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Authors’ abstract

In this paper, the authors endeavor to convey the flavor of techniques, especially
recent ones, that have been found useful in designing and analyzing efficient geometric
algorithms. Each technique is presented by means of a worked out example. The
paper presupposes some elementary knowledge of algorithmic geometric techniques
and a more advanced knowledge of classical data structures. The aim is to share
with the reader some of the excitement that permeates one of the most active areas
in theoretical computer science today, namely, the field of Computational Geometry.
The paper is based on a series of lectures delivered at the 1987 NATO Symposium on
Theoretical Foundations of Computer Graphics and CAD.

Leonidas J. Guibas and Jorge Stolfi
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GEOMETRIC ALGORITHMS

Introduction

Computational geometry is the branch of computer science
concerned with the design and analysis of algorithms for geo-
metric problems. Among the tools of computational geometry
there seems to be a small set of techniques and structures that
have such a wide range of applications that they deserve to
be called fundamental, in the same sense that balanced binary
trees and sorting are fundamental for combinatorial algorithms
in general. In this paper we will discuss and illustrate a num-
ber of these fundamental techniques of computational geometry.
In most instances we give a worked out example of a problem
solved by each of the techniques we discuss.

Historical note. The term “computational geometry” was orig
inally coined by Robin Forrest (23] to denote the study of com-
putational techniques in the realm of computer-aided geomet-
ric design. More recently, this term has been used to name a
somewhat different field, in a way broader and in a way nar-
rower than Forrest’s conception, a field which is now consid-
ered part of theoretical computer science. This new use of the
name “computational geometry,” whose origin can be traced to
Shamos [65], refers to the design and analysis of algorithms for
all kinds of geometric problems, not necessarily in computer-
aided design. This is the sense in which the term will be used
in this paper.

Influenced by other branches of theoretical computer sci-
ence, this new field has focused on the design of efficient algo-
rithms when the number of objects in the input is large. This
consideration has led to the development of asymptotically effi-
cient (and sometimes practical) algorithms for problems dealing
with large numbers of simple underlying objects in two or three
dimensions: points, lines, planes, polygons, and polyhedra. This
situation is to be contrasted with that of computer-aided design,
where the underlying objects are more complex, say bicubic sur-
face patches, but where asymptotic considerations tend to be
less dominant. Abstracting away from this dichotomy, we can
say that the goal of computational geometry is to collect and
study all techniques relevant to the computer description and
manipulation of geometric objects, within the wider framework
of the analysis of algorithms.

It has been known since the time of Descartes that any geo-
metrical problem can be recast in purely algebraic terms. It may
therefore seem unnecessary to have a special discipline for geo-
metric problems, distinct from numerical algebra and analysis.
Indeed, some problems in geometry are best solved by algebraic
methods, like computing the area of a polygon; but it is equally
true that most geometrical concepts and algorithms are best
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“seen” and studied in their own framework. Furthermore, most
problems in computational geometry are neither purely combi-
natorial, nor purely numerical, but rather an intimate mixture
of both. Computational geometry has therefore its unique fla-
vor, and its unique combination of tools and techniques.

Many fundamental problems and results of computational
geometry had been studied well before the field was recognized
as a discipline in itself. Actually, we can say that computational
geometry is the most ancient branch of computer science: the
constructions of Euclidean geometry are legitimate algorithms,
based on a well-defined, finite set of elementary operations.

In fact, Euclidean geometry is where several of the key con-
cepts of computer science were first introduced: the close rela-
tionship between an algorithm and the proof of its correctness,
the first examples of “provably unsolvable” problems (doubling
the cube, trisecting the angle, squaring the circle), and so forth.
Early this century the French mathematician Lemoine intro-
duced (without much success) the idea of “computational com-
plexity” of a geometrical construction, by counting the number
of elementary steps it required. Other 19th century geometers,
like Mohr and Mascheroni, showed that the ruler and compass
of classical geometry could be replaced by other sets of tools
(compass alone, ruler and scale, ruler and fixed-aperture com-
pass, and so on). Their work is a close parallel to the theorems
establishing equivalence of power for different flavors of Turing
machines by simulation.

Because of the long pre-history of the field and its large
number of applications, the fundamental results and techniques
of computational geometry are widely scattered in publications
that range from highly abstract mathematics texts to appli-
cations-oriented journals. It is only very recently that we are
starting to see journals devoted explicitly (at least in part) to
computational geometry, such as Discrete and Computational
Geometry and Algorithmica.

Applications. Computational geometry (in both senses) is
currently undergoing rapid growth. The field now has attained
some mathematical depth and maturity, yet it encompasses
many fundamental questions that are far from being fully re-
solved. Numerous areas of application contribute also to the vi-
tality of the field; the list below shows a few of the most common
ones, and some geometrical problems that are characteristic of
each application.

o Computer graphics

geometric sorting in hidden surface elimination
polygon intersection in clipping
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geometric neighbor computations in hit detection

Computer-aided design
union and intersection of geometric objects

VLSI design

union, intersection, and near-contact of rectangles
wire routing

Computer-aided manufacturing and robot control

determining obstacle-free paths
automatic milling

Pattern recognition and computer vision

fitting of geometrical objects to noisy data
clustering algorithms

Statistics, operations research, and numerical analysis

classification by nearest-point determination
finite-element decomposition

In addition, there is an extensive list of problems and appli-
cations that, although non-geometrical in origin and nature,
can be better visualized and solved by recasting them in ge-
ometrical terms. For example, the geometrical equivalent of a
database range-query problem (like “find all employees with
salary greater than $10,000 and age between 30 and 40”) is the
selection, from a collection of points in n-space, of those whose
projections fall inside a given m-dimensional box, m < n.
Eventually the techniques of computational geometry are
bound to find more and more uses in computer-aided design,
robotics, vision, and other applied areas. At the same time,
these applied areas can serve as a rich source of problems for
those in the field with more theoretical inclinations. It is the
authors’ hope that enough cross-fertilization will occur that in
future years a distinction between the conceptions for the fields
that Forrest and Shamos proposed will not need to be drawn.

Overview. The paper is divided into three parts. In the first
part we deal mostly with algorithm design methods. We have
restricted our attention to techniques that are especially effec-
tive in the geometric domain, that make use in some essential
way of the geometry of the problem we wish to solve. In the
second part we present a few data structuring techniques that
are not themselves geometric but which have repeatedly found
applications in geometric problems. Finally, in the third part
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we discuss a couple of mathematically sophisticated techniques
for the analysis of geometric algorithms.

We have not tried to be exhaustive, and indeed we have
completely ignored many important results and entire sub-areas
of computational geometry. The interested reader will find more
systematic coverage in the books by Preparata and Shamos [58]
and Mehlhorn [49, vol. III], as well as in the surveys by Lee
and Preparata [42], Edelsbrunner {20], and Dobkin and Sou-
vaine [18]. Notable omissions are most range-query type prob-
lems and the data structures motivated by them, such as seg-
ment trees [4] and interval trees [46]; a good introduction to
this area is Overmars’ thesis [55]. Another important new tech-
nique we have omitted is the use of randomization in geometric
algorithms, for which the reader is referred to papers by Clark-
son [13,14]. We have also ignored the practical issues that arise
in the implementation of computational geometry algorithms,
and in particular the handling of “degenerate” cases where the
input objects are not in “general position” (as theoretical dis-
cussions usually assume them to be). Nevertheless we hope that
our sampling is representative enough that the reader comes
away with a sense of the technical excitement that permeates
the field today.
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Part A: Algorithm Design Techniques

In this first part we discuss techniques for the design of ge-
ometric algorithms. Of course, computational geometry makes
wide use of standard algorithm design methods, such as divide-
and-conquer, dynamic programming, and so forth. However, we
will concentrate here on methods and paradigms that seem to
be more particular to this field, that in some essential way uti-
lize the geometry of the problem at hand. Still, in many cases,
the key insight for an efficient algorithm is an observation that
allows us to map a geometric problem to a purely combinatorial
one. We will see several instances of this in what follows.

Al. The locus approach

A common technique in solving geometric problems is the
so-called locus approach. A classic example is the post office
problem: given n sites in the plane (the post offices) and a query
point z, report the site closest to z. If the sites remain fixed over
several queries, then it pays to subdivide the plane into regions,
each consisting of all points closest to a particular site. This
partitioning of the plane is the well-known Voronoi diagram of
the sites [58). See figure 1. Once we have the Voronoi diagram,
a nearest neighbor query can be answered simply by doing a
point location in the diagram. This is the essence of the locus
approach: subdivide space into regions such that all points in
the same region yield the same answer to the type of query we
are interested in. Point-location in this subdivision can then be
used to answer any specific query. A method for computing the
Voronoi diagram is given in section A4.

One drawback of the locus method is that sometimes the
size of the partitioning structure that we need to compute is
too large. For example, in three dimensions, the Voronoi dia-
gram technique is significantly less appealing for the post of-
fice problem than it is in the plane, simply because a three-
dimensjonal Voronoi diagram can have size ©(n?). In such a
situation one can trade space for time by building the patition-
ing structure only for subsets of the given objects, and then
querying each patitioning structure in sequence. For example,
if we break the sites up into /n groups of size /n each and
compute the Voronoi diagram for each group, then the total
storage in three dimensions goes down to O(n+/n), while query
time increases by a factor of \/n.

The locus approach is widely used in computational geom-
etry algorithms, and plays a significant role in several of the
examples to be given in the following sections.

Figure 1.
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Figure 2.

A2. Geometric transformations

Geometric transformations can be a very powerful tool in
the development of geometric algorithms. In general, a geomet-
ric transformation is an isomorphism between two geometric
spaces (or a geometric space and itself). The simplest kind of
transformation is a map that preserves the type and the essen-
tial geometric properties of the mapped objects, such as the
affine maps (which preserve parallelism), the projective maps
(which preserve collinearity), and inversions (which preserve
circles). Transformations of this sort can be used to simplify
geometric algorithms, both in theory and in practice; for exam-
ple, with a suitable affine map we can reduce many problems on
an arbitrary triangle to problems on the equilateral one. Sim-
ilarly, a projective map can be used to reduce many problems
on a general conic section to problems on a circle. For more
sophisticated examples, we can cite the linear programming al-
gorithm of Karmarkar {37] and the minimum-area spanning el-
lipse algorithm of Post [56]. Both of these arrive at the answer
by transforming the problem through a sequence of geometric
maps, which eventually reduce the problem to a trivial one.

Even more useful are the geometric transformations that
change the nature of the mapped objects. A transformation
of this type is an isomorphism between two geometrical struc-
tures, or two parts of the same structure, relating in a surprising
way two classes of objects which appear to have very little in
common. The isomorphism must by definition extend to the
predicates and operations defined on those objects, and this is
precisely where the the power of the method lies. By mechani-
cally replacing the objects, predicates, and operations by their
images, we can with negligible effort transport problems and
solutions from one domain to the other. This not only reduces
the number of theorems that need to be proved and of subrou-
tines that have to be written, but also allows us to fully exploit
in the study of one domain any intuition we may have gained
in the other.

Delaunay diagram via convex hull. An example of this class
of transformation is the “lifting map”

A: (z,9) - (2,9, 22 +¥°),

which lifts each point on the z,y-plane onto the paraboloid of
revolution z = z? + y?. See figure 2. This map can be used to
transform circular queries in the plane to half-space queries in
three-dimensional space [33]. The reason is that any four points
A, B, C, and D in the plane are co-circular if and only if A(A),
A(B), MC), and A(D) are coplanar. Therefore the intersection
of the paraboloid of revolution z = z? + y* with any plane
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meeting it projects into a circle in the z, y-plane. Moreover, the
part of the paraboloid below the plane projects to the interior
of the corresponding circle in the z, y-plane, and the part above
the plane to the exterior of the circle.

Consider now n sites in the plane and their lifted images
under the map A. These images are points on a convex sur-
face, and therefore they are the vertices of a convex polyhedron,
which is obviously their convex hull. Now consider a downward-
looking face f of this polyhedron: by the definition of convex
hull, its supporting plane r passes through the vertices of that
face, and below all other vertices of the polyhedron. It follows
that the projection of f onto the z,y-plane is a convex polygon
(generally a triangle) whose circumcircle contains none of the
other sites in its interior. We conclude that the projection of
the downward-looking faces of the polyhedron are the faces of
the Delaunay diagram of the given sites 7,27, 33,40,41). See
figure 3. Similarly, an upward-looking face of the polyhedron
corresponds to a convex polygon with vertices on the sites and
whose circumcircle encloses all the sites. These are of course the
faces of the dual of the furthest-point Voronoi diagram [58] for
our collection of sites.

