages 1 and 4 are deliberately omitted, since they do not contribute to the logical

properties of the protocol. The idealized protocol proceeds as if S contacted A and B

spontaneously.

35

Messages 2 and 5 are straightforward, but the others require some explanation.

It is interesting to note the di�erence between message 3 and messages 6 and 7. In

message 3, Na is not known to B, and so is not being used to prove the identity of A;

message 3 is used simply to convey Na to B. In messages 6 and 7, Na and Nb are used

as secrets, so the hXiY notation is used. These messages also convey beliefs that have

no representation in the concrete protocol, because the messages would not be sent if

the beliefs were not held.

The protocol analyzed

First we state the assumed initial beliefs of the players:

A j�
Ka

7!A B j�
Kb

7!B

A j�
Ks

7!S B j�
Ks

7!S

S j�
Ka

7!A S j�
Kb

7!B

S j�
Ks

7!S

A j� (S)
K
7!B) B j� (S)

K
7!A)

A j�](Na) B j�](Nb)

A j� A
Na

*)B B j� A
Nb

*)B

A j�](
Kb

7!B) B j�](
Ka

7!A)

Each principal knows the public key of the certi�cation agent S, as well as his own keys.

In addition, S knows his own keys, and the public keys of A and B. Each principal

trusts the certi�cation agent to correctly sign certi�cates giving the public key of the

other. Also, each principal believes that the identi�er that he generates is fresh, and

secret.

The last two assumptions are surprising, and they represent a weakness in the

protocol. Each principal must assume that the message containing the public key of

the other principal is fresh. The di�culty could be resolved by adding timestamps to

messages 2 and 5. This is analogous to the way that Kerberos' timestamps overcome

the problem with the shared-key Needham-Schroeder protocol.

Once the assumptions are made, we apply the rules of message meaning and ju-

risdiction to message 2, to deduce:

A j�
Kb

7!B

36

B can deduce little from message 3, since he cannot know who sent the message. We

obtain simply:

B / Na

Message 5 is similar to message 2, giving:

B j�
Ka7!A

In message 6, B uses the shared secret Na to convince A that the message is from B,

and that the message is timely, giving:

A j� B j� A
Nb

*)B

A is now able to use Nb in message 7. By the arrival of this message, B can deduce A's

current beliefs about the state of the protocol, even though they have no representation

in the concrete protocol. Thus, the �nal beliefs are:

A j�
Kb

7!B B j�
Ka

7!A

A j� B j� A
Nb

*)B B j� A j� A
Na

*)B

B j� A j� B j� A
Nb

*)B

Each principal knows the public key of the other, and has knowledge of a shared secret

which he believes the other will accept as being shared only by the two principals. B

has gained slightly more knowledge through being the last recipient of a message in the

protocol. From this point, A and B can continue to exchange messages using Na, Nb,

and public-key encryption. In this way they can transfer data or other keys securely.

Again, we could extend the idealized protocol, adding
Ka7!A and

Kb

7!B; B j�
Ka7!A

to messages 6 and 7, respectively. We would then obtain

A j� B j�
Ka

7!A B j� A j�
Kb

7!B

B j� A j� B j�
Ka

7!A

These beliefs have no importance for subsequent communication.

37

11. The CCITT X.509 Protocol

A draft recommendation for the CCITT X.509 standard contains a set of three protocols

using between one and three messages (Comit�e Consultatif International T�el�egraphique

et T�el�ephonique (CCITT) 1987). It is our understanding that this has now become an

o�cial recommendation of the CCITT. The protocols are intended for signed, secure

communication between two principals, assuming that each knows the public key of the

other. The three-message version is given below. The two-message and one-message

protocols are formed by removing the last one or two messages respectively.

Unfortunately, the published protocol contains two weaknesses, either of which

can be exploited by an intruder, as we shall demonstrate below. We found one of these

weaknesses while idealizing the protocol and the other during the subsequent analysis.

The protocol shown here has been simpli�ed slightly, in a way which is discussed later.

