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Authors’® abstract

The paper studies the incorporation of a fair nondeterministic choice operator into a
generalization of Dijkstra’s calculus of guarded commands. The new operator is not
monotonic for the orderings that are generally used for proving the existence of least
fixpoints for recursive definitions. To prove the existence of a fixpoint it is necessary
to consider several orderings at once, and to restrict the class of recursive definitions.

Manfred Broy and Greg Nelson



Perspective

Over a decade ago, Dijkstra developed a weakest-precondition calculus for reasoning
about programs written in a simple language of guarded commands. The basis of the
calculus is the idea that the meaning of a statement S is a predicate transformer
wp(S,.), where wp(S, P) asserts what must be true initially if an execution of S has
to terminate with P true.

Dijkstra’s language was distinguished from conventional toy languages by the funda-
mental position it accorded to nondeterministic operations. It may also have been the
first language proposed since BASIC that did not include recursive procedures, which
were omitted because the weakest-precondition calculus could not handle recursive
programs.

In SRC Research Report 16, Greg Nelson extended Dijkstra’s calculus to general
recursive programs. In the spirit of denotational semantics, the meaning of a recursive
program is defined by a least fixpoint. A key element of his approach was extending
the language to allow partial commands—ones that could fail and cause backtracking.
This allowed him to give meanings to individual components of a statement, and to
derive the meaning of a complete statement from the meanings of its components.
For example, the [] of Dijkstra’s language becomes an operator for composing partial
commands, where A [] B means execute either A or B.

The present report generalizes the prior results to a further extension of Dijkstra’s
language, obtained by adding the “dovetail” operator V. Intuitively, A V B means
execute both A and B, independently, and take the result produced by either of them
that terminates. Thus, the results that can be produced by executing A [] B and
A V B are the same. However, A [| B may fail to terminate—not producing any
result—if either A or B fails to terminate, while A V B must terminate if either A
or B does.

The dovetail operator introduces fairness into the language. The command A V B
can be implemented by running A and B in parallel, with a fair scheduler, and tak-
ing the result of whichever finishes first. Fairness traditionally means trouble. The
dovetail operator, together with recursion, provides unbounded nondeterminism—for
example, the ability to write a terminating, nondeterministic statement that can set
z to any integer. Dijkstra’s original calculus is unsound for any language with un-
bounded nondeterminism. Fairness and unbounded nondeterminism also wreak havoc
with denotational methods, since they lead to discontinuity.

This report uses least fixpoints to define the meaning of commands in the extended
language, which includes recursion and the dovetail operator. The price of handling
fairness is the possibility that a recursive equation purporting to define a command
does not have a solution. It appears that computer scientists, like mathematicians,
must face the existence of equations that have no solutions.

Leslie Lamport
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1. Introduction

The fixpoint method of denotational semantics is so successful that it is a
surprise to find a programming language construct for which it doesn’t seem
to work. But this is the case for the dovetail operator, which, although
it is not popular among programming language designers, is of theoretical,
and maybe also practical, importance. The operational definition of dovetail
(which we shall write V) is as follows:

AV B

= Execute the commands A and B in parallel, on separate copies of the
state, interleaving the two computations non-deterministically but fairly,

accepting as an outcome any proper (i.e., non-looping) outcome of either
Aor B.

By “fairly” it is meant that neither computation is starved: if the compu-
tation is infinite, then each of the A and B parts are either infinite, or else
run to completion without producing an outcome, as can happen in the case
of partial commands. Partial commands are those that do not satisfy the
Law of the Excluded Miracle: viewed as relations, they are partial; viewed
operationally, they may “fail”—that is, backtrack.

As a hint at the power of the dovetail operator, we show how it imme-
diately leads to unbounded nondeterminism. Operationally, a recursive call
can be treated by replacing the call with the righthand side of the recursive
definition whenever necessary. This makes it obvious that the recursion

X = n:=0V (X;n:=n+1))

has the solution X = “set n to any natural number”. This is in contrast to
the recursion

Y = (n:=00 (Y ;n:=n+1))

which has the solution ¥ = “set n to any natural number, or loop”. (The
semicolon operator represents sequential composition and the operator [] rep-
resents nondeterministic choice. The recursion with ] can loop, since a re-
cursive call is available at every choice. The recursion with ¥ cannot loop,
since at each level of recursion—in particular, at the outermost level—the
n := 0 branch cannot be delayed indefinitely.)