It follows that algorithms for computing the convex hull
of n points in three-dimensions yield, under this lifting map,
algorithms for computing Delaunay triangulations (and there-
fore Voronoi diagrams) in the plane. Curiously, it took a long
time for the relationship between these two problems to be-
come widely known, in spite of the fact that both have been
solved independently by essentially the same algorithms. For
example, the divide-and-conquer algorithms for Delaunay di-
agrams by Guibas and Stolfi [33] and Lee and Schachter [43]
are essentially the Preparata-Hong algorithm [57] for comput-
ing the convex hull of n points in three dimensions, restricted
to compute the lower half of the hull.

The effect of the map A can also be obtained (at somewhat
greater computational cost) by lifting the points of the zy plane
onto a sphere with inverse stereographic projection [7]. The gen-
eral idea behind the lifting map A is replacing non-linear tests
on the input data (in our case, distance comparisons) by a non-
linear map into a space of higher dimension, followed by linear
tests on this transformed data. With a suitable lifting map, for
example, we can reduce the problem of finding the minimum
spanning ellipse of n points to a minimization problem on the
faces of a 5-dimensional convex polyhedron [56]. Further ap-
plications of such geometric transforms are discussed in Kevin
Brown’s thesis [7].

Figure 3.
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Figure 4.

Figure 5.

A3. Duality

Duality is a particularly important example of a geometric
transform. In general, duality manifests itself as a non-trivial
isomorphism between a mathematical structure and itself. As
with any geometric transform, this isomorphism must extend
to predicates and operations (and therefore to theorems and al-
gorithms) defined on the objects. Familiar examples are the du-
ality between variables and inequalities in linear programming,
the laws of DeMorgan in boolean algebra, the current-voltage
duality of circuit theory, the Fourier and Laplace transforms
of analysis, and the face-vertex duality in the theory of planar
graphs.

As one might expect, this powerful concept has not es-
caped the attention of geometers. A natural duality between
points and lines in the projective plane has been known since
the eighteenth century [15]. One way to express this duality is
to map the point with Cartesian coordinates (a,b) to the line
with equation ez + by + 1 = 0, and vice-versa. We also map
the point at infinity in the direction (a,b) to the line through
the origin with equation az + by = 0. Geometrically, if d is the
distance between a point p and the origin O = (0,0), the dual
of p is the line r perpendicular to Op and passing at distance
1/d of O, on the side opposite to p. See figure 4. We will
denote the line which is dual to point p by p*, and the point
dual to line r by r*. (This is not the only possible duality be-
tween points and lines, but we will stick with this version in the
current section.) It is not hard to show that the mapping thus
defined preserves incidence: if point p lies on the line r, then
point r* lies on line p*. It also preserves any “betweenness” and
continuity relations: as point u moves continuously from p to ¢
along the line r, the line u* turns continuously at the point r*
from p* to ¢*.

Application to polygon visibility. For a typical use of du-
ality in the development of geometric algorithms, consider the
following visibility problem. Let P = (p1, p2, -..Pn) be a simple
polygon in the plane, and let e denote the edge p1p;. Given a
line r that enters P through the edge e, we wish to determine
the first edge f(r) of P which r encounters after e. For con-
creteness, we can imagine that P is a room with opaque walls,
e is a luminous neon bulb, and we want to know which wall is
illuminated by a given light ray emanating from e. See figure 5.

Our approach to this problem is based on the observation
that lines, and not points, are the primitive objects to con-
sider in visibility questions. Since points are intuitively easier
to grasp than lines, such questions are advantageously recast
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in dual space, where the roles of points and lines are inter-
changed. By using duality, we can obtain an algorithm which,
after O(nlogn) preprocessing, allows us to solve this ray shoot-
ing problem in O(n) space and O(logn) response time. These
latter bounds are clearly optimal.

To simplify the discussion, let’s assume P has been trans-
lated, rotated, and scaled so that p, is the origin and p, is the
unit point on the z-axis. Under the duality we defined above,
p7 is the line at infinity, and pj is the vertical line with equation
z = —1. Now consider the set E of all lines intersecting e. It is
easy to check that these lines dualize to all points with z < -1,
that is, the half-plane E* delimited by the line p} that does not
contain the origin. See figure 6.

Note again that the lines in E are in one-to-one correspon-
dence with the light rays starting at e and directed into the
polygon. Let us then classify each point p of E* according to
the edge f(p*) that the ray p* illuminates. This defines a par-
tition S(E*) of the half-plane E* into subregions where f(p*)
is constant. Now consider two points p, ¢ in the same region of
S(E*), that is, with f(p*) = f(¢*). This means the rays p* and
¢* illuminate the same edge of P. Let u be any point on the seg-
ment pq; by the properties of duality, the line u* must intersect
e, must be concurrent with p* and ¢*, and must lie in the angle
delimited by p* and ¢* that does not include the origin. Since
the boundary of P is connected and free from self-intersections,
we must have f(u*) = f(p*) = f(¢*); that is, u lies in the same
region of S(E*) as p and q. We conclude the following:

Lemma 1. FEach region of the subdivision S(E*) is a conver
polygon.

Clearly the subdivision S(E*) (which has at most n — 1
regions) provides the essential information we need to know in
order to solve our problem. In order to compute this subdivision
we first triangulate our polygon P by a standard O(nlogn) time
algorithm [25]. We then consider each of the n — 2 triangles in
turn, beginning with the one adjacent to the luminous edge e,
and proceeding at each step across a diagonal from a visited
triangle to a new one. In a typical step we enter a new triangle
A = pipjpr wWhich has one side in common, say p;p;, with a
previously handled triangle. At this point we know the region
V of E* corresponding to all rays reaching p;p; (a diagonal of
P) from e; this region is a convex polygon in the dual plane.
These rays will now be subdivided into two groups, according
to which other side of A they exit from. Dually, the line p; cuts
the polygon V into two subpolygons V', V" which are queued
for processing in later steps. Assuming V is represented as a

Figure 6.
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balanced tree structure, we can perform each splitting operation
in O(logn) time. So we have shown the following result:

Lemma 2. It is possible to compute the convezr subdivision
S(E*) associated with illuminating the simple polygon P
from edge e in O(nlogn) time and O(n) space.

Once we have the subdivision, standard point-location meth
ods can be used to solve the ray-shooting query in linear space
and logarithmic time.

Recently Tarjan and Van Wyk [72] have discovered that
a triangulation can be computed in O(nloglogn) time. Also,
by using a fancier representation for the polygons V that ex-
ploits the finger search trees discussed in section B2, the split-
ting operation described above can actually be carried out in
linear total time. Thus the subdivision S(E*) can be built in
O(nloglogn) time.

A4. Space sweep techniques

Space sweep is one of the most useful paradigms of computa-
tional geometry. Generally speaking, space sweep is a technique
that allows us to reduce an n-dimensional static problem to an
(n—1)-dimensional dynamic problem. The basic idea can be de-
scribed as follows. Suppose we have one or more objects lying
in some Cartesian space, and imagine that space being com-
pletely traversed by a moving hyperplane (the sweep plane). At
any given moment, the sweep plane intersects some subset of
the elements, the active ones. These intersections evolve contin-
uously in time, except when certain discrete events occur: when
new objects join the active set, when old objects leave it, or
when the configuration of the intersections on the sweep plane
undergoes a qualitative change.

A space sweep algorithm is a discrete simulation of this
process, using essentially two data structures: a queue of fu-
ture events, and a representation of the active set and its cross-
section by the current sweep plane. Each iteration of the algo-
rithm removes the next event from the queue, and updates the
cross-section data structure to mirror the effect of the sweep
plane advancing past that point. Depending on the algorithm,
each iteration may also reveal some future events that were not
known at the beginning of the sweep; these must be inserted
into the event queue, in the appropriate order, before proceed-
ing to the next iteration.
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The space sweep technique is quite old, and has probably
been re-discovered several times in the early history of compu-
tational geometry. It has been used in algorithms for the fol-
lowing: finding planar convex hulls [58]; decomposing polygons
into triangles [25], trapezoids [2], and monotone polygons {25];
intersecting line segments [5, 44,45, 66], polygons [5], and con-
vex polyhedra [35]; merging convex maps [32, 44, 54]; computing
Voronoi diagrams [24,27]; and many more.

Voronoi via cones. We will describe here an optimal space
sweep algorithm for computing the Voronoi diagram of n sites
in the plane, due to S. Fortune [24]. His algorithm can be un-
derstood more easily with the help of the following construction
for the Voronoi diagram. For simplicity, we assume the sites are
in general position, so that there are no two sites with the same
z or y coordinate, and no four sites are cocircular.

Imagine that an identical opaque cone with vertical axis
is grown upwards from each site. See figure 7. A symmetry
argument shows that any two cones intersect along a curve (a
hyperbola) that is contained in a vertical plane. That plane
is simply the perpendicular bisector in three-space of the two
corresponding sites.

Now imagine that we look at the collection of cones from
below. The intersection of two cones will look like a straight
line, the perpendicular bisecting line of the two sites p, q on the
zy plane. Not every point of this line will be visible, however:
a point a on it will be hidden by some other cone if and only
if the site from which the latter grew is closer to a than p and
q are. It follows that projecting the visible intersections down
onto the plane gives the Voronoi diagram of the n sites.

Sweeping the cones. Consider what happens when we sweep
this three dimensional picture from left to right with a plane
that is inclined at the same angle as the cones, with its top half
trailing its bottom half. See figure 8. At any moment, the sweep
plane meets the zy plane along a line which we call the sweep
line. The intersection of a cone and the sweep plane is empty
until the sweep line reaches the site p that is the apex of the
cone. At that moment the sweep plane becomes tangent to the
cone, and their intersection appears in the form of a degenerate
parabola of zero width, whose projection is a ray starting at p
and pointing towards £ = —00. A moment later that ray opens
up to become a narrow parabola, which grows wider and wider
as the sweep plane moves further to the right. It is easy to see
that the projected parabola on the zy plane will have the site
p at the focus and the sweep line as the directrix. Referring to
figure 8, we see that triangles pvw and uvw have equal angles
and share an edge; therefore they are congruent and pw = uw.

Figure 7.

Figure 8.
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Figure 9.

Figure 10.

sweep
line

sweep
line

The parabolic front. Now let’s make the sweep plane opaque,
too, and look at the whole thing from below. The sweep plane
will completely hide the cones whose sites lie to the right of the
sweep line. The cones of the sites already swept over will give
rise to a set of left-pointing parabolas with parallel axes and
various widths. A point on the zy plane is inside (to the left
of) a parabola if and only if the cone of the latter lies below
the sweep plane at those (z,y) coordinates. Therefore, any part
of a parabola that lies inside another one is invisible. The only
visible parts of those parabolas are those on the boundary of
the union of their interiors. We call this boundary the parabolic
front. See figure 9.

Note that any horizontal line intersects the parabolic front
at exactly one point. Therefore, the front consists of a single
chain of arcs, extending from y = —oo to y = +00. To the right
of the parabolic front, the sweep plane lies below all the cones,
and completely blocks the view from the underside. To the left
of the front, the plane lies above one or more cones, and cannot
hide anything that would be visible otherwise. Looking from
below, what we see there is a cut-out portion of the Voronoi
diagram of the sites. It is easy to see that each arc of the front
lies in some Voronoi region, and each “break” between two con-
secutive arcs lies on a Voronoi edge.

Evolution of the parabolic front. As the sweep plane ad-
vances, the arcs in the parabolic front move to the right and
become flatter, and the breakpoints between them move along
the corresponding Voronoi edges. It is not hard to show that
the more recent of two consecutive arcs (the one whose site lies
further to the right) grows in vertical extent at the expense of
its older neighbor. We claim that as the sweep plane moves from
T = —o00 to £ = 400, the breakpoints of the front will trace out
every edge of the Voronoi diagram:

Lemma 3. Every point of every edge of the Voronoi diagram is
a breakpoint of the parabolic front at some time during the
scan.