Message 1 A! B: A; fTa; Na; B; Xa; fYagKb
gK�1

a

Message 2 B ! A: B; fTb; Nb; A; Na; Xb; fYbgKa
gK�1

b

Message 3 A! B: A; fNbgK�1

a

A B

1: A; fTa; Na; B; Xa; fYagKb
gK�1

a

2: B; fTb; Nb; A; Na; Xb; fYbgKa
g
K
�1

b

3: A; fNbgK�1

a

The CCITT X.509 Protocol

Here, Ta and Tb are timestamps, Na and Nb are nonces, and Xa, Ya, Xb, and Yb

are user data. The protocol ensures the integrity of Xa and Xb, assuring the recipient

of their origin, and guarantees the privacy of Ya and Yb.

The idealized protocol is as follows:

38

Message 1 A! B: fTa; Na; Xa; fYagKb
g
K
�1

a

Message 2 B ! A: fTb; Nb; Na; Xb; fYbgKa
g
K
�1

b

Message 3 A! B: fNbgK�1

a

As usual, the timestamps Ta and Tb are viewed simply as nonces in the idealized

protocol.

The protocol analyzed

We assume that each principal knows his own secret key, the other's public key,

and believes his own nonce and the other's timestamp to be fresh.

A j�
Ka

7!A B j�
Kb

7!B

A j�
Kb

7!B B j�
Ka

7!A

A j�](Na) B j�](Nb)

A j�](Tb) B j�](Ta)

From message 1, via the message-meaning rules, we obtain:

B j� A j� Xa

B / Ya

Using Ta for nonce veri�cation, we also derive:

B j� A j� Xa

Note that B j� A j� Ya is not derivable. Message 2 produces:

A j� B j� Xb

A / Yb

Using Tb or Na for nonce veri�cation, we obtain:

A j� B j� Xb

Once again, we cannot obtain A j� B j� Yb. Message 3 gives:

B j� A j� Nb

39

That is, it assures B that A has recently sent Nb.

This represents an outcome weaker than the authors desired. Surprisingly, the

protocol does not lead to B j� A j� Ya or A j� B j� Yb. Although Ya and Yb have each

been transferred in a signed message, there is no evidence to suggest that the sender

is actually aware of the data that he sent in the private part of the message. This

corresponds to a scenario where some third party intercepts a message and removes

the existing signature while adding his own, blindly copying the encrypted section

within the signed message. This problem can be �xed by several means, the simplest

of which is to sign the secret data Ya and Yb before it is encrypted for privacy.

Some redundancy is noticeable in the secondmessage; either Tb orNa is su�cient to

ensure the timeliness of the message. The protocol description states that the checking

of Tb is optional in the three-message version of the protocol. In fact, it is perfectly

reasonable to omit Tb altogether, since it is redundant in both the two and three-

message protocols.

Unfortunately, the document also suggests that Ta need not be checked in the

three-message protocol. This is a serious problem because the checking of Ta is the

only mechanism that establishes the timeliness of the �rst message. Logically, if Ta is

not checked, we cannot perform nonce veri�cation on the �rst message, and we obtain

only B j� A j� Xa instead of B j� A j� Xa.

This di�culty explains the intention of the third message, which is to assure B

that A generated his �rst message recently. The authors seem to have hoped that the

use of Nb would be su�cient to link the third message to the �rst, since Nb links the

last two messages and Na links the �rst two messages. The error here is that Nb alone

does not link the last two messages, and this allows an intruder C to replay one of A's

old messages.

The following concrete exchange illustrates the
aw. The nonce Nb is not secret,

and there is nothing to prevent C from using the same value in an instance of the

protocol between A and C. If C is able to cause A to attempt authentication with C

at the required time, the following sequence of messages can result. The intruder �rst

contacts B:

C ! B: A; fTa; Na; B; Xa; fYagKb
gK�1

a

This is an old message originally sent by A. Remember that B is not presumed to check

the timestamp Ta in the three-message protocol, and so will not discover the replay of

A's original message.

B ! C: B; fTb; Nb; A; Na; Xb; fYbgKa
g
K
�1

b

40

B replies as though the message came from A, and provides a new nonce, Nb. At this

point C causes A to initiate authentication with C, by whatever means.