Unbounded nondeterminism can be handled in Dijkstra’s calculus—for
example, see Boom’s paper [0]. But the dovetail operator is more of a chal-
lenge.



The dovetail operator is the imperative counterpart of the ambiguity
operator introduced by McCarthy in 1963: “We define a basic ambiguity
operator amb(z,y) whose possible values are z or y when both are defined,
otherwise, whichever is defined” [2]. The ambiguity operator is not mono-
tonic in the orderings of either the Smyth or the Plotkin powerdomains.
Therefore its fixpoint theory, presented by Broy in 1986, is far from straight-
forward [1]. The dovetail operation also is not monotonic, and to treat it
by the fixpoint method requires some of Broy’s techniques. But the pres-
ence of partial commands introduces additional difficulties. In fact, in the
axiomatic definitions that we propose, not all recursions involving dovetail
have solutions.

2. Preliminaries

Our framework is the generalization of Dijkstra’s calculus described by Nel-
son in SRC-16 (3], which will be briefly described in this section.

We use a left-associative infix dot to denote function application, to-
gether with Curry’s convention for reducing n-ary functions to unary func-
tions. That is, we write f.z instead of f(z), and g.z.y instead of g(z,y), and
g.z instead of (Ay. g(z,y)).

A command A is defined to be a pair of predicate transformers, writ-
ten wp.A and wlp.A, satisfying the pairing condition, which is that for any
predicate R,

wp.A.R = wp.A.TRUE A wip.A.R,

and the conjunctivity condstion, which is that wlp.A distributes over any
‘conjunction. It follows that the predicate transformer wp.A distributes over
any non-empty conjunction.

For any command A, we define two predicates, read guard of A and halt
of A, as follows:

grd.A = - wp.A.FALSE,
hit.A = wp.A.TRUE.

The predicate grd.A characterizes those states from which failure is im-
possible; the predicate hlt.A characterizes those states from which termina-
tion is guaranteed. If grd.A = TRUE, then A is a total command.

For commands A and B, we define

ACup B : wp.A.R = wp.B.R for any R

ACwp B wip.B.R = wlp.A.R for any R
ACB : ACwpBand AC, ), B
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The relation A C B is read A approzimates B; it is a complete partial
order on the set of all commands. Operationally, A approximates B if A
can be obtained by substituting looping outcomes for some of B’s outcomes.
For example, executing a command for a limited amount of time produces an
approximation to the command, provided that computations that exceed the
time limit are classified as loops. Thus Loop approximates every command,
and a command with no looping outcomes approximates no command except
itself.

Notice that we have inverted the definition of Cjp given in SRC-16; this
change makes formulas more readable.

We will use square brackets to denote the following drastic map on
predicates: [TRUE| = TRUE, and [P] = FALSE for all other P.

We will write
(operation dummies : range : term)

to denote the combination via the given operation of the values assumed by
the given term as the dummies vary over the given range. The operation
must be commutative, associative, and (if the range is empty) possess an
identity. If the range is obvious from the context, it will be omitted. For
example, the greatest lower bound of the set S of predicates is denoted by
(NP:P€S:P),orby (AP P)if Sis obvious from the context.

In order to express formulas involving the two operators wp and wlp
compactly, the parenthesis convention will be used: a formula containing
parenthesized expressions represents two formulas, in one of which the paren-
thesized expressions are ignored, in the other of which each parenthesized
expression is either inserted, or substituted for the item to its left, whichever
is suggested by the context. For example, consider the following two formu-
las, proved in SRC-16, in which A ranges over any C-chain and U denotes
join (that is, least upper bound) with respect to C:

wip.(U A :: A).R = (A A : wip.A.R)
wp.(U A:: A).R=(V A:: wp.A.R)

Using the parenthesis convention, they are equivalent to the single formula
w(lp.(U A :: A).R = (V(A) A::w(lp.A.R).

Here are the definitions of the basic commands and operators:

w(l)p.Fail. R = TRUE
w(l)p.Skip.R = R



w(l)p.Loop.R = FALSE (TRUE)

w(l)p.Havoc.R = [R)|

w()p.(A[l B).R = w(l)p.A.R A w(lp.B.R

w(l)p.(4; B).R = w(l)p.A.(w()p.B.R)

wlllp.(P — A).R=-P Vv w(lp.A.R

wil)p.fz | A].R = (Vz: w(l)p.A.R)

w(l)p.(AQ B).R = w(l)p.A.R A (grd.A v w(l)p.B.R)

Here we write [R| for R = TRUE.

