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Author’s abstract

Many geometric algorithms become simpler, more general, and more efficient when
recast in the language of projective geometry. Some reasons for this are the uniform
handling of points at infinity, the attendant reduction in the number of special cases,
and the perfect duality between points and hyperplanes that are possible in the projec-
tive model. In fact, the homogeneous coordinates so widely used in computer graphics
are essentially an analytical model of classical projective geometry.

However, projective space is topologically quite different from Euclidean space. For
example, in the projective plane lines have only one side, all triangles have the same
handedness, and there are two distinct segments with any given pair of endpoints.
These differences are a serious practical problem, since many geometric algorithms
depend on orientation, ordering and separation tests that make sense only in the
Euclidean model.

This dissertation describes a slightly modified form of projective geometry which is
free from this problem. Analytically, the change consists in making the signs of homo-
geneous coordinates more significant. Geometrically, the change consists in adopting
oriented lines and planes as the elementary objects of the model, and redefining the
basic geometric operation of meet and join so as to produce results with a definite ori-
entation. Topologically, this is equivalent to working with a double covering projective
space, which is equivalent to an n-dimensional sphere.

The resulting framework, here called oriented projective geometry, combines the ele-
gance of classical projective geometry with the ability to talk about oriented lines and
planes, signed angles, line segments, convex figures, and many other concepts that
cannot be conveniently defined within that model. The goals of this dissertation are:
(1) to develop an intuitive understanding of oriented projective geometry in two and
three dimensions; (2) to describe a formal geometric calculus for handling oriented
lines, planes, and flat spaces of arbitrary dimension; and (3) to investigate the efficient
representation of such objects in computers.

Jorge Stolfi
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Chapter 1
Introduction

Oriented projective geometryis a model for geometric computation that com-
bines the elegance of classical projective geometry with the ability to talk about ori-
ented lines and planes, signed angles, line segments, convex figures, and many other
concepts that cannot be defined within the classical version. Classical projective ge-
ometry is the implicit framework of many geometric computations, since it underlies
the homogeneous coordinate representation widely used in computer graphics. It is
argued here that oriented projective geometry — and its analytic model, based on
signed homogeneous coordinates — provide a better foundation for computational
geometry than their classical counterparts.

The differences between the classical and oriented versions are largely con-
fined to the mathematical formalism and its interpretation. Computationally, the
changes are minimal and do not increase the cost and complexity of geometric
algorithms. Geometric algorithms that use homogeneous coordinates can be easily
converted to the oriented framework at little cost. The necessary changes are largely
a matter of paying a little more attention to the order of operands and to the signs
of coordinates.

The aim of this thesis is not so much to advance the remote frontiers of pure
geometry or theoretical computer science, but rather to assemble a rich, consistent,
and effective set of basic tools for computational geometry that can be used by pro-
grammers in their everyday work. Its novelty lies not in the mathematical concepts
and algorithms, but in their application to the world of practical computing. Mathe-
maticians will not find in this thesis any deep theorems or revolutionary definitions;
computer scientists will search in vain for powerful algorithms or sophisticated data
structures. The specialists will notice that oriented projective geometry is essen-
tially equivalent to spherical (or double elliptic) geometry, which to them is an old
and well-explored concept.!!) However, programmers will (hopefully) be surprised on
learning that the geometry of the sphere, an eminently curved surface with curved
lines, is in fact an excellent model for ordinary geometric computations with straight
lines on the flat Euclidean plane.

My goal is to make programmers and computational geometers aware of
this connection, and give them a set of intellectual tools to help them exploit it,
including a firm intuition and a practical notation. With this in mind, I have strived
to keep mathematical jargon and formalism to a minimum, and substitute intuition
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for formalism whenever possible. At the risk of being tedious, I have also tried to
illustrate general definitions and theorems with examples in one, two, and three
dimensions.

Here is a brief outline of the thesis. The rest of this chapter contains a brief
description of the classical and oriented projective planes, their advantages and dis-
advantages. Chapters 2 through 7 describe the canonical oriented projective spaces
(of arbitrary dimension) in detail, defining their subspaces (points, lines, planes,
etc.), orientations, the fundamental geometric operations of join and meet, and the
concept of relative orientation or “sideness.” Chapter 8 defines projective maps, the
transformation of space that preserve incidence and orientation. These are used in
chapter 9 to define abstract oriented projective spaces. Chapter 10 introduces the
notion of projective duality, which allows us to exchange join with meet. Chapters
11, 12, and 13 discuss concepts related to projective maps, such as projective func-
tions, projective frames and coordinate systems, and the cross-ratio of four points.
Chapter 14 shows how oriented projective geometry allows us to define convexity in
a way that preserves its most important properties. In chapters 15, 16, and 17 we
will see how to emulate the affine, Euclidean, and linear vector spaces within the
oriented projective framework. Finally, chapters 18 through 20 discuss the represen-
tation and manipulation of lines, planes, etc. in the computer.

1. Classical projective geometry

Before we go on, a short review of classical projective geometry may be in
order. The classical projective plane may be defined by means of four mathematical
models (straight, spherical, analytic, and homogeneous).l”) It is also possible to de-
fine the projective plane abstractly, as a set of objects satisfying certain axioms.[3-4]
Unfortunately, such axiomatic definitions are hard to to generalize to higher dimen-
sions. Moreover, the axiomatic method is better at formalizing intuitive knowledge
than at developing intuition about a new subject. Considering the aims of this thesis,
I have opted to base all definitions on concrete models, without trying to abstract

from them a coherent set of axioms.

1.1. The straight model

The straight model of the projective plane P, consists of the real plane R?,
augmented by a line at infinity Q, and by an infinity point doo for each pair of
opposite directions {d,—d}. The point doo = (—d)oo is by definition on the line {2
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and also on every line that is parallel to the direction d. See figure 1.

Figure 1. The straight model of the projective plane P,.

1.2. The spherical model

The spherical model of P, consists of the surface of a sphere, with diametrally
opposite points identified. The lines of P, are represented by the great circles of the
sphere, again with opposite points identified. See figure 2.

a point

Figure 2. The spherical model.

The spherical model clearly shows that all lines and points are equivalent in their
topological and incidence properties. The seemingly special character of {? and the
infinite points in the straight model is a mere artifact of the representation.
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1.3. The analytic model

The analytic model represents points and lines of P, by their homogeneous
coordinates. A point is by definition a non-zero triplet of real numbers [w, z,y], with
scalar multiples identified. By this we mean [w, z,y] and [Aw, Az, Ay} are the same
point, for all A # 0. A line is also represented by a non-zero real triplet (W, X,Y),
which by definition is incident to all points [w, z,y] such that Ww + Xz + Yy = 0.
Note that (W, X,Y) and (AX,\Y,AZ) are the same line for all A # 0.

1.4. The homogeneous model

Geometrically, we can identify the point [w,z,y] of P, with the line of R?
passing through the origin and through the point (w, z,y). The line (W, X,Y) of P,
then corresponds to the plane of R3 passing through the origin and perpendicular
to the vector (W, X,Y). This is the homogeneous model of P,. See figure 3.

a line

Figure 3. The homogeneous model of P,.

1.5. Correspondence between the models

The analytic and straight models of P, are connected by the familiar homo-
geneous-to-Cartesian coordinate transformation, whereby the homogeneous triplet
[w, z,y] is mapped to the point (z/w,y/w) of the Cartesian plane. We can view this
transformation as choosing among all equivalent homogeneous triplets a weight-
normalized representative (1,z/w,y/w) (the first coordinate w being called the
weight of the triplet). Homogeneous triplets with w = 0 correspond to the infin-
ity points of the straight model. A triplet [w,z,y] corresponds also to the point

(w,z,y)/\Jw? + 2% + y?

of the spherical model.
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Geometrically, these mappings corresponds to central projection of R? onto
the unit sphere, or onto the plane = tangent to the sphere at (1,0,0). See figure 4.
This projection takes a pair of diametrally opposite points p, p’ of the sphere to the
point ¢ where the line pp’ meets the tangent plane 7. The great circle of the sphere
that is parallel to the plane = is by definition projected onto the line at infinity
of the straight model. Observe how this correspondence preserves points, lines, and
their incidence relationships.

spherical
model

Figure 4. Central projection between the models of P,.

2. Advantages of projective geometry

2.1. Simpler formulas

Projective geometry and homogeneous coordinates have many well-known
advantages over their Cartesian counterparts. For one thing, the use of homogeneous
coordinates generally leads to simpler formulas that involve only the basic operations
of linear algebra: determinants, dot and cross products, matrix multiplications, and
the like. All Euclidean and affine transformations, and all perspective projections,
can be expressed as linear maps acting on the homogeneous coordinates of points.
For example, the Cartesian coordinates of the point where the lines az + by + ¢ =0
and rz + sy + ¢t = 0 intersect are

(bt — cs, cr — at)
as — br '
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In homogeneous coordinates, the intersection of (a,b,¢) and (r,s,t) is
[bt - cs, cr — at, as — br]

which is easily recognized as the cross product of the vectors (a,b,c) and (r,s,t).
As this example shows, with homogeneous coordinates we can eliminate most of the
division steps in geometric formulas; the savings are usually enough to offset the
cost of handling an extra coordinate. The absence of division steps also makes it
possible to do exact geometric computations with all-integer arithmetic.

2.2. Less special cases

Homogeneous coordinates let us handle points and lines at infinity in a
natural way, without ad hoc flags and conditional statements. Such objects are valid
inputs in many geometric applications, and are generally useful as “sentinels” in
algorithms (in sorting, merging, list traversal, and so forth). They also allow us
to reduce the number of special cases in theorems and computations. For example,
when computing the intersection of two lines we don’t have to check whether they are
parallel. The general line intersection formula will work even in this case, producing
a point at infinity. This point can be used in further computations as if it were any
ordinary point. By contrast, in the Euclidean or Cartesian models we must disallow
this special case, or explicitly test for it and handle it separately. Note that when
we compose two procedures or theorems, their special cases usually get multiplied
rather than added. Therefore, even a small reduction in the special cases of basic
operations — say, from three to two — will enormously simplify many geometric
algorithms.

2.3. Unification and extension of concepts

Another advantage of projective geometry is its ability to unify seemingly
disparate concepts. For example, the differences between circles, ellipses, parabo-
las, and hyperbolas all but disappear in projective geometry, where they become
instances of the same curve, the non-degenerate conic.

When several disparate concepts are unified into a more general idea, the lat-
ter often turns out to include several interesting special cases that were not covered
by the former. This happens in projective geometry, too. For instance, all Euclidean
and affine transformations (translations, rotations, similarities, and so on) are uni-
fied in the idea of projective map, a function of points to points and lines to lines
that preserves incidence. Besides those familiar transformations, this class contains
many new and interesting ones, such as the perspective maps. In Euclidean geom-
etry these maps cannot even be properly defined, since they exchange some finite
points with infinite ones.



1. INTRODUCTION 7

2.4. Duality

Duality is another powerful tool that is available only in projective geometry.
Consider the one-to-one function ‘*’ that associates the point [w, z, y] to the line line
(w, z,y), and vice-versa. This mapping preserves incidence: if point p is on line /, then
line p* passes through point [*. The existence of such a map ultimately implies that
every definition, theorem, or algorithm of projective geometry has a dual, obtained
by exchanging the word “point” with the word “line,” and any previously defined
concepts by their duals. For example, the assertion “there is a unique line incident
to any two distinct points” dualizes to “there is a unique point incident to any two
distinct lines.”

Duality is extremely useful in theory and practice; thanks to it, every proof
automatically establishes the correctness of two very different theorems, and every
geometrical algorithm automatically solves two very different problems. In Cartesian
geometry we can get such a duality only at the cost of leaving out certain lines (e.g.,
the vertical ones, or those passing through the origin). This leads to unnecessarily
complicated theorems, and to algorithms with lots of special cases.[®:8]

3. Drawbacks of classical projective geometry

In spite of its advantages, the projective plane has a few peculiar features
that are rather annoying from the viewpoint of computational geometry. Some of
those problems, which were described in detail by Riesenfeld!®], are:

e The projective plane is not orientable. Informally, this means there is no way
of defining “clockwise” or “counterclockwise” turns that is consistent over the
whole plane P,. The reason is that a turn can be continuously transported over
the projective plane in such a way that it comes back to its original position
but with its sense reversed. For the same reason, it is impossible to tell whether
two triangles (ordered triplets of points) have the same or opposite handedness.
This is quite inconvenient, since these two tests are the building blocks of many
geometric algorithms.

o Lines have only one side. If we remove a straight line from the projective plane,
what remains is a single connected set of points, topologically equivalent to
a disk. Therefore, we cannot meaningfully ask whether two points are on the
same side of a given line. More generally, Jordan’s theorem is not true in the
projective plane, since a simple closed curve (of which a straight line is a special
case) need not divide the plane in two distinct regions. Even if we consider only
the immediate neighborhood of a line, we still cannot distinguish its two sides,



8 1. INTRODUCTION

since that neighborhood has the topology of a Mdbius band. See figure 5.

Figure 5. The neighborhood of a straight line of P,,.

e Segments are ambiguous. In projective geometry we cannot define the line seg-
ment connecting two points in a consistent way. Two points divide the line
passing through them in two simple arcs, and there is no consistent way to dis-
tinguish one from the other. It is therefore impossible to tell whether a point r
lies between two given points p, q.

o Directions are ambiguous. By the same token, we cannot define the direction
from point p to point ¢q. In particular, each point at infinity lies simultaneously
in two opposite directions, as seen from a finite point. This property often makes
it hard to use points at infinity as “sentinels” in geometric algorithms and data
structures.

o There are no convez figures. The notion of convex set has no meaning in projec-
tive geometry. The problem is not just that the classical definition of convex set
(“one that contains every segment joining two of its points”) becomes meaning-
less, but in fact that there is no consistent way to distinguish between convex
and non-convex sets.

Of course, we can avoid all these problems by letting our definitions of segment,
direction, and so on depend on a special line 2. However, we would then have to
exclude certain “degenerate” cases, such as segments with endpoints on §2. The con-
cepts thus defined will not be preserved by arbitrary projective maps and will have
uninteresting duals. In fact, this “solution” means giving up projective geometry,
and retreating to the Euclidean world.
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4. Oriented projective geometry

Oriented projective geometry retains most advantages of the classical theory,
but avoids the problems listed in the previous section. Its primitive objects are points
and oriented flats: oriented lines, oriented planes, and so on. In particular, every
straight line has an intrinsic orientation, which determines a “forward” direction
along the line at every one of its points.

Every line of the classical projective plane is thus replaced by two coinci-
dent but oppositely oriented (hence distinct) lines. In order to maintain the exact
duality between points and lines, each point must also be replaced by two “oppo-
sitely oriented” copies. Algebraically, this means treating [w,z,y], [-w, —z,—y] as
distinct points, and (W, X,Y), (-W,—-X,~Y) as distinct lines. The resulting set
of points is topologically a double covering of the projective plane. Accordingly, I
will use two-sided as a synonym of oriented projective. The set of points is in fact
topologically equivalent to a sphere, with straight lines corresponding to oriented
great circles. Therefore, oriented projective geometry is simply an oriented version
of spherical geometry.

The double covering makes it possible to postulate an intrinsic circular ori-
entation for the whole plane, which defines the “positive sense of turning” at every
point, in a consistent way. This allows us to talk about the orientation of other
objects in absolute terms: we can say that a triangle is positively oriented, without
having to specify a “reference” triangle every time. The global orientation of the
plane also makes it possible to use the “forward” direction of a line to define its
“left” and “right” sides.

In oriented projective geometry, a pair of points p, ¢ generally determines
not one but two distinct lines, with the same position but opposite orientations. We
still can unambiguously speak of the line through p to g, if we pay attention to the
order of those two points. That is, we must distinguish between the line joining p to
q and the one joining ¢ to p. Dually, two lines [ and m on the plane have generally
two points in common, so we must distinguish the point where [ meets m from the
point where m meets [. We will see that the two can be unambiguously defined by
taking into account the orientations of ! and m, and the global orientation of the
whole plane.

The previously mentioned advantages of projective geometry are retained in
the oriented version. In particular, we are still able to define an exact duality between
points and lines that preserves not only the incidence properties of all objects, but
also their relative orientations. In addition, the oriented version allows us to define
the concept of convexity in a truly projective way. Unlike the Cartesian definition,
the new one is unaffected by arbitrary projective maps and duality: we can finally
say that the problem of intersecting n half-planes is eractly dual to finding the
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convex hull of n points, and not approzimately so. Indeed, the ability to support
both convexity and duality is perhaps the greatest advantage of the new framework.
All of this extends quite nicely to higher-dimensional spaces. A major diffi-
culty there is that our geometric intuition becomes less powerful and less reliable.
Once we leave the plane, the orientation of objects becomes much harder to visualize
and to reason about. A great advantage of oriented projective geometry is that it
gives us effective and reliable tools for doing this. Oriented projective geometry can
be viewed as the marriage of projective geometry with an algebra of orientations.

5. Relation to previous work

Projective geometry and its history are too well documented for me to give
them more than a fleeting treatment here. The interested reader should consult any
basic textbook on the subject!4] and follow the leads from there.

In the realm of computer graphics, the idea of distinguishing homogeneous
tuples that differ by a global sign change is not entirely new. For example, pro-
grammers usually compute the sign of Ww + Xz + Yy in order to test whether
the point [w,z,y] is on the left side of the line (W, X,Y’). This obviously distin-
guishes between that line and the line (—W,—X, —Y). However, this distinction is
applied unsymmetrically: only to line coefficients, and not to point coordinates. In
fact, users of this formula have to ensure that the coordinates of the point [w,z, y]
are “sign-normalized” in some consistent way (for example, so that w > 0), thus
abolishing the distinction between that point and [—w,—z, —y]. Besides requiring
explicit tests and sign-reversals, this assumption destroys the point-line duality, and
is mathematically inconsistent in many other ways (especially in the treatment of
points at infinity). For more details, see the Riesenfeld’s paper.[*]

The distinction between homogeneous tuples of opposite sign is also com-
monly made in the perspective rendering of three-dimensional models. One step in
this process is applying to the whole three-space a projective transformation which
keeps the projection plane fixed and moves the observer to infinity. (Algebraically,
this transformation consists of multiplying the homogeneous coordinates of every
point by a 4 x 4 matrix.) This maps all rays out of the observer’s eye into par-
allel lines, so that the perspective projection is reduced to a simpler parallel one.
However, it also has the unwanted effect of “folding” those parts of the image that
originally were behind the observer (and hence invisible to him) over the visible part
of the image.l'”) See figure 6.

It turns out that if the homogeneous coordinates of the original points are sign-
normalized to have positive weight, then the invisible points (and only those) will
have negative weight after the transformation. Although this fact is well-known and
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Figure 6.

widely used by graphics programmers, it cannot be explained within the classical
theory of homogeneous coordinates. According to that theory, the procedure that
does the perspective transformation would be allowed to arbitrarily reverse the sign
of all coordinates of the result. The negative-weight clipping rule above is therefore
presented as a programming trick, based on implicit assumptions about the inner
workings of the transformation procedure.

On the theoretical front, Hermann Grassmann seems to have been the first
to consider a geometric calculus based on two dual products (what we call join
and meet), about a hundred years ago. His ideas were explored and reformulated
by several other mathematicians since then, notably Clifford, Schréder, Whitehead,
Cartan, and Peano. For a recent exposition of the ideas involved, see for example the
paper by Berman!!!l or the book by Hestenes and Sobczyk.5] For some reason, the
geometric calculus developed by those authors was relegated to relative obscurity,
and its usefulness for practical computations has been largely ignored so far. Part
of the reason may be the highly abstract language, excessive generality, and heavy
mathematical formalism used in most expositions, which make the fundamental
ideas seem much more complicated than what they really are.

The notation used in this paper is quite similar to the one used in a recent
paper by Barnabei, Brini, and Rota,[?! although it was developed independently
from their work. The notion of an oriented flat as defined in the next chapters is
closely related to what they call an eztensor, or decomposable antisymmetric tensor.
More precisely, the flats of oriented projective geometry are the equivalence classes
we obtain by considering two extensors equivalent iff they differ by a positive scalar
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factor. Compared to their paper, this thesis gives more emphasis to the geometric

(as opposed to algebraic) aspects of the calculus, and in particular to its suitability
as the common language of computational geometry.
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Chapter 2
Oriented projective spaces

Rather than defining oriented projective geometry by a list of axioms, I
will construct a canonical two-sided space T, for each dimension v. This object will
consist of an oriented manifold 7, (whose elements are called points) and a collection
F, of oriented submanifolds of 7, (the flats). I will then be able to define a generic
oriented projective space as any pair (U, F') isomorphic to (7, F,) for some v. (I
will generally omit the subscript v when it is clear from the context.)