Proof: Let e be any Voronoi edge, and u a point on e (other
than its endpoints). Consider the situation when the sweep line
is already to the right of u, and the distance r between the twois
equal to the distance between u and the sites p, ¢ of the Voronoi
regions separated by e. See figure 10. From the properties of
Voronoi diagrams we know that no other site is closer to u than
those two, that is, there are no other sites on or within the circle
C with center u and radius . Obviously, at that moment u will
be on the intersection between the parabolas associated with p
and q.
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The only way u could not be a breakpoint of the front is
if there were some other parabola passing between u and the
sweep line. Let v be the point on that parabola just to the right
of u; the focus of the parabola must then be on the circle with
center v that is tangent to the sweep line. But that circle lies
inside the circle C, a contradiction. We conclude that u is on
the current front. g

The discrete events. The continuous evolution of the front is
punctuated by discrete events, where new arcs join the front, or
old arcs shrink down to nothing and drop out of the picture. The
first case happens, for instance, when the sweep line runs over
a new site s. See figure 11. That introduces a new degenerate
parabola a with zero width (i.e. a twice-traversed horizontal
ray) with focus and apex at s. The portion of a that lies to the
right of the parabolic front becomes a new arc of the latter, and
its insertion will split an existing arc § of the front in two pieces
(if the sites are in general position, we can ignore the possibility
of the ray passing through a breakpoint). We call this a site
event, and we make the following claim:

Lemma 4. The only way for an arc to enter the parabolic front
is through a site event.

Proof: The only other alternative is for new arcs to arise due to
changes in the shape and position of existing parabolas, that is,
due to some parabola overtaking the front and breaking through
it. However, this cannot happen. Consider the situation when
the parabola a in question is about to break through. It cannot
do so in the middle of an arc 3, since that would require the
curvature of a to be higher than that of 8 and the focus of a
to be further from the sweep line than that of # — which are
contradictory statements.

On the other hand, a cannot break through the corner be-
tween two arcs # and 7. To do so, it would have to move faster
in the z-direction than 3 and +4 at the y-coordinate of their in-
tersection. A little algebra shows that the horizontal speed at
which a particular parabola advances at a given y-coordinate
is a monotenically decreasing function of its absolute slope |o|
(more precisely, it is 3(1 + 1/0?)). Therefore, for & to overtake
B and v at a point u, the absolute slope of a at u would have
to be smaller than those of 8 and v, contradicting the fact that
the latter are consecutive arcs of the front meeting at u. §

Let’s now turn to the second class of events, where an ex-
isting arc drops out of the front after having shrunk down to a
single point u. At that moment there are three parabolas pass-
ing through u, namely the disappearing arc # and the arcs a,7

sweep
B > line

Figure 11.
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Figure 12.

just above and below it on the front. See figure 12. As in the
proof of lemma 4, it is easy to show that o and ¥ cannot belong
to the same parabola. The point u is therefore equidistant from
the three corresponding sites and from the current sweep line.
In other words, the sweep line is tangent to (and to the right
of) the circumcircle of the three sites. We conclude that the
point u is a vertex of the Voronoi diagram. (Since the sites are
in general position, we can ignore the possibility of four or more
of them having the same circumcircle.) We call the rightmost
point w of the circumcircle associated with a Voronoi vertex u
a circle event. From the preceding discussion, the following
result is clear:

Lemma 5. The only way for an arc to leave the parabolic front
is through a circle event.

The data structures. Now that we understand how the para-
bolic front evolves during the sweep, we are ready to consider its
simulation in the computer. As mentioned before, the algorithm
needs two main data structures: a queue of future events, and
a description of the current parabolic front. The former con-
tains all site events that lie to the right of the sweep line. It
also contains some of the circle events in that region, namely
those that correspond to three consecutive arcs of the current
parabolic front. Note that some future circle events will be
missing from this list, either because they involve sites that
haven’t been swept over yet, or because the corresponding arcs
are not yet consecutive elements of the parabolic front. As we
will see, these circle events will be discovered during the sim-
ulation, and inserted in the event queue before the sweep line
advances past them. Conversely, not every three consecutive
arcs of the current front specify a circle event.

The parabolic front is represented by a balanced search tree
(or any equivalent structure), with the arcs as leaves and the
breakpoints as internal nodes. We will use this tree to efficiently
insert and delete arcs of the front, to locate the arc that inter-
sects a given horizontal line, and to locate the arcs immediately
above and below a given one.

We also hang from this tree the part of the Voronoi data
structure built so far, consisting of the vertices, faces, and edges
that lie totally or partially to the left of the current parabolic
front. Each leaf of the tree (i.e., each parabolic arc) includes a
pointer to the corresponding site, and each internal node (break-
point) includes a pointer to the record representing the associ-
ated Voronoi edge in the incomplete diagram.
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Event processing. Given these data structures, the algorithm
itself is a straightforward event-driven simulation loop. At each
iteration we remove the next event from the queue (the one with
smallest z-coordinate), and we simulate the effect of the sweep
line advancing to that point. We again use the assumption of
the sites being in general position to ignore the possibility of
two events having the same z-coordinate.

To process a site event s, we add to the tree a new degen-
erate arc a, consisting of a left-pointing horizontal ray starting
at s. This requires us to split an existing arc 8 in two, and
add two new breakpoints. We must also add a new edge to the
Voronoi diagram, associated with both breakpoints, which is
the frontier between the Voronoi regions of s and of the site
associated with g. See figure 11.

Processing of a circle event is equally simple. Recall that
such an event corresponds to the sweep line reaching the right-
most point of the circumcircle of three sites a, b, ¢, associated
with three consecutive arcs a, 8, v of the parabolic front. At
that point the middle arc 8 has zero length and must be deleted
from the tree. Before we do so, we must add to the Voronoi dia-
gram a new vertex u, the circumcenter of the triangle abc. That
vertex is incident to the two Voronoi edges currently associated
with the breakpoints a—8 and f—y. Also, after deleting 8 we
must add a new Voronoi edge incident to u, and attach it to
the new breakpoint a—y. See figure 12.

Event scheduling. We still haven’t said how and when the
events get inserted into the queue. Site events get inserted all
at once, at the beginning of the algorithm. Circle events are
inserted as the simulation proceeds, when the three associated
arcs first become consecutive elements of the front.

More precisely, when adding a new arc 8 during a site
event s we look at the two new consecutive arc triplets created
by the insertion (having § as the first and last element, re-
spectively). For each triplet we compute the circumcircle of the
corresponding sites, and add its rightmost point to the queue
as a circle event. Note that since the site s is on the current
sweep line, the new circle event cannot lie to the left of that
line.

Similarly, when deleting an arc 8 between arcs a and ¥
during the processing of a circle event, we check the two new
consecutive arc triplets created by the deletion (which start at
a and end at v, respectively). For each triplet we compute the
circumcircle of the sites, and add its rightmost point to the
queue, but only if it lies to the right of the sweep line. Note
that it is possible for the circumcircle to lie strictly to the left
of the sweep line, as figure 13 shows. That means the center
of the circumcircle has already been swept over by the front.

Figure 13.




16

GEOMETRIC ALGORITHMS

Figure 14.

As discussed below, that center (if it was a Voronoi vertex) will
have been noticed and processed at an earlier date.

It is easy to see why this algorithm schedules every discrete
event affecting the front in due time, that is, before the sweep
line reaches that event. Because of lemma 4, new arcs can enter
the front only through site events, which are all scheduled
beforehand. Because of lemma 5, whenever an arc is about to
disappear from the front, the sweep line must be tangent to the
circumcircle of the sites associated with it and the two adjacent
arcs. Therefore, the three arcs must have become adjacent at
some earlier time, and the corresponding circle event must
have been inserted in the queue at that moment.

On the other hand, the algorithm may schedule spurious
circle events which do not correspond to actual changes in
the front, and therefore to actual Voronoi vertices. This may
happen, for example, if three arcs become consecutive elements
of the front at some point, but a new arc is inserted in their
midst before the sweep line reaches their circle event. At the
moment the circle event was inserted, the Voronoi edges be-
tween the three arcs looked as if they would converge at some
later point, but the arrival of the new site caused those edges
to terminate prematurely. See figure 14. In fact, by the time
the circle event is reached, some of the three arcs may have
already disappeared, engulfed by more distant neighbors or by
new arcs inserted in their midst.

To fix this problem, we keep for each parabolic arc 8 on the
front a pointer death(3) to an event in the queue, namely the
earliest circle event where that arc is currently scheduled to
disappear. The Voronoi vertex corresponding to that event is
the predicted meeting point of the Voronoi edges being traced
by the endpoints of 8. If those edges diverge, the arc is currently
expected to live forever, and its event pointer is nil. To avoid
spurious circle events, it suffices to keep the death pointers
up to date during the simulation, and to promptly remove from
the queue any circle event that is no longer pointed to by
any arc. More precisely, we must discard the event death(a)
whenever the arc a is split in two by a site event, or whenever
one of the two arcs adjacent to a is deleted by a circle event.
This completes the description of Fortune’s algorithm.

Analysis. In order to get the desired bounds on the space and
time cost of the algorithm, we have to show that at any time
the parabolic front and the event queue contain at most O(n)
elements. This is not entirely obvious, since, for example, each
parabola may give rise to many arcs on the front. However, the
only way the parabolic front increases in size is through site
events: then a new arc is added and an old arc is split in two.
Since there are only n such events, this proves that the front
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has linear size. (Another way to derive linearity comes from the
fact that the front cannot contain two parabolas o and 8 that
each appear twice in the pattern ...a...8...a...8.... The
Davenport-Schinzel sequence theory developed in section C2
then implies that the combinatorial complexity of the front is
O(n).) Since each event currently in the queue is either a site
event or a death event for an arc on the front, we conclude that
the queue too never contains more than O(n) elements. With
a suitable priority queue structure [1] we can insert and delete
an event in the queue, or find the one with minimum z, in only
O(logn) time. We conclude that each iteration takes O(logn)
time, and therefore we arrive at the following result:

Theorem 6. Fortune’s algorithm computes the Voronoi diagram
of n sites in O(nlogn) time.

A5. The configuration space approach

The configuration space approach is a geometric technique
from robotics research that has found application in many other
areas of computational geometry [63]. In a typical application,
we want to check quickly whether two or more geometric objects
(say, a robot and the furniture in a room) intersect when placed
in a given relative position. If we have to perform this test for
the same set of objects in many different positions, we may con-
sider pre-computing the entire set § of all relative placements
(configurations) for which the two objects intersect. Then each
query reduces to a test whether the proposed placement lies
within S, that is, to a point location problem in the space of all
configurations.

This approach is practical only when the configuration space
has low dimension, such as problems involving two rigid objects
in the plane. As the objects’ motion becomes less constrained
(allowing, say, translations and rotations in three-space, or ar-
ticulated joints) the dimensionality of the configuration space
increases, and the cost of pre-computing, storing, and searching
S grows exponentially.

The simplest case that leads to non-trivial algorithms is
detecting intersections between two polygonal objects P and @
in the plane that are allowed to move only by parallel trans-
lation, without rotation. In this case the configuration space is
two-dimensional, and consists of all displacement vectors mea-
sured between two reference points fixed on the objects. The set
S of configurations leading to “interference” between the two
polygons is itself a planar polygonal region.
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Figure 15.

Figure 16.

<

Even with these restrictions, the proper treatment of this
problem for general polygons requires more machinery than we
can afford to develop here. The reader is referred to the litera-
ture, in particular to the kinetic framework proposed by Guibas,
Ramshaw, and Stolfi (31]). Henceforth we will restrict ourselves
to the case of two convez polygons.

The set of all invalid placements can be easily expressed
in terms of the Minkowski sum or convolution of two sets A, B
of vectors, which is simply the set of all pairwise sums of their
elements:

AxB={a+b:a€ Aandbe B}

To see how this relates to our problem, we must consider the
two given objects as sets of vectors (measured from a common
origin). Let’s also denote by AV the set A rotated 180° around
the origin, and by A% the set A translated by the vector z:

AN ={—-a : a€ A}
A={a+z : ac A}

The set of forbidden positions is given by the following trivial
result:

Lemma 7. If P and Q are plane objects, then P% intersects Q¥
if and only if the vector z — y lies in the set PN % Q (or,
equivalently, y — « lies in P+ QN ).

In other words, PN « Q is the set of displacements of P relative
to @ for which the two figures intersect.

The convolution of two polygonal figures P,Q is also a
polygonal figure. If P and Q have p and ¢ edges, respectively,
then P * Q (and PN * Q) may have O(pq) edges in the worst
case. As figure 15 shows, P * @ need not be simply connected,
even when P and @ are simple polygons. If P and () are convex,
however, P * Q is a convex polygon with at most p + q edges.