A! C: A; fT 0
a; N

0
a; C; X

0
a; fY

0
agKc

g
K
�1

a

A has now initiated authentication with C. The exact content of the message is im-

material. C replies to A, providing the nonce Nb, which was originally provided by

B.

C ! A: C; fTc; Nb; A; N
0
a; Xc; fYcgKa

g
K
�1

c

A replies to C, signing the exact message needed for C to convince B that the �rst

message was sent recently by A, and is not a replay of an old message.

A! C: A; fNbgK�1

a

One possible solution is to include B's name in the last message. Since B guar-

antees the uniqueness of his own nonces, he can be sure that this message is linked

uniquely to this instance of the protocol in a timely fashion. The idealized version of

message 3 could then include any beliefs transmitted in message 1, assuring B of their

timeliness.

The X.509 protocol actually uses hashing to reduce the amount of encryption,

though this has not been shown in the description above. The analysis of the protocol

is changed only slightly by the introduction of hashing. The next section deals with

hash functions and how their use can be modelled in the logic.

12. On Hashing

In practice, signatures are costly. Often, principals do not sign whole messages, mainly

for reasons of e�ciency. Rather, in order to sign a (long, mostly cleartext) messagem, a

hashH(m) ofm is computed and signed. Thus, a principalA may sendm; fH(m)gK�1

a

instead of fmgK�1

a

. It remains to understand how this scheme compares with straight-

forward signature methods qualitatively: what guarantees do hash functions o�er?

Obviously, trust in protocols that use hash functions is not always warranted. If H

is an arbitrary function, nothing convinces one that when A has uttered H(m) he must

have also uttered m. In fact, A may never have seen m. This may happen, for instance,

if the author of m gave H(m) to A, who signed it and sent it. This is similar to the way

in which a manager signs a document presented by a subordinate without reading the

41

details of the document. However, the manager expects anyone receiving this signed

document to behave as though the manager had full knowledge of the contents. Thus,

provided the manager is not careless and the hash function is suitable, signing a hash

value should be considered the same as signing the entire message.

Some assumptions underlie the use of hash functions in signatures. As a basic

assumption, it is intended that, given a hash value, it should be computationally in-

feasible to put together a message with the same hash value. Moreover, it should be

computationally infeasible to generate two messages giving the same hash value, to

avoid uncertainty in the identity of the data being signed.

We wish to capture the reasoning implicit in the use of hash functions. We intro-

duce a symbol H to represent each function of interest. A postulate to attribute the

message m to the author of the message H(m) is wanted.

For a hash function H, we postulate:

P j� Q j� H(X); P / X

P j� Q j� X

In fact a stronger postulate appears reasonable, in the case where a message has

been broken up into lots of pieces. This case in fact arises in such proposed standards

as CCITT's X.509 (1987):

P j� Q j� H(X1; : : : ;Xk); P / X1; : : : ; P / Xk

P j� Q j� (X1; : : : ;Xk)

The signi�cance of this postulate is that a principal may see pieces of a composite

message by di�erent means; in particular, some pieces may be the results of decryption.

The principal may indeed come by the various pieces at di�erent times|it makes no

di�erence. When a signed hash of the composite message is received, it is still possible

to deduce the origin of the composite message.

13. Semantics

Hopefully, the formulas liberally sprinkled throughout this paper are intuitively clear.

In this section we take a more formal approach than previously and discuss a formal

semantics of these formulas.

42

Beliefs

We describe an \operational" semantics, according to which principals develop beliefs

by computation. In order to obtain new beliefs, principals are supposed to examine

their current beliefs and apply a few computationally tractable inference rules. These

rules represent the idealized workings of principals in actual authentication protocols.

Thus, the statement that an authentication protocol gives rise to certain beliefs is

a strong one: it means that the principals develop these beliefs even with realistic

computational resources. However, the restrictive, operational notion of belief that we

have adopted would certainly be harmful in the study of security properties, where we

would want to guarantee that intruders learn no secrets even with powerful methods

or algorithms.