1. Models

Actually, I will construct three equivalent versions of T, analogous to the
straight, spherical, and analytic models of P,:

1.1. The spherical model

The spherical model of T, consists of the unit sphere S, of R”*!, that is,
the set of all points (z,..z,) of R“*! such that 3 ;2 = 1. Note that diametrally
opposite points are not identified. For example, T, (the two-sided line) is modeled
by the unit circle of R?, and T, (the two-sid d plane) is modeled by the unit sphere
of R®. See figure 1.

l
Figure 1. The splerical models of T and T,.
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1.2. The straight model

The straight model of T, consists of two copies of R” (the front and back
ranges), and one point at infinity doo for every direction vector d in R”. (In this
chapter, direction means a unit-length vector.)

For instance, the straight model of T, consists of two copies of the real
line R, and two points at infinity +0o and —oo. We can visualize this model as an
infinite ruler with graduated scales on both sides. See figure 2.

back

JA
% 3 2 -1 0 1 5 3 ﬁi‘ range
—12\'“'—.*"“.""1*---1—-—rF—"j-“—.*““ >'—’ >
T S W S N M T
}-—-—--——~————--——-—-_————— front
range

Figure 2. The straight model of T;.

Similarly, the straight model of T, consists of two copies of R?, and an infinity
point doo for every direction d of R?. We can visualize the front and back ranges as
two parallel planes in three space, or as the two sides of an infinite sheet of paper.
Figure 3 is a sketch of this model, where the front and back ranges are represented
by two copies of the open unit disk. The infinity point doo is represented by point
d on the boundary of the front disk, and point —d on the boundary of the other.

—doo
doo
Q
back
range
front Q
range
doo

—doo
Figure 3. The straight model of T,.
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This contracted version gives a more accurate picture of the topology of
T,, in particular around the line at infinity. Note that the infinity points doo and
(—d)oo are not identified (unlike the conventions of standard projective geometry).
Each infinity point is incident to both ranges, but in a rather peculiar way: by
definition, doo is a limit point of the front range in the direction d, and of the back
range in the opposite direction —d.

The straight model suggests a convenient representation for figures on the
two-sided plane: simply draw the front and back parts on the same sheet of paper,
with coincident coordinate frames, using different graphical styles for each range. I
will use solid dots, solid lines and cross-hatching for elements on the front range,
and open dots, dashed lines, and dotted patterns for the back range. See figure 4.

Figure 4. Graphical conventions for the two-sided plane.

Figure 5 is a sketch of the straight model of three-dimensional oriented projective
space T,, with each range contracted down to a copy of the unit open ball of R3.
A point at infinity doo is represented by point d on the boundary of the first ball,
and point —d on the boundary of the second.

Figure 5. A sketch of the straight model of T5.
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We can imagine the front half as being the set of “real” points, and the back half as
a parallel universe of “phantom” points. Both ranges extend throughout the whole
R3, but the only way to go from one to the other is through the points at infinity.

Recall that the unoriented projective space P, can be constructed from R,
by adding to it one point at infinity for every pair of opposite directions {+d, —d}.
The straight model of T, is clearly a double covering of this construction.

1.3. The analytic model

The analytic modelof T, consists of the non-zero vectors of R"*!, where two
vectors are considered to be the same point if one is a positive multiple of the other.
I will denote by [u] or [ug,..u,] the point represented by the vector u = (u,..u,)
and its positive multiples; any of those vectors is called the (signed) homogeneous
coordinates of that point. Obviously, [ug,..u,] = [v,,..v,] if and only if u; = av,
for all ¢ and some positive real a. Note that [ug,..u,] and [—ug,.. —u ] are distinct
points of T,,.

2. Central projection

The three models are related by central projection from the origin of R**?.
A point [w,z,y,..., 2] of the analytic model corresponds to the points

(w,z,y,...,2)

Vw? + 22yt 22

of the spherical model and (z/w, y/w ..., z/w) of the straight model. By definition,
the latter is on the front range if w > 0, on the back range if w < 0, and at infinity
in the direction (z,y,...,2) if w = 0.

2.1. Central projection of the two-sided line

In the case of T, for example, central projection identifies the homogeneous
pair [w,z] with the point z/w of the front or back range of T,, depending on
whether w > 0 or w < 0. The points (0,1) and (0, —1) are mapped to +oc and —oo,
rospectively.

Geometrically, this process can be described as follows. First, we draw the
front range of T, on the plane R?, as a vertical axis with its origin at the point
(1,0). See figure 6(a). The points on the left half of the circle are then projected onto
this axis, by straight rays emanating from the origin (0,0). For the other half of the
circle, we let that same vertical axis represent the back range of T,. The points on
the right half of the unit circle are projected on this axis across the center, as shown

in figure 6(b).
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(a) (b)

bz, § /24 T VL

front range of back range of
straight model straight model

Figure 6. Central projection of T;.

Algebraically, central projection allows us to view a point [w,z] of T, as
the fraction z/w, provided we distinguish it from the fraction (—z)/(—w). The two
fractions lie on different ranges, but have the same numerical value, that is, they
have the same position within their range. As we will see in chapter 15, we can
operate with these “two-sided fractions” in pretty much the same way we operate
with normal ones.

2.2. Central projection of the two-sided plane

The two-dimensional case is entirely analogous. Imagine that the front range
of T, is embedded in R3, with the origin at (1,0,0) and coordinate axes parallel to
(0,1,0) and (0,0,1). See figure 7(a).

z

(o
o“'&(

i
/////////

back range of

/
' /
front range of / straight model

straight model

Figure 7. Central projection of T,.

Now imagine a light source at the center of the unit sphere S,. Central projection
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takes every point of the “front” hemisphere of S, (i.e., with w > 0) to the shadow
it casts on the front face. For the other half of the mapping, we must place the
back range of T, in exactly the same position and orientation. Then points on the
back hemisphere of S, are projected onto it across the point (0,0,0), as if through
a camera lens. See figure 7(b). Here are some examples:

[+3, +2, +6] — (+2, +5)  fromt
[—3, =2, —6] — (+%, +§) back
['*'3’ -2, _'6] — (

3 ) front
(-3, 42, +6] — (-2, %)  back

[ 0,43, 4+4] — (+3, +4)co infinity
[ 0,-3, —4] — (=3, —4)co infinity

Observe how the front hemisphere is merely stretched and flattened out by this
projection, whereas the back hemisphere suffers an additional 180° rotation.

2.3. Final comments

I will adopt central projection as the standard correspondence between the
three models, and generally think of them as the same mathematical object. In
definitions and theorems I will use whichever model is more convenient, and let
central projection implicitly carry the same concepts to the other two.

The analytic model is the most convenient to use in actual computations and
data structures. The other two are useful mainly as visual aids in the interpretation
of problems and the derivation of algorithms. The straight model is of course the
link between Euclidean and oriented projective geometry, since the front range of
T, is a faithful model of Euclidean space. The spherical model of T, and T, makes
it easier to visualize their topological and geometric properties (particularly at the
infinity points). Unfortunately, the spherical model of T, isn’t nearly as useful for
v > 3, since the geometry of S is then hard to visualize.
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Chapter 3
Flats

The geometric structure of T, is largely determined by its flats. These are
sets of points roughly equivalent to the lines, planes, and higher-dimensional sub-
spaces of classical geometry. One major difference is that every flat of T, has an
intrinsic erientation: a 1-dimensional flat is like a directed line, a 2-dimensional flat
is like a plane with a built-in notion of “positive turn,” and so on.

Since most geometric computations are confined to the plane or to three-
dimensional space, a good part of this chapter will be devoted to an informal de-
scription of the two-sided spaces T, and T,.

1. General definitions

Definition 1. In the spherical model of T, a flat set is a great sphere of S,, that
is, the intersection of S, and some linear subspace of R**!. A flat is an oriented
flat set, that is, an oriented great sphere of S,.

A precise definition of “oriented” will be given in the next chapter; for now, it suffices
to say that a great sphere can be oriented in exactly two ways. So, for every flat
a there is an opposite flat —a, consisting of the same set of points (the same great
sphere) taken with opposite orientation. Needless to say, I will always regard a and
-a as distinct flats.

1.1. Special cases

Flats of dimension 1,2, and 3 are called lines, planes, and three-spaces. There
are only two flats with dimension v, namely the universe 7, and its oppositely ori-
ented version —7,. Flats with dimension v — 1 are called hyperplanes. Note that a
x-dimensional flat of T, is essentially a copy of the universe I, of T, ; this observa-
tion will be made more precise later on.

A flat set of dimension zero consists of two antipodal points of S,. Orienting
such a set is equivalent (as we will see) to picking one of the two points as the
“positive” one. Therefore, the zero-dimensional (oriented) flats can be identified
with the points of T,.

If p is a point, its opposite —p is also called its antipode; it is the point
diametrally opposite to p in the spherical model. See figure 1(a). Observe that such
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antipodal pairs are not identified.

Figure 1. Antipodal points of T, in the spherical and straight model.

If we follow two antipodal points through central projection, we will see that in the
straight model they (1) are both points at infinity, in diametrally opposite directions,
or (2) have the same Cartesian coordinates, but lie on opposite ranges of T,. See
figure 1(b). In the analytic model, the antipode of [w, z,y, .. 2] is [-w, —z, =y, .. —2].
It is convenient to define oo f, for any flat f and any o € {£1}, as being f if 0 = +1,
and - f if 0 = —1.

In addition to the flats defined above, I will postulate two flats of rank 0
and dimension —1, the positive vacuum A and its opposite, the negative vacuum —A.
They should be regarded as oriented versions of the empty set.

1.2. Ranks

In projective geometry, it is often convenient to classify spaces and flats by
their rank, defined to be their dimension plus one. Thus, for example, points have
rank 1, lines have rank 2, planes have rank 3, and so on. Ranks, as opposed to
dimensions, seem to arise most frequently in formulas.

To keep formulas short and reduce the possibility of confusion, I will adopt
the following convention: the greek letters &, u, v, p,o,7 will usually denote dimen-
sions, and the corresponding italic letters k,m,n,r,s,t will usually denote the cor-
responding ranks. The identities k = k + 1, m = p + 1, and so on will be assumed
throughout. With this convention we can say, for example, that S, is the unit sphere
of R®, and a k-dimensional great subsphere of S, is the intersection of S, and a
k-dimensional linear subspace of R".

I will denote the set of all flats of rank & in T, by .7:5, or simply F* when
v is clear from the context.
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2. Lines

In the spherical model, a line of T, is an oriented great circle of the unit
sphere S . The orientation can be visualized as an arrow that tells which direction
along the circle is positive (“forward”). The opposite =/ of a line [ is the same great
circle with the arrow going the other way. See figure 2.

Figure 2. Lines of T,.

The one-dimensional space T, has exactly two lines, namely S, itself in its two pos-
sible orientations. By definition, the universe T, of T, is oriented counter-clockwise,
that is, from (1,0) to (0,1) by the shortest route. See figure 3.

Figure 3. The two lines of T,.
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2.1. Lines in the straight model

In order to understand what a line looks like in the straight model, let us
begin with the one-dimensional case, namely the universe of T,. Imagine a point p
moving counterclockwise on S;, and consider its image on the straight model under
central projection. See figure 4.

(2) * z, z,/z, (b) 4\ T, lzl/zo

- -
20 Zq
front back
range range
Figure 4.

While p is on the right half of S,, its image scans all points on the front range,
in increasing order. As p goes through the point (0,1) at the top of the circle, its
image becomes the infinity point +o0, and then suddenly jumps to the back range,
at large negative values. It then traverses the entire back range, again in increasing
order. When p goes through the point (0, —1), its image jumps to the other infinity
point —oo, and then to the front range, again at the negative end. Therefore, a cyclic
ordering of the points of S, corresponds in the straight model to either increasing
or decreasing order of points on the front range, and the same ordering on the back
range. Figure 5 shows the two lines of T,.

Figure 5. The lines of T, in the straight model.

Let’s now consider lines in higher-dimensional spaces. We can verify that
central projection of a great circle of T, gives either (1) an improper line, consisting
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of an oriented circle of points at infinity, or (2) a properline, consisting of two copies
of the same directed Euclidean straight line, one on the front range and one on the
back range, plus the two points at infinity incident to them. See figure 6.

Figure 6. A proper line in the straight model of T,.

In the two-sided plane there are only two improper lines; by definition, the horizon
Q, of T, is the one oriented counterclockwise (as seen from the front range). In
general, an improper line of T, consists of all points at infinity whose directions lie
on some plane through the origin of R".

Note that the front and back parts of a proper line are directed the same
way. That is, the line goes continuously in some direction d, from minus infinity to
plus infinity across the front, again from minus infinity to plus infinity, in the same
direction across the back.

This apparent “jump” when a line crosses the horizon may seem somewhat
disconcerting. We could avoid it by redefining the straight model with the back
range rotated 180 degrees, but this would make other important concepts (such as
antipodal pairs, half-planes, and convex figures) much harder to visualize. Moreover,
it would introduce explicit sign tests and conditional sign changes in the conversion
of homogeneous to Cartesian coordinates.

Note how proper and improper lines look very much like the straight and
spherical models of T, respectively. This is true in general: in the straight model
of T, a k-dimensional flat either looks like the spherical model of T,, expanded to
infinite radius, or looks like the straight model of T,, embedded in that of T, in
the obvious way.
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3. Planes

A plane (two-dimensional flat) is an oriented great 2-sphere of S,. The
orientation can be visualized as a small “circular arrow” painted on the sphere.
By sliding that arrow around the surface, we can tell whether a turn at any point is
positive (agreeing with the arrow) or negative. The opposite =7 of a plane 7 is the
same 2-sphere with the circular arrow turning the other way.

By definition, the universe T, of T, has the circular arrow at (1,0,0) turning
from direction (0,1, 0) to direction (0,0,1) by the shortest angle. If the axes of R?
are arranged in space in the usual way, then the standard orientation corresponds
to a counterclockwise turn on the sphere, as seen from the outside. See figure 7.

Figure 7. The two planes of T,.

3.1. Planes in the straight model

What does the orientation of a plane mean in the straight model? If we
consider how central projection affects the direction of turns at various points, we
see immediately that positive turns of Y, become counterclockwise on the front
range, and clockwise on the back range. See figure 8.

Figure 8. The planes of T, in the straight model.
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In general, a plane of T, is either (1) an improper plane, consisting of a 2-sphere of
points at infinity, or (2) a proper plane, consisting of two oppositely oriented copies
of the same plane of R”, one on each range, and all points at infinity in directions
parallel to that plane. See figure 9.

back range

of T,

front range
of T,

Figure 9. A proper plane of T,.

In oriented projective three-space there are exactly two oppositely oriented improper
planes, consisting of all points at infinity. By definition, the celestial sphere (1, is the
one oriented clockwise as seen from the front range, and counter-clockwise as seen
from the back range. See figure 10.

Figure 10. The celestial sphere of Tj.

Observe that if we restrict our attention to the front range of T, and to
the front part of every flat, we get the geometric structure of the v-dimensional
Euclidean space. Therefore, oriented projective geometry is able to simulate all the
constructions and algorithms of affine, Euclidean and Cartesian geometry.
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4. Three-spaces

A three-space (three-dimensional flat) is an oriented great 3-sphere of S .
We can visualize the orientation of a three-space as a “corkscrew” arrow, or as a
combination of a circular arrow and a straight arrow perpendicular to it. We can
also depict the orientation as a tiny hand, with the stretched thumb representing
the straight arrow and the curled fingers replacing the curved arrow. See figure 11.

Q & QT
S ¥ &

Figure 11. Three-dimensional orientation.

Two such devices represent the same orientation if we can transform one into the
other by a continuous rigid motion without leaving the three-space. Therefore, the
difference between the two orientations of a three-space correspond to the difference
between a left hand and a right hand, or between two oppositely-threaded screws.

Recall that in the straight model a three-space consists of two copies of R?,
plus a sphere of points at infinity. If we consider what happens when we transport
a corkscrew arrow across the sphere at infinity by a continuous motion, we will find
that picking an orientation for the three-space means picking the same orientation
on the front and back ranges. In particular, the space T, contains only two three-
dimensional flats, the standard universe 75 and its opposite 7.

Figure 12. The universe of T,.
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By definition, the orientation of X} is given by a screw arrow that turns from (1, 0, 0)
towards (0,1,0) while moving from (0,0,0) towards (0,0, 1). If the coordinate axes
of R? are depicted according to the usual mathematical conventions, this orientation
is given by thumb and fingers of the right hand. See figure 12

It is worth emphasizing that in the straight model, a line or a three-space
has both ranges oriented the same way, whereas a plane has the two ranges oriented
in opposite ways. The general rule will be given in the following chapter.
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Chapter 4
Simplices and orientation

Recall that a x-dimensional flat of T was previously defined as an oriented
x-dimensional great sphere of S ; I will now define more precisely what “oriented”
means. It is possible to define “oriented manifold” in purely topological terms, but
that requires some heavy mathematical machinery and would take us far from the
focus of this thesis. Fortunately, for the particular manifolds we are interested here

in (great spheres of S, ) we can give a much simpler definition, based on elementary
linear algebra.

1. Simplices

A simplex is an ordered tuple of points of T, the vertices of the simplex.
In the spherical model, a simplex is an ordered tuple of unit vectors of R™. The
simplex is proper if those vectors are linearly independent; otherwise it is improper,
or degenerate.

Let us consider some examples. A two-vertex simplex is an ordered pair of
points p,q; that simplex is degenerate if and only if the two points are equal or
antipodal. See figure 1.

Figure 1. A two-vertex simplex of T,.

A three-vertex simplex is degenerate if and only if its vertices lie on the same great
circle of § , that is, are coplanar vectors of R". This simply means the three points
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lie on the same line of T,. See figure 2.

Figure 2. Three-vertex simplices of T,: (a) proper, (b) degenerate.

For any simplex s of T, there is a unique flat set of minimum dimension that
contains s, the so-called span of s. In the spherical model, the span of s is the great
sphere of S, determined by the linear subspace of R" generated by the vertices of s
(viewed as vectors). The dimension of s is by definition that of its span. Obviously,
a simplex with k vertices is proper if and only if its dimension is £ = k—1. Thus, for
example, the span of a proper simplex with two vertices is the unique great circle
of S, that contains those two points.

2. Simplex equivalence

I will say that two proper simplices of T, are equivalent if we can continu-
ously transform one into the other in such a way that all intermediate stages span
the same unoriented flat. For example, two proper simplices with three vertices are
equivalent if they lie on the same unoriented plane of T, and we can continuously
move one onto the other without leaving that plane and without ever making the
three points collinear.

2.1. Equivalence of bases

This notion of simplex equivalence is closely related to that of basis equiva-
lence in a real vector space V. Two bases of V are said to be equivalent if it is possible
to continuously deform one into the other, in such a way that every intermediate
stage is a basis of V.

Observe that a proper simplex that spans a great sphere C is a basis for
the subspace V of R" that defines C. Conversely, from any basis of V we can get a
proper simplex spanning C by reducing its vectors to unit length. Since the vectors
of a basis have nonzero length, this map from basis to simplex is continuous. We
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conclude that two proper simplices are equivalent if and only if they are equivalent
bases of the same subspace of R".

The condition for two bases to be equivalent is a well-known result of ele-
mentary linear algebra. In order to state this condition concisely, it is convenient
to view an ordered sequence s of k vectors (in particular, a k-vertex simplex) as a
matrix

whose rows are the given vectors. (To save space, I will often write such a matrix
0,51 .. s*), using semicolons instead of commas to denote vertical stacking.)
With this convention, we can say that two sequences of k vectors u, v span the same
vector space V if and only if there is a k& X k£ matrix A such that Au = v. Also, if u

and v are bases of V, the matrix A is unique and has a non-zero determinant; and,

also as (s

furthermore, the bases are equivalent if and only if the determinant is positive.

2.2. Orientations as simplex classes

By the same token, the simplices spanning a given great sphere (flat set) C
of S, are also divided into two equivalence classes. I will identify these two classes
with the two orientations of C. By naming one of these classes the set of positive
bases, we get an oriented great sphereof S, i.e. an (oriented) flat of T . Therefore, a
proper x-dimensional simplex s = (s%;..s") determines a unique flat of T,, namely
the smallest flat set containing s, oriented so that s is a positive simplex. I denote
this flat by [s] = [s%..s%]. If s* = [s},..s'], then I will write that flat also in matrix
form as

0 0
SO ...... SI/
33 ...... S:j

2.3. Orientation of a point

To make these notions clear, let’s have a look at the low-dimensional cases.
According to the definition, a zero-dimensional flat set is an unordered pair of an-
tipodal points of the sphere. An oriented zero-dimensional flat is one such pair, with
one of the points singled out as the “positive” simplex. Obviously, zero-dimensional
flats can be identified with the points of T .
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2.4. Orientation of two points on a line

A one-dimensional flat set of T is a great circle C of S,. An orientation for
this set is a class of equivalent non-degenerate one-dimensional simplices.

Consider for example two proper simplices (p;q) and (r;s) of C. The two
simplices are equivalent if and only if we can continuously move p to r and ¢ to s,
without leaving C, and without going through a degenerate state. At every instant
during this motion the simplex (p;¢) determines a unique circular ordering of the
points of C', namely the one that goes from p to ¢ by the shortest route; this circular
ordering can be depicted as a longitudinal arrow on C. See figure 3.