It is convenient to view each edge of a polygon as a vector
directed counterclockwise around the polygon. Observe that the
edges around a convex polygon are ordered by “slope” (direc-
tion angle). In the case of convex polygons, P *  has a simple
characterization: its edges are those of P and @, merged in slope
order. More precisely, if we imagine the edges directed counter-
clockwise, then every edge e of P is translated by the vertex v
of Q such that the direction of e lies in the exterior angle at v
that is facing counterclockwise. See figure 16.

This fact allows us to compute the convolution PN * Q
using only O(p + ¢) time and space. After that we can test in
O(log(p + q)) time whether P displaced by a given vector
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would intersect @ displaced by y, by simply checking whether
¢ — y is inside the convex polygon PN * Q. We conclude the
following:

Theorem 8. It is possible to pre-process two convez polygons P
and Q of size n using only O(n) time and space, so that any
translated copies of P and Q) can be tested for intersection
in O(log n) additional time.

Intersection without preprocessing. We may be tempted
to rest on our laurels at this point. After all, don’t we have to
look at each edge of P and @ to know if they intersect? Surpris-
ingly, the answer is no. By a suitable kind of binary search, we
can test for intersection in time only O(log(p+ ¢q)), without any
pre-processing. Instead of precomputing the convolution PN xQ
explicitly, we compute each edge of the convolution only if and
when it is needed.

Imagine that we move P horizontally to the left, all the way
to infinity. We call the region swept over this way (including P
itself) the left shadow of P, denoted by Pr. See figure 17. The
right shadow Pg or P is similarly defined by sweeping P to the
right. Obviously, P = P N Pg. It is easy to verify the following
result:

Lemma 9. The intersection P N Q is non-empty if and only if
both P, N Qgr and Pgr N QL are non-empty.

Thus, to check whether PZ intersects Q7 we need only know
how to check for intersections between a left shadow L¥ and a
right shadow RY, that is, between (PL)* and (QRr)7, or between
or (Q1)? and (Pg)*. By lemma 7, this is equivalent to testing
whether v — u lies in L * RN. Note that RN is a left shadow, and
that the convolution of two left shadows is also a left shadow.
This is then the problem we will consider: given two left shadows
A and B, discriminate a given point w against A * B.

As stated earlier, the edges of the convolution A*B (viewed
as vectors directed counterclockwise around the figure) are pre-
cisely those of A and B, merged in order of direction. Suppose
the direction of an edge e from A lies between the directions
of two consecutive edges f,g of B, both incident to the same
vertex v. Then the edge e appears in the convolution A * B
displaced by the vector v. In the same way, each edge of B gets
displaced by some vertex of A.

In what follows, placing e in the convolution means deter-
mining this vertex v, and hence the position of e in A * B.
Let n4 and np be the number of edges in A and B, respec-
tively, and let n = n4 + np be the number of edges in the

P

Pg

Figure 17.
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OUTSIDE

Figure 18.

convolution. If the coordinates of the vertices of each chain are
stored in a linear array, in counterclockwise order, we can use
binary search to place any edge e in the convolution, in time
O(max {logn 4,logng}) = O(logn). Once e has been placed,
we can test w against its supporting line ! and its endpoints
P,q in O(1) additional time. See figure 18. If w lies to the
right of I, then w is outside A * B, and we can stop. If w lies in
the left shadow of e, then it definitely lies inside A * B, and we
can stop.

If neither case holds, then we must continue checking w
against other edges of A * B; specifically, either the edges that
follow e or those that precede e in counter-clockwise order, de-
pending on whether w lies above or below e’s shadow. Suppose
e is an edge from A that was displaced by a vertex v of B, and
w lies above its shadow; then the edges of A x B we must con-
sider next are those that follow e in A, plus those that follow
v in B. The other cases are symmetrical. In other words, we
have managed to transform the original problem into a simi-
lar (but smaller) one: discriminate w against the convolution of
two convex left shadows, each defined by a string of consecutive
edges from A or B. By repeating this process we will eventually
reduce the convolution to a single edge, which either shadows
w or leaves w to its right.

How many iterations will this take? If the edge e we dis-
criminate against is always the median edge of A * B, then at
each iteration the problem size gets halved, and the number of
iterations will be at most log, n. Finding the median edge of
A * B is a bit tricky, given that A and B are stored in separate
arrays. Nevertheless, by a binary search procedure it is possi-
ble to find this median in O(log n) time. We will not bother to
give the details, however, since a much simpler method gives
the same asymptotic result.

Note that it is not necessary to find the ezact median of
A* B to guarantee a logarithmic number of steps. It suffices to
choose e so that at each stage we always eliminate at least some
fixed fraction a of the edges. In particular, if we let e be the
median of the longest of the two chains (which can obviously be
found i - onstant time), then at least 1/4 of the edges of A+ B
must come before e, and at least 1/4 must come after it. There-
fore at each stage the size of the problem is reduced by a factor
< 3/4. The number of stages will be at most log,/3 n, which is
bigger than log, n by a factor of log(4/3)/log2 = 2.409+, but
is still O(logn). Since each stage (placing e in the convolution
and testing w against it) takes O(logn) time, it follows that
testing whether w lies in A+ B can be done in O((logn)?) time.
We conclude the following;:
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Theorem 10. With no preprocessing, it is possible to test whether
two convez polygons of size n intersect in O((logn)?) time.

Intersection in O(log n) time. Surprisingly, we can still im-
prove on this result. We will show that we can actually discrim-
inate the point w against the convolution A * B in time only
O(logn). To do this, we cannot afford to spend time O(logn)
on every test just to place the edge e in the convolution. Instead
we wish to find a constant time test that allows us to get rid of
some fraction of the edges of A or B. With this in mind, let us
look at the convolution from yet another viewpoint.

Let a’,a” be the lower and upper endpoints of the chain
A, and let b',b"” be those of B. The convolution A * B will be
a right-convex path on the plane from a’ + b’ to a” + b"". Now
consider all possible ways to interleave the edges of A with the
edges of B, while maintaining the relative order of any two
edges from the same chain. Each interleaving defines a path on
the plane from a' 4 b’ to a” + b” (since all paths consist of the
same set of vectors, their total displacement is the same). Every
path consistently moves in the general direction of increasing y,
but may turn left and right several times. Only one path will
be convex to the right: the one in which all edges are sorted by
direction, that is, A * B.

Note that A * B is also the rightmost of those paths, in the
sense that no point on any other path lies to the right of A * B,
and any other path has at least one point that is strictly to the
left of A* B. To see why this is true, observe that if f and g are
consecutive edges in a path H and are not in the right order,
then swapping them will produce another valid path H’ that
lies to the right of H. See figure 19.

Now let f denote the median edge of A, and g the median
edge of B. Without loss of generality, we can assume that f
precedes ¢ in slope order, and therefore also in the convolution
Ax B. Let Ay, AL, Br, Br denote respectively the high and
low halves of A and B that are separated by f and g.

Consider next the chain D which consists of A, * By, fol-
lowed by f, and g, followed A g * By, in this order. See figure 20.

Since the displacement of Ay * By, is the sum of the displace-
ments of Ay, and of By, the position of f in the chain D can be
computed in constant time.

Let us then test w against the edges f and g, positioned
as in the path D. If the point w falls in region LEFT (see
figure), then clearly w is to the left of the convolution, and we
are finished. If w falls in region ABOVE, then what can we
conclude? Observe that in the convolution A * B, the edge f
and all the edges in A; must lie below the dashed line. The
reason is that f precedes g in slope order, hence it precedes

a'+¥ a'+V

Figure 19.
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also all edges of Ay and By. Therefore, the path leading to
f in the convolution is a subset of Ay * By, which is the path
leading to f in D.

Therefore, if w falls in region ABOVE, we can discard f and
all edges in A, since they cannot affect the classification of w.
Similarly, if w falls in region BELOW, then in the convolution
w will be below g and all edges of By, so these edges can be
discarded. By this constant time test we are able to eliminate at
least half of the chain A or half of the chain B. We can repeat
this step until one of the chains (say, A) gets reduced to a single
vertex v.

Note that we can eliminate only half of one chain, and
we don’t get to choose which one. Since the two chains may
have very different lengths, we cannot guarantee that the size
n4 + npg of the convolution will decrease by a constant fraction
at each stage. However, after O(logn4)+ O(lognpg) = O(logn)
such steps one of the two chains (say, A) will be reduced to a
single vertex v. This means the convex shadow bounded by that
chain is a single horizontal ray extending from v to the left. The
convolution of the two chains is therefore the other chain (B)
displaced by the vector v. Checking w against the convolution
is then equivalent to checking w — v against the chain B, which
can be done in O(logn) additional time by a straightforward
binary search. The total time for checking w against A * B is
therefore O(log n)+O(logn) = O(log n). So we have proved the
following result:

Theorem 11. It is possible to test if two convez polygons of size
O(n) intersect in time O(logn).

The same result was obtained by Chazelle and Dobkin, us-
ing different methods [9].

To conclude this example, let’s comment briefly on the form
in which the answer should be presented. In many practical
applications, just knowing whether P and @ intersect is not
enough. We often need a witness or certificate that corroborates
the answer: a common point if the polygons do intersect, or a
separating line if they don’t. Our algorithm for testing whether
a point w lies in the intersection of two convex shadows A and
B returns such a witness, namely an edge e of A* B such that w
is either in the shadow of e or to the right of its supporting line.
By that time we also know the chain where e came from, and
the vertex v of the other chain by which e was displaced. From
these data we can easily recover a witness for the intersection
or disjointness of the original polygons.
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Ab. Separator techniques

Asin graph theory, the existence of “small” separators often
leads to efficient divide-and-conquer algorithms. Perhaps the
best known result of this kind in computational geometry is
Chazelle’s polygon cutting theorem [8]. That theorem states
that a simple polygon admits of a diagonal that cuts it into two
subpolygons such that (roughly) the larger is not more than
twice as big as the smaller. See figure 21. (As usual, the size
of a polygon is its vertex count, not its length or area.) This
kind of balanced decomposition is crucial when we seek efficient
divide-and-conquer methods.

The existence of such a diagonal for a simple polygon fol-
lows from a corresponding theorem for trees. Triangulate the
polygon and look at the tree T that is the dual graph of the tri-
angulation. The nodes of T have degree three; by a well-known
result of graph theory, T has an edge whose removal cuts it in a
balanced fashion. The dual of this edge is the diagonal we want.
Chazelle showed also that such a cutting diagonal can be found
in time proportional to the size of the polygon.

Suppose that our polygon P has n sides. If we cut P along
a cutting diagonal and then recursively apply the technique to
the two subpolygons thus formed, we will obtain a tree § which
forms a balanced hierarchical decomposition of P. The leaves of
this tree are the triangles of a triangulation of P, while internal
nodes correspond to diagonals used in the triangulation. The
whole process can be carried out in O(nlogn) time. If all the
produced subpolygons are saved within the appropriate node of
S, then the total storage will also be O(nlogn). Such a balanced
hierarchical decomposition is very useful in computing shortest
paths inside P [29], or in visibility questions inside P [11]. In
most applications the redundancy involved in storing all the
subpolygons can be removed with some cleverness so the storage
used can be made linear in n.

A7. Decimation

Decimation is our name for a programming technique due
to Nimrod Megiddo that has yielded surprisingly efficient al-
gorithms for a variety of computational geometry and opera-
tions research problems. The technique has also been called the
Megiddo method or prune-and-search by other authors. Some
applications are computing the smallest enclosing circle [47] and
the convex hull [39] of n points on the plane, and solving linear
programming problems in spaces of fixed dimension [48].

Problems where the decimation technique is applicable seem
to be those where the answer is some simple geometric object

Figure 21.
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Figure 22.

Figure 23.

that ultimately depends on only a few of the input data. The
technique depends on the existence of some quick criterion that
allows us to eliminate in linear time some fixed fraction of the
input data. By repeatedly applying this process with the re-
maining data, we will be left eventually with a trivial problem
that can be solved efficiently by some other method. If each
pass reduces the size of the problem by a factor p < 1, the total
time required by the algorithm will be O(n + pn + p?n + --+),
which is still O(n).