All of these operations are monotonic with respect to the approxima-
tion order C. Except for Havoc and K, they are likely to be familiar. The
command Havoc relates each initial state to every outcome, including the
looping outcome. The command A § B means “execute A unless it fails, in

which case execute B”. Its precondition equation can be derived from the
formula

ANB = A[l(-grd(A) — B)

3. Definition and elementary properties of dovetail

The precondition equations for ¥V are somewhat subtle:
wip.(A V B).R = wlp.A.R A wip.B.R

hlt.(A V B) =
(hlt.A v hlt.B) A
(grd.A v hlt.B) A
(grd.B Vv hlt.A)

That is, as far as wlp is concerned, ¥ is the same as []. It differs by having

a more liberal wp equation: to ensure that A V B halts, it suffices to forbid

A and B from both looping and to forbid either from looping in a state

where the other fails. The value of wp for postconditions other than TRUE

is determined by the pairing condition. To verify that A ¥V B is a command

we must show that its wip-transformer is conjunctive; but this is immediate.
The hlt equation for dovetail has an alternative form:

hlt.(A V B) =
(hlt.A A hlt.B) v



(grd.A A hlt.4) v
(grd.B A hit.B)

The alternative form is sometimes useful, although we will not use it in

this paper. It can be derived from the first form by distributing A over V
and simplifying.

Lemma A. For any A, B, we have grd.(AV B) = grd.A V grd.B.

Proof. This is easy to see when A and B are viewed as relations, since a
looping outcome of (say) A from some initial state can be excluded from
A V B only if B has a proper outcome from that state. Thus, although
A V B is smaller than the relational union, its domain is equal to the
domain of the relational union.

The axiomatic proof begins with the observation that for any com-
mand A,

wlp.A.FaLsE = (hlt.A = ~grd.A) (*)

whose proof is as follows: in any state where wlp.A.FALSE holds,

grd.A
-~ Wp.A.FALSE
— (Wp.A.TRUE A Wlp.A.FALSE)

“Wp.A.TRUE
- hlt.A

i o

Armed with this observation, we prove Lemma A by deriving the com-
plement of the right side from the complement of the left side:

-grd.(A V B)

wp.(A V B).FALSE

hlt.(A V B) A wlp.(A V B).FALSE

(hit.A v hlt.B) A (hlt.A v grd.B) A (hlt.B V grd.A)
wlp.A.FALSE A wlp.B.FALSE

{ (), twice }

(hlt.A v h1t.B) A (hlt.A v =hlt.B) A (hlt.B v —hit.A)
wlp.A.FALSE A wlp.B.FALSE

{ Resolution on conjuncts 1 and 2; 1 and 3 }

hlt.A A hlt.B A wlp.A.FALSE A wilp.B.FALSE
wp.A.FALSE A wp.B.FALSE

—grd.A A ~grd.B

- (grd.A v grd.B) 1

HE 0 > i oe > e i
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Lemma B. For any 4, B, we have (A[]B) C (A V B).

Proof. This is also easy to see when the commands are viewed as relations,
since A [] B can differ from A V B only by having extra looping outcomes
from states where A V B has at least one non-looping outcome, and this is
precisely the difference that is allowed by the approximation relation.

The axiomatic proof is as follows. The Ewip part of the proof is trivial,
since ] and ¥ have the same wlp-equation. Because of the pairing condition
and the fact that the two sides are wip-equivalent, the Ewp part of the proof
can be completed by showing that hit.(4 [] B) = hlt.(4 V B). The proof of
this is:

hlt.(A [ B)
= hlt.A A hlt.B
= (hlt.A v hit.B) A (grd.A Vv hlt.B) A (grd.B V hlt.A)
= hlt.(A ¥V B) 1

4. Nonmonotonicity of dovetail

The reason that the classical fixpoint method doesn’t work for dovetail is
that dovetail is not monotonic with respect to the approximation relation.
For example,

Loop C Havoc
but

Loop ¥V Skip Z Havoc V Skip

since Loop V Skip = Skip and Havoc V Skip = Havoc, but Skip Z Havoe.