Figure 3.

This ordering remains unchanged while p and ¢ move around, as long as p # ¢ and
p # —q. It follows that (p; ¢) and (r;s) are equivalent only if they define the same
circular ordering on C. The two orientations of C correspond to its two possible
circular orderings. Note that the proper simplex (p;¢) is equivalent to (—p; —q) but

not to (g; p) or (—p;q).
2.5. Orientation of a triangle

Let’s now consider simplices with threee vertices. A proper simplex (p; g; )
defines a unique two-dimensional great sphere C, and a unique spherical triangle on
C. See figure 4.

Figure 4. Orientation of simplex (p;¢;7).
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The sides of the triangle are the shortest arcs of great circle connecting each pair of
vertices. Note that for the simplex to be proper no two vertices may be coincident
or antipodal.

We can visualize the orientation of the simplex as a small circular arrow
surrounding the point p, turning from the direction of pg to that of pr by the
shortest angle. Note that the angle between the arcs pg and pr at p cannot be zero
or 180°, since in that case the three vertices would be coplanar vectors of R". If
the three points move continuously on C in such a way that they always form a
proper simplex, then the circular arrow is well defined at all times, and simply slides
over C following the point p. Two simplices s and ¢ will be equivalent only if the
circular arrow determined by s at s® can be transported over C so as to coincide
with that defined by ¢ at ¢t°. In particular, observe that the proper simplex (p; g;r) is
equivalent to the cyclically permuted copies (¢; r;p) and (r;p; q), but not to (r; ¢; p),
(¢;p;7), or (—=p;—g; ).

2.6. Orientation of a tetrahedron

A proper three-dimensional simplex s = (o;p;q;r) unambiguously deter-
mines six “edges”, the shortest great circle arcs connecting each pair of vertices.
Tle orientation of the simplex can be visualized as a small corkscrew arrow, near
the point o, that turns from the direction of edge og to that of or by the shortest
angle, while at the same time advancing in the direction of edge op. Alternatively,
we can imagine a small hand at the point o, with the thumb pointing towards op
and the other fingers curled in the same sense as the corkscrew, from og to or. See
figure 5.
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Figure 5. Orientation of simplex (0;p;¢q;7).

The corkscrew arrow stays well-defined during any continuous deformation of the
simplex, as long as the latter remains proper. If the motion is confined to a three-
dimensional great sphere C, a simplex with left-threaded screw cannot be deformed
into one with a right-threaded screw. In particular, the simplex s = (o;p;g;r) is
equivalent to (gq; r;0;p) and (=o; =p; =g; 7r), but not to (p; g;r;0) or (—o;p; ;7).
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2.7. Orientation of the universe

The canonical basis of R™ defines the standard simplex e = (e%;..e") of T,
The point €® = [1,0,...,0] is the front origin, also denoted by O, and e! through e”
are the cardinal directions. By definition, the universe Y, of T, is oriented so that
this standard simplex is positive. For example, the universe of T, has the orientation
of the simplex with vertices [1,0, 0], [0,1, 0], and [0,0, 1]. See figure 6. In the straight
model, the standard simplex consists of the “vertices” of the first quadrant of the
front range: the origin, the infinity point on the z-axis, and the infinity point on the
y-axis, in that order.

<) 101,90

Figure 6. The standard simplex of T,.

3. Point location relative to a simplex

3.1. Segments

In section 2.4 we mentioned the shortest great circle arc connecting two
distinct and non-antipodal points p,q of T . It is quite natural to define the segment
pq as being the set of points on this arc. In other words, z is on the (open) segment
pq if and only if the simplices (p;z) and (z;q) are proper and equivalent to (p;q).
This set is empty if p = q or p = —q. See figure 7.

3.2. The interior of a simplex

We can generalize the notion of segments to higher dimensions as follows. If
s = (s;..5%) is a proper x-dimensional simplex of T,, then we define the interior
of simplex s as the set of all points z which produce a proper simplex equivalent to
s when substituted for any of its vertices. That is, z is in the interior of s if and
i—l; T Si+l.

only if the simplex (s%;..s ;.. 8"%) is equivalent to s for all z.
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Figure 7. The segment pq.

In particular, the interior of a proper three-vertex simplex (p; ¢;r) is the set of all
points z such that the turns from zp to zq, from zp to zr, and from zr to zp are in

the same direction as the turn from pq to pr. I will call this set the (open) triangle
pqr. See figure 8.

Figure 8. The triangle pqr.

3.3. Locating a point in a simplex

More generally, if z is a poiut on the flat spanned by a simplex s = (s%;.. s%),
we can classify the position of 2 with respect to s by substituting z for each vertex of
s in turn, and comparing the orientation of the result with that of s. The outcomes
of those tests can be represented by a string o0, ... o, of signs: o, = +1 (or simply
‘+’) if replacing the :th vertex by z produces an equivalent simplex, o, = ‘=’ if
it produces one with opposite orientation, and o; = 0 if it produces a degenerate

simplex. This sign sequence is the signature of z relative to the simplex.
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For any proper simplex s, all but one of the 3% possible sign sequences can
be obtained in this way. The signature +++ --- 4 denotes points in the interior of
the simplex. In general, a non-zero signature o---o, denotes the interior of the
simplex (0405, o 0s!, .. o 0s”). Points whose signature has only m < k non-zero
elements lie on the subflat spanned by the corresponding m vertices of s. In that
case, the signature of z relative to the subsimplex ¢ of s with those vertices is given
by the m non-zero elements of the original signature, listed in the same order. Thus,
the signature +0+00 - - - 0 means z is in the flat spanned by s° and s?, and in fact in
the open segment s%s%. The only sign sequence that cannot be realized is 000 - - - 0.

For example, consider the proper simplex (p, ¢, r) of figure 9. The great cir-
cles determined by each pair of vertices cut the plane T, into 3% — 1 = 26 regions:
eight open triangles, twelve open segments, and six isolated points. The signature
+++ is the interior of the triangle pgr; ——— denotes its antipodal image, the tri-
angle —p ~q —r. Signatures ++0, +—0, ——0, and —+0 stand for the open segments
pq, p—q, ~p—q, ~pq. The signature +00 is produced only by the point p itself, and
—00 only by its antipode —p. And so on.

Figure 9. Signatures relative to the simplex (p,q,r).

3.4. Computing signatures

Computing the signature by the definition given above would require com-
puting the sign of k simplices, that is, computing & determinants of order kx k. In
practice, a much better method is to decompose the homogeneous coordinates of «
into a linear combination of the coordinates of the s*; the signs of the coefficients
of this linear combination are the desired signature. That is, if z = [zg,..x,] and
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st = [sy,..s!], we must solve the linear system of equations
0 0 0
89 S1 tcv S,
(cg, - ) | 3 = (79, 1, - T,) (1)
K K K
80 31 e e SV

for the unknowns «, .. a,, and take o; = sign(c;). The correctness of this algorithm
is a trivial exercise in linear algebra. Incidentally, observe that by formula (1) the
signature 00---0 can be realized only by the null homogeneous tuple [0,0,..0]
which is not a point of T,,.

In particular, if we want to test whether a point z of T, is in the segment
determined by two given points p, g, we must solve

(aps ;) (”“ ”1) = (2, 2,) ()

99 9

bl

which means computing

Py Py
6 = = Poq1 — P14y
9 9
Ty 2y
B, = = 49, — T,qy, and
9 9
Py Py
gy = = PoTy — P1%p:
Ty I,

Then sign(8) sign(f,), sign(é) sign(B,) is the signature of z relative to (p; q).

4. The homogeneous model

When looking at simplices as bases of subspaces of R", the fact that their
elements have unit length i1s an irrelevant complication. We can get rid of this as-
sumption by working with a fourth model of the T,.

Let’s define an oriented vector space as a vector space with one of its two
classes of equivalent bases singled out as the positive class. In the homogeneous model
of T, a k-dimensional {lat is represented by a (x + 1)-dimensional oriented subspace
of R". In this model, a point (0-dimensional flat) is represented by a one-dimensional
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oriented subspace of R". The orientation of that subspace (the set of its positive
bases) consists of all positive multiples of a single vector u. We can depict that

subspace as a directed line through the origin of R", pointing in the same direction
as u. See figure 10.

Figure 10. A point of T, in the spherical and homogeneous models.

A line of T, is represented by a two-dimensional linear subspace of R3. This
can be visualized as a plane passing through the origin of R3, with a circular arrow
on it. See figure 11.

Figure 11. A line of T, in the spherical and homogeneous models.

The arrow shows the direction of the shortest turn from the first to the second
vector of any positive basis of that subspace. That arrow agrees with the orientation
of the great circle of S, representing the same line in the spherical model. In the
homogeneous model, the universe T, of T, is represented by the space R" itself,

with the canonical basis €°,..e” taken as positive.




39

Chapter 5
The join operation

In classical projective geometry, the join of two flats is defined as the smallest
flat containing them. The join of two points is the line passing through them; the
join of a point and a line is the plane containing both; and so on. This chapter

defines an analogous operation in oriented projective geometry, whose arguments
and result are oriented flats.

1. The join of two points

Let’s consider first the join of two points in the spherical model of T,. Two
points p,q generally determine a unique great circle of S , and divide it into two
unequal arcs. The segment pq is, by definition, the shorter of these two arcs. If we
orient that great circle from p to ¢ along the segment pq, we get the join of p to gq,
denoted by p V q. See figure 1.

Figure 1. The join of two points.

This definition is meaningful if and only if the two points are independent, that is,
p # q and p # —q. Observe that ¢ V p is oriented in the direction opposite to that of
pV q. That is, the join of two points is anticommutative: for all independent p, g,

qVp=-(pVyq)

Observe also that the shortest arcs from p to ¢ and from p to —¢ leave p in opposite
directions. Similarly, the arcs from p to ¢ and from —p to ¢ arrive at q from opposite
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directions. Therefore, for all independent pairs p, g,

pV(~g)=-(pVg)=(-p) Vg

1.1. Join in the straight model

What do the segment pg and the join pV q look like in the straight model? If
both p and q are points at infinity, the join is either =2 or §2, depending on whether
the shortest turn from the direction of p to that of ¢ (as seen from the front range)
is clockwise or counterclockwise.

If at least one of the points is finite, their join is a proper line of T, that
is, two copies of the same directed Euclidean straight line (one on each range), each
passing through p or —p and ¢ or —¢. Each of the two great circle arcs connecting p
and ¢ corresponds to some subset of those two lines and their infinity points. Note
that central projection does not preserve arc length, but we still can recognize the
“shorter” of the two arcs as the one which does not contain any antipodal pairs.

In particular, if p and ¢q both lie on the same range, the segment pq coincides
with its Euclidean definition, and the line pVq is oriented the obvious way. See figures

2(a) and 2(b).

Figure 2. Join in the straight model.

If the two points are on opposite ranges, as in figure 2(c), the line p V ¢ is directed
away from —q at p, and towards —p at q. Observe that the path from p to ¢ in
this direction, consisting of the ray leaving p and the one ending at ¢, is indeed the
shortest one. The alternate path, consisting of the two complementary rays, includes
all points in the Euclidean segment from p to ¢ and their antipodes on the segment
from —p to q.
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If p is finite but ¢ is not, then the line pV ¢ is directed from p to ¢ along the
ray connecting the two. Note that if ¢ = doo and p is on the back range, then the
direction of the line will be —d. See figures 3(a) and 3(b).

Figure 3. Join with infinity points, in the straight model.

2. The join of a point and a line

Let [ be a line, and p a point not on [. The join of p to I, by definition, is
the plane of T that contains Loth and is oriented so that [ turns around p in the
positive sense. See figure 4.

Figure 4. The join of p to {.

More precisely, let a point ¢ move forwards on [, and observe the sense in which the
line pV q turns at /; by definition, that is the orientation of p V [.

Clearly, the orientation of a point-line join depends on the orientation of
both operands:

pV (=) =(-p)Vi=~(pVI) (1)
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The symmetric operation [V p can be defined as either the same as p V [ or as its
opposite. It is desirable to define it in such a way as to make V associative; that is,

pV(gVr)=(pVq) Vr (2)

for all p, q,r € P for which those operations are defined. It turns out that both sides
of equation (2) are undefined on exactly the same cases, namely when p, ¢, and r
lie on a common line.

Equations (1) and (2) imply

pV(gVr)=(pvgVr
=-((gvp)Vr)
==(qV(pVr)) (3)
=qV(rVvp)
=(qVr)Vp
Since every line | can be expressed as the join of some points ¢ and r, we conclude

that
pVI=1Vp forevery point p and every line [. (4)

Therefore, in order to make V associative, we must make it commutative in the
point-line case. At first sight this may seem a poor choice, considering that we made
join anti-commutative in the point-pont case. Actually, the two definitions are quite
consistent with each other. Derivation (3) above essentially says that to go from pV!
to | V p we must reverse two point-point joins, and therefore the orientation of the
result is not affected.

3. The join of two flats

Observe that the join of points p and g can be defined as the line containing
both, oriented so that the pair p,q is a positive simplex. Moreover, if p is a point,
[ is a line, and (g;r) is a positive simplex of [, then the join of p to [ is the plane
containing both, oriented so that (p;¢;r) is a positive simplex. I will define the join
of general flats by generalizing this observation. That is,

Definition 1. The join of two flats determined by simplices u, v is the flat defined
by their concatenation. That is,

.. u®] vV [s%.. 6] = [u®; .. u"; 0. 5M].

With a little linear algebra we can easily check that the concatenation of two proper
simplices is a proper simplex if and only if the corresponding flats have no point in
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common. If they do, their join is undefined. It is easy to see also that the result of
the join is the same no matter which simplices we choose to represent the two flats.
The join of flats with rank zero must be defined separately. By definition,

AVa = a =aV4
(mA)Va = —a = aV(~4)

for all a. In other words, A is the (left and right) identity of join. Note that the
flats A and —A are disjoint from every flat, even from themselves; they behave like
oriented empty sets (hence their names).

4. Properties of join

Note that every flat of rank & > 1 is the join of the k vertices of any of its
positive simplices. Obviously, whenever a V b is defined we have

rank(a V b) = rank(a) + rank(b). (5)

4.1. Associativity

The associativity of V follows directly from the definition: we have
aV({bVve) = (avVb) Ve (6)
for any flats a, b, ¢, when either side is defined. Also,
(ma) Vb = aV(=b) = —(aVb) (7
for all disjoint flats a, b.

4.2. Commutativity

Recall that the join of two points depends on the order of the operands,
whereas that of a point and a line does not. The general rule follows readily from
definition 1. Observe that transposing the order of two vectors in a basis reverses its
orientation. Observe also that in going from [a?;.. a®; 8%;.. b#] to [67;.. b#; a;.. a"]
we have to transpose (k + 1)(u + 1) adjacent pairs of vectors. We conclude that for
any two flats a, b,

aVb = _ﬁrank(a)rank(b)(bv a) (8)

That is, reversing the order of the operands in a join reverses the orientation of
the result as many times as the product of the ranks of those operands. Therefore,
aVb=>56Vaif one of the operands has even rank, and « vV b= —(bV a) if both have
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odd rank. For example, the join of a point and a line is commutative, but that of a
point and a plane is not. Observe that equations (6), (7), and (8) are valid even for
flats of rank zero.

5. Null objects

Recall that a V b is undefined if a and b have a common point. It may be
tempting to plug this hole, and extend the definition so that a V b is always one
of the two smallest flats containing ¢ and b. This extension is common in classical
projective geometry, but unfortunately it cannot be made to work in the oriented
framework. If @ and b are not disjoint, it is impossible to define the orientation of
a V bin a consistent way.

We can understand the difficulty as follows. If we apply the commutativity
law (8) to the expression p V p, we get

pVp = =(pVp)

which cannot be true for any point, or indeed for any flat. This shows we cannot
consistently define pV p. In general, if two flats @ and b have a common point p, we
can always write them as a = ©V p and b = p V v for some (possibly vacuous) flats
u,v. Then by associativity we must have

aVb =uV(pVp)Vv

We conclude that a V b cannot be consistently defined when a and b are not disjoint.

This problem is not as serious as it may seem. Even in unoriented geometry
the extended join operation cannot be made continuous, since the dimension of the
result may change abruptly with infinitesimal changes in the operands. In most
geometry algorithms, those degenerate cases require special handling anyway, so the
proposed extension would not make programs much simpler. The extended join may
actually be a nuisance in strongly typed languages such as Pascal and Modula-2,
where one usually wants to declare objects of different dimensions as having different
compile-time types.

Nevertheless, from the programmer’s viewpoint partially defined operations
are bothersome. It is generally preferable to make them total, by adding a new
“undefined” element to their range, and letting this be the result of the operation
whenever it was not defined originally. Accordingly, I will postulate a dummy null
object OF for every integer k, and let a V b be grank(a)+rank(b) whenever ¢ and b are
not disjoint.

As we shall see, this extension is quite natural from tlhe computational point
of view, and can be implemented at zero or negative cost: the same code that
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produces a V b in the normal case will produce the undefined flat 0* if @ and b are
not disjoint. In fact, a practical test for whether a and b intersect is to compute aV b
by the standard algorithm, and check whether the result is 0*.

It is convenient to let also ~0F = 0%, and 0¥ Va = a v OF = 0F v o™ = gk+m
for all flats a of rank m. With these rules, all properties of join listed so far are always
true, even when the operands are not disjoint and/or are null objects. However, note
that OF is quite unlike ordinary flats in many respects; for example, it fails to satisfy
a # —a. For that reason, I will neither call it a flat nor include it in F.

Usually, the rank of null objects is irrelevant or known from the context, so |
will write simply O instead of 0%, However, in computer implementations (especially
in strongly-typed languages) it is usually simpler to to use different representations
for the null object of each rank.

6. Complementary flats

An important result, that is easily proved by reference to the homogeneous
model, is

Theorem 1. For any subflat = of a flat a there is a flat y such that z V Yy =a.

PROOF: Let X and A be the oriented vector spaces representing z and a in the
homogeneous model. Since z is a subflat of a, the space X is a subspace of A.
From linear algebra we know that there is a basis s = (s%.. %) for A whose
first m elements (m = rank of ) are a basis for X.

Let u be the flat determined by the first m elements of s, and v the one
determined by the last £ —m. Because of the way s was selected, u is either z or
—z, and u V v is either a or —a. It follows that either z Vv = a or z V (—v) = a.

QED.

A flat y with this property is said to be a right complement of z in a. (Symmetrically,
the flat z is said to be a left complement of z in a.) Note that the (right and left)
complement of a itself is A, and that of —a is =A; and vice-versa. Except for these
special cases, the right and left complements are not unique.
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Chapter 6
The meet operation

The intersection of two lines to give a point is the second fundamental oper-
ation of classical geometry. We can also intersect a line and a plane to get a point,
two planes to get a line, and in general two flats to get a flat.

Unoriented geometry considers flats to be sets of points, and therefore their
intersection doesn’t have to be specially defined: it is plain set intersection. In ori-
ented geometry, we must also choose an orientation for the resulting set; a consistent
way to do this is given by the meet operation defined below. The meet operation
has properties similar to those of join, and is in fact its dual, in a very precise sense.

1. The meeting point of two lines

For example, two lines of T, generally intersect on a pair of antipodal points.
See figure 1. To choose an orientation for the intersection means to pick one member
of the pair as the meeting point of the two lines.

Figure 1. The meet of two lines.
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Note that the shortest turn from the direction of a to that of b is positive
at one of the two common points, and negative at the other. By definition, the first
one is the point where a meets b, denoted by a A b. More precisely, if u, and u, are
vectors tangent to a and b (and agreeing with their directions) at p = a A b, then
p, u,, and u, (in that order) are a positive basis of R?3. Note that at the antipodal
point all three vectors are exactly reversed, and therefore form a basis of opposite
handedness. The meet a A b is not defined when a = b or a = —b.

Like the join of two points, the meet of two lines is anticommutative, and
depends on the orientation of its operands. For any two lines a,b of T,, we have

bAa = —-(aAb)

(ma)Ab = aA(-b)=-(aAb)

This behavior is unavoidable if the meet operation is to be continuous and defined
for any two unrelated lines. To see why, consider two lines a and b (on the spherical
model of T, ) that intersect at a point p in such a way that b is 90° counterclockwise
from a. See figure 2(a).

Figure 2.

Imagine that the sphere rotates by 180° around an axis perpendicular to the plane
of a. This continuous motion keeps a fixed, but takes b to -b and exchanges p with
—p. See figure 2(b). Therefore, no matter which of the two points we define to be
a A b, we must have a A (—=b) = =(a A b).

Now start from the situation in figure 2(b), and rotate the sphere by 90°
around the line of the two intersection points, so as to take a into b and —b into a.
See figure 2(c). By continuity, we conclude that bA a = a A (—b), which we have just
shown to be —~(a A b).
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1.1. The relativity of meet

Note that the meet of two lines as defined above depends strongly on the
orientation of the whole plane T,. This is not merely a weakness of our definition,
but rather an essential property of oriented intersections. It turns out that it is
not possible to consistently select one of the intersection points without a reference
orientation for the whole plane.