A good example is that of computing the smallest circle
enclosing n given points in the plane. Such a circle is always
determined by either two or three of the given points. This
classic problem of computational geometry was conjectured to
have Q(nlogn) worst-case cost, until Megiddo found a decima-
tion method that on each pass eliminates a fixed fraction of the
points which do not support the minimum circle [47).

The common tangent problem. We will describe here in
detail another and somewhat easier example, the computation
of the common upper tangent of two sets of points. The prob-
lem is this: we are given a collection P of n points in the plane,
which is separated into two non-empty subsets L and R by a
known vertical line m, with L on the left and R on the right. We
wish to find a line ¢ passing through one point from each subset,
such that none of the given points lies above t. See figure 22.
In other words, we want the upper exterior common tangent of
the convex hulls of L and R.

If the convex hulls of L and R were known, the common
tangents could easily be found in linear time [57]. However, com-
puting the convex hull of n points costs ©@(nlogn) in the worst
case [73]. Is this also a lower bound to computing the common
tangent? The answer is no: as Kirkpatrick and Seidel showed,
the upper common tangent of L and R can be computed in
time linear in n, without knowledge of their convex hulls [39].
The key to their algorithm is a simple decimation criterion that
in linear time allows us to eliminate a good many of the points
that do not define the common tangent.

Let us fix for the moment our attention on lines of a par-
ticular slope a. We can compute in linear time a point p of L
that is extremal for this slope, i.e. such that a line through p
with slope a leaves all other points of L below it. We can do the
same for R and obtain a corresponding extremal point ¢. Now
if the line pq has slope less than a, then so must the common
tangent t; similarly, if pg has slope greater than & then so does
t; and if pg has slope equal to a then ¢ = pq. See figure 23.

Now suppose the first case holds, so the slope of ¢ is less
than o. Let 7,3 be any two points of L U R, such that r is to
the left of s and the line rs has slope greater than a. Then we
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can conclude that ¢ cannot pass through r, because a line of
slope less than o through r must pass below s. See figure 24.
The second case, where the slope of ¢ is greater a, is entirely
symmetrical: we can eliminate the second member of any pair
r,8, with r to the left of s, if the line rs has slope less than a.

These remarks suggest the following decimation method.
Pair up the n given points in an arbitrary way, and find the
median slope a of the n/2 lines defined by those pairs. Now
compute the extremal points p and ¢ for the slope a, and elim-
inate one point from every pair that satisfies the criteria de-
scribed above. It should be obvious why the median is a good
choice: since half the pairs have slope less than «, and half have
slope greater than «, then half the pairs will satisfy the crite-
rion, no matter whether the slope of pq is greater or less than
a. So, in either case we eliminate one point from half the pairs.
Of course if pq has slope a then we are done.

It is possible to find the median in time linear in n using the
rather elaborate technique of Blum and others [6]. The other
operations clearly take O(n) time. Therefore, in linear time we
either stop, or eliminate 1/4 of the original points. If we repeat-
edly apply this elimination process on the remaining points, we
are guaranteed to find the common tangent, at a total cost of
O(n+(3/4)n+(3/4)*n + ---) = O(n) Note that we may elimi-
nate a different number of points from L than from R, but this
does not affect the analysis.

Theorem 12. The upper exterior common tangent of two ver-
tically separated point sets can be computed in linear time.

Kirkpatrick and Seidel used this result to obtain a planar
convex hull algorithm that runs in time O(nlogh), where h is
the size of the hull [39]. The one step that makes the algorithm
above impractical is finding the median. Unfortunately, such
a step is almost always present in decimation algorithms. For
practical purposes we can substitute a randomized median (or
other quartile) finding method. This yields algorithms that are
linear-time only in a probabilistic sense but are much simpler
to implement.

Figure 24.
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A8. Hierarchical structures

Several geometric problems have been successfully solved
by the following approach. Given an instance P of the problem,
we may attempt to extract from it a “coarsened sample” P’,
another instance of the same problem such that (1) the size of
P’ is only a fraction of the size of P, and (2) a solution to P’
yields a solution P with only little additional effort. If we can
define and effectively construct such samples, we can solve P
by sampling it, in turn sampling the sample, and so on, till we
obtain an instance small enough to be solved by some trivial
method. We then back up through the sample hierarchy we
have constructed, obtaining the solution for increasingly finer
samples, till we come to the original problem P.

David Kirkpatrick was the first to popularize such hierar-
chical decomposition methods in computational geometry. He
used this approach in the first practical logarithmic point loca-
tion method for planar subdivisions [38]. He and Dobkin also
gave many applications to intersection questions about convex
polyhedra [16,17].

A segment visibility problem. Let’s illustrate this hierar-
chical decomposition technique on a very simple problem. Sup-
pose we are given a set § of n vertical line segments in the
plane. For ease of exposition we assume that the z-coordinates
of all these segments are distinct, so no overlaps among them
are possible. We are interested in organizing these segments into
a structure that allows us to answer efficiently queries of this
form: given a point p in the plane, report the segments in §
(if any) immediately to its left and to its right. In other words,
if we extend horizontal rays from p left and right, we wish to
know the first segments of S that will be hit. See figure 25.

Notice that this is a point location problem. From each
segment endpoint, let’s extend rays to the left and right till we
encounter another segment of S. The segments of S together
with these rays form a rectangular partition of the plane. See
figure 26. All points lying in the same rectangle of this par-
tition yield the same answer to our “left-and-right neighbor”
query. By sweeping the plane with a horizontal line, we can con-
struct this rectangular partition in O(nlogn) time. We could
then solve our problem by triangulating the regions and using
Kirkpatrick’s original point location method. It is preferable,
however, to apply the sampling idea directly to the original
problem, so as to avoid the complexity of the triangulation al-
gorithm and the numerical difficulties involved in testing a point
against oblique lines.



GEOMETRIC ALGORITHMS

27

Sampling the segments. How are we to define a sample of
57 Let us name the segments of S as s;,s3,...,8, in some
order. We say that segment s; “sees” segment s; if there is some
ordinate at which these two vertical segments are adjacent in
the horizontal ordering. In more informal terms, “seeing” means
that if every point of s; sent out horizontal light rays then some
of them would hit s;. (Note that the relation is symmetric, even
though this description isn’t). In the example collection shown
in figure 26, s; and s4 see each other, while s; and sg do not.
This visibility relation between segments can be useful to us
because, if we remove from § a collection of mutually invisible
segments to obtain a reduced set S’, then the answer to the left-
and-right neighbor problem in S’ is not too different from that
in §. Specifically, if we think of the deleted segments as having
become transparent, then the rays we emit from our query point
can only pass through at most one transparent segment before
they encounter some segment of 5’ (or go off to infinity).

Assume that we have preprocessed our collection of seg-
ments as mentioned above so we have for each segment endpoint
its left and right neighbors. It is most useful to record this in-
formation on the neighbors: for each segment s we maintain
two lists ordered in y that describe the segment endpoints for
which s is the left or right visible segment, respectively. These
are called the visibility lists for s and their total length is called
the degree of s. We require that a left-and-right neighbor query
from a point p report not only the two segments stopping the
rays from p but also the specific interval in the right visibility
list of the left neighbor and the left visibility list of the right
neighbor where these rays fall. Note that the total size of the
visibility lists, summed over intervals, is at most 4n; further-
more, these lists can be set up in O(nlogn) time by sweeping
S horizontally.

Now the following sampling process suggests itself: remove
a large collection of mutually invisible segments from § to ob-
tain a coarsened subcollection S’. For this subcollection $’' we
store separately the original visibility lists in S of the segments
in §’. We annotate these lists by giving for each segment s in
§', and for each pair of adjacent y values in the left and right
visibility lists of s, the name of the neighboring deleted seg-
ment, if any. This is the deleted segment that lies immediately
to the right or left of the appropriate interval in the lists for s.
We refer to these auxiliary structures as the support of §’. If we
have the support of §’, then we can take the answer to a left-
and-right neighbor query in §’ and compute the corresponding
answer in S in constant extra time: we need to check only the
single deleted segment of S that might have gotten in the way
in each direction. See figure 27.
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Figure 27.
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From the visibility lists for S we can derive the visibility
lists for S’ by a pretty straightforward process. When segment
s is to be deleted, its left visibility list has to be merged with
those of its right neighbors, and correspondingly for the right
visibility list. These neighbors are visible from s, so they are not
themselves deleted. The merging process can be carried out in
time proportional to the sum of the lengths of the two visibility
lists for s. Once we have the proper visibility lists for S’ itself we
are back where we started, so we can repeat the whole sampling
process over again.

Selecting the sample. For this approach to work we have to
make sure that we can always find a sufficiently large set of
mutually invisible segments to remove, and then do the list
updating efficiently. We have already remarked that the total
size of all the visibility lists for all segments is less that 4n. Thus
the average segment has degree less than 4. Equivalently, there
are at least n/2 segments of degree less than 8; let us call their
set T. From among the segments in T we would like to extract a
large set of mutually invisible segments. So let us take the first
segment from T, place it in a bag, and then delete from T each
of the at most 7 other segments that it sees. Now continue this
process till no more segments are left in T'. Since at each step
at most 8 segments are removed altogether, there will certainly
be at least n/(2 x 8) = n/16 mutually invisible segments placed
in the bag. These segments form the set that we remove from §
to obtain S’. Note that all the removed segments have degree
less than 8.

The process of computing the segments to be removed from
S clearly takes linear time. The auxiliary support structure for
S’ can also obviously be stored in linear space. Now the set
S’ is at most 15/16 of the size of §. Furthermore, its visibility
structures can be computed from those of S in time linear in =,
since all the merging steps that have to be done involve constant
size lists.

The hierarchical structure. Now our solution is clear: we
iterate this sampling process till we get to some constant-size
collection of segments R. We store the support structures for
all the intermediate samples up to and including R. The cost of
computing and storing each level is proportional to the number
of segments in it, which is at most a constant fraction p = 15/16
of the segments in the previous level. Therefore, the total cost
(time and space) of all these samples is O(n +pn + pin4.-) =
O(n/(1 - p)) = O(n).

In order to answer a left-and-right neighbor query we use
an exhaustive search on R. Then, using the support structures
we have saved, we back up through this hierarchy of samples,
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at constant cost per level. From the previous discussion it is
apparent that the number of levels is O(logn), which is also
the cost of answering a query. We have shown the following:

Theorem 13. It is possible to preprocess n vertical segments in
O(nlogn) time and O(n) space so that any left-and-right
neighbor query can be answered in O(logn) time.

Rectangular point location. A minor variation of the tech-
nique presented here can be used for solving the problem of
point location in a rectangular subdivision of the plane. This
problem has obvious applications to VLSI design tools and
multi-window user interfaces. We look at the vertical sides of
our rectangles and then lump them together into maximal ver-
tical segments. The rectangular partition defined by these ver-
tical segments is almost the original subdivision. It only fails to
account properly for vertical towers of rectangles with identical
width. However, those are not difficult to incorporate into the
technique shown. The result is a point location algorithm as
asymptotically efficient as that of Kirkpatrick, but which stays
entirely in the rectangular domain and does not require any
coordinate operations other than simple comparisons.
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Part B: Data Structures

In this part we focus on a number of data-structuring tech-
niques that have been found especially useful in designing effi-
cient geometric algorithms.

B1. Fractional cascading

In computational geometry many search problems and range
queries can be solved by performing an iterative search for the
same key in separate ordered lists. In this section we demon-
strate a technique known as fractional cascading [10] for effi-
ciently solving such problems. Fractional cascading is a data-
structuring technique for solving the iterative search problem,
which we formulate as follows: let G be a directed graph whose
vertices are in one-to-one correspondence with a set of sorted
lists; given a query consisting of a key ¢ and a connected sub-
graph 7 of G, search for ¢ in each of the lists associated with the
vertices of m. This problem has a trivial solution involving re-
peated binary searches, at a logarithmic cost per list. Fractional
cascading establishes that it is possible to do much better: un-
der the assumption that the graph G has bounded degree, we
are able to organize the set of lists so that we have to pay the
logarithmic cost only once, when searching the first list, and
then pay only a fixed amount to look up ¢ in each of the re-
maining lists. This can be done using only a linear amount of
extra storage. These bounds are clearly best possible.

The interval stabbing problem. We now consider the fol-
lowing problem: given a collection of n intervals on the real
line, organize them into a data structure so that the number
of them containing an arbitrary query point can be efficiently
computed. We would like a method that uses linear space and
solves this problem in time O(logn). In the sequel we assume
that the given intervals have distinct endpoints.