In fact, under our definitions, there are recursions involving dovetail
that have no solutions. Consider

fX =[] (XHb:=0)Vb:=1);(b=0— Loop)]

If X is defined by this recursion, and recursion is implemented by the usual
unfolding, then X will be equivalent operationally to Loop. The computation
tree for X branches at V at each level of recursion. Each b := 1 branch leads
to a b = 0 guard, where it fails. The other branch leads to a recursive call.
Thus the computation will search an infinite tree, failing to find any proper
outcomes.

But Loop is not a fixpoint of f. Since LoopH b := 0 is equal to Loop, and
Loop V b:=1 is equal to b := 1, direct computation yields f.Loop = Fail.
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In fact, f has no fixpoint. The commands that f operates on are
commands on a zero-dimensional state space (that is, a point). There are
only four such commands: Loop, Fail, Skip, and Skip [] Loop. (On a zero-
dimensional state space, Skip and Havoc coincide.) Computation yields:

f-Loop = Fasl
f.Fail = Loop
f.Skip = Loop

f.(Skip ] Loop) = Loop

5. Two fixpoint theorems for dovetail

If operational semantics is the touchstone by which other semantics are
judged, then the example above is a serious blow to our semantic definitions,
one that strongly suggests changing the axiomatic semantics to agree with
some operational semantics. But there is another approach, which we will
explore in the remainder of this paper: we take the axiomatic semantics as
the touchstone by which other semantics are judged. The axiomatic seman-
tics are in effect a specification language; perhaps too rich to be handled in
its entirety by an operational implementation, but well defined nonetheless.

This is as much a question of technique as of philosophy. If the nine-
teenth century mathematicians who made sense of infinite series had known
denotational semantics, they might have added L to the real numbers R (as
well as one new open set R U { L} to R’s topology) after which they would
have been able to prove that every series has a unique “least convergence
point” in the inverse Scott order determined by the topology. For example,
the least convergence point of 1 +1 -1+ 1...is 1; the least convergence
point of 1/2+1/4+1/8...is 1. But instead, these mathematicians worked
with the unextended real numbers, in which not all series converge. The
choice is not too serious, since with either technique, the important thing is
to find tests that guarantee various kinds of convergence.

Our approach will be to find restricted classes of recursions that are
guaranteed to have solutions in our calculus, analogous to restricted classes
of infinite series that are guaranteed to converge. In SRC-16 it was proved
by the simple fixpoint method that if V is excluded, then all recursions have
solutions. In this paper, we prove two results that include dovetail: (1) if Jis
excluded, then all recursions have solutions, and (2) if semicolon is restricted
so that its second argument is always total, then all recursions have solutions.

Neither of these results seem to be provable by the simple fixpoint
method. This section outlines an alternative method of proof that works
for both results.



We write A =, B to mean that wlp.A = wip.B.
Here is the first result:

Theorem 1. Let f be a map from commands to commands defined by an
expression of the form f.X = £, where & is an expression built from the five
operations

0 - 5 [l v

as well as the command parameter X and any number of fixed commands
and predicates. Then f has a least fixpoint in the order <, defined by:

A<B = (ACwp B) A ((A=wpp B) = (AT B)).

The approximation order C is the intersection of Ewip with Cyp; the
new order < is a sort of lexicographic combination of Ewip with Cyp.

Theorem 1 cannot be proved as a simple application of the Knaster-
Tarski Theorem, since none of the operators are monotonic with respect to
<. For example, consider sequential composition: we have

t:=1 < (z:=1(z:=2)
but with C given by (z = 1 — Skip) [] (z = 2 — Loop) we have
r:=1;C £ (z:=10z:=2);C

since z:= 1« z := 1] Loop.

A more complicated argument is required, which we now outline. First,
we will change the recursion f.X = € to the similar recursion f*.X = &£*,
where £* is obtained from € by replacing all occurrences of ¥V by [J. Thereom
8 of SRC-16 shows that f* has a fixpoint, say X*. Operational intuition
suggests that the only difference between the two recursions is that V will
exclude some looping outcomes that are included by [J. Therefore we expect
f to have a fixpoint that differs from X* only by having fewer looping out-
comes. Let S be the set of commands that differ from X* only by having
fewer looping outcomes. It turns out that V is monotonic with respect to ap-
proximation when it is restricted to S. (More generally, it is monotonic when
restricted to any equivalence class of =yip.) Furthermore, S is closed with
respect to joins. Thus the Knaster-Tarski theorem can be applied, showing
that S contains a fixpoint of f. This proof will be completed in section 7.