To see why, consider two intersecting finite lines a,b of T, (in the straight
model). Let [ be the bisecting line of the angle ab. Now rotate ¢ and b by 180° around
the axis . This continuous motion exchanges a with b, while keeping the intersection
points fixed and avoiding degeneracies (¢ = b or a = —b). By continuity, we should
then have bA @ = a Ab. But this contradicts our previous proof that bAa = —~(aAb).
Therefore, if a and b are intersecting lines in three-space, any definition of a A b must
be ambiguous, or must be discontinuous for some pairs a,b with a # b and a # —b.

Therefore, we cannot define the oriented meet of two coplanar lines in T, or
in a higher-dimensional space, since (as we saw in the previous chapter) there is no
consistent way to pick an orientation for the plane containing them. In general, the
meet of two flats cannot be defined in an absolute sense, but only relative to some
oriented flat of suitable dimension that contains them.

2. The general meet operation

The meeting point of two lines in T, can also be defined by the following
expression: for any three points p,q,r of T,,

pVegVr=T, & (pVgA(gVr)=gq (1)

See figure 3.

Figure 3. The meet of two lines in T,.

We can define the meet of two arbitrary flats by a straightforward extension of
formula (1):
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Definition 1. If u is a flat of minimum rank enclosing flats @ and b, then the meet
of a and b in u is the flat y such that

TtVyVz=u,
zVy=a, and (2)
yVz=hb,

for some z,z C u. I will denote the meet y by a A b.

In other words, for any three flats z,y, z such that 2V y V z = u # 0, we have by
definition

(VYA (yV2)=y (3)

Before we go on, we must prove that definition 1 is consistent: that is, we must show
that such a flat y always exists and is unique. The next lemma shows this is indeed
the case:

Theorem 1. Ifu is a flat of minimum rank containing flats a and b, then there
are some flats ., z, and a unique flat y satisfying equations (2).

PROOF: The intersection of a and b, viewed as sets of points, is some unoriented flat
contained in u. Let y be any oriented version of that flat. Since y C a, it has a
left complement in a: that is, there is flat z such that zVy = a. Similarly, there
is a flat z such that y Vz = b.

Since z is contained in b and disjoint from y = aNb, we conclude z is disjoint
from a, and therefore the flat v = zV yV z = a V z is well-defined. Now z, y,
and z are contained in u, so v too is contained in u. Also, v contains xVy = a
and y V z = b. Since u is a flat of minimum rank containing a and b, v must be
either u or —u. Then either the flats z,y, z or the flats —~z, ~y, —z, respectively,
will satisfy (2).

To show the uniqueness of y, let z,y, and z be defined as above, with orien-
tations reversed as needed to make equations (2) hold. Suppose that equations
(2) are satisfied also by flats #’,y/,2'. Since a = 2' Vy' and b=y'V z', we must
have y' C aNb, and ' C a\ b. Since aN b is the set of points y, we conclude

y' Cy. (4)

We also conclude z' Ny = @, which means z' V y is defined; since this flat is
contained in a, we must have rank(z') + rank(y) < rank(a). From this and from
rank(z') + rank(y') = rank(z' V y') = rank(a) we conclude rank(y’) > rank(y).
Together with (4) this implies y’ = y or ' = —y. Now suppose y' = —y. Then
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fromzVy=a=2'Vy andyVz=b=y"V 2 weget

x\/sz:z'Vy'Vz
=2 V(~y) V=2
=-(z' VyVz)
=-(z' vy' v ),

contradicting the assumption that ctVyVz=2'Vvy v 7.
QED.

Incidentally, this proof shows also that the meet of two flats is simply the intersection
of their point sets, oriented in a specific way.

[ will omit the subscript in A, when the reference flat u (the universe of the
operation) is implied by the context. In particular, I will use the phrases the meet
operation of T, or the v-dimensional meet to signify the meet operation relative to
the standard universe T, of T,,.

2.1. Null objects

Note that definition 1 specifies a A, b only if u is the smallest flat enclosing
both a and b; which is to say, if and only if rank(a) +rank(b) —rank(aNb) = rank(u).
When that is not the case, a A b is undefined. As in the case of join, it is convenient
to extend meet to a total function anyway, by letting a A b to be the null object
grank(a)+rank(b)—rank(u) "y henever the result is not specified by definition 1. I will also
postulate 0% A @ = a A 0% = gktrank(a)—rank() for 4] g, As in the case of join, this

convention can be implemented at zero or negative cost.
3. Meet in three dimensions

3.1. The meet of a line and a plane

To illustrate the definition, let’s consider some examples in T;. For example,
a line [ and a plane 7 generally have two antipodal points in common. According
to the definition, # A [ = z if and only if there are points p,q on 7 and r on [ such
that (p; q; z) is a positive triangle of 7, (z;r) is a positive pair on [, and (p; ¢; z;7) is
a positive tetrahedron of T,. We conclude that = A lis the point where the circular
arrow of 7 and the longitudinal arrow of [ are like the fingers and thumb of the right
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hand. See figure 4.

T
o
~. 9

- ;“ 1

Figure 4. The meet of a line and a plane.

By an entirely analogous argument, we conclude that ! A 7 is the same point as
7 A [; that is, the meet of a line and a point is commutative. The result of # Al is
undefined if [ is contained in 7.

3.2. The meet of two planes

The intersection of two planes 7,0 in T, is a pair of oppositely oriented
lines. According to definition 1, we must find points p, g, r,s such that (p;¢;r) is a
positive triangle of 7, (g;r;s) is a positive triangle of o, and (p; ¢;7;s) is a positive
tetrahedron of T,. Then 7 A o will be the line from ¢ to r. See figure 5.

Figure 5. The meet of two planes in Tj.

Informally, we must imagine 7 turning towards ¢ around their common line,
by the smallest angle that makes the two planes coincide in position and orientation.
Then we can figure out the direction of # Ao from this turning direction by the right-
hand rule. Alternatively, if we look at the intersection of the two planes from the side
where 7 is at our left and oriented counterclockwise, and o is to our right oriented
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clockwise, then 7 A o will be directed upwards. Note that o A 7 = =(7m A o); that is,
the meet of two planes in T, is anticommutative.

4. Properties of meet

Note that the orientation of the result depends on that of the reference flat
u, as well as on those of a and b. In fact, if we replace z, y, and 2 by their opposites
in the equations (2), we conclude that

a Ay b=(an,b) (5)

In what follows A denotes the meet operation relative to some fixed v-dimensional
flat T (which may or may not be the standard universe of T,).

4.1. Orientation reversal

It follows from the definition that for any flats or null objects a, b,

(ma) Ab = aA(—d) = =(aAbd). (6)

4.2. Meet with universe

The reference flat T acts as the unit element of A: for all flats a C 7,

aANT = a = T Aa,
aAN(-T) = a = (-T7) Aa.

4.3. Meet in different spaces

The relationship between the meet operation of different universes is illumi-
nated by the next lemma, which follows immediately from the definition:

Lemma 2. Let z, y, and u be flats such that xVuV y # 0. Then for any a,b C u
we have

(TVa) Apyuyy (BVY) = an,b (8)

In particular, by taking £ = A or y = A we conclude that, if £ V u # 0, then

(xVa) Ay, b= aAn b (9)

a Ny, bVe) = aAn, b (10)
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for all @, b C u. Among other things, this allows us to establish a connection between
the meet operations in T, and T,. Let’s consider T, embedded as a plane of T,
in the standard way: that is, let’s identify the point [w,z,y] of T, with [w,z,y,0]
of T;. With these conventions we can write T; = T, V e®, where e® = [0,0,0,1] is
the point at plus infinity on the front z-axis of T;. Then, by lemma 2, the meet of
lines a and b (relative to T,) is the meet of the line a and the vertical plane bV e
(relative to T,). See figure 6.

T, (front)

Figure 6. Relation between meet operation in T, and Tj.

4.4, Co-ranks

When working with the meet operation relative to a fixed universe 7, it is
convenient to classify the flats of T by their complementary rank or co-rank, defined
by corank(a) = rank(T) — rank(a) = dim(Y) — dim(a). In particular, the reference
flat T itself has co-rank 0, and its hyperplanes have co-rank 1. The vacuum has co-
rank equal to the rank of 7. In general, the co-rank of a flat a is how many points
must be joined to a to get the universe. From the definition of meet it follows that

corank(a A b) = corank(a) + corank(b)

and
rank(a A b) = rank(a) — corank(b) = rank(b) — corank(a)

That is, the meet operation lowers the rank of one operand by the co-rank of the
other. Since hyperplanes of T have co-rank equal to one, we conclude that the co-
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rank of a flat a is also the number of hyperplanes we have to meet in order to get
a.

4.5. Commutativity

The general meet operation is either commutative or anti-commutative, de-
pending on the ranks of the operands and the rank of the reference space. More
precisely,

Theorem 3. For all flats a and b,
bAa= _‘corank(a)corank(b)(a A b) (11)

whenever a A b is defined.

PROOF: If either side is the null object, then the theorem is trivial. Otherwise, there
must be flats z,y, z such that zVyVz =T, 2Vy = @, and yVz = b, with y = aAb.
Let r, s, and t be the ranks of z, y and z, respectively. Then zVyVz = —rs+ritsiy,
It follows that (z Vy)A(yVz) = -"+r+sty Byt 2vy = =%, and y Vz = -"*a.
Therefore, b A a = =" (a A b). Since r + s + t = rank(T) and r + s = rank(a),
it follows that r = corank(b). Similarly ¢ = corank(a), and this concludes the
proof.

QED.

Theorem 3 says that A is commutative, unless both operands have odd co-rank. In
three dimensions and less, the only “odd” cases are: two points in T, two lines in
T,, two planes or a point and a plane in T.

4.6. Associativity

Like join, meet is associative. In order to prove this fact, we will need the
following useful lemma, which provides an alternative to definition 1:

Lemma 4. Let u be any flat. Then, for all z,y,z C u,

tVyVz=u & (zVy)A (zVz)=z (12)
& (zVz)A, (yVz)=12

PROOF: Let r = rank(z)rank(y). By the commutativity properties of join and by
definition 1, we have

zVyVz=u & yVrVz=-"u
& (yVe)A(zVz)=-"z
& (zVyA(zVz)==.
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The proof for (z V 2) A, (y V z) = z is entirely symmetric.
QED.

It is important to notice that not every permutation of z,y, and 2 in the right-hand
side of equation (12) will make the formulas true. For example, if zVyV z = u, it
doesn’t follow that (y Vz) A, (zV z) = z.

Lemma 5. For any flats a, b, c,

(aAb)Aec=0 & aA(bAc)=0 (13)

PROOF: If either of a, b, or ¢ is a null object, the theorem is obvious. Otherwise, if
a Ab =0, a and b must be contained in some flat f with rank less than n; then
a and bAc are also contained in f, and therefore both sides of equation (13) are
null. The case b A ¢ = 0 is entirely symmetrical. So, assume a A b and b A ¢ are
both defined; we must have

rank(a) + rank(b) — rank(a A b) = n | (14)
rank(b) + rank(c) — rank(bAc)=n (15)

Subtracting (15) from (14) we get
rank(a) + rank(b A ¢) = rank(a A b) + rank(c)

Hence,
rank(a) + rank(b A ¢) —rank(aN(bAc)) =n

if and only if
rank(a A b) + rank(c¢) — rank((a A b) N ¢) = n,

which means a A (b A ¢) is defined if and only if (a A b) A c is defined.
QED.

Lemma 6. For any flats a,b,c,

(aANb)Ac=A & aA(bAhc)=A

PROOF: Suppose (a A b) A c = A. By lemma 5, a A (b A c) must be defined. Since
meet is an oriented intersection, and intersection is associative, a A (b A ¢) must
be either A or =A. Also, a A ¢ must be defined; for, if there were some flat of less
than full rank containig a and ¢, it would also contain aAb and ¢, and (aAb)Ac
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would be 0. So, let

rT=aAb
y=aAc
z=bAc

IclaimzVy =a,z2Vz=5yVz=c and zVyV 2z = T. First, since
tNy=aNbNec =, the flat 2 V y is defined. Since z and y are flats of a,
zVy C a Also, since rank((a A b) A ¢) = 0, we deduce corank(c) = rank(a A b),
and

rank(z V y) = rank((a A b) V (a A ¢))

= rank(a A b) + rank(a A ¢)
= corank(c) + (rank(a) — corank(c))
= rank(a)

which means z V y = aca for some a € {#+1}. In the same way, we can show
that z V z = Bob and y V z = ~yoc for some v € {£1}.
The hypothesis (a A b) A c = A implies (a A b) V ¢ = T, and, therefore,

zVyVz=(aAb)V (yoc) =yo(a Ab)V c = 7oT. (16)
By the definition of meet and by lemma 4 it follows from (16) that

(zVy) Ay V 2) = yoy = yo(a Ac),
(zVy)A(zV2) = oz = yo(a Ab), (17)
(xVz)A(yVz) = oz =v(bAc).

On the other hand,

(zVy)A(yV2) = (awa) A (yoc) = aye(a Ac),
(zVy)A(zVz)=(aca) A (Bob) = afe(a A b), (18)
(2V2) A (yV 2) = (Bob) A (oc) = frye(B A c).

Comparing (17) and (18) we conclude a = 8 = v = +1. Therefore we have
zVy=aand zVyVz=7, which means

aN(bAc)=(zVy)Az=A.

The converse follows from this and the commutativity law.
QED.

We are now ready to prove the main result:
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Theorem 7. Meet is assoctative: for any three flats a, b, c,
(aAb)Ac=aAn(bAc) (19)
whenever one of the two expressions is defined.

PROOF: If one side of (19) is 0, then by lemma 5 the other side is 0, too. So, assume
both sides are defined. Let w = (a A b) A c. Since w is a subflat of a, b, and c,
there are flats ¢t,u, v such that

a=wVit,
b=wVu,
c=wVo.

Also, there is a flat s such that wV s = 7. Therefore, by equation (9) we have

(aAbd)Ae=((wVit)A,y, (WVu)A,,, (wVo)
=(wV (A, u))Ayy, (wVo)
=wV ((tA,u) A, v)

Similarly,
aAN(bAc)=wV (tA, (uA,v)) (20)

From w = (a A b) A c and equation (20) we conclude that (¢t A, u) A, v = A. By
lemma 6, this implies t A, (u A, v) = A. Then equation (20) says

aAN(bAc)=wVA=w=(aAb)Ac

QED.
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Chapter 7
Relative orientation

One advantage of two-sided geometry is that it allows us to talk about the
two sides of a line in the plane, or of a plane in three-space. As shown below, these
concepts can be elegantly expressed in terms of the join and meet operations.

1. The two sides of a line

A line [ divides the spherical model of the two-sided plane in two halves. I
call these the left and right (or positive and negative) sides of [, as they would be
seen by an ant crawling along the line on the outside of the sphere. See figure 1.

left

side

right
stde

Figure 1. The two sides of a line of T,.

More precisely, let (¢;r) be any positive simplex of the line. I will say that a point p
is on the positive (or left) side of I if the simplex (p; ¢;7) (in that order) is a positive
triangle of T,. Symmetrically, p is on the negative (right) side of [ if (p;q;7) is a
negative triangle.

1.1. The sides of a line in the straight model

How are these concepts mapped to the straight model? If the line m is at
infinity, its left and right sides are the front and back ranges of T, (when m = ),
or vice-versa (when m = —Q). If m is a finite line, the picture is a bit more involved.
Let d be the direction of m, Lt and R* be the left and right half-planes determined
by m on the front range, and L=, R~ be their antipodal images on the back range.
Then the left side of m is the union of LT, R™, and the infinities uco for u in the
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counterclockwise arc from +d to —d. The right side of m consists of R*, L=, and
the supplementary arc on the line at infinity. See figure 2. The reversal of left and

right on the back range is to be expected, since the meaning of “counterclockwise”
is reversed there, but the longitudinal orientation of lines is not.

Figure 2. The two sides of a line, in the straight model of T,,.

1.2. Connection to join and meet

We can define the left and right sides of a line in terms of join and meet, as
follows:

to the left of / T, A
pis{ on | } iff pvi= 02 if'fp/\l={ 00} (1)
to the right of ! -7, -A

Notice how this definition derives the “transversal” (left-right) orientation of [ by

combining the “longitudinal” orientation of [ with the intrinsic “circular” orientation
of the universe T,.

2. Relative position of arbitrary flats

The same idea can be used to distinguish the two half-spaces determined by
a hyperplane of T, for arbitrary v. In fact, we can generalize (1) to a test of the
relative placement of any two flats a and b of T, whose ranks add to n. I define the
relative orientation of a and b as the sign-valued function

+1 ifavb= 7T,

gob=1{ 0 ifavb= O
~1 ifavb=-T,,
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From the definitions of A and ¢, it is obvious that

0 ifanb= 0O

+1 faAb= A,
aob:{
—1 ifaAb=-A4,

If we ignore the distinction between 1 and A, we can say that o is just a special case
of A, in which the two flats have complementary ranks. If a0 b = +1, I will say that
a s positively oriented with respect to b, or that the pair a,b is positively oriented.

The operation a ¢ b is defined if and only if the flats have complementary
ranks (that is, rank(a) + rank(b) = rank(7’)), and is 0 if and only if a and b have a
common point. Observe also that a ¢ b depends on the orientation of T, as well as
on those of a and b.

As in any join, reversing the order of the arguments reverses the sign of aob
if and only if both have odd rank:

boa = (_l)rank(a) rank(b) (a o b)

Since in this case rank(a)+rank(b) = n, we conclude that the order of the arguments
only matters if the space has even rank (odd dimension) and one of the operands
has odd rank(even dimension). In three dimensions or less, the only cases where the
order of a and b matters are two points on a line, and a point versus a plane in
three-space.

2.1. Signed predicates

The ¢ function is one of many sign-valued functions that are common in
oriented projective geometry. The corresponding functions in unoriented geometry
have only two outcomes, and are usually implemented as predicates, that is, pro-
cedures returning a boolean result. For example, the analogous of ¢ would be the
predicate that tests whether a given point lies on a given line.

In oriented projective geometry, it is generally better to implement a function
like o as a procedure returning an integer value in {—1,0,+1}. This procedure can
be used both in two-way if statements, as in if Rel(p,!) = 0 then ..., and in
three-branched case statements. Experience seems to show that when an algorithm
of two-sided geometry needs to test a point against a line, more often than not it
needs to take a different course of action for each of the three possible outcomes.
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2.2. The two sides of an hyperplane

Let’s now examine some special cases of ¢ in more detail. If a is a point and
h is a hyperplane, we say that a is in the positive side of h if and only if aoh = +1.
(To avoid ambiguity, I will not use the names “left side” and “right side” unless a
is a point and b is a line of T,.) The order of the two operands matters if and only
if the space has odd dimension; in that case, to correctly identify the positive side
we must put the point on the left side of ¢.

2.3. Two points on a line

In particular, on the two-sided line T, the operation p o g tests whether the
points p,q form a positive or a negative simplex of 7', that is, whether ¢ is ahead
of or behind p on 7;. In the spherical model, this tests whether the shortest arc
from p to ¢ (in the spherical model) is counterclockwise (p © ¢ = +1) or clockwise
(po g = —1). The test returns 0 if p = q or p = —¢. The positive side of a point (=
hyperplane) ¢ is therefore the half-line ending at g, i.e. the arc from —q to q.

2.4. The two sides of a plane

A plane 7 divides T, in two half-spaces. By definition, p is on the positive
side of  if pV © = T,, and on the negative side if pV 7 = —T;. Let (¢;7;s) be a
positive simplex of 7; according to this definition, p is on the positive side of = if
and only if (p; ¢;r;s) is a positive tetrahedron of T,. Sec figure 3.

negative
side

Figure 3. Testing a point against a plane.

Let’s see what the two sides of a plane look like in the straight model. Recall that
in the straight model of T, a finite plane 7 is represented by two copies of some
Euclidean plane of R3, one in each range. Let Lt and R* be the two half-spaces of
R? deterinined by the front copy on the front range, and L=, R~ their antipodes
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on the back range. Then the two sides
figure 4.

posilive
side of

of 7 consist of LY UR~ and Rt U L~. See

negative
side of &

positive
side of 7

negative
side of

front range
of T,

Figure 4. The two sides of a plane in T.

Intuitively, the positive side of a plane 7 in T, is the side from which the circular
arrow of = seems to turn clockwise. Alternatively, we are in the positive side of 7
if, when we move towards any point ¢ on 7 by the shortest route, the direction of
travel p — ¢ and the circular arrow of 7 at ¢ are like the thumb and fingers of the
right hand.

Observe that since planes and points have odd rank, p V7 = =(7 V p).
Therefore, the order of the join above is very important: to test whether a point is
on the positive side of a plane, we join the point to the plane, not vice-versa.