We organize our intervals into a tree T using an idea due
to McCreight [45,46]. First we normalize all the endpoints so
that they become the rationals 1/(2n + 1) to 2n/(2n + 1), in
left-to-right order. These rationals are all in the interval (0, 1).
We put in the root of T the collection of intervals containing the
rational 1/2. In the left child of the root we put the intervals
not already placed that contain the rational 1/4, and in the
right child of the root we put those not already placed that
contain 3/4. Note that any interval containing both 1/4 and
3/4 already contains 1/2, so it has been allocated in the root
node. We continue in this process until every interval has been
allocated to exactly one node of the tree T' thus formed. The
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normalization assumption implies that the depth of T will be
only O(logn).

Each node v of T thus ends up containing a collection of
intervals. We construct two ordered lists from these intervals
and store them in v. One list contains all the left endpoints
of the intervals in v sorted by z value, and the other the right
endpoints, similarly sorted. Clearly the total space that the tree
structure takes, together with these ordered lists, is O(n).

Processing a query. A query asking for the number of inter-
vals containing some point p can then be answered as follows.
We start at the root and traverse a path down the tree, essen-
tially emulating a binary tree search for p, where the key value
of the root is 1/2, of its left child 1/4, etc. For each node v
visited we compare p to its key value. If p is greater than the
key value, then we locate p by a binary search among the right
endpoints of the intervals stored with v. Once we know the lo-
cation of p, we can easily obtain the number of intervals in v
containing p. Then we continue the search with the right child
of v. We perform the symmetric operations if p turns out to be
less than the key value in v. This method works because once
we have (say) branched right from a node v we can be sure that
no interval in a node that is in the left subtree of v can possibly
contain p.

The cost of this method is O(log? n): we have O(log n) levels
to traverse, and at each level a binary search to perform. How
could we reduce the O(log® n) overhead to only O(log n)?

Using fractional cascading. Here is where fractional cascad-
ing comes in. The underlying graph G is the tree T'. The sorted
lists are the ordered end point lists (we treat the list of left end-
points entirely separately from the list of right endpoints). The
degree is bounded by three. So here is what we can do. Consider
first the left endpoint lists only. Each leaf of T extracts every
other one of its list elements and merges them into the list of
its father. A node with two leaves as children has its own list
merged with that of the “sampled” lists from each of its two
children. Now each of these fathers with two children leaves in
turn samples his own new list by taking every other element
and sends that sample up to be merged with the list of his own
father. This process continues all the way up the tree: whenever
a node has merged with samples from both of his children, he
samples himself and sends the sample to his father. Because
of the acyclic structure of the tree T' this process eventually
terminates. When it has done so, each node of v contains an
augmented list of left endpoints. This list for v still contains all
the left endpoints of intervals stored in v, but it also contains a
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sample of those in its children, a smaller sample of those in its
grandchildren, and so on.

Analysis. First of all it is clear that if we know where we are
in the augmented list of a node v, then we can easily compute
where we are in the regular list of v. Second, if we know where
we are in the augmented list for v, we nearly know where we
are in the augmented lists of either of its children: at most
one comparison with an unsampled value in the interval that
we are in will tell us our position exactly in a child. This is
an important accomplishment, because once we have done a
binary search to locate p in the augmented list of the root, we
can then descend the tree T' and locate p in the relevant lists
at only constant additional cost per node visited. Thus this
propagation of samples has made neighboring lists sufficiently
similar that the search overhead is reduced to only O(log n): an
initial binary search, and then constant cost per level.

But what about storage? Hasn’t all the propagation of sam-
ples increased storage use significantly? The answer is no. For
each list, half of it went to its father, half of that went to the
grandfather, and so on. So that the total size of all the samples
of a particular list floating around is a geometric series in the
original length of the list, and therefore linear in that length.
This argument is not quite rigorous, but it conveys the intuition
why this sampling process has in fact not more than doubled
the storage used. For a rigorous argument the reader is referred
to the paper by Chazelle and Guibas [10]. This notion of prop-
agating cascaded fractions of the whole forms the essence of
the idea behind fractional cascading. Thus we have shown the
following:

Theorem 14. In O(nlogn) time it is possible to organize n
intervals into a linear space data structure such that the
number of intervals containing a query point can be found
in time O(logn).

B2. Finger trees

A classical data structure that has found a number of im-
portant uses in computational geometry is the finger search tree.
A finger search tree is like an ordinary balanced tree used to
implement the dictionary operations of find, insert, and delete.
Some additional structure is provided, however, so that these
operations are especially efficient in the vicinity of certain pre-
ferred positions, indicated by fingers. Let n be the size of the
dictionary; while in an ordinary balanced tree each operation
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Figure 28.

requires time O(logn), in a finger search tree the time is only
O(logd), where d is the distance from the finger where the
search begins. Thus if there is locality of reference, by keep-
ing a finger in the active region of the key space we can speed
up all three operations. The finger search tree structure was
introduced by Guibas, McCreight, Plass, and Roberts (30} and
has since been further developed by many researchers.

For our discussion here we will need the version described
by Tarjan and Van Wyk under the name of homogeneous finger
search tree [72]. The structure consists of a 2,4-tree (or, equiva-
lently, a red-black tree) with additional internal links from each
node to its parent, and to its left and right neighbors on the
same level of the tree. See figure 28. These extra pointers
allow fast searches starting from any given node. More specif-
ically, the cost of locating an item that is d items away from
a given node (in the linear order of nodes) is only O(logd). In
fact, if we maintain two fingers pointing at the first and last
leaves of the tree (or, alternatively, if we make the left/right
neighbor links circular in each level), we can reduce this to
O(log min {d,n — d}), where n is the total number of nodes in
the tree. To achieve this bound, we start searching simultane-
ously in both directions from the given node, wrapping around
when we reach either end, and stopping both searches as soon
as one of them succeeds.

Homogeneous finger search trees also allow us to perform
efficiently a few other list operations, such as insertion, dele-
tion, splitting, and concatenation. In particular, once we have
located the position of a given key in the tree, we can insert
or delete the corresponding node in only O(1) additional time.
Also, given any pair z,y of leaves, we can split the tree into two
smaller trees, with all the nodes between z and y in one tree and
the balance in the other, in time O(log min {d,n — d}), where
d is the number of nodes between the two leaves. Conversely,
if we are given two trees of sizes d and n — d whose keys lie
in disjoint segments of the key space, we can join them into a
single tree in the same time bound. For a careful description of
these algorithms see the appendix to the triangulation paper of
Tarjan and van Wyk [72].

Note that these are amortized bounds. What this means
is the following. Consider any sequence of searches, insertions,
deletions, splits and joins starting with an empty tree. Let n;
be the total size of the operands for the ith operation, and d; be
either the distance between the starting node and the affected
node (for find, insert, delete), or the size of the first operand (for
join), or the size of the first result (for split). What the amor-
tized bounds say is that the total cost of the whole sequence
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will be O(3_,; logmin {d;, n; — d;}), even though the ith opera-
tion by itself may cost much more than O(log min {d;, n; — d;}).
We will discuss amortized analysis in more detail in section C3.

Jordan sorting. The application which we will use to demon-
strate the use of finger search trees is known as Jordan sorting.
Suppose we are given a simple polygon P of n sides and an
(infinite) straight line {. We wish to compute the intersections
of P and [, sorted in the order in which they occur along I. It
is possible to do this in only O(n) time, by an elegant algo-
rithm due to Hoffman, Mehlhorn, Rosenstiehl, and Tarjan [36].
In what follows we outline their solution.

Consider what happens to one side of [; the other side is
symmetric. The line ! breaks up the polygon into a bunch or
arcs. See figure 29. These arcs are either disjoint or nested,
since the polygon is simple. We represent the containment re-
lationships by a tree S, as shown. Each node is an arc and its
children are all arcs directly nested within it, sorted by the order
in which they occur along I. The plan is to follow the polygon
P, and, as each arc of P on the current side of / is completed,
update the tree S. We do this on both sides of / simultaneously,
with pointers connecting every arc endpoint on one side to the
corresponding arc endpoint on the other side. When we are fin-
ished we can just make a symmetric order traversal of S and
derive the sorted order of intersections of P with [.

So how do we update S? Whenever we start processing a
new arc -y, we look for the innermost pair of previously processed
arcs a,a’ whose endpoints bracket the starting point of 7. As we
will see, while processing the previous arc (on the other side of {)
we will have determined the nearest arcs that bracketed its exit
point; therefore, we can get @ and o' in O(1) time by following
the pointers mentioned above. If the neighbors are nested, that
is, they are parent and child in S, then the outermost of the
two will become the father ¢ of the new arc 4. If they are not
nested, they must be siblings in S, and their common father ¢
will become the father of . See figure 30.

Next, we follow 4 until it reaches [ again. The point where
this happens must lie in the gap between two children 8,3’ of
@, or between ¢ and its first or last child. We locate 8 and
B’ in the children list, and then we update S by inserting the
new node v as a child of ¢, and demoting all children of ¢ that
are enclosed by v (a through g in the figure) to be children of
~. In order to do these operations efficiently, we represent the
children list for each node of S as a homogeneous finger search
tree. (These tree structures should not be confused with the
tree S. Rather, we should think of each finger tree as a linear
list of children, with some hidden machinery that allows us to

2 3
) 6
7
Figure 29.
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Figure 30.
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efficiently perform certain search and update operations on the
list.)

Analysis. It remains to analyze the complexity of this algo-
rithm. Observe that the insertion of each arc ¥ requires locat-
ing its exit point among the children of ¢, splitting off all the
enclosed children (if any), and inserting + in their place. The
problem is finding an upper bound to the total cost of these
operations.

Again, let’s consider only what happens on one side of the
line [, and let S be the final nesting tree for this side. Now con-
sider the situation after the algorithm has just added some arc
¢ to the tree. It is helpful to think that all the arcs in S are
initially “penciled in” in the plane, and then redrawn in ink in
the order in which the algorithm inserts them. Suppose ¢ has m
descendants, excluding itself, in the final tree S. In other words,
¢ encloses m other arcs, penciled or inked, arbitrarily nested.
Suppose also that of these descendants k are still penciled in.
We call the quantity ¢ = m + k the complezity of . We wish to
determine the maximum cost T'(c) (as a function of the com-
plexity ¢) for completing the subtree rooted at ¢, that is, for
adding the arcs that are descendants of ¢ in .S but haven’t been
processed yet. Note that some of the descendants of ¢ may have
been inked before ¢; we aren’t interested in how much their in-
sertion cost, nor in how much it cost to insert ¢—we just care
about the cost of completing the inking process. Note also that
the cost of inking the arcs under ¢ is not affected by any arcs,
inked or not, that lie outside ¢; therefore, we can ignore them
completely in the determination of T'(c).

Now let 4 be the first descendant of ¢ to be added after ¢;
suppose that v has p, p < m, descendants, of which ¢, ¢ < &,
are still penciled in. The complexity of vy isthend =p+g¢<ec.
Since we are representing the inked children of ¢ by finger trees,
if ¢ currently has i inked children, and v covers j of them,
the (amortized) cost of adding v is O(logmin {j + 1,1 — j + 1}.
Obviously, the number j is no greater than the total number p
of descendants of v in §. Similarly, i — j + 1 is no greater than
m —p, the descendants of ¢ that are not descendents of 4. Since
p<p+q=d,and m-p< (m+k)—(p+q)=c—d,the cost
of adding v is at most O(log min {d + 1,c — d}).

Once v is inked, what happens to the arcs below 7 is inde-
pendent of what happens to those between 7y and ¢. The cost
of finishing the former is by definition at most T'(d). The cost
of finishing the latter would be the same if the descendants of
v did not exist, i.e. it is as if ¢ enclosed only m — p arcs, of
which k — g — 1 were still penciled in (the —1 is there because
we just inked 7). Since (m—p)+(k—g—1) = c—d -1, this cost
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is at most T'(¢ — d — 1). Therefore we can write the following
recurrence for the cost T'(c):

T(c) < max (T(d)+T(e~d~1)+0(logmin {d+ 1,¢ - d})).

The solution to this recurrence is T'(¢) = O(c) [49, vol. I]. Since
the complexity of the first arc is less than twice the number of
arcs n, the cost of building the entire tree S is only O(n). We
conclude the following:

Theorem 15. The intersections of a simple polygon and a straight
line, in the order in which they occur along the line, can be
computed in linear time.