For example, consider the recursion

f. X=XV Skip. (1)



The related recursion is
X = X [] Skip.

The least fixpoint of f* is Loop [] Skip. The set S of commands that differ
from Loop ] Skip only by having (possibly) fewer looping outcomes is the set
of commands of the form

(P — Loop) [] Skip

for all predicates P. On this set f has an approximation-least fixpoint,
namely Skip. (In fact, Skip is the unique fixpoint on this set.)

Notice that the fixpoint is not approximation-minimal: for example,
Havoc is a fixpoint of (1), but Skip does not approximate Havoc. Indeed,
the set of fixpoints of (1) is the set of commands that, viewed as relations,
contain Skip and are contained by Havoc. This set is completely flat with
respect to the approximation relation.

Minimizing with respect to either < and C has the effect of excluding
proper outcomes and including looping outcomes; however, < gives prece-
dence to the former. This is consistent with the construction in the proof,
which first uses a fixpoint construction to locate the =wip equivalence class
of the fixpoint (thus determining its set of proper outcomes) and then uses
a second fixpoint construction to maximize the number of looping outcomes
within this equivalence class.

The second result is that if semicolon is restricted so that its second
argument is total, then all recursions have solutions. To state this precisely,
we introduce the operation ;; on commands defined by

A;;B = A;(BH Loop).

Operationally, A;;B loops whenever A ; B would backtrack from B to A. If
B is total, there is no difference between A ; B and A;;B.

If A and B are commands, we write A =4 B to mean grd.A = grd.B,
and we write A =, B to mean A =wip B and A =44 B.

Theorem 2. Let f be a map from commands to commands defined by an
expression of the form f.X = &, where £ is an expression built from the six

operations
0 - s 0l v &

as well as the command parameter X and any number of fixed commands
and predicates. Then f has a least fixpoint in the order <, defined by:

A<B = (ACwp B)A((A=. B) = (AC B)).
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The proof of the second theorem is very similar to the proof of the first
theorem. The substitution of f* for f and the application of the Knaster-
Tarski theorem within the set S are the same; the difference is that in the
definition of the set S, =, plays the role previously played by =wi,. In
order to avoid repeating the arguments that are common to both proofs, we
will present them as a separate theorem that applies to any “acceptable”
equivalence relation. Then Theorems 1 and 2 are proved by showing that
=wip and =, are acceptable. This program is carried out in the next two
sections.

6. A fixpoint theorem for acceptable relations

An operation f on commands respects an equivalence relation ~ if for any
commands A and B,
A~B= f.A~ f.B.

An operation with more than one argument respects ~ if it respects ~ in
each argument.
An equivalence relation ~ on commands is acceptable if:

(A1) [ respects ~.

(A2) AV B ~ A[lB forall A, B.

(A3) A~ B implies A =4, B for all 4, B.
(

A4) Join with respect to C preserves equivalence classes of ~. That is,
for any command B and non-empty family of commands A;:

(Vi A;~B) = (Ut A;) ~B.

Lemma C. If ~ is «cceptable, then V is C-monotonic when the varying ar-
gument is restricted to any equivalence class of ~. That is, for any commands
A, B, and C:

(A~B) A (ACB) = (AVC)C(BVC).

Proof. Since ~ is stronger than =p, it suffices to show that dovetail is
E-monotonic when restricted to any equivalence class of =yjp. The Cwip
part of the proof is trivial; in fact A ~ B implies that AV C and B V C
are wlp-equivalent. Because of this fact and the pairing condition, the Cyp
part of the proof can be completed by showing that

(AC B) = (hlt.(4 V C) = hlt.(B V C))
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To prove this, assume A C B, and compute

hlt.(4A V C)
= {Definition of V}
(hlt.A Vv hlt.C) A (grd.A v hlt.C) A (hlt.A V grd.C)
= {hlt.A A grd.A = grd.B was shown in SRC-16 to be a consequence of
A C B (in the proof of continuity of )}
(hit.A v hlt.C) A (grd.B Vv hit.C) A (hlt.A v grd.C)
= {hlt.A = hlt.B is a consequence of A C B}
(hlt.B Vv hlt.C) A (grd.B V hlt.C) A (hlt.B V grd.C)

= {Definition of V}
hit.(BVC) 1

If f is a function from commands to commands defined by an expression
of the form f.X = £, then by f* we denote the function defined by f*.X =
£*, where £* is £ with all occurrences of V replaced by [J.