2.5. The hyperplane at infinity

The set of all points at infinity of T, (in the straight model) forms an
unoriented hyperplane. I will denote by 2, (or just Q) that hyperplane, oriented so
that the front origin O is on its positive side; that is O 0§ = +1.

In the case of T}, the orientation of {2 is what we would obtain by expanding
the unit 2-sphere of the front range, oriented counterclockwise, to infinite radius.
Therefore, for an observer at the origin of the front range, the “big circular arrow
in the sky” will be turning clockwise.
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2.6. Two lines in three-space

A less obvious use of ¢ is in testing the relative orientation of two lines |, m
in T5. The test [ o m is positive if and only if a positive pair (p;¢) on ! followed by
a positive pair (r;s) on m form a positive tetrahedron (p; ¢;r;s) of T;. Intuitively,
this means that m “turns around” ! according to the right-handed rule. See figure
5. The test is zero if and only if the two lines intersect.

[

Figure 5. Two positively oriented lines of T;.

Note that [ turns around m the same way that m turns around [. This is to be
expected, since the join of two lines (rank 2) is commutative.

3. The separation theorem

An important axiom of Euclidean geometry states that if two points of
the plane are distinct, they can be separated by a straight line. This axiom has a
counterpart in oriented projective geometry: if two points p,q of T, are distinct,
there is a line [ such that po ! # q ¢ l. More generally, we have

Theorem 1. Two flats a,b with the same rank are distinct if and only if there is
some flat z in T with complementary rank such that aoz = —(bo z).

PROOF: The “if” is trivial, so let’s prove the “only if” part. Let a, b be distinct flats
with same rank k. Consider first the case where a and b are disjoint, and aVb = 7.
That means rank(7) = 2k. If a = A, then b must be —A, and ¢ = A will satisfy
the theorem. Otherwise, let (a%;..a¥) and (b%;.. b*) be representative simplices
of a and b. Construct the simplex (z';..z") where z* (viewed as a vector of R")
is a,-a" + b, for some coefficients o, to be determined.
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Now observe that the 2k x 2k matrices M and N which relate the two
simplices (a’;..a"; 2% ..2%) and (8%..6"%; 2% ..2"%) to (a%;..a"; 8% .. b%) are

(1 0 (® o' o)
0 1 0 0 0 1
M= s N:
o 0 1 g, 0 1 0
0 O’KO l/ \0 aKO 1)

Since the determinant of M is +1, independently of the o,, wehave aoz = +1. On
the other hand, the determinant of N is (—1)"200 «+-0,, which can be made —1
by a suitable choice of the o;. In that case we have box = —1, and a0z = —(boz).
Now let a and b be arbitrary flats of T with same rank k. Let ¢ be their
intersection, arbitrarily oriented, and let u,v be right complements of ¢ in a
and b, so that ¢V u = a and ¢V v = b. Obviously, we must have u # v, and
rank(u) = rank(v) = m for some m < k. Since v is disjoint from a N b and
contained in b, it is disjoint from a; therefore, ¢V u V v is well-defined. Let d be
such that cVuV vV d =T. By the discussion above, there is a flat y of rank m
inuVvsuchthat uVy=uVv=-(vVy). Let z =y V d; we have

aVr=cVuVuvVd=cVuVovVvd=T,
bVz=cVvVyVd=cVuVv)Vd=-T.

(2)

Therefore, a 0 z = —(bo x).
QED.
It follows immediately that

Theorem 2. A flat a of T, is uniquely characterized by the sign-valued function
T — a oz, where rank(z) + rank(a) = n.

Note that this result holds even if ¢ € {A4,-A,Y, Y}, and can be extended to the
case where a is 0, for all .



66 7. RELATIVE ORIENTATION

4. The coefficients of a hyperplane

In the homogeneous model, a hyperplane k of T, is represented by an ori-
ented linear subspace H of R" of dimension n — 1. For any point p = [z] of T, the
predicate p o b tests on which side of H the vector z lies. If y is any vector of R"
orthogonal to the space H and directed into its positive side, then testing po h is
equivalent to testing whether the projection of z onto the one-dimensional subspace

generated by y has the same sign as y. In other words, po h tests the sign of the dot
product of z and y:

poh =sign(zyy, + z,y; + - + r,y,) (3)

From this formula and from the separation theorem it follows that the hyperplane
h is uniquely determined by the vector y. The coordinates of y are called the ho-
mogeneous coefficients of the hyperplane. I will use (y) to denote the hyperplane
whose homogeneous coefficients are the coordinates of the vector y. As in the case
of homogeneous coordinates of points, it is obvious from equation (3) and from the
separation theorem that (y) = (z) if and only if y = az for some positive real
number .

It is often convenient to view y as a column vector y = y(y°;..y"), so that
formula (3) can be written as a matrix product

[z] o (y) = sign(zoy° + - -+ 2,¥")
0

’ (4)
)

= sign( (zgy--T,) "

v

Yy

Again, note that in spaces of odd dimension the order of the arguments of ¢ is
important, since

(yholz] = (=1)" (=] (y)) = (~1)" sign(zey” + - +2,9") (5)
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Chapter 8
Projective maps

The idea of projective maps grew out of the perspective rendering techniques
developed by Renaissance artists. The perspective projection consists of extending a
line from each point of the scene to the observer’s eye, and marking the point where
that line intersects the picture plane. See figure 1.

Figure 1. The perspective projection.

As figure 2 shows, even flat objects appear greatly distorted when viewed in per-
spective. The projection does not preserve many common geometric properties —
angles, distances, areas (or their ratios), parallelism, perpendicularity, congruence,
and so forth. Indeed, by moving the viewer and the projection screen appropriately,
we can make the image of any convex quadrilateral on the floor to match any con-
vex quadrilateral drawn on the screen. Informally, the two-dimensional projective
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maps are all possible mappings from the floor plane to the screen plane that can be
realized in this way.

: ”/'///

/a n
nm

m/n
N/

Figure 2. A chessboard, and a perspective view of it.

However, the perspective projection always takes straight lines to straight lines.
Therefore, it preserves all geometric properties that can be defined in terms of
incidence and collinearity. For example, any three collinear points or three concurrent
lines will remain so in projection. This includes parallel lines, which are assumed
to be concurrent at an infinity point. Among other things, this implies that no
perspective view of a quadrilateral can be a circle or a pentagon.

In geometry texts this line-preserving property is usually taken as the def-
inition of a projective map or collineation between two projective spaces. It can be
shown that for spaces of dimension two or more, these maps correspond to linear
maps in the analytic model. For technical and expository reasons, however, I will re-
verse this path, starting from an analytic definition of projective maps, and deriving
from it their geometric properties.

1. Formal definition

Definition 1. Let S and T be two flats of T, represented in the homogeneous
model by two linear vector spaces U and V. A function M from the points of
S to those of T is a projective map if it takes positive simplices of S to positive
simplices of T, and there is a linear map M from U to V such that, for all u € U,

M([u]) = [M(u)].

We can say that the linear map M of definition 1 induces the projective map M,
and denote that by [M] = M. Note that a projective map from S to T is also a
projective map from —S to =T, but not from S to 7. In other words, a projective
map does not impose a global orientation on either its domain or its range, but
establishes a rigid connection between the two. A projective map of a flat S to itself
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is also called an orientation-preserving map of S, while a map from S to —S is an
orientation-reversing one.,

To make formulas more readable, I will use zF as a synonym of F(z), the
image of an element z by a function F. I will also denote by FG the composition
of functions ¥ and G, applied in that order; that is, zF'G = (zF)G = G(F(z)). I

will use I, (or just I) for the identity map on a set A, and F for the inverse of a
(one-to-one) function F.

1.1. Equivalence of projective maps

Note that a given projective map may be induced by many distinct linear
maps. The theorem below characterizes these maps:

Theorem 1. Two linear maps K, L induce the same projective map if and only if
K = al for some a > 0.

PROOF: The “if” part is a trivial consequence of the definition. As for the “only if”
part, assume K and L induce the same map M. Then K and L must have the
same domain U and same range V (two linear subspaces of R"). The composite
map F = KL must induce the identity projective map: for any u € U, we must

have [uF] = [u].
In particular, let (u%..u*) be a basis of U. For any two distinct elements
u,v of the basis we must have [uF] = [u], [vF] = [v], and [(u + v)F] = [u + v].

This means uF = ou, vF = fv, and (u + v)F = ¥(u + v) for some o, 5,7 > 0.
Since F is linear, we have also (u +v)F = (uF) + (vF) = au+ Bv, and therefore

au+ v =y(u+v) =yu+ v

Since u and v are independent, we must have a = . Since this holds for all
pairs u, v, there is a single a > 0 such that (u*)F = au® for all :. We conclude
that F is a positive multiple o - I, of the identity map on U, and therefore

K=(KL)L=FlL=a-Iyl=a-L

QED.
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2. Maps of T, to itself

Of particular interest are the projective maps of T, to itself, which are
induced by linear maps of R" to itself. By definition, any such map must preserve
the sign of every v-dimensional proper simplex, which means the inducing linear
map must take positive bases to positive bases. As we know from linear algebra, this
happens if and only if the coefficient matrix of the map has positive determinant. If
the matrix has negative determinant, it induces an orientation-reversing map, which
takes T, to =T,. I will denote by M, the set of all projective maps from T, to
itself.

2.1. Examples

As an example, consider the projective map of T, induced by the linear
transformation (w,z,y) — (w, z+ w, y + w/2) of R3. Figure 3 shows the effect
of this map in the spherical model. In the straight model, this map is simply a
translation of the front and back ranges by the vector (1,1/2).

[1,1,1/2]

Figure 3. A translation.

Another example is the map (w,z,y) — (10w, 4z — 3y, 3z + 4y). The induced
projective map performs a rotation around the origin by an angle § = arctan(3/4),
combined with a reduction by a factor of V32 +42/10 = 1/2. See figure 4.

The examples above map the line at infinity 2 onto itself. It is easy to see
that such maps are precisely those that correspond in the straight model to affine
transformations of the front and back ranges. A projective map that doesn’t belong
to this class is the one induced by (w,z,y) — (w—z, z, y). In the straight model,



8. PROJECTIVE MAPS 71

Figure 4. A similarity transformation.

this map brings the line  to the vertical line through = = —1. See figure 5.

w /l./%l/ u |
& -\x |

|
‘.W "

Figure 5. A perspective map.

Its effect can be described as a perspective projection between two copies of T,
properly positioned in T. Note that parallel lines are mapped to lines that converge
on the line # = —1. Note also that a portion of the back range is mapped onto the
front range, and vice-versa.
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3. Properties of projective maps

3.1. Group properties

Every projective map M = [M] is continuous; this follows from the conti-
nuity of M, and from the fact that [u] is a continuous function of u. Any such M

has a functional inverse M = [M], and is therefore one-to-one and onto. We have
proved that

Theorem 2. FEvery projective map from a flat S to a flat T is a topological home-
omorphism between the point sets of S and T.

Projective maps are closed under composition. The restriction of a projective map
M to a flat subset Z of its domain is a projective map from Z to ZM. For any flat
S, the identity function on the points of S is a projective map from S to itself. We
conclude that

Theorem 3. For any flat S, the projective maps of S to itself form a group under
composition.

3.2. Image of flats

Although a projective map M = [M] is defined as a mapping from points
to points, it extends naturally to a mapping from flats to flats by the equations

M(A)=A
M(-A) = -4 (1)
M([uo; LUt = (M(u®);.. M(u")]

for any tuple u®; .. u* of linearly independent vectors in the domain U of M. In order
for equation (1) to make sense, we have to show that the value of M([u’;..u"]) does
not depend on the basis u?;..u*, but only on the linear space generated by it. In
other words, we have to show that

[0, uf] = %, 0% = [M@®);.. M(u®)] = [M(¥°);.. M(v®))] (2)
The left-hand side of equation (2) says that the ordered bases uo;_. .u* and v%;.. 0"
are equivalent, that is, there is a matrix of coefficients A = (a; : 1,7 € 0..k)

with positive determinant such that ut = X; a;vj. Since M is linear, it follows that
M(u') = Y; aj-M(vj), which implies the right-hand-side of equation (2). This shows
definition 1 is not ambiguous. The requirement that M takes positive simplices of S
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to positive simplices of T' guarantees that the vectors M(u®);.. M(u*) of equation
(1) are independent

3.3. Meet and join

It follows immediately from (1) that, for every projective map M and any
two flats @, b in its domain,

(ma)M = —=(aM)

and
(aVbOM = (aM)V (bM)

Note that a projective map M from a flat S to a flat T takes by definition the universe
of S to that of T' (including orientation). Since the meet operation is defined in terms
of join and the universe, we also have

(@ Ag b)M = (aM) Ap (BM).

From these results we conclude that a projective map from S to T is an isomorphism

between the projective structures of S and T' (which includes all notions which can
be defined in terms of meet and join).

4. The matrix of a map

A projective map M from T# into T, is induced by a linear map M of R™
into R". Such a map can be represented by an m x n matrix of coefficients

0 0
mO mu
B ok
mo Tn”

with the convention that the image of a point z = (z,,..x,) is
(zM); = Z z,m} (3)
3
If we view an element of R" as a 1 x n (i.e., row-like) matrix, we can express formula
(3) as the matrix product

my - m
(2gy- 2, )M = (zg,..2,)- | + "+, (4)

14
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Of course, formulas (3) and (4) describe also the induced map M, since by definition
[z]M = [zM]. In other words, to compute the image of a point we post-multiply its
homogeneous coordinate vector by the coefficient matrix.’

From theorem 1 it follows that two projective maps from T/t into T, are
equal if and only if their matrices are positive multiples of each other. Therefore,
we can identify a projective map M with the class of all matrices M that induce it.
Accordingly, I will write

0 0
my - m,
[ [
mg m,

to denote the projective map generated by that matrix.

4.1. Examples

Here are some examples of maps from T, to itself in matrix form and their
effect (described in terms of the straight model):

1 z Yy
0 1 0 Translation by (z,y). (5)
0 0 1
! 0 0 |
0 cos§ siné Rotation by angle 8 around origin. (6)
0 —sinf cosf|
1 0 0
Expansion by 8 in the z-direction and by
7
0 p 0 v in the y-direction. (™)
0 0 ~

1 Some authors prefer to view the elements of R™ as column vectors, and describe a linear map
as pre-multiplication by the transpose of the matrix above. I adopted the present convention
for consistency with the postfix notation M and the left-to-right composition rule.



8. PROJECTIVE MAPS 75

4.2. Image of a hyperplane

Geometric computations deal with hyperplanes almost as often as they do
with points, so we need to derive the formulas for the homogeneous coefficients of
the hyperplane hM given those of h.

First let’s assume M is a positive (orientation-preserving) map. Such a map
must preserve the relative orientation of points and hyperplanes, and therefore

poh=(pM)o(hM) for all points p of T,,. (8)

In fact, this property completely characterizes the hyperplane M.

Now let p = [u] and h = (v). If we view u as a row matrix, and v as a column
one, then po A is the sign of the matrix product u - v (which is a scalar). If M is the
matrix of map M, and M its inverse, we have also the obvious identity

u-v=(u-M)-(M-v) (9)

The term u - M is a row vector, the coordinates of the point pM. The term M. y is
a column vector, the coefficients of some hyperplane g. Equation (9) says therefore

poh=(pM)og forallpe T,.

Comparing this with equation (8), we conclude ¢ = hM. That is, we obtain the
coeflicients of hM by the matrix product M. v

This conclusion is correct only as long as the determinant |M| of M’s matrix
is positive. If |M| is negative, then in equation (8) we must compute o relative
to the space =T ,. In terms of the standard o, we should write instead po h =
~((pM) o (hM)). On the other hand, equation (9) is not affected, so the end result
is AM = [-M -]

We can condense both cases into the single formula sign(| Ml)/\?v Moreover,
since positive factors are irrelevant, we can replace sign(|M|) - M by just |M] - M.
This is the so-called adjoint or adjugate of the linear map M. Therefore,

Theorem 4. For any hyperplane (v) and any non-degenerate projective map M =
[M], we have (v)M = (M -v), where M is the adjoint linear map |M|- M of M.
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Chapter 9
General two-sided spaces

The preceding chapters defined the canonical two-sided spaces T, of ar-
bitrary dimension v; it is now time to define general two-sided spaces in a more
abstract way. Among other things, this will allow us to view any flat of rank & in T,

as a copy of the canonical space T, and will prepare the ground for the discussion
of duality in chapter 10.

Definition 1. The canonical oriented projective space of dimension v is the quadru-

ple T, =(F,,M,V,,A).

Definition 2. An oriented projective space of dimension v is a quadruple S =
(Fgy Mg, Vg, Ag), isomorphic to T, = (F,a M, V,,A,).

By “isomorphic” we mean that (i) Mg must be a group of bijections from Fg to
itself, (ii) Vg and Ag must be binary operations on Fg, and (iii) there must be a
one-to-one mapping ¢ from Fg to F, such that

Mg={oMp : M e M, }, (1)
(ap) V, (bp) = (a Vg b)p, and (2)
(ap) A, (bp) = (a Ag b)p. (3)

Informally, condition (1) says that Mg should act on the elements of Fg in the
same way that M, acts on the corresponding elements of F,. In particular, for
every bijection M € Mg there should be a projective map M¥ of T, such that
M? = oMy, that is,

(sM)p = (sp)M? for all s € Fg.

From what we saw in chapter 8, every projective map of T, to itself is also an
isomorphism of T, to itself (an automorphism of T ). In fact, it is possible to prove
that the only automorphisms of a projective space S are the projective maps of S

to S.
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1.1. Geometric operations

Additional geometric operations in a generic two-sided space S can be de-
fined in terms of its join and meet operations. Equations (2) and (3) imply that
the operations defined this way will coincide with the corresponding operations in
T,, mapped through any isomorphism ¢ of S to T, . For example, the rank of any
element a € Fg, defined as the number of points we have to join to get a, is the
same as the rank in T, of the flat ap. The vacuum Ag of S (the neutral element of
V¢) will always be Ay, and the universe Tg of S (the neutral element of Ag) will be
T, . Similarly, the operations of orientation reversal (join with Ag) and the relative
orientation predicate (which compares the result of V¢ with Tg) satisfy

-5 @ = (nap)p (4)
a o5 b= (ap)o (by) (5)

where =, V, A, and ¢ denote the standard operations of T,,.
2. Subspaces

We have already observed informally that a k-dimensional flat of T, looks
pretty much like a copy of T,. We can now state this more precisely:

Theorem 1. Let
s be a k-dimensional flat of T,
be the set of all flats of T, contained in s,

be the set of all projective maps from s to s,
be the join of T, restricted to subflats of s, and

9

3

38

38

><§

, be the meet operation relative to s.

Then (F,, M,, V,, A,) is an oriented projective space isomorphic to T,.

PROOF: Let ([u’];..[u"]) be any positive simplex of s. Recall this means (u®; .. u")
is a positive basis of the oriented linear subspace of R" that represents s in the
homogeneous model. Now consider the linear map £ from RF into R" given by

the matrix product

0 0

uo ...... uy

(2°,..2%) — (2°,..2")- | ¢ :
K K
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Let n be the map from T, into T, defined by [z]y = [zE] for all points [z] of
T,, and extended to arbitrary flats of T, by the formula

(A =4,
(=4)n = -4,
[0 uFln = [E(u®); .. E(u™)]

These are essentially the same formulas we used for projective maps in chapter
8, and by the same arguments used there we can prove that 7 is well-defined. It

is also easy to check that # is an isomorphism from T, to (F,, M, V,,A,).
QED.

[ will call (F,, M,, V,, A,) the subspace of T, determined by s. Not surprisingly,
the orientation reversal operation in this subspace is that of T, restricted to F,.
The relative orientation test a o, b checks whether a V bis s or —s.

Note that the flats a and —a determine different subspaces (they have differ-
ent universes), even though 7, = F_ and M_ = M__. In particular, the subspace
of T, determined by -7, is the space =T, = (F,, M, V, A), where zAy = ~(zAy).
In this subspace the relative orientation predicate & is such that x 3y = ~(z 0o y).

2.1. The canonical inclusion map

It is often useful to identify the space T, (for all x < v) with the flat of T,
generated by the first m points of the standard simplex of T,. This flat consists of
all points of T, whose last n — m coordinates are zero. The canonical embedding
of T, in T, is the function n that appends n — k zeros to the coordinates of every
point in T,. Informally,  takes every point of T, to the “same” point of T,,.

Figure 1. The canonical embedding of T; in T,.
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For example, the canonical embedding of T, in T, (in the spherical model)
maps the unit circle S; to the great circle determined on S, by the plane of the
first two coordinate axes. In the straight model, this great circle corresponds to the
z-axis of the front and back ranges. See figure 1. Analytically, point [w, z] of the
two-sided line is mapped to point [w, z,0] of the two-sided plane.