B3. Persistent data structures

When we discussed the plane sweep technique in section A4,
we observed that it transforms a static two-dimensional problem
into a dynamic one-dimensional one. Objects enter the active
list as the sweep line hits them, and exit the list as the sweep
line moves past them. In some sense, the history of the active
list represents all the data present in the original problem. Some
geometric problems can be solved efficiently by encoding this
history in a compact data structure that allows fast access to
any of the active lists recorded during the sweep. Noe that this
isin a sense the opposite of the plane sweep paradigm, for we are
transforming a dynamic one-dimensional problem into a static
two-dimensional structure.

In general, a persistent data structure is one that accepts an
arbitrarily long sequence of updates, but is able to remember
at any time all its earlier versions. Driscoll, Sarnak, Sleator,
and Tarjan have given general techniques for taking ordinary
ephemeral data structures and making them persistent [19]. An
especially useful example is that of persistent sorted sets. In
such a set we maintain a linearly ordered set of items. Items are
always inserted and deleted from the “last version” of our sorted
set. Queries as to the position of a particular item, however, can
be made either in the present or in the past: we are allowed to
ask for the place of an item in the sorted list as it was in some
earlier version. If the current list contains n items and a total
of m updates have been made, then a structure proposed by
Sarnak and Tarjan [62] achieves update time of O(log n), access
time to any version in the present or past in O(log m) time, and
needs O(1) amortized space per update, starting from an empty
set.
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Application to point location. Persistent sorted lists can be
the basis of an alternative point-location algorithm for planar
subdivisions. Let S be a subdivision of the plane into polygonal
regions with a total of n edges. We assume that no edges of
S are vertical. Let’s cut the plane into a sequence of vertical
slabs, by drawing a vertical line through every vertex of §.
Within each slab S looks like a stack of trapezoids and triangles
separated by line segmens that cut completely through the slab,
and thus have a well-defined top-to-bottom order. See figure 31.
If we could afford to represent the segments in each slab by a
separate sorted list, then we could locate a given query point
z in O(logn) time, by first locating the slab containing z, and
then locating the two consecutive segments in that slab that
bracket the point z.

Unfortunately storing the siabs separately would require
O(n?) storage in the worst case. However, we can reduce the
space by noting that the sorted sets of line segments that form
the trapezoid bounding edges in contiguous slabs are similar.
Consider sweeping the plane from left to right by a vertical
line. While the sweep line is inside a slab, the active list contains

precisely the segments that cross the slab. As we sweep over the
\ boundary from one slab to the next, some segments are deleted
from the activel list and some are added. Over the entire sweep,
there will be O(n) insertions and deletions, one insertion and
one deletion per edge of S. Therefore, if we represent the active
list as a persistent sorted set of segments, by the end of the
N sweep this data structure will use only O(n) space, and will
allow us to search any slab in O(logn) time.

\
\
\ /

NSRS
—< x?‘/

Theorem 18. Given a polygonal subdivision S with n edges, we
can build in O(nlogn) time and O(n) space a search data
structure that allows us to find the region of S containing

an arbitrary query point z in only O(logn) time.
Figure 31.
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Part C: Analysis Techniques

For the major part, the techniques used for the analysis of
geometric algorithms are not intrinsically different from those
used in the analysis of algorithms in general. It is often the
case, however, that some of the quantities needed in the analy-
sis depend on non-trivial results of topology and combinatorial
geometry. Below we present two such results, having to do with
the length of Davenport-Schinzel sequences (section C2), and
the total complexity of the faces incident to a line in a line ar-
rangement (section C1), which have been used recently in the
analysis of many geometric algorithms.

In the theoretical kind of computational geometry that we
are considering in this paper, the efficiency of an algorithm is
most often measured by its asymptotic worst-case time and
space requirements, viewed as a function of the input size, out-
put size, or some similar measure of the problem’s complexity.
In fact, the large variability in the output size of many geomet-
ric algorithms makes this quantity an important parameter of
the analysis. The reader is referred to Seidel’s dissertation [64]
for many examples of output-sensitive algorithms. An increas-
ingly common tool is amortized analysis, which we already used
in section B2 to derive a linear bound for Jordan sorting. In sec-
tion C3 we show a much simpler application of this technique
to the analysis Graham’s convex hull algorithm.

Average-case analysis of geometric algorithms is rarely done,
and few general-purpose techniques have been developed for
this area. Section C4 shows one of the few results obtained so
far, an asymptotic analysis of the expect number of vertices on
the convex hull of n points uniformly distributed in a triangle.

Cl. Exploiting results from combinatorial geometry

In the analysis of algorithms in computational geometry
one often must make use of results of a combinatorial nature
dealing with geometrical entities. Such results properly form the
realm of a field known as combinatorial geometry. Griinbaum’s
book on convex polyhedra [28] is a good example of a work in
this area.

We illustrate the use of such techniques in constructing the
arrangement of n lines in the plane, that is, the subdivision of
the plane determined by n given lines. An interesting combina-
torial fact about such arrangements is the following: suppose we
look at all faces of the arrangement adjacent to one of the lines
in the arrangement, the so-called horizon of the line. Then the
total number of edges on all these faces is only O(n). Notice
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Figure 32.

Figure 33.

that even one face can have n edges, so this bound is not as
trivial as it may seem.

Based on this combinatorial fact we can design an algorithm
for building the arrangement of the n lines by adding them in
one at a time. In order to add a line /, we start at the appropriate
infinite face R (one of the two, actually) and find the unique
edge e through which [ exits R. Then we cross over to the region
on the other side of e and proceed in the same way. At each step,
we find the edge where [ exits the current region by simply
walking along the boundary of the latter and testing each edge
against [. Clearly, the total cost of this process is proportional
to the total number of edges on the line’s horizon, which as we
have said above is only O(n). Therefore the total cost (in both
time and space) for inserting all n lines is O(n?). If our aim
is to build and save the arrangement, then this is clearly best
possible, as the arrangement will contain ©(n?) vertices, edges,
and regions if the lines are in general position. This algorithm
was given by Chazelle, Guibas and Lee [12], and Edelsbrunner,
O’Rourke and Seidel [22].

Now we prove the combinatorial result mentioned above.
We assume that the arrangement contains no parallel lines. Let
[ be the chosen line. Consider first the faces of the arrangement
that are adjacent to and above l. Since the other n — 1 lines cut
[ into n segments, there are exactly n such faces. For each face
f, let v be the vertex furthest from /; That point is unique, by
our non-parallelism assumption. Call the edge that lies on [ the
floor of f. The floor and the vertex v separate the remaining
edges into the left and right sides of f. The edges adjacent to
v are the ceiling of f. (If the face is unbounded, its ceiling is
by definition the one or two edges that go off to infinity). The
edges that are neither floor nor ceiling, if any, are called the
walls of f. See figure 32.

We claim that each line of the arrangement can occur in
the wall of at most two faces, once as left wall and once as right
wall. To see why, suppose a line m occurred twice as a right
wall, on two faces f and g. Without loss of generality, suppose
f is the one closer to the intersection of m and [. See figure 33.
Let m’ be the next line on the boundary of f, counterclockwise
from m (which may be either a wall or a ceiling of f). Since m
and m’' are on the right side of f, we conclude m' meets [ to the
right of m. Hence, to the left of its intersection with m the line
m! lies always between [ and m. Therefore it must cut through
the face g, a contradiction.

A similar argument holds for left wall occurrences. We con-
clude that the total number of wall edges in all regions under
consideration is at most twice the number of lines, that is, 2n—2.
Actually, the total is at most 2n — 4, since the line that crosses
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[ furthest to the left cannot appear as a left wall, and symmet-
rically for the right. Moreover, each face has one floor edge and
at most two ceiling edges (with the first and last regions hav-
ing only one). The total number of edges in all those regions is
therefore at most 57 — 6 = O(n). (This result can be proved
also by a Davenport-Schinzel argument, or through the use of
Theorem 17; details are left to the reader.) We conclude that

Theorem 17. The arrangement of n lines in the plane can be
built in O(n?) time and space.

C2. Davenport-Schinzel sequences

Davenport-Schinzel sequences are interesting and power-
ful combinatorial structures that arise in the analysis and cal-
culation of the lower envelope of collections of functions, and
therefore have applications in many geometric problems that
can be reduced to the calculation of such an envelope. Roughly
speaking, an (n,s) Davenport-Schinzel sequence is a sequence
composed of n symbols with the properties that no two adjacent
elements are equal and that it does not contain as a subsequence
any alternation of two distinct symbols of length s + 2 (e.g. an
(n,3) sequence is not allowed to contain any subsequence of
theforma...b...a...b...a). The main goal in the analysis of
these sequences is to estimate their maximal possible length for
any given values of the parameters n and s.

The importance of Davenport-Schinzel sequences lies in
their relationship to the combinatorial structure of the lower
envelope of a set of functions. Let fy, fs,..., fn be n real-valued
continuous functions defined on the real line, having the prop-
erty that each pair of them intersect in at most s points. The
graph of their lower envelope f, defined by f(z) = min; fi(z),
is the concatenation of a finite number of arcs, where the kth
arc belonging to some function f;,. The sequence of indices
t1,%2,...,% from left to right is an (n,s) Davenport-Schinzel
sequence. Conversely, any (n,s) Davenport-Schinzel sequence
can be realized in this way for an appropriate collection of n
continuous univariate functions each pair of which intersect in
at most s points.

The crucial property of these sequences is that, for a fixed
s, the maximum length A,(n) of an (n,s) sequence is “prac-
tically linear” in n. More precisely, A1(n) = n, A(n) = 2n —
1, and A3(n) = O(na(n)), where a(n) is an extremely slow-
growing function of n, the functional inverse of Ackermann’s
function. Similar bounds have been proved for A,(n) when s >
3 [34,67,69)].
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This property makes Davenport-Schinzel sequences a use-
ful and powerful tool for solving numerous problems in dis-
crete and computational geometry. Indeed, the original moti-
vation for the introduction of these sequences by Davenport
and Schinzel was a geometric problem arising in analysis of the
combinatorial properties of the pointwise maximum of a collec-
tion of solutions to a linear differential equation. In the last few
years these sequences have been extensively studied by Micha
Sharir and various coworkers. They have found application to
a diverse set of geometric problems, including an analysis of
the exterior boundary of the union of (intersecting) segments
in the plane, the calculation of Euclidean shortest paths in 3-
space amidst polyhedral obstacles, the estimation and compu-
tation of the configuration space used in solving various motion
planning problems amidst polygonal obstacles, the analysis of
certain time-varying geometric configurations, and many oth-
ers 3,63, 68, 70].

Complexity of red-blue intersections. We will illustrate the
use of Davenport-Schinzel sequences on the following problem.
Suppose we are given two sets of convex polygons, “red” and
“blue,” such that no two polygons with the same color intersect.
See figure 34. A red and blue pair may have points in common,
in which case their intersection is a “purple” convex polygon.
Observe that the purple polygons are pairwise disjoint. Let the
red and blue polygons have total size m and n, respectively
(where size = number of edges). Now suppose we take a fixed
number k of purple polygons. Our problem is to estimate the
maximum total number of edges o(m,n, k) of these k polygons.

The difficulty here is that a red or blue edge may give rise
to many purple edges. It is easy to see that a purple region P
can have m + n sides (exactly) in the worst case, since each red
or blue edge contributes at most one edge to P. On the other
hand, the number of purple polygons can be as high as ©(mn)
in the worst case (consider for example a grid of m /4 vertical red
stripes and n/4 horizontal blue ones), but then their total size
is only ©(mn) instead of O(mn(m + n)). That is, one purple
region may have many edges, but if we take a lot of regions
their average size will be quite small. For intermediate values
of k, the answer is far from obvious. For example, figure 35
shows that 0(6,3,2) > 11. Can we get o(m,n,2) > ¢(m + n)
for some ¢ > 17 Surprisingly, the answer is no. It turns out that
o(m,n,k) < m+n+4(k—1) for all m,n > 3 and k¥ > 0.

We will now prove this result. To avoid confusion, let’s call
the purple regions cells and their sides arcs, and reserve the
name edge to those of the red and blue polygons. So, let K be
some set of k cells. Let us fix our attention on some particular
red polygon P; with m; edges. Let K; be the set of those cells
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from K that are contained in P;, and k; the number of such
cells. See figure 36. Let us classify the arcs of K; as “red”
or “blue” depending on their origin. We wish to show that the
number of red arcs in K; is at most m; 4 2(k; — 1).