Lemma D. If f is defined by an expression of the form f.X = &, and if
every operator in £ respects the acceptable equivalence relation ~, and if
every operator occuring in £ is C-monotonic except for V, then for any
commands A and B:

(D1) A~B = f*A~ f.B.
(D2) ACB = f*ALC f.B.
(D3) (A~B) A (ACB) = f.AC f.B.

Proof. The three proofs are all straightforward inductions on the size of £. In
the base case, where f is the identity or a constant function, the three claims
can be verified by inspection. Each of the three induction steps has two cases:
the case where the outermost operator of £ is V, in which f. X =¢.X V h.X,
for two functions g and h defined by expressions smaller than £; and the case
where the outermost operator of £ is not V, in which f.X = g.(h.X), where
g is an operator other than V and h is defined by an expression smaller than
¢. Here are the proofs of the two cases for each of the three steps:

D1, V case:

f*A~ f.B
g AQh*.A~g.BV h.B
{ ~ is acceptable (A2) and transitive }

nei
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g*.AJh*.A~¢g.B[h.B
< { ~ is acceptable (Al) }

g*A~gB A h*.A~h.B
< { induction }

A~B

D1, other case:

f*.A~ f.B

= g.(h*.A) ~ ¢.(h.B)

<= { g respects ~ by hypothesis }
h*.A ~ h.B

<= { induction }
A~B

D2, V case:

f*AC f.B

= ¢g*A(Jh*.A C ¢g.BV h.B

<= { Lemma B, transitivity of C }
g*. AJr*.A C g.B(Jh.B

< { [l is C-monotonic }
g*ACg.B A h*.AC h.B

<« { induction }
A~B

D2, other case:

f*.AC f.B

= g.(h*.A) C g.(h.B)

<= { g is C-monotonic by hypothesis }
h*.A C h.B

< { induction }
ACB

D3, V case:

fAC f.B

= gAVhAC gBVhB

<= { ~ is acceptable; Lemma C }
gA~gBAgALC g.B

N hA~hB A h.hACh.B

< { Every operator in £ respects ~, hence
by structural induction, A and g respect ~ }
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gACgB A hAChB A A~B
< { induction }
ACB AN A~B

D3, other case

fAC f.B

= g.(h.A) C g.(h.B)

< { g is C-monotonic by hypothesis }
h.AC h.B

< { induction }
ACB AN A~B

This completes the proof of Lemma D.

Theorem 3. Let f be a map from commands to commands defined by an
expression of the form f.X = £. Let ~ be an acceptable equivalence relation
respected by each operation occurring in £. Suppose that every operation

occurring in £ is C-monotonic except for V. Then f has a least fixpoint in
the order <, defined by

A<B = (ACwip B)A((A~B) = (AC B)).

Proof. The proof follows the outline sketched in the previous section. By
Theorem 8 of SRC-16, f* has a C-least fixpoint, say X*. Let S be the set

of all Y such that X* ~ Y and X* C Y. First, we show that f carries S
into S:

Yes
= (X"~Y)A(X*CY)
= { Lemma D }
(f*.X" ~ f.X) A (f*.X" C 1Y)
{ f* fixes X* }
(X* ~ L.Y) A (X" C 1Y)
= fYeS

il

Second, we show that f has a C-least fixpoint on S, using the Knaster-
Tarski Theorem. This theorem requires that f be C-monotonic on S and
that the C-join of any C-chain in S lie in S. By Lemma C, the restriction of f
to S is C-monotonic. By acceptability (A4), the join of any non-empty chain
in S lies in S. By definition, S contains a C-minimum element, namely X*,
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and therefore the empty chain also has a join in S. Therefore the Knaster-
Tarski Theorem applies, showing that f has a C-least fixpoint in S, which

we will call X.