2.2. Bundles

We can generalize further the notion of subspaces induced by flats as follows.
Let s,t be two flats of T,, such that s D t. The bundle F,,, determined by s and
t consists of all flats that are contained in flat s and contain flat ¢. Let’s denote by
M., the set of all projective maps from s to s that take the flat ¢ to itself, with
each map restricted to the flats that contain ¢. Let’s also define the join relative to
t of two flats a, b in this bundle, denoted by V,, by the formula

(tvez)V,(tVy)=tVzVy (6)

We leave to the reader to verify that this definition is consistent, and that ¢ is its
neutral element. With these definitions, we have

Theorem 2. For any two flats s 2 t, the quadruple (F,,, M,,, V,,A,) is a
projective space of rank rank(s) — rank(t).

To prove this theorem, let ¢ be any subflat of s that is a right complement of ¢ in
s (that is, t V ¢ = s). Then consider the mapping ¢ from F_ to F,, defined by
zp = tV z for every € F . The inverse of this map takes every flat y in the bundle
to the flat y A, c of F,, where A, is the meet operation relative to the flat s. It is
easy to check that @ is an isomorphism from (F,,, M,.,, V,, A,) to the subspace
induced by c.

For example, consider the bundle K of all flats of T, that contain the front
origin O = [1,0,0]. See figure 2.

m

vacuum .
poinis
\———-—*N l
0 universe

Figure 2. The bundle of all lines through the origin of T,.
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The members of this set are the point O = [1,0,0] and its antipode, all the lines
passing through O (with coefficients of the form (0, X,Y)), and the two planes I,
-7,.

The join operation V(, of this bundle satisfies O Vo =zVy O =z and
(=0) Vo = = z Vy (—0) = ~z for all z € K. Also, for all lines I,m € K, the join
I'Vo m is T, or =T, according to whether the angle from I to m at O is positive
or negative. Finally, for all other a,b € K, we have a V, b = orank(a)+rank(b)-1
The meet operation of this bundle is the standard meet operation of T,, and M,
is the set of all projective maps of T,, each restricted to the flats in K. One of
the many isomorphisms from T, to this bundle is the map A — O, =4 — =0,
[z,y] = (0,z,y), T} = T,, and =1, — -7,

Other examples of bundles are the (one-dimensional) space of all planes of
T, containing a given line, or the (two-dimensional) space of all lines and planes
containing a given point. Note that if we take ¢ = A we get simply the subspace
determined by s. If we take t = —A, we get a space whose join operation V satisfies
zVy=-(zVy).

We should note here that including both the projective maps and the opera-
tions of join and meet in the definition of a projective space is generally an overkill.
More precisely, in spaces of dimension 2 or more a projective map can be defined as a
bijection of F that commutes with the join operation. However, in one-dimensional
spaces this requirement is too weak, and is satisfied by many functions that can-
not be expressed as linear maps of the homogeneous coordinates. Accepting those
functions as projective maps would be extremely inconvenient. For example, with
the present definition every projective map defined on a line a can be extended to a
projective map for any plane containing a. If projective maps were defined in terms
of join, this would not be true.

On the other hand, the projective maps alonc do not determine the join
operation completely. Once we have join defined, we cau define the meet operation
in terms of the universe, or the universe in terms of meet. I have chosen the second
alternative because it is more symmetric: as we shall see in chapter 10, the two
operations are duals of each other.
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Chapter 10
Duality

The reader may have observed that meet and join have very similar prop-
erties. In fact, most of the formulas we have seen so far occurred in pairs, where
one member of the pair can be transformed into the other by exchanging meet with
join, points with hyperplanes, rank with co-rank, vacuum with universe, and so
forth. Compare for example the formulas

aVA=a aNTl =a
aV (=b) =-(aVb) aA(=b)=-(anbd)
bVa=-"%(aVb) bAa=-"3(aAb)
where
r = rank(a) 7 = corank(a)

s = rank(b) 5 = corank(b)

This phenomenon is known as the principle of projective duality. Its unoriented
version is one of the most important ideas of classical projective geometry. In this
chapter we will see that it holds in oriented geometry as well. As we may expect,
the only difficulty is that we have to pay attention to the order of operands in
expressions.

1. Duomorphisms

The duality between meet and join follows from a rather subtle result:

Theorem 1. The quadruple T}, = (F, M, A,V) is a projective space isomorphic to
T, = (F,M,V,A).

I will prove this theorem later on, by exhibiting an isomorphism 7 between the two
spaces. Recall that an isomorphism n between those two quadruples must satisfy

mTMn € M for all M € M, and

(an) A (bn) = (a V b)n and
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for all a,b € F. That is, join in the dual space T} is the same as meet in T, and

vice-versa. From the properties of isomorphisms we proved in chapter 9, n must also
satisfy

An =T,
Tn =4,

~(an) = (—a)n,
(an) o (bn) =aob, and
rank(an) = corank(a).

The space T} is called the dual space of T, and any isomorphism between T, and
T} is a duomorphism of T,.

1.1. Formal duality

The duomorphisms of T, provide a solid foundation for the duality principle.
Let £ be a formula or assertion about the flats of T, with no free variables, involving
logical connectives and set operations, plus the symbols A, T, 7, M, = |V, and A,
and any other operations that can be defined in terms of those. We construct the
formal dual £* of £ by exchanging every occurrence of A with 7", A with V, and
recursively any derived concept with its formal dual. That includes swapping rank
with co-rank, the word “point” with “hyperplane,” the predicate a C b (for flats)
with a D b, and so on.

For example, the assertion “point z is on the segment pg” can be written as
“rank(p) = rank(q) = rank(z) =1l and pVz =2V g=pV q#0.” The dual of this
is “corank(p) = corank(q) = corank(z) =1 and pAz =zAg¢g=pAq#0,” whichin
T, means the line x is concurrent with p and ¢, and its direction lies in the shorter
angle between the directions of p and gq.

As another example, consider predicate a ¢ b = +1. To construct its dual,
we first rewrite it in terms of join, which gives a V b = +7. The formal dual of this
is a A b = +A. By the definition of A, this is the same as a V b = +7. We conclude
that ¢ is its own dual. One can easily verify that the same is true of the orientation
reversal operation ().

Meta-theorem 2. IfT is a theorem of oriented projective geometry, then its formal
dual T* is also a theorem.

This is a straightforward exercise in formal logic, which we will not prove here since
it falls somewhat outside the scope of this work.
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2. The polar complement

It is now time to prove theorem 1. To do so I will exhibit one particular
duomorphism for T, the polar complement function.

2.1. Polar flats

[ will say that two points of T are polarif they are represented by orthogonal
vectors in the spherical model. In general, two flats a, b are polar, denoted by a L b,
if every point on one of them is polar to every point on the other.

2.2. Polar complement

Recall that, according to theorem 5:1, for every flat a in 7 there is some
complementary flat b such that a Vb =17 (and therefore aAb= A, and a0 b = +1).
In general, the flat b is not unique; for example, the complement of a point a in T,
can be any line leaving a on the left side. However, we can use the polarity predicate
above to make the complement unique:

Definition 1. The right polar complement of a flat a is the flat a" such that

ala"
aoa” = +1

(1)

It is not hard to see that a always exists and is unique, is a continuous function
of a, is disjoint from a, and satisfies rank(a") = rank(Y) — rank(a) = corank(a).
Symmetrically the left polar complement - is defined by

alla

atoa = +1

(2)

As usual, it is convenient to define also (0")" = (0")" = 0" % for all k. The names
“right complement” and “left complement” refer to the order of a, a", and a7 in
formulas (1-2), and not to the relative positions of those flats in T,. To get +1 we
must write the right complement on the right side of the “o”, or the left complement
on the left side. The symbols - and 4 were chosen to make this rule easier to
remember.

It follows immediately from the definition that

(ai-)-l - a = (a-l)l-
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That is, - and - are inverses of each other. We also have

(ma)V (=(d ) =avd =T
(ma)V(~(aM)=aval=T

which implies

If rank(a) = r and rank(7) = n, it is easy to see that
a"oa=-"""7) (a0 a}'),

which implies

al— — —r(n-r) a-l (3)

and

(al-)i- — (a-i)-l — ﬂr('n—'r) a.

Observe that if n is odd, then for any r the product r(n —r) is even. It follows that
in spaces of odd rank (even dimension), 1 and + are the same function. This is the
case, for example, in the plane T,. To emphasize this fact, I will in those spaces use
the same symbol al for both @™ and a™. On the other hand, in spaces of even rank
(odd dimension), like T,, we have a" = a™ or " = —a”, depending on whether the
rank of a is even or odd. So, for example, the left and right complements of a point
(rank 1) or a plane (rank 3) are opposite, whereas those of a line are the same.

2.3. Polar complements in the two-sided plane

Let’s consider some examples. In the two-sided plane the two polar comple-
ments are the same function, a~ = a" = aL. In the spherical model, this function
takes every oriented great circle of S, to the apex of its left hemisphere, and, con-
versely, every point of S, to the oriented great circle whose left hemisphere has that
point at the apex. See figure 1(a). In the straight model, the image I1 of a finite line
| passing at distance d > 0 from the origin O is the point p such that the vector Op
is perpendicular to [, directed away from [, and with length 1/d. See figure 1(b). The
point I+ will be on the front range if and only if the line is directed counterclockwise
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as seen from the front origin, i.e. if the origin lies on the positive side of [.

Figure 1. Polar complement in T,.

If the line ! passes through the origin (i.e., d = 0), then It is the point at infinity in
the direction 90° counterclockwise from that of I. Conversely, if | = 2, then I+ = O
(the origin of the front range), and if = =€ then I+ = -0 (the origin of the back
range). Observe how in all cases these definitions put I+ on the left (positive) side
of L.

2.4. Polar complements in three-space

Let us now consider the case of a point p in three-dimensional space T;. If p
is on the front range and at distance d > 0 from the origin O, its polar complement
p" is a plane perpendicular to the vector Op and at distance 1 /d from O in the

direction opposite to that of p. See figure 2.

Figure 2. The polar complement of a point in T5.
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If p = O its polar complement is one of the two planes at infinity. If p is on the back
range, the same applies with —O substituted for O. If p is infinite, then the plane
passes through O and is perpendicular to the direction from O towards p. Since
pop™ = +1, p" is oriented so that p is on its positive side; that is, the circular arrow
of p" turns clockwise as seen from p. In particular, O" = Q. Since p has odd rank
(1) and odd co-rank (3), we have p& = —p™.

Consider now a finite line [ of T; whose point p closest to the origin is
at distance d > 0 from it. The right polar complement " is a line skew to but
perpendicular to . The point ¢ of IF that is closest to O is at distance 1/d from O,
in the direction opposite to Op. See figure 3.

Figure 3. The polar complement of a line of T;.

If | is at infinity, {” passes through the origin and is perpendicular to all planes
containing [. The orientation of I is given by the right-hand rule. Since lines have
even rank, their left and right polar complements coincide: ==

2.5. Polar complement in the analytic model

In the homogeneous model, right polar complement of a point [z] is a hy-
perplane of T, represented by a (n — 1)-dimensional linear subspace of R™ that is
orthogonal to the vector z. The homogeneous coefficients of that hyperplane are the
coordinates of a properly oriented vector orthogonal to that linear subspace, that is,
either z or —z (or any multiple thereof). In other words, we have [z] = (oz'T), where
z% is z viewed as a column vector, and o € {+1,—1}. We can figure out the correct
sign from the defining equation aoa"™ = +1 and [z} o (2) = sign(zyz® + - +z,2Y),
which imply

o] = ().

It follows immediately that
(z)7 = =" [2"] (4)
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and, symmetrically,
Lx]-l - Y (xtr> (5)
() = [24). (6)

3. Polar complements as duomorphisms

Let’s then prove that I is indeed a duomorphism. Most of the proof is
contained in the next two lemmas:

Lemma 3. For any projective map M of T, the function FMbF=-4AMFisa
projective map of T,.

PROOF: Let M be a linear map of R" that induces M. Equation (5) says that, for
any point [z] of T, [z]” = =¥(z"). From theorem 4 of chapter 10 we know that

()M = (M- 2),

where M = |M|. M is the adjoint of the matrix of M. Finally, from equation (4)
we get
(M . mtr)!- — =V [(Ml . xtt)tr].
Putting all pieces together, we get
[z M F = [z - M,

that is, 1 M F is the projective map [M¥], whose matrix is the untransposed
cofactor matrix of M.
QED.

Lemma 4. The polar complement functions satisfy

(aV b)) =d" AbF (avb)i=atAb?
(anb) =a"vih (anb)?=a’ vl

for all flats (or null objects) a,b.

PROOF: Let’s prove first (a V b)7 = a" A b". Let ¢ = (a vV b)", r = rank(a), and
s = rank(b), so that rank(c) = n —r —s > 0 (Recall that for the join to be
defined, we must have r + s < n). From the definition of -, we get

(aVb)o(aVb) =+1,



90

10. DUuALITY

that is,
avVbve=T, (7)
which implies
d-=bve (8)
Also, from (7) and the commutativity laws of join we have
bVeVa=-"01, (9)
which implies
o = -(*")(cV a). (10)

From this and (8), we get

a" At = (bve) A (=" " (c v a))
=== ((bV ¢) A (cV a)).
From equation (9) and the definition of A, we have
(bVec)A(cVa)=~"""T),
and therefore ,
a" At = (=" e = (av b), (11)
as we proposed to show. As for the left complement, from equation (3) we get
a-l — _Ir(n—r) al-,
b-l — _‘s(n—s) bl-,
(a V b)'i — —(r+s)(n—-r—s) (a v b)l-’
which plugged into equation (11) gives

(aV b1 = lra)n=r=s)+r(n=r)tsin=s) (o7 A p*)
— _|21'7l+2.m—2r2—2r:1---2s2 (a—{ A b~|) (12)
=a Ab.
Applying - to both sides of (11), and doing the variable substitutions a” — a,
b+ b (which are valid, since 4 and | are one-to-one and onto) we get

(anbd)y=a'vo.

In the same way, from equation (12) we get (a A b)" = a" v 8. This concludes
the proof.

QED.
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The main result of this chapter then follows trivially from lemmas 3 and 4:

Theorem 5. The function - is an isomorphism between the projective spaces
(F, M A, V) and (F,M,V,A).

To conclude this section, observe that
AM A= (=" F)M(=*F)=FMF

which shows - too is a duomorphism of T,.
4. Relative polar complements

We can generalize the definition of polar complement to arbitrary subspaces
of T, by using an arbitrary flat f in lieu of the universe. That is, for any flat a C f
we define the right polar complement of a relative to f as the flat a | f satisfying

al(alf)
aV(a] f)=f.

Symmetrically, the left polar complement of a relative to f satisfies

(fla)La
(fla)Va=f.

In particular, a" =a] 7T, a’ = T [ a. Conversely, we have

alf=fAd
fla=da'Af.

These are special cases of the following theorem:

Theorem 6. For any flatsa C f C g,

alf=fA(alyg)
fla=(g[a)Af.

PROOF: First, observe that f A (a] g)) is contained in f and is polar to a (since the
latter is true of a | g). FromaV (a] f) = fweget aV(a] f)V(f]g) =T, hence

(@1 H)V(flg)=(alyg).
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Therefore
fAa@lg)=[aVv(a]l HIA[(a] )V (f]9)]
~al¥.

QED.

Lemma 4 gencralizes to relative complements through the equations

(avd)] f=(alHHA]S)
fllavb)=(fTa)A(f[D)
(anb)] f=(alf)V(]S)
fT(anb)=(fTa)V(f]b)

In general, there are no simple formulas for a](fVg), a](f Ag), or their | analogs.

5. General duomorphisms

In general, a duomorphism is an isomorphism between a two-sided space
S = (Fg, Mg, Vg, Ag) and its dual space S* = (Fg, Mg, Ag, V).

It is easy to check that the composition of a duomorphism 7 and a projective
map (in either order) is also a duomorphism. In particular, the composition of the
polar complement 4 and any projective map of T, to itself is a duomorphism of T .

Conversely, if  and ¢ are duomorphisms from S to S*, then the composition
7@ is obviously an isomorphism of S to itself, and therefore a projective map of S.
It follows that

Theorem 7. FEvery duomorphism of a space S can be written as the product of a
fired duomorphism of S and some projective map of S.

In fact, if rank(S) = m, we can always write a duomorphism 7 of S as
n=M}*F N, where M and N are projective maps from S to Tu’ and I is the right
polar complement in T . Actually, we can choose one of M and N arbitrarily, with
the other being a function of  and the chosen map.

In particular, any duomorphism of T, is the composition of the right polar
complement I and a suitable projective map of T, (or vice-versa). For example, the
left polar complement 4 of T, is the composition of + and the projective map

gz — "z for every point z.

Note how this map is the identity for spaces of even dimension (meaning - and - are
the same function), and is the antipodal map = — —z for spaces of odd dimension.



10. DuALITY 93

6. The power of duality

Duality is an extremely powerful tool. For one thing, it greatly reduces
the number of theorems that have to be proved, since every proof automatically
establishes the correctness of a theorem and its dual. Moreover, we can choose
among the two theorems the one whose proof is easier to visualize, so we may end
up doing much less than half the work.

Duality is equally valuable from a computational point of view, since it
allows every geometrical algorithm to do the work of two. Thus, a subroutine that
computes a V b can be used to compute a A b, by the formula (a" Vv b")-{. As we shall
see, with the proper representation 4 and F can be computed at negligible cost.
Duality thus may cut the size of a geometric library (and of its documentation) by
almost one half. Similar savings apply to higher-level algorithms; for example, an
algorithm that computes the convex hull of n points can also be used to find the
intersection of n half-spaces.
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Chapter 11
Generalized projective maps

One-to-one projective maps are important because they are exactly the pro-
jective isomorphisms, i.e. the maps that preserve straight lines and orientations,
and therefore join, meet, and all derived concepts. There is however a larger class
of maps between flats that are not one-to-one, but still preserve those objects and
operations to some extent.

1. Projective functions

One way to generalize the notion of projective map given by definition 8:1
is to drop the requirement that the linear map M be one-to-one and onto. The
functions induced by such maps will be undefined for some points, but will still
satisfy some of the properties of projective maps. I will call such functions projective
functions.

More precisely, let S and T be two flats of T,, and U and V their homo-
geneous models. Let M be an arbitrary linear map from U into V, and consider
the function M = [M] from the points of S into those of T' that is induced by M
according to

[z]M = [ztM] for all z € R™.

As in the case of non-degenerate maps, two linear maps M, N induce the same
projective function if and only if M = aN for some positive real a.

As we know from linear algebra, the map M is many-to-one if and only if it
takes some non-zero vector to (0, ..0). In this case the induced function M will take
some valid point of S to the indeterminate object 0. The set of such points is a flat
subset of S, corresponding to the non-zero vectors in the null space (kernel) of the
map M. By analogy, I will call that subset of S the null space of M, and denote it
by Null(M).

The natural extension of M to flats of S,

AM = A

(=AM = -A
[ .. u M = [(u®)M;. . (u")M]
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is similarly incomplete. If the linear map M is not one-to-one, then the images of
0...u" from U may not be independent vectors of V. For
the images to be independent, the linear subspace <u?;..u*> or U must be disjoint
from the null space of M; that is, the flat of S spanned by the simplex ([u%];. . [u*])
must be disjoint from the flat set Null(M).

In general, the image of a flat @ by a projective function M is well-defined
if and only if a (as a set of points) is disjoint from the null space of M. If that
is not the case, the image of a is best defined as the indeterminate object 0 with
the same rank as a. (We could define aM in this case as the unoriented flat set
{zM : z € a}, which has rank strictly less than that of a. However, this would not
be of much help in practice, and would make many other formulas and theorems
needlessly complicated. This question is closely related to that of assigning meaning
to a V b when a and b are not disjoint, and most arguments relevant to the latter
apply also to the former).

For a projective function that is not a map, the requirement that M preserves

k independent vectors u

the sign of every representative simplex in its domain is no longer meaningful. If the
inducing linear map M is not onto, then the image of a maximum-rank simplex of
S has less than maximum rank in T'. Conversely, if the map M is many-to-one, then
any maximum-rank simplex of S will be mapped to a degenerate one.

1.1. The perspective projection

An important example of a projective function is the perspective projection
of T, that we mentioned before. Let 7 is the plane of the image, and p the position
of the observer. The perspective projection will take an arbitrary point z on the
object being rendered to the point

F)=(pVa)Ar (1)

of the image plane. See figure 1. This projection is clearly not one-to-one, since it
maps all the points in the ray oz to the same point of r.

Formula (1) is well defined as long as the point p is not on the plane =, and
z is neither p nor =p. According to our previous conventions, we should let F (p) and
F(-p) be the indeterminate object 0. When p is on 7, then formula (1) specifies a
degenerate map that takes every point z to —p, p, or 0, depending on whether zom
is positive, negative, or zero. In the sequel, we will assume this is not the case.