The local state of a principal P is two sets of formulas MP and BP . Intuitively,

MP is the set of messages that the principal sees and BP is the set of beliefs of the

principal. The sets MP and BP enjoy some closure properties; for simplicity, we take

closure properties that correspond directly to the inference rules of the logic. For

instance,

if (P
K
$Q) 2 BP and fXgK 2 MP then X 2 MP :

We imagine the closure properties are enforced by algorithms to derive and add new

messages and beliefs.

A global state is a tuple containing the local states of all principals; in all the cases

we consider, it is a triple with the local states of A, B, and S. If s is a global state

then sP is the local state of P in s and BP (s) and MP (s) are the corresponding sets

of beliefs and messages. The satisfaction relation between global states and formulas

has a trivial de�nition: P j� X holds in state s if X 2 BP (s), and P / X holds if

X 2 MP (s). A set (or conjunction) of formulas holds in a given state if each of its

members holds.

A run is a �nite sequence of states s0; : : : ; sn where BP (si) � BP (si+1) and

MP (si) � MP (si+1) for all i � (n � 1) and for each principal P . In other words,

the sets of messages seen and the sets of beliefs can only increase. A run is a run of a

particular protocol if all of the messages the protocol prescribes are communicated|

other messages may be initially present or may come from the environment. More

precisely, a protocol is a �nite sequence of n \send" statements of the form

(P1 ! Q1 : X1); : : : ; (Pn ! Qn : Xn)

43

A run of the protocol is a run of length n+ 1 where Xi 2 MQi
(si) for all i � n.

An annotation for the protocol holds in a run of the protocol if all of the formulas

in the annotation hold in the corresponding states. More precisely, an annotation

consists of n + 1 sets of formulas of the forms P j� X and P / X inserted before and

after statements; it holds in a run of the protocol if the i-th set holds in the i-th state

of the run for all i � n. An annotation is valid if it holds in all runs of the protocol

where the �rst set of the annotation|the assumptions|holds.

Immediately, the annotation rules described earlier are sound: all legal annotations

are valid. Just as trivially, the rules are also complete: all valid annotations are legal.

To see this, given a protocol (P1 ! Q1 : X1); : : : ; (Pn ! Qn : Xn) consider a run

s0; : : : ; sn where only the messagesX1; : : : ;Xn are communicated. All valid annotations

must hold in this run. Furthermore, we can show that any annotation that holds in

this run can be derived.

True beliefs

While the semantics gives a meaning to the operators j� and /, the remaining operators

are still largely a mystery. For instance, the semantics does not determine whether

A j� Na is true or false in a given state. This is a de�ciency if we are interested in

judging the truth of beliefs.

Conjunction and quanti�cation receive their usual interpretation (for quanti�ca-

tion, we assume that the variables range over given domains of principals, keys, and

formulas). In order to give a meaning to the remaining operators, however, the notion

of state needs to be richer than the one we have used so far, as follows:

� Each state associates with each principal P a set OP of formulas that he once said.

This set has three closure properties: if (fXgK from P) 2 OP then X 2 OP ; if

hXiY 2 OP then X 2 OP ; if (X;Y) 2 OP then X 2 OP . We require that if

Pi ! Qi : Xi is the i-th action of a protocol then the set of formulas once said

increases only for Pi in the i-th state of all runs of this protocol. More precisely, if

R 6= Pi then OR(si) = OR(si�1) and OPi (si) is the closure (by the rules above) of

OPi(si�1) [fXig. In addition, each principal must believe all the formulas he has

said recently, in the sense that if X 2 OP (s) because of a message in the protocol

then X 2 BP (s).

The formula P j� X holds in state s if X 2 OP (s).

� In each run each principal P has jurisdiction over a set of formulas JP . We require

that if X 2 JP and P j� X holds then X holds as well.

44

The states in the run satisfy P) X if X 2 JP .

� Each run assigns a set of good shared keys KfP;Qg to each pair of principals P

and Q. We require that these keys are used only by the appropriate principals,

that is, if R / (fXgK from R0) holds and K 2 KfP;Qg then either R0 = P and

(fXgK from P) 2 OP or R0 = Q and (fXgK from Q) 2 OQ.

The states in the run satisfy P
K
$Q if K 2 KfP;Qg.