It remains to show that X is <-minimal among all fixpoints of f. Let
Y be a fixpoint of f. To show X < Y, we must show that X Ewip Y and
that X ~ Y implies X T Y. As a stepping stone to these two goals, we first

prove that X* C Y:

(i

m

ft

Il

ft

X*'CY

{ By Knaster-Tarski, the least fixpoint precedes every prepoint }

frYCY

{ Y is a fixpoint of f }
fPYCLY

{ Lemma D }

TRUE

Next we show that X T, Y

X ;wlp Y

{ X* ~ X, hence (A3) X* =yp X }
X* |;wlp Y

X*CY

{ Stepping stone }

TRUE

Finally we show that X ~ Y implies X C Y:

XCY

{ X is the C-least fixpoint of f on S }
Yes

(X*~Y)A(X*CY)

{ Stepping stone }

X*~Y

(X~x")

X~Y

This completes the proof of Theorem 3.

7. Proofs of Theorems 1 and 2

In this section we deduce Theorems 1 and 2 from Theorem 3.
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Lemma E. The equivalence relations =wlp and =, are acceptable.

Proof. We must verify conditions (A1)-(A4). Condition (A3) is immediate,
since both =y, and =. are as strong as Zwip. The other conditions will be
verified for =, and for =;.q. This suffices to prove the lemma, since these
conditions have the property that if they hold for two relations, then they
also hold for the intersection of the two; and =, is the intersection of Zwip
and =grd.

Condition (A1), that [] respects =yip and =4, follows from the wip
and guard equations for [}

wip.(A[l B).R = wlp.A.R A wip.B.R
grd.(A[] B) = grd.A v grd.B

For example, the only occurrence of A on the righthand side of the first
equation is in wlp.A4, thus wip.(A [] B).R depends on A only insofar as it
depends on the =, equivalence class of A.

Condition (A2) is that A V B be equivalent to A [] B. For =y, this
follows because ] and ¥V have the same wlp-equation; for =grd, this follows
from Lemma A.

Condition (A4) is a consequence of the formula from SRC-16 for the
precondition of the join of a chain that was presented in Section 2. Let A;
be a non-empty family of commands. If A; =4, B for all 7, then

wlp.(U ¢ 2 A;).R

(A1 wip.A;.R)

(A ¢:: wip.B.R)
wip.B.R

If A; =grq B for all ¢, then
grd.(U ¢ :: Ay)
~wp.(U1:: A;).FALSE
= (V ¢ :: wp.A4,.FALSE)
(Vi —grd.Ay)
=(V¢:-grd.B)
grd.B

This completes the proof of Lemma E. |

e

0 m

Proof of Theorem 1. Inspection of the wip-equations for the five operators
0 - 5 [ v

shows that these operators respect =yip. Theorem 1 therefore follows from
Theorem 3 and Lemma E. |
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Proof of Theorem 2. Simple calculations, which will be left to the reader,
show that

wlp.(A;;B).R = wip.A.(wlp.B.R)
grd.(A;;B) = grd. A

Thus ;; respects =p and =g.q, and therefore also respects =.. Inspec-
tion of the wilp and guard equations for the four operators

0 - [ v

shows that these operators respect =y, and =gz.4, and therefore also =,.
To prove that K respects =,, assume that A =, A’ and B =. B’, and
compute:

wip.(A¥ B).R

wip.A.R A (grd.A vV wlp.B.R)
wlp.A".R A (grd.A’ vV wlp.B'.R)
wlp.(A'H B').R

grd.(A K B)
grd.A Vv grd.B
grd. A’ v grd.B’
grd.(A'E B')

I

HE

Theorem 2 therefore follows from Theorem 3 and Lemma E. |

Notice that [ does not respect =wip in its first argument, and ; does not
respect =grq in its first argument. Thus Theorem 3, which is our only tool
for constructing fixpoints involving V¥, cannot accomodate K and ; simulta-
neously. Thus any two of the three operators ¥ ; V can be handled
together, but not all three.

8. Conclusions

The formal treatment of dovetail is somewhat curious: a function f is proved
to have a least fixpoint with respect to an order <, although f is not mono-
tonic with respect to <. The proof is based on an order C, with respect to
which the function does not have a least fixpoint.

It is obvious that proof techniques can be based on the given construc-
tion.

Dovetail could be of practical importance in studying classes of imple-
mentations of loop-avoiding operators. For example, it could be used to
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model loop-avoiding communication when merging several communcation
lines.
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