Formula (1) can be used also to give the perspective projection of an arbi-
trary flat z of T. From the formula it is obvious that F(z) is well defined as long as
the flat z is not incident to the point p. For example, the projection of a line of T,
is a well-defined line of 7, unless the line is seen end-on. When the flat z is incident
to p, our rules define F(z) as the undefined object 0 with same rank as z.
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Figure 1. Perspective projection.

For perspective rendering it is convenient to orient w so that p is on its
positive side. This implies F(z) = z for all z on =; that is, F' is idempotent, as
is usually expected of a projection map. When p is on the negative side of = we
obviously have F(z) = -z for all flats z contained in .

In typical perspective rendering applications = is a proper plane (not con-
tained in (2), and p is a point on the front range. Note that all points on the plane
parallel to 7 and passing through p will project to a point at infinity on . In the
Cartesian framework those points must be handled as special cases, but of course
in the projective framework they are just like any other point.

1.2. General and polar projections

Note that formula (1) can be extended to use any pair of complementary
flats in lieu of p and . That is, if a,b are subflats of a flat S with a Vb = S, we
define the projection of S onto b from a as the mapping

F(r)=(aVz)Ab

where the meet is computed relative to S. For example, if @ and b are two skew lines
in T;, F' will be a map taking every point of T, that is not on line a to a point
on line b. The points of T, with the same image y are precisely those on the plane
a V y, except for those on a itself (which are mapped to 0). See figure 2.

Why is F' a projective function? Let U and V be the linear subspaces rep-
resenting p and m, respectively, in the homogeneous model. Note that U and V are
complementary subspaces of R*. Now consider the linear map M that decomposes
each vector z of R* into its U and V components, and returns the latter. That is,
M projects every vector z into V in a direction parallel to U. It is easy to check
that F is precisely the projective function induced by M.

A particularly interesting case is when p and n are polar complementary
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Figure 2. Projecting T4 onto a line.

flats of T, with p = 77, In that case I call F the polar projection on =. In the
homogeneous model, F' corresponds to orthogonal projection of R™ onto the linear
subspace representing the flat =.

1.3. Properties of projective functions

It follows immediately from the definition that projective functions are closed
under composition. Also, if F is a projective function with domain S, then the
restriction of F to any subflat X of S is also projective.

Like proper maps, projective functions satisfy the property (a V ))M =
(aM) V (bM) except that M is allowed to produce the zero flat even when the
argument is nonzero. The analogous formula for A is not valid, at least not when
stated so directly, essentially because the universe of the domain flat S is not mapped
to that of the range flat T. However, if X is any flat of S disjoint from the null space
of M, then the image Y = X M is a well-defined flat of T', and the restriction of M
to X is a non-degenerate projective map from X to X M. In that case, for two flats
a,b of X we have

(a Ay B)M = (aM) Ay (OM).

In particular, we can take X of maximum rank subject to X N Null(M) = @, that
is, we can let X be any flat of S that is complementary to Null(M). In that case Y
will cover the actual range of M, that is, SM =Y (as sets of points).

1.4. Natural domain of projective functions

Given a projective function defined on T, (or any flat thereof) we can use the
standard polarity relation to pick a particular flat set X of maximum rank such that
the restriction of M to X is non-degenerate. That set is simply the polar complement
of the function’s null space, (Null(M))*. I call that set the natural domain of M,
and denote it by Dom(M). The restriction of M to Dom(M) is non-degenerate and
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has range Range(M).

Conversely, any non-degenerate map M defined on a flat X of T, can be
extended to a projective function N, from the whole T, onto Dom(M), consisting
of a polar projection of T, onto X followed by the given map M. The function N
is the polar extension of M to T,. In particular, the polar projection of T, onto a
flat X is the polar extension of the identity map on X.

1.5. The inverse of a projective function

Since projective functions may be many-to-one, they do not have an inverse
in the ordinary sense. However, if M is a projective function from T, into T,, we
can derive a non-degenerate map N from it as described above, and extend the
inverse of NV to a projective function from T, into T, . In analytic terms, the inverse
defined this way corresponds to the so-called generalized least-squares inverse or
Moore-Penrose inverse of the coefficient matrix M of M. This is the unique matrix
M such that _ _

(MM =MM MMM=M

(MM =MM MMM =M.

These conditions essentially say that M M and M M are orthogonal projections onto
the column space and the row space of M, respectively.

It is worth noting that the generalized inverse above does not satisfy the
equation sMM = z, unless € Dom(M). For the same reason, we don’t have

MN = N M, unless Range(M) = Dom(N).

1.6. Topological properties

Projective functions that are not one-to-one obviously are not homeomor-
phisms, but they still preserve some of the topological structure of the projected
objects. For one thing,

Theorem 1. A projective function F from a space D into a space R maps closed
subsets of D\ Null(F) to closed subsets of R.

PROOF: In terms of the spherical model of T,
function F followed by central projection onto the unit sphere. As long as the

a projective function F' is a linear

argument is not in the null space of F, these operations are well-defined and
continuous. Therefore, F is continuous on the set D* = D \ Null(F), which
means F maps closed subsets of Dt to closed subsets of its range F(D%). But
F(D%) is a flat set of R, which is closed in R. Therefore, sets that are closed
relative to F(D%) are also closed in R.

QED.
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The following theorem is a bit less trivial:

Theorem 2. A projective function F of a space D onto a space R maps open
subsets of D\ Null(F) to open subsets of R.

PROOF: Let X be an open subset of D\ Null(F). If X is empty, F(X) is empty and
the theorem is vacuously true. If X is not empty, then Null(F') is a proper subset
of D. Let then x be any point of X, and let Y be a subspace of D with maximum
rank such that z € Y and Y N Null(F) = @. It is easy to see that ¥ must be a
complementary flat for Null(F'), which means F maps Y onto R in a one-to-one
fashion. Since F' is continuous outside Null(F), it is a homeomorphism of ¥
onto R, and maps open sets of the former to open sets of the latter. Since X
is open, X NY is open relative to Y, so F(X NY) is open relative to R. Since
r€XNY C X, we also have F(z) € F(XNY) C F(X).

This shows that every point F(z) of F(X) is contained in some subset of
F(X) that is open in R. This means F(X) is an open subset of R.
QED.

2. Computer representation

In chapter 8 we saw that a projective map from T, to T, or =T, can be
represented by an n X n matrix of coefficients

0 0

mg m,
(2)

mg oM,

with nonzero determinant. Projective functions have the same representation, except
that the matrix may have zero determinant. In fact, we have

Theorem 3. Every projective function of T, into itself is completely described by
an n x n real matriz. The function is degenerate if and only if the matriz has
zero determinant.

As in the case of projective maps, two matrices determine the same map if and only
if they are positive multiples of each other.
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2.1. Matrix of a perspective projection

An important example is the perspective projection M defined by M =
(aVz)Ab, where a and b are complementary flats of T,. If we know positive simplices
a%..a" for @ and 8°%;.. b for b, we can compute the matrix of M by the formula
M= CB where B and C are the n x n matrices

0 - - 0) (ag ag

g 0 0 c ag a,
= = 3
by 5 b 5 @)

by o, by bk

Briefly, the effect of Cis to compute the coordinates of a given vector u of R relative
to the basis formed by the vectors a® ..a"; 8% .. b, The subsequent multiplication
by B throws away the a' components of u, and collects the b* components. The
correctness of the formula M = [[C B] follows readily from this observation.

2.2. Domain, range, and null space

Let M be a projective function with coefficient matrix M, and let e° =
(1,0,0,..0), e! = (0,1,0,..0), ..., e’ = (0,0,0,..1) be the canonical basis of R".
Observe that row ¢ of matrix M homogeneous coordinates of the image of point [e]
through M. In general, the coordinates of the image of any point z of T, by M will
be a linear combination of the rows of M. Therefore,

Theorem 4. The range of a projective function from T, into T, is the the flat set
of T, corresponding to the linear subspace spanned by the rows of its coefficient
matriz.

Observe also that the jth coordinate of M is the dot product of the coordinate
vector of x by the jth column of matrix M. Therefore, a point of T” 1s mapped to
0 if and only if its coordinate vector is orthogonal to every column of M. In other
words, the null space of the linear map with matrix M is the orthogonal complement
in R™ of the subspace spanned by the columns of M. It follows that

Theorem 5. The natural domain of a projective function from Tu into T, is
the flat set of T, corresponding to the subspace spanned by the columns of its
coefficient matriz.
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As we know from linear algebra, the row and column spaces of a matrix
have the same dimension, which is the size of the largest submatrix with non-zero
determinant. This number is the rank of the map, and coincides with the geometric
rank of the flat sets Range(M) and Dom(M ). When the rank is equal to the number
of rows m, the map is one-to-one; when the rank is equal to the number of columns
n, the map ranges over the whole T,,.

In light of the above, an m x n matrix M can be taken to represent either a
(possibly degenerate) projective function M from T, into T, or a (non-degenerate)
projective map N from Dom(M) to Range(M). Fortunately, in most practical situ-
ations (for example, when implementing a basic geometric operations library) it is
not necessary to worry about this distinction, since mapping a point z through M
or N is done by the same formulas and using the same coefficient matrix. Therefore,
both operations can be implemented by a single procedure.

In the same vein, we can use a single procedure to compute both the polar in-
verse M of M (which is a projective function from T, into T ) and the plain inverse

Nof N (a proper map from Range(M) to Dom(M)). Algorithms for computing the
matrix of M can be found in the numerical analysis literature.[!+?]

2.3. The canonical embedding map

It is often useful to identify the space T, (for all 4 < v) with the flat S of
T, generated by the first m points of the standard simplex of T, This flat consists
of all points of T, whose last n — m coordinates are zero. The canonical embedding
of T, into T, is the function 7 that takes every point of Tu to the “same” point of
S. In analytic terms, 5 simply appends n — m zeros to the homogeneous coordinates
of its argument; its matrix is

m n—m

(4)

The inverse map 7 is the polar projection of T, onto S, which simply throws away
the last n — m coordinates of its argument. The matrix of 7 is the transpose of (4).
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2.4. Alternative representations

The coefficient matrix is the most natural representation of a projective
map, but not necessarily the most convenient. For one thing, computing the image
of a point z under the inverse map M is far more expensive than computing the
direct image. To do that we essentially have to solve a system of n linear equations
on n unknowns, which requires O(n®) operations (instead of the O(n?) required by
the direct mapping). Computing the image of a hyperplane h given its coefficients
is equally expensive.

One way to reduce this cost is to precompute the inverse matrix M (or the
adjoint), and carry it along with the matrix M. Then points and hyperplanes can
be mapped equally fast, in O(n?) time. One disadvantage of this idea is that it
takes twice as much space: in the case of T,, it requires 32 real numbers instead of
16. Besides consuming more memory space, this enlarged representation also takes
longer to build, copy, and compose.

2.5. The LU factorization

We can get the best (and worst?) of both worlds by storing the matrix M in
some compact factored form such that mapping by both M and M can be performed
relatively fast. For example, we know from linear algebra that any m x n matrix
with m < n can be factored into the product of a row permutation matrix, an mxm
lower triangular matrix, and an m x n upper triangular matrix:

m n—m
0 "o 0 0
lo 0 uO . u“ ------ uV
M=LU=
B 0 B oo u
Iy L ul u u

This Gaussian LU factorization can be computed in O(mn?) time, can be repre-
sented in mn + O(m + n) words of storage, and still allows the mapping of points to
be performed in O(mn) time. If the matrix is square (m = n), the inverse mapping
too can be computed from the factored form at roughly the same cost as the direct
one.

2.6. The singular value decomposition

An alternative to the Gaussian LU decomposition that is worth considering
is the singular value decomposition (SVD). An arbitrary m X n real matrix M (with
m < n) can always be factored as the product of three matrices U € R™*™,
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Y e R™", and V € R"™" such that U and V are orthogonal, and ¥ is all zero
except for the elements on the main diagonal:

(vg vl
s s, st N
u, u2 a, 0 0 0 :
M= UT V' = :
uy - ub 0 UuO 0 :
\vd - vl

The case m > n is similar, except that the matrix £ will have more rows than
columns. It is always possible to arrange for U and V to have positive determinant,
and for the numbers |o;| (the singular values of the matrix M) to be sorted in
non-increasing order. Furthermore, we can arrange for all o; to be non-negative,
except perhaps for o,. Algorithms for computing this decomposition in time roughly
O(mn(m + n)) are well documented in the numerical analysis literature.[!"2]

Compared to the LU decomposition, the SVD has the advantage of treating
domain and range in a more symmetric fashion. In fact the generalized inverse of
Mis VE U'r, where T is the transpose of X with every nonzero o, replaced by 1/0;.
Therefore, the SVD allows points to be mapped through both M and its inverse at
the same cost, even when the matrix M is non-square or singular.

Note that when m > n we only have to store the first m rows of V. More
precisely, if the map’s range is a flat set of rank r, then only the first r of the o; will
be non-zero, which means we only have to store the first r columns of U and the first
r rows of V. Therefore the SVD can be represented in r(n +m)+ O(m + n) floating-
point words, while still allowing points to be mapped in O(r(m + n)) time. In fact,
by representing the matrices U and V as the product of Householder reflections!!3-3]
it is possible to bring the storage cost down to r(m + n) — r? + O(m + n), without
increasing the asymptotic cost of point mapping by more than a constant factor.
These optimizations make the SVD a reasonable alternative to LU decomposition
for general maps, and a definite win for highly degenerate maps.

Most of the properties of the map M that are related to the generalized
inverse are readily obtainable from the singular value decomposition of its matrix.
For example, the rank of M is the number of non-zero ¢;. The null space of M
is the space spanned by the rows of U whose corresponding o; are zero. The SVD
decomposition has also good numerical properties when computations are carried
out in floating point. The main disadvantage of the SVD is that it takes somewhat
longer to compute, and it makes map composition substantially harder.

One can imagine many other possible representations for projective maps,
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based on other factorizations or more exotic schemas. Each representation has its
advantages and disadvantages, and its merit depends, among other things, on the
relative frequency of the various operations for which it is used. At this point, I can
only say that determining the “best” representation of projective maps for general
use is still an open problem.
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Chapter 12
Projective frames

Frames play the same role in projective geometry as bases do in linear alge-
bra and as coordinate systems do in physics and Cartesian geometry. Informally, a
frame is a geometric object that can be used as a reference in order to assign unique
and unambiguous numeric coordinates to every point of some space.

An even more important use of frames is in the description of projective maps
for input to programs and subroutines. Instead of writing down the transformation
matrix, it is generally much easier for the user or programmer to give a pair of
frames, and ask for the map that takes one frame to the other. As we shall see, such

a map exists (and is unique) if and only if the corresponding parts of the two frames
have the same relative orientation.

1. Nature of projective frames

Recall that in the homogeneous model a projective map between two sub-
spaces R, S of T, with rank k is a linear map between two k-dimensional linear
spaces U,V of R". As we know from linear algebra, such a map is completely
specified by giving k independent vectors in U and their images in V. From this
observation we may be led to think that a projective map from R to S can be com-
pletely specified by giving k independent points (i.e., a proper simplex) on R and
their images on S. Unfortunately, this is not the case. The problem is that a point
of S specifies the direction of a vector of V, but not its length. For example, suppose
we want a map of T, to itself that maps

a={1,0] ‘o p=[1,1]
b=10,1] q= [3s5]

An obvious choice is the map
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However, the point p can be written also as [2,2], so the map

|

N =

3 5

also takes (a;b) to (p; q). Yet the two maps are different, since, for example, [2,1|M =
[5,7], whereas [2,1]N = [7,9].

Obviously, there are infinitely many projective maps of T, to itself that take
(a; b) to (p; q). To make the map unique, we must give some additional information.
As we shall see, one extra point and its image are enough to completely specify the
projective map. In other words, a frame for a k-dimensional projective space must
have at least (x + 2) points.

Instead of an additional point, we can specify a hyperplane of R and its
desired image in S. Such “mixed” frames may seem less natural than the all-point
ones, but in fact they have many computational and geometric advantages. For one
thing, such frames arise quite naturally when dealing with affine maps.

The moral of the story is that there is no obvious choice as to what should be
a projective frame. Rather, there are several types of frames, and each type has its
uses and advantages. This situation is quite different from the one in linear algebra
or Cartesian geometry, where the concept of “frame” has a unique natural definition.
In projective geometry that concept must be defined in a more general and abstract
way, as done below.

1.1. Arrangements

An arrangement is any finite ordered sequence a = (a?,d!,...,a*) of flats in
a space S. The span of an arrangement a is the flat set Span(a) of S with smallest
dimension that contains every element of a. The dimension and the rank of a are
those of its span.

A k-dimensional simplex is an example of an arrangement of rank k. Another
example of arrangement is a list of two points p, q and one line [; its rank can be 2,
3, or 4, depending on the relative positions of p, ¢, and .

1.2. Similar and categorical arrangements

We are interested in arrangements that can be used to specify projective
maps between two spaces. We would like to be able to unambiguously specify a
projective map from a space R to a space S by giving some arrangement a on R
and its desired image b on S.

Of course, the arrangements cannot be arbitrary. First of all, they must
be projectively similar: that is, there must exist some projective map M such that
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M(a') = ¥ for all 7. For example, two proper simplices with the same number of
vertices are similar. This relation is obviously symmetric, reflexive, and transitive.

Secondly, the map must be unique. Let’s say that an arrangement a is cate-
gorical if every projective map that takes a to itself also takes every point of Span(a)
to itself. This property implies the one we are after, namely

Theorem 1. If a and b are similar categorical arrangements, there is ezactly one
projective map from Span(a) to Span(b) that takes a to b.

PROOF: Since a and b are similar, there is some projective map that takes a to b.
Its domain is a flat set that contains a, and therefore Span(a). Let M be the
restriction of that map to Span(a). The range of M is a flat set containing b,
and therefore it contains Span(b). Moreover, M(Span(b)) is a flat set containing
a; it follows that the range of M is exactly Span(b).

Now let G be any projective map from Span(a) to Span(b) that takes a to
b. The composition MG takes a to itself, and therefore must take every point of
Span(a) to itself. It follows G is the inverse of M,ie. M = G. We conclude the
map M is unique.

QED.

2. Frames

Definition 1. A frame for a flat set S is a categorical arrangement whose span is
exactly the set S.

Theorem 1 justifies this definition, which has an obvious corollary:
Theorem 2. The tmage of a frame by a projective map is a similar frame.

Recall that any two oriented projective spaces with same dimension are related by
some projective map. Therefore, if a is a frame for T, with x < v, then every
rk-dimensional subspace of T, has a frame similar to a.

2.1. Classification of frames

The definition of frame given above is quite general, to such an extent that
it does not fix the number and rank of the frame elements. In particular, if a =

0 ..a* by join and relative

(a%..a*) is a frame, and f is any flat obtained from a
complement operations, then the arrangement (a°,..a*, f) is also a frame, with

same span as a. Obviously, there are many “flavors” (similarity classes) of projective
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frames, even for a fixed flat set S. What is more, there is no single “flavor” that is
convenient for all applications.

The general problem of characterizing similar and categorical arrangements
is relatively well-studied but is rather hard. The paper by Crapo and Ryan(!l is an
example of recent work in this area. Fortunately, for the purpose of implementing a
library of basic geometric operations it is enough to consider a couple of the most
important classes of frames.

2.2. Frame type

In order for two frames (or in general two arrangements) to be similar, they
must first of all have the same type, that is, must have the same number of elements,
and corresponding elements must have the same rank.

This condition is necessary, but obviously not sufficient. For example, a
degenerate triangle has the same type as a proper one, but the two are not similar.
Nevertheless, the type of a frame is an obvious attribute to use in their classification.
The frames I will consider in detail are of two types: point frames and mized frames.

2.3. Point frames

A point frame for a flat set S of rank k is an arrangement of k + 1 points
such that any k of them form a proper simplex of S. For reasons that will become
clear later on, I will call the first k£ points the main simplez, and the last one the
unit point. For example, point frames for T, T,, and T, consist of, respectively,
three points (pairwise unrelated), four points (no three of them collinear), and five
points (no four of them on the same plane). See figure 1.

-
.
O -

Figure 1. Point frames for T, T,, and T;.

2.4. Mixed frames

A mized frame for a flat set S is an arrangement (s°, .. s*, k) where (s’; .. s*)
is a non-degenerate simplex of S, and k is an oriented hyperplane of S that avoids
all vertices of that simplex. The hyperplane h is the horizon of the frame, and
(s% .. s%) is the main simplex. For example, a mixed frame for T, consists of three
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points p, q,r forming a proper triangle, and a line / that does not pass through any
of those points. See figure 2.

Figure 2. A mixed frame for T,.

In what follows we will justify these definitions, by showing that point frames and
mixed frames are indeed categorical arrangements. To do that, we must examine
first the conditions for two such frames to be similar.

2.5. Orientented span

Although we generally define the span of an arrangement as an unoriented
flat set, in the case of point frames and mixed frames we can give that set an un-
ambiguous orientation, as determined by the frame’s main simplex. More precisely,
if f is a point frame or mixed frame with main simplex (s%;.. s*), then the oriented
span of f is the flat sV sl V... v g

Therefore, for any oriented flat S, we can distinguish the positive point
frames (whose oriented span is S) from the negative ones (whose oriented span is
—5). Ditto for mixed frames. Note that this is not an intrinsic property of the frame:
a positive frame for a space S is also a negative frame for the space —S.