� Each run assigns a set of good public keys KP to each principal P . We re-

quire that only the appropriate principals use the matching secret keys, that is, if

R / (fXgK�1 from R0) holds andK 2 KP then R0 = P and (fXgK�1 from P) 2 OP .

The states in the run satisfy
K
7!P if K 2 KP .

� Each run assigns a set of shared secrets SfP;Qg to each pair of principals P and Q.

We require that shared secrets are used only by the appropriate principals, that

is, if R / hXiY holds and Y 2 SfP;Qg then either hXiY 2 OP or hXiY 2 OQ.

The states in the run satisfy P
X
*)Q if X 2 SfP;Qg.

� Since we do not concern ourselves with expressions of the forms P j� fXgK and

P j� hXiY , we do not even attempt to assign a truth value to expressions of the

forms fXgK or hXiY .

� Each run determines a set of fresh formulas F . This set has a closure property: if

X 2 F and X is a subformula of Y then Y 2 F . If X 2 F and X was once said

(that is, X 2 OP (si) for some P and i) then X should have been said recently

(that is, X 62 OP (s0) for all P).

The states in the run satisfy](X) if X 2 F .

Clearly, some beliefs are false. This seems essential to a satisfactory semantics.

Questions of trust and delegation, central to our study, would become meaningless

if all beliefs had to be true. Moreover, we can consider many interesting runs|for

instance, those where an intruder has broken the cryptosystem|because we leave open

the possibility of incorrect beliefs.

Let us de�ne knowledge as \truth in all possible worlds" (see, for example, Halpern

& Moses 1984). More precisely, P knows X in state s if and only if X holds in all states

s0 where the local state of P is the same as in s, that is, s0P = sP . In general, the notions

of knowledge and belief are incomparable. For instance, some erroneous initial beliefs

are certainly not knowledge, while each principal knows all tautologies, but does not

necessarily believe them.

45

Most beliefs happen to be true in practice, but the semantics does not account

for this coincidence. To guarantee that all beliefs are true we would need to guarantee

that all initial beliefs are true. In this case, belief is a rudimentary resource-bounded

approximation to knowledge.

14. Conclusions

Recent literature has emphasized the importance of reasoning about knowledge for

understanding distributed computation (see, for example, Halpern & Moses 1984). Fur-

thermore, there have been some formal descriptions of cryptographic protocols (DeMillo

et al. 1982; Merritt & Wolper; Halpern et al. 1988). Although these works have not

suggested useful proof systems, they could serve as a foundation for our more speci�c

analysis of authentication protocols.

In this paper we have described a logic to reason about authentication protocols

and we have treated several examples. The following table lists protocols studied with

the logic and summarizes their attributes.

Needham-
Schroeder
conv. key

Otway-
Rees

Kerberos Wide-
mouthed-

frog

Yahalom Andrew
RPC

Needham-
Schroeder
public key

CCITT
X.509

Goal
distribute

key
distribute

key
distribute

key
distribute

key*
distribute

key
distribute
extra key

establish
secrets

transfer
data

Cryptosystem conv. conv. conv. conv. conv. conv. public key public key

Uses secrets � �

Nonces/clocks nonces nonces clocks clocks nonces nonces nonces both

Proves
presence of

A&B B A&By A A&B A&B A&B A&By

Redundancy � � � � � �

Bugs � � � �z

* In this case, A, rather than a trusted server, generates the key.

y B's presence is guaranteed to A only if optional protocol steps are used.

z Security breaches do not even require key compromise.

The table shows some well-known properties:

the goal of each protocol,

the type of cryptosystem used, shared key or public key,

whether secrets (other than keys) are used, and

whether message timeliness is guaranteed with nonces or synchronized clocks.

46

In addition, we include aspects that our formalism helped bring to light:

whether the protocol proves the presence of each party to the other,

redundancy, and

security problems.

The principals involved in the protocols are A and B; the initiator is A.

The examples in this study show how an extremely simple logic can capture subtle

di�erences between protocols. The logic lacks all features that would make it di�cult

to use, yet it does what is needed. For a variety of protocols, it enables us to exhibit

step by step how beliefs are built up to the point of mutual authentication. For other

protocols, it guides us in identifying mistakes and suggesting corrections.