Label each red arc of K; with the name of the unique blue
polygon that contains it. Now consider the sequence of labels we
encounter as we go once around the polygon P;. Of course sev-
eral arcs may carry the same label, since two convex polygons
may weave in and out of each other arbitrarily often. However,
between any two consecutive arcs with the same label the poly-
gon P; must have at least one vertex. We “charge” the second
of the two arcs to that vertex, and delete the corresponding
entry from the label sequence. Clearly, every vertex of P; will
be charged at most once, which means at most m; arcs are
accounted for this way.

How many red arcs may still be unaccounted for? Here is
where the Davenport-Schinzel theory comes to the rescue. Con-
sider the sequence of labels remaining after the deletions above.
Each letter may still appear several times, but not twice in a
row. Moreover, we cannot have two pairs of repeated letters in
the pattern...a...b...a...b.... If that occurred, then convex-
ity would imply that the blue polygons a and b intersect, which
is a contradiction. See figure 37. This means the string of un-
accounted red edges is a circular Davenport-Schinzel sequence
on k; letters with parameter s = 2. As mentioned earlier, the
length of such a sequence is at most 2(k; — 1). We conclude K;
has a total of at most m; + 2(k; — 1) red arcs.

If we sum this bound over all red polygons P; that contain
at least one cell we conclude that the number of red arcs in the
k given cells is at most m + 2(k — 1). Similarly, the number of
blue arcs is at most n + 2(k — 1). We have therefore proved the
following claim:

Theorem 18. The total size of any k of the cells formed by
intersecting two collections of disjoint convez polygons of
total size m and n is at most m + n + 4(k - 1).

C3. Amortized analysis

We already encountered the concept of amortized complex-
ity in section B2, in the analysis of finger search trees. The tech-
niques of amortized analysis (71] have also found a number of
interesting uses in the analysis of geometric algorithms. Perhaps
the earliest significant algorithm in the field, Graham’s method
of computing the convex hull of n points in the plane [26] al-
ready offers an example of amortized analysis. In that method

Figure 36.

Figure 37.
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one first sorts the n points polarly around some point that is
interior to the convex hull. Following that, one performs what
has come to be called the Graham scan. This is a pass over the
points in polar order where we maintain a convex chain as we
go along; this chain is our best guess as to what the convex
hull is, based on points we have seen so far. If the next point
considered destroys the convexity of the chain, then one has to
back up through the previous points in the chain and discard
points till convexity is restored. This is most conveniently done
by keeping the current convex chain as a collection of points in
a stack. If the new point fits the chain, then it is just stacked
as well. If, on the other hand, the new point destroys the con-
vexity, then points are successively popped from the stack till
convexity is restored between the stack contents and the cur-
rent point. That point is then pushed onto the stack and the
process repeats. Since each point is stacked and unstacked at
most once, the whole process takes time linear in n.

Notice that the processing time for each point during the
Graham scan can be highly variable. Some points may use O(1)
time, and others may take (n) time. Still, the charging scheme
of putting the cost of the operations on the points themselves as
they are stacked or unstacked and not on the points that cause
the stacking or unstacking is an example of amortized complex-
ity analysis. Such arguments frequently involve clever charging
schemes, such as the use of potential functions. Another exam-
ple where amortized complexity comes in is the analysis of the
topological plane sweep method for an arrangement of n lines
by Edelsbrunner and Guibas [21}.

C4. Average-case analysis

The field of average-case analysis of geometric algorithms
is less well developed than its counterpart in combinatorial al-
gorithms. One difficulty is that most geometric problems have
infinite input domains, for which there are no natural probabil-
ity distributions. For example, what does it mean to choose n
random points on the plane, or a random simple polygon with
n vertices? Moreover, any given input distribution is unlikely to
be represetative of data to be encountered in practice: the sim-
ple polygons typically encountered in cartography applications
are statistically quite different from those typical of engineering
design. Finally, the non-linearity of most geometric operations
causes internal results to have extremely complicated distribu-
tions. Just to mention a simple example, suppose we take two
points p and ¢ with random coordinates, independently drawn
from a Gaussian probability distribution. The coefficients of the
line joining p and ¢ will be second-degree rational functions of
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all four coordinates; as such, they will not be independent of
each other, and they will not follow a Gaussian distribution, or
any of the distributions normally studied in statistics books.

The study of this kind of problems is known as integral or
stochastic geometry. For an introduction to this field, see the
work of Santal6 [60,61] and Miles 50,51, 52,53]. We expect
that techniques from this field will find more applications in
the analysis of geometric algorithms in the future.

Random convex hull. As an example of average-case anal-
ysis, we will derive an asymptotic expression for h(n), the ex-
pected number of vertices of the convex hull of » random points
in the plane. The importance of this quantity stems from the
fact that many geometric algorithms start by computing the
convex hull of n given points, and often the cost of subsequent
steps is determined by the size h of the hull, rather than the
total number of input points.

The value of k(n) obviously depends on the probability dis-
tribution of the given points, as well as on their number. In this
section we will consider a very simple case: we will assume the n
given points are uniformly and independently distributed inside
a triangular region of the plane. Following the approach used
in 1963 by Rényi and Sulanke [59], we will prove the following
result:

Theorem 19. The average number of vertices in the convez hull
of n random points uniformly and independently distributed
in a triangle is

l_z(n) = 2Hn_1

1,1 1
=21+ g+ g4t =)

=2(Inn +7) + o(1) (1)

Proof: First, observe that affine maps preserve convexity, “in-
side-outside” relations, and uniform distributions. Moreover, for
any two triangles there is an affine map that takes one into the
other. We conclude that if the theorem holds for the equilateral
triangle T with unit side, it will automatically hold for any
other triangle.

Let P = {p1,p2,...,Pn} be the input points. If we define
the random variables

o { 1 if p;p; is an edge of hull(P), @)
ij = .
0 otherwise.
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Figure 38.

then the number of edges (vertices) of hull(P) will be

h= > & (3)

1<i<jsn

and therefore _
h(n)= 3 Pr(eij=1) (4)
1<i<j<n
Since all points are drawn from the same distribution, the prob-
abilities Pr(e;;=1) are all equal, and it suffices to compute one
of them, say Pr(e;2 = 1). This number is the probability that
points p3, p4,...p, fall on the same side of the line p;p,.
With probability one, the line p;p; divides the triangle T
into a smaller triangle T2 and a convex quadrilateral Q5. See
figure 38. Let u and v be the lengths of the two sides of T;,
that are not on the line p; p,. The areas of T and T}, are then

T = lin® = V3
2 3 4 (5)
1 o7 V3
|T12| = zuvsin - = uv—

2 3 4

Therefore, |T12| / |T| = uv, and {@Qi12]|/|T| = 1 — uv. The prob-
ability Pr(e12=1) of all remaining points falling on one side of
p1p: is then

/ / ()™ + (1 = w0)™?) Pr(p) dpy Pr(pz)dpy  (6)
T T

where Pr(p) is the probability density of the input points at p,
namely 1/|T| = 4/v/3. Note that each [ here denotes a two-
dimensional integral, and that u and v depend on p; and p,.
Formula (6) simplifies to

1

Pr(ei2=1) = ?6 // (wo)*"2 + (1 —wo)*"?) dprdpy  (7)
TT

Let a, b, and ¢ be the vertices of T. We can partition the
domain of integration of (7), namely the set T x T of all pairs
(p1,p2) in the triangle, into three subdomains A, B, C according
to which vertex of T is also a vertex of T}2. Because of symme-
try, the integral (7) will be the same on each subdomain, and
we can write

Pr(e42=1) = 16 // ((wo)* 2 +(1- wo)*"%) dpydp;  (8)
: A

To compute (8) we will perform a change of variables, re-
placing p; and p; by the distances u and v. This requires that
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we rewrite the differential dp; dp; in terms of u, v, du and dv. In
other words, we must compute the (4-dimensional) measure of
the set of point pairs p,q in T X T such that the line pq cuts the
side ab at u’ between u and u + du, and cuts ac at v' between v
and v + dv. Instead of computing this directly, we will measure
the set A’'(u,v) of pairs p,q for which 4’ < u and v’ < v. See
figure 39. We then obtain the desired answer by diferentiating
the measure |A’(u,v)| of this set with respect to u and v.

What is the set A’(u,v)? In order for v’ < u and v' < v,
the points p,q must be inside T};. Furthermore for each choice
of p, the point ¢ must be in regions I or IV of figure 40. The
measure |A'(u,v)| is therefore the area of T} times the average
area of these two regions when p; ranges over the whole T),. If
Ty2 were an equilateral triangle, then from symmetry alone it
would follow that the average area of each region I-VI is exactly
one sixth of the area of T7,. However, since we can make T},
equilateral by an affine map, and every affine map preserves the
ratio of areas, we conclude that the same is true no matter what
is the shape of T15. Therefore, we have

ulv?

2
[4'(w,0)] = [Tual 5 Tl = "2 ©®

Differentiation of the formula above with respect to u and v
gives dp; dp; = }uv dudv. Substituting this into (8) we get

11

Pr(ey2=1) = 16// ((u0)*"% + (1 — uv)*~?) E424111 dv

11
= ) — uv)" " %uv) dudv
-40/0/« Y"1+ (1 - uo)*~Puv) dudv (10)

The evaluation of (10) presents no great problems. For the
term (uv)"~! we have

Ojo/l(uu)"-l dudv = (Oju"-ldu)(o/lv"-ldv) ==

As for the second term (1 — uv)*~2uw, we first integrate it
with respect to u by substituting z for 1 — uv:

1
/(1 —uv)" "2 uvdu
0

1-v
1 / 2" 31— z)dz
v

1

Figure 39.

Figure 40.
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3 1 z'n.—l P 1-v
T ovln-=-1 n |,

_1-(1-w)! 3 1-(1-o)*t
~ a(n-1)p n

(12)

Now we integrate expression (12) with respect to v, substi-
tuting w for (1 — v):

11
//(1—uv)"_2uvdudv
00

[y sy,
1/ (et - 5) =

1
/(1+w+w2+._.+wn—2 wn—l)
= - dw
n(n —1) n
0

1 11 1 1
= ——|l+g5+z++ -

n(n — 1) 3 n—1 n?
H,_4 1
— - 13
n(n—1) n? (13)
From (11) and (13) we get
Pr(e12=1) = Y Pr(ei=1)
1<i<j<n
1 Hn-l 1
- 4(;17+n(n—-1) nz)
4Hn—l
—n 14
n(n — 1) (14)

We conclude that
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Other distributions. Rényi and Sulanke were also able to
compute the asymptotic expansion of A(n) for a few other dis-
tributions. If the points are uniformly distributed over a fixed
convex polygon K with vertices ay,as,...,a,, then we have

h(n) = %(lnn +79)+ g—( Z In :—TK{—:) + o(1) (15)
1<igr

where T} is the triangle a;_1a;a:41.

This result may seem paradoxical: let K be a triangle, and
suppose we remove an infinitesimally small piece K’ from one
of its corners. According to formulas (1) and (15), the average
number of vertices in the convex hull jumps from 21nn+o(1) to
$1nn + o(1). What happens is that for small n the o(1) terms
are still large enough to obliterate the difference between 2Inn
and $lnn. When n is large enough to make the o(1) terms
negligible, the probability of finding a point in K’ has become
significant — i.e., K’ is no longer infinitesimally small.

If the points are uniformly distributed on a circle, the av-
erage value of h is

272

1/3
h(n) = 21(5/3) (T) a3 (1 4 o(1)) (16)

In fact, we have A(n) = O(n!/3) whenever the points are uni-
formly distributed over an arbitrary convex figure with smooth
boundary; the shape of the curve changes only the proportion-
ality factor. Rényi and Sulanke also show that

h(n) = 2v2rInn (1 + o(n)) 17

if the points come from a two-dimensional normal distribution.

Epilogue

In this paper we have attempted to survey a number of
different paradigms for the design and analysis of geometric
algorithms. We have illustrated the use of traditional algorithm
design methods and data structuring techniques, as well as the
use of a number of tools that are more intrinsically geometric.
Many algorithms employ several of these tools in combination.
We hope that in time more and more techniques from geometry
(as a branch of mathematics) will find use in this computational
domain, thus linking it ever more tightly with a discipline that
is as old as human thought itself.
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