2.6. Signature of a point frame

Let f = (s%..5",u) be a point frame. For each ¢ in turn, consider the
simplex obtained by replacing vertex s' of the main simplex by the unit point u.
Let o; be the orientation (+ or —) of this simplex relative to the main one. The
sequence a°.. " is by definition the signature of the frame f.

In other words, the signature of a point frame is the signature of its unit
point relative to its main simplex. Element o* of the signature tells whether u and
' are on the same side of the hyperplane of S determined by the remaining points.

In particular, the signature is ++ - - - + if the unit point is inside the main simplex,
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and ——--- — if it is inside the antipodal simplex. See figure 3.
ot A —_— ———
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Figure 3. Point frames of T, with various signatures.

2.7. Signature of a mixed frame

Let f = (s°,..5", h) be a mixed frame. The signature of f is the sequence

0, .0, where ; € {£1} is the relative position of the flats s* and A in the oriented
span of f. In other words, o; is such that

sth=ai°(30VslV---Vs“) for all s.

Notice how the signature of a frame f is defined solely in terms of the orien-
tations of the elements of f and their joins, with no reference to any independently
supplied orientation for the spanned flat set. It follows that signatures are preserved
by arbitrary projective maps. That includes maps from the oriented span of f to
its opposite. A positive frame for a space S is also a negative frame for the space
-3, but its signature is the same in both cases. In fact, for any signature ¢ and any

space S, there are both positive and negative frames for S with signature o. See
figure 4.

\ N
VAR /s
\ V4 AY
/ \
\ /,
/ \ 7 \
/ \ / \
S ° \ / ° \
\ 4 \
/ u \ / u
L \ 0 ‘\_ \\
0%~—_ N gbTT--al \
s T \\ 8" TTTe—l \
-~ 31 ) ~e 82

Figure 4. Positive and negative frames for T, with signature +++.
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3. Standard frames

The manipulation of projective maps and frames is often simplified by the
choice of “standard” reference frames for T,. For example, suppose we want to
compute the matrix of the projective map that relates two arbitrary point or mixed
frames a,b. One way to solve that problem is to compute the maps M, and M,
that take some standard frame f to a and b. The desired map will then be the
product M M, . Obviously, for the maps to exist all three frames must have the
same rank, type, and signature. Therefore we need at least one “standard” frame
for each combination of these attributes.

3.1. Standard point frames

A standard point frame for T, must consist of v + 2 points such that any
v+ 1 of them form a proper simplex. An obvious choice is to take the main simplex
(€%..e") and the standard unit point u = (1,1,1,..1]. See figures 5 and 6.

[
Tl ‘/ [07 1]
1,1

{0,1,0]

N0

spherical
model

spherical
model

Figure 5. The standard point frames of T, and T, with signature +--+.

1,0,0,0]

front range of
straight model

Figure 6. The standard point frame of T; with signature ++++.
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In the straight model, this frame consists of the front origin O, the points
at infinity on each axis, and the point (1,1,..1), all on the front range. This frame
has signature ++ - - - +, meaning its unit point is inside its main simplex. To obtain
standard frames with other signatures, it suffices to replace u by other suitably
located points. I will define the standard point frame with signature o, denoted by
pfr,, as consisting of the canonical simplex e,..e", plus the point [¢] = [0?,..0"]
whose homogeneous coordinates are the desired signature. In the straight model, this
point has Cartesian coordinates (o, /0y, 0,/0,, ...,0,/0,), and lies on the front or

back range depending on whether o is +1 or —1. See figure 7.

fg [0,1]
[_1’1]
NV

Figure 7. The standard point frames pfr_ of TT1 and pfr of T,.

3.2. Standard mixed frames

Among the mixed frames of T, with signature ++-- -4, the most obvious
choice is the frame consisting of the canonical simplex together with the hyperplane
¢ = (1,1,1..1). In the straight model, the hyperplane ¢ is perpendicular to the
vector (1,1,..1) of the front range, passes through the point (-1/v,—1/v,..-1/v)
of the negative orthant, and is oriented clockwise as seen from the front origin. See

figures 8 and 9.

410,1)
<1-1) (1,1,1)

(1,0]

(1,0,0]

Figure 8. The standard mixed frames of T, and T, with all-positive signature.
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Figure 9. The standard mixed frame of T, with all-positive signature.

As in the case of point frames, we can obtain frames of arbitrary signature by chang-
ing only the horizon hyperplane. I define the standard mized frame with signature o
as consisting of the canonical simplex (e%; .. e"), and the hyperplane (o) = (0gy..0,)
whose coefficients are the desired signature. See figure 10.

410,1) [0,0,1]

>
(1,0]

(-1,1) [1,0,0]

Figure 10. Some standard mixed frames of T, and T,: (a) mfr__, (b) mfr__ _.

3.3. Mapping to the standard frames

We can now prove that every point frame or mixed frame is similar to
a standard one. Let’s characterize first the maps that take the canonical simplex
(e%..€¥) to a given simplex s = (s%..s*) of T, (positive or negative). It is not
hard to see that such maps are precisely those of the form

- T M0 0 0T
(’70 0 F S0 S1 0 Sy
1 1 1
N So 1 70 8y
) (1)
0 v v v
18 71; 4 W sO Sl U Su t




116 12. PROJECTIVE FRAMES

where the <, are positive but otherwise arbitrary. The theorems below show that
the scale factors «; give enough degrees of freedom for us to specify the image of an
extra point or hyperplane. That is, we can adjust the map (1) so that it also takes
care of the last item (unit point or horizon) of the two frames.

Theorem 3. Ewvery point frame of T, is similar to the standard one with the same
signature.

PROOF: Let f = (s%,..5,u) be a point frame with signature o = oy, --0,. Let

)

s =[sh,..s'] and u = [u?,..u"}, and let (o, ..,) be the solution to the linear
system
R
(gr--a,) | ¢ Pl = (ug, o uy). (2)
o s

Note that since (s%;..s") is a non-degenerate simplex, the matrix above has
non-zero determinant. According to Cramer’s rule the solution of (2) is

so --------- s so --------- s

14
30"' 8 80 8

Note that the signs of the numerator and denominator in (3) give the orientation

of the simplices (s%;..s'"1;u; s'*t1;.. %) and (s%;..s"). It follows that |a,| # O,
and sign(a,) = o;.

Now consider the map M; of the form (1) with v; = |ey]:
IEN 0 sy .- 82
0 lﬂy' 3'6 o.oogY

This map obviously takes the main simplex of pfr, to that of f. I claim M f also
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takes the unit point [o] of pfr, to the unit point u of f. Indeed,

|ty | 0 sy - s9
[0g,..0,1M; = [0y,..0,)]
O ad] Lt s
s .- 80
= [ag,.-a,] || ¢ = lugy e u,]
$o S,

QED.

Theorem 4. Every mized frame of T, is similar to the standard one with same
signature.

PROOF: Let f = (307 ..8¥, k) be a mixed frame of T, with signature ¢ = o, -0
Let s = [s},..s'] and h = (h°,..h"). Define

v

1
. 0 v =
A =sign(s",..s") B = Zj sj-hj 5)

Observe that the sign of 3, is the relative orientation of s* and A in T,, and that
the numerator A is the orientation of the span of f relative to T,. Therefore

sign(8;) = Ao;.
Now consider the map M of the form (1) with v; = |8;]:

18, 0 sg sﬂ
0 16, s§ s

A

I claim Mf takes the standard mixed frame mfr_ to f. Obviously, M; takes
the main simplex of the former to that of the latter. As for the horizon, in order to
prove that Mg = h it is sufficient to show that, for every point z € T, we have
z0(0)M; = zoh. Since M, is one-to-one, we can replace z in this formula by by
zM;. Since My is a map from T, to AeT,, we have (zMy)o({o)My) = Mzo{o)).

Therefore, all we have to show is that

Mzo(o))=(zM;)oh forallzeT,. (7)
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Now, on the one hand

Az o (o)) = A(sign ¥, z;0;) (8)
and, on the other hand,

(zMg)oh = sign):]-(fo)jhj =
= sign 3.(3; z; |5;] sj.)hj
= sign 3, z; || (Z; S}hj)
=signy_; z; |5 BA:
= sign ), z,Asign(f;)
= A(sign}_, z,0;)

By comparing (8) and (9), we conclude that indeed (o) M, = A.
QED.

Recall that any «-dimensional two-sided subspace of T, can be projectively mapped
to T, and that projective maps are closed under inversion and composition. Thanks
to these results, we can extend theorems 3 and 4 to arbitrary frames and spaces:

Theorem 5. Two point frames or two mized frames are similar if and only if they
have the same rank and same signature.

Note that the map M f defined in theorems 3 and 4 is insensitive to the
orientation of the unit point u or the horizon h.

3.4. Computational considerations

The proofs of theorems 3 and 4 give practical methods for computing the
map M that takes a standard frame to a given frame f. The matrix of M has
the coordinates of the main simplex of f, with each row scaled by an appropriate
factor. In the case of a point frame, the factors «; are found by solving the linear
system (2). (As a byproduct, the signs of the o, give the signature of the frame f).
System (2) can be solved in O(n®) operations, by factoring the matrix (s;) into the
Gaussian LU product (or any similar factorization). Scaling each row of L by the
corresponding factor |a;| gives the desired map M, already in factored form.

For a mixed frame, we compute the scale factors a; by equation (5), and
the matrix of M by (1), in O(n?) operations. Note that we do not need to know
the orientation A of the frame f. From this it would seem that point frames are
substantially more expensive to handle than mixed frames. However, as discussed
in a previous chapter, whenever one needs a projective map one usually needs also
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its inverse (or a factorization that gives both at roughly the same cost). Since this

is an O(n3) process, the difference in cost between the two types of frames is all but
erased.

3.5. A note on one-dimensional frames

Recall that points and hyperplanes are the same thing in spaces of dimension
1. It follows that in those spaces point frames are indistinguishable from mixed
frames. This gives rise to some ambiguity, since the signature of a one-dimensional
frame f (three collinear points) depends on whether we look at it as a point frame
or as a mixed frame. For example, the frame pfr__ (figure 7(a)) has signature —+
if viewed as a point frame, and ++ if viewed as a mixed frame. However, this
ambiguity is of no consequence. For any such frame f (i.e., for any sequence of three
points) there is only one frame of T, whose main simplex is (e°
to f. This is both a standard point frame and a standard mixed frame of T, and in
either interpretation it has the same signature as f. As shown below in section 4.3,
there is a unique projective map that takes the three points of one frame to those of
the other. In conclusion, three points on a line determine the same map from that
line to T, whether we use the formulas of theorem 3, or those of theorem 4.

,e!) and is similar

4. Coordinates relative to a frame

In Euclidean geometry, coordinate frames are used not so much to define
maps as to assign numerical coordinates to every point. Projective frames too have
that function: as we show below, a projective frame for a space S assigns to each
point of S a homogeneous coordinate tuple.

By definition, the coordinates of a point p relative to a frame f are the
homogeneous coordinates of the point pN, where N = M f is the projective map that
takes f to the appropriate standard frame g of T,. The coefficients of a hyperplane
w relative to f are defined the same way, by mapping w through M and taking the
coeflicients of the result.

Obviously, the coordinates of the vertices of f’s main simplex, relative to f,
will be [1,0,0,..,0], [0,1,0,..,0], [0,0,1,..,0], and so on. If f is a point frame, its

unit point u will have coordinates [0y, ..o ] relative to f. If f is a mixed frame, its
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horizon will have relative coordinates (o, ..o,) relative to f. See figure 11.

(1, -1,2]

(1,-1,1]

[1,0,1) "\/—\
(1,-1,0]—> w\i, y \

(1,0,0) RN

[1,1,0

(1,1,1)

[1,1,2]

Figure 11. Coordinates relative to a given point frame.

Note that the coordinates relative to a point frame f do not depend on the orien-
tation of the frame’s unit point u. That is, if g has the same main simplex as f but
unit point —u, the coordinates relative to f and relative to g are the same. Indeed,
we can replace u by any of 2" other points without affecting the map M f or the
coordinates relative to f. Those are the points whose coordinates relative to f are

all +1.

4.1. Invariance of relative coordinates

Relative coordinates are invariant under projective maps, in the following
sense. Let f be a frame, and M the projective map that takes f to a standard frame
g of T . By definition, the coordinates of a point p relative to f are those of pM. For
any map N, the map that takes frame fN to g is NM. Therefore the coordinates
of pN relative to the frame fN (with respect to the same standard g) are those of
(pN)NM = pM. That is, for any map N, the coordinates of pN relative to fN are
those of p relative to f.

4.2. The center-of-mass interpretation

The coordinates relative to a point frame f have a relatively simple interpre-
tation in terms of the straight model. Suppose that the main simplex s of f lies on
the front range of the straight model. Suppose also that the frame f has signature
4+4---+, that is, its unit point u lies inside the simplex s. Now imagine that we
place a set of “weights” 7;,..7, at the vertices of the main simplex, in such a way
that their center of mass falls on the unit point u. Then the point with relative co-
ordinates [z, ..z,] will be the point where the center of mass will go if each weight
v, is replaced by v,z;.
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In particular, when u is actually the barycenter of the simplex (whose Carte-
sian coordinates are the arithmetic average of the Cartesian coordinates of the ver-
tices), the weights ~; are all equal, and the point with relative coordinates [zg,--2,]
will be the center of mass of weights z,,..z, placed at the vertices of the simplex.
See figure 12. This point also has the property that its distance to the face h* of s
opposite to vertex s, divided by the distance from s* to R*, is x;/ ;T

(1,1,4] 32 (1,0,0]
(1,0,2]

[1,0,1] \\,‘,‘1_,/[0 1,2

[2,0,1]\ ,.__75.4,,_,,__[1 1,2

L
0 P4 ,”’;” —“'7 \\o -y 1 l, 1]
0,0, 15 TN Tl
10— A AN
i i1,2,0 01,0]

Figure 12. Barycentric coordinates.

We get this same coordinate system also when f is a mixed frame whose horizon
is (2. In either case, the resulting coordinates are called the barycentric coordinates
relative to the main simplez s.

4.3. Uniqueness of projective maps

It is now time to prove that the objects we have been studying so far are
indeed frames. We must verify that

Theorem 6. Point frames and mized frames are categorical.

PROOF: Recall that an arrangement a is categorical if the only projective map on
Span(a) that takes a to itself is the identity. Let’s first show that every standard
point frame f of T, is categorical.

So, suppose M is a map from T, to T, (or =T,) that takes the frame f to
itself. In particular, M must take the canonical simplex of T, to itself. It follows
that its matrix must have positive coeflicients in the main diagonal, and is zero
everywhere else:

Yo 0

<
[

(10)

0 Y,
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Let o be the signature of the frame f. If f is a point frame, then M must
take the point [o] = [0y, ..0,] to itself. According to (10), [o]M = [y,0,..7,0,].
It follows that [¢]M = [o] implies all 4; must be equal.

Similarly, if f is a mixed frame M must keep fixed the hyperplane (o) =
(74, --0,). The image of (o) has coefficients (¢ M), where M is the adjoint of the
matrix of M. The adjoint of (10) is

&
M= .
0

€

14

where ¢; = []; ; v;. Therefore, (o)M = (g40,..€,0,). In order to have (o) M =
(o) it is necessary that all €;, and therefore all 7;, be the same.

In either case the matrix of M must be a positive multiple of the identity,
and therefore M must be the identity map of T, . We conclude that the standard
point frames and mixed frames are categorical. Because of theorems 2 and 5, it
follows that all point frames and mixed frames are categorical.

QED.

5. Conclusions

To summarize this chapter, two point frames or two mixed frames f,g de-
termine a projective map between their spanned spaces if and only if they have the
same rank and signature.

In that case, the map is unique, and will take the oriented span of f to that
of ¢. Said another way, if f and g are frames (positive or negative) for oriented flats
R and S, then the two frames define a projective map from R to S if they have the
same orientation, and a map from R to =S if they have opposite orientations.

A projective frame for a space S also allows us to assign homogeneous co-
ordinates to each point of S. The vertices of the main simplex of the frame get
coordinates [1,0,0,..0],[0,1,0,..0],...,[0,0,0,..1]. In the case of a point frame,
its unit point gets coordinates [£1,%1,..+1]; in the case of a mixed frame, its
horizon gets coefficients (+1,+1,..%1).
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Chapter 13
Cross ratio

Measuring the length of a segment (or, more precisely, the ratio between
two such lengths) is a fundamental operation of Euclidean geometry. Indeed, the
Euclidean transformations — rigid motions and similarities — can be defined as
the maps that preserve length, or the ratio of lengths. Indeed, the very word “ge-
ometry” reminds us that this whole area of mathematics was born as a science of
measurement.

Given the obvious importance of this concept, it is natural to ask whether
it has some analog in projective geometry. That is, can we define some notion of
“length” or “length ratio” that is preserved by arbitrary projective maps? The an-
swer 1s yes: such a notion can be defined, but it turns out to be somewhat more
complicated than its Euclidean counterpart.

1. Cross ratio in unoriented geometry

It is not hard to show that that any function that depends on only two or
three points and is invariant under arbitrary projective maps must be boolean- or
sign-valued (e.g. “are the three points collinear?”).

In classical projective geometry, one learns that the simplest real-valued
invariant is the cross ratio of four collinear points, which can be defined as follows.
If z,y,a,b are four distinct real numbers, then their cross ratio is the fraction

(x:y|a:b)=::;1/y_a (1)

b—y

In general, if z,y, a, b are four distinct points on a line I, their cross ratio (z : y | a : b)
can be defined by picking an arbitrary Cartesian coordinate system on the line (i.e.,
an origin, a direction, and a unit of length), measuring the coordinate of each point
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on this scale, and plugging those numbers into equation (1). See figure 1.

T—a b—z .
l 7|
y—a G 2—Y
. |
a T Yy b

Figure 1. Cross ratio of four points.

It is easy to see that changes of coordinate system (translations, scalings, sign re-
versals) do not affect the result formula (1). It is only a little bit harder to show
that formula (1) remains invariant when all four points are transformed by maps of
the form z — (az + 3)/(yz + 6). These are precisely the projective maps of the real
line. The invariance of the four-point cross ratio under projective maps follows from
this observation. The assumption that all four points are distinct can be relaxed
somewhat, particularly if we accept 1/0 = oo = —o0 as a valid ratio. The definition
can be extended also to the case where one of the points is at infinity. In particular,
if a is zero and b goes to infinity, the cross ratio reduces to the plain ratio z/y. It
is not worth going into details here, since we are going to do a similar analysis in
section 2 for the two-sided version of cross ratio.

1.1. Interpreting the cross ratio

In order to gain a better intuition for the meaning of cross ratio, let’s consider
how the value of (1) varies when we keep a, y, b fixed, and move x along their common
line, in the direction from a to b by way of y (possibly crossing £ = co along the
way). See figure 2.

Figure 2. Values of (z: y | a:b) as a function of z.

As z goes from a to b, the cross ratio spans the positive values from 0 (when z = a)
to 1 (when z = y) to oo (when z = b). As z continues moving past b and goes back
to a by the complementary route (the one not including y), the cross ratio goes
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through the negative values, from —oco to 0. The point z where the cross ratio has
value —1 is the harmonic conjugate of y with respect to a and b.

1.2. Computing the classical cross ratio

Recall that a point z of the unoriented projective line P, with homogeneous
coordinates [z, z,] corresponds to the point z,/z, of the real line. Therefore, if we
are given four distinct proper points z,y, a,b of P, we can compute their classical

cross ratio by the formula
a_au) /(h_n
Ty 4y by
G/6
Yo 9 by Yo

QpT) — 41Ty Yoy — y18g

(z:yla:b) =

_ 4Ty Yobo
- Toby — )by L %Y1 T4 ()
b Yo
T, T, by b,
1% Y Yo U1
B Ty T, a, a
by b Yo %1

If we view the cross ratio itself as a point on the projective line, its homogeneous
coordinates are then

T, T, a, a, T, T, by b
(z:yla:b) = ; : (3)
by b Y%o % ay 4 Yo N
or, in schematic form,
a T b
(z:y|a:b) = , (4)
bl |y al |y
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2. Cross ratio in the oriented framework

I will take equations (3—-4) as the definition of cross ratio on the oriented
projective line T,. The cross ratio itself is to be viewed as a point of T, so that a
cross ratio of 3/2 = [2,3] is distinct from a cross ratio of (—3)/(—2) = [-2,-3] =
=[2, 3]. This means we must be doubly careful about the order of the four points in

formulas (3-4).

2.1. Interpreting the cross ratio

To appreciate the meaning of formula (4), let’s consider again what happens
to the cross ratio when we move z and keep a,y,b fixed, as we did in section 1.1
for the unoriented