Acknowledgements

The work was undertaken as the result of a suggestion by Butler Lampson. Andrew Bir-

rell, Luca Cardelli, Dorothy Denning, Butler Lampson, Tim Mann, Michael Schroeder,

Jennifer Steiner, and anonymous referees encouraged the work and suggested improve-

ments to the paper. Chris Mitchell provided information on the CCITT protocol.

Kathleen Sedehi typeset an early version of this paper and produced the �gures, and

Cynthia Hibbard provided editorial assistance.

47

References

Burrows, M., Abadi, M. & Needham, R.M. 1988 Authentication: A Practical Study

in Belief and Action. Proceedings of the Second Conference on Theoretical Aspects

of Reasoning about Knowledge, M. Vardi, ed., pp. 325{342.

Bauer, R.K., Berson, T.A. & Feiertag, R.J. 1983 A Key Distribution Protocol using

Event Markers. ACM Transactions on Computer Systems Vol. 1, No. 3, pp. 249{

255.

CCITT 1987 Draft Recommendation X.509. The Directory-Authentication Frame-

work, Version 7. Gloucester.

DeMillo, R.A., Lynch, N.A. & Merritt, M.J. 1982 Cryptographic Protocols. Proceed-

ings of the Fourteenth ACM Symposium on the Theory of Computing, pp. 383{400.

Denning, D.E. & Sacco, G.M. 1981 Timestamps in Key Distribution Protocols. CACM

Vol. 24, No. 8, pp. 533{536.

Dolev, D. & Yao, A.C. 1983 On the Security of Public Key Protocols. IEEE Transac-

tions on Information Theory Vol. IT-29, No. 2, pp. 198{208.

Hoare, C.A.R. 1969 An Axiomatic Basis for Computer Programming. CACM Vol. 12,

No. 10, pp. 576{580.

Halpern, J.Y. & Moses, Y.O. 1984 Knowledge and Common Knowledge in a Dis-

tributed Environment. Proceedings of the Third ACM Conference on the Principles

of Distributed Computing, pp. 480{490.

Halpern, J.Y., Moses, Y.O. & Tuttle, M.R. 1988 A Knowledge-Based Analysis of Zero

Knowledge (Preliminary Report). Proceedings of the Twentieth ACM Symposium

on Theory of Computing, pp. 132{147.

Halpern, J.Y. & Vardi, M.Y. 1986 The Complexity of Reasoning about Knowledge and

Time. Proceedings of the Eighteenth ACM Symposium on the Theory of Computing,

pp. 304{415.

Millen, J.K., Clark, S.C. & Freedman, S.B. 1987 The Interrogator: Protocol Security

Analysis. IEEE Transactions on Software Engineering Vol. SE-13, No. 2, pp. 274{

288.

Miller, S.P., Neuman, C., Schiller, J.I. & Saltzer, J.H. 1987 Kerberos Authentication

and Authorization System. Project Athena Technical Plan Section E.2.1, MIT.

Merritt, M.J. & Wolper, P.L. States of Knowledge in Cryptographic Protocols. Draft.

Nguyen, V. & Perry, K.J. Do We Really Know What Knowledge Is? Draft.

49

Needham, R.M. & Schroeder, M.D. 1978 Using Encryption for Authentication in Large

Networks of Computers. CACM Vol. 21, No. 12, pp. 993{999.

Needham, R.M. & Schroeder, M.D. 1987 Authentication Revisited. Operating Systems

Review Vol. 21, No. 1, p. 7.

Otway, D. & Rees, O. 1987 E�cient and Timely Mutual Authentication. Operating

Systems Review Vol. 21, No. 1, pp. 8{10.

Rivest, R.L., Shamir, A. & Adleman, L. 1978 A Method for Obtaining Digital Signa-

tures and Public-key Cryptosystems. Communications of the ACM Vol. 21, No. 2,

pp. 120-126.

Satyanarayanan, M. 1987 Integrating Security in a Large Distributed System. CMU

technical report CMU-CS-87-179.

Voydock, V.L. & Kent, S.T. 1983 Security Mechanisms in High-Level Network Proto-

cols. Computing Surveys Vol. 15, No. 2, pp. 135{171.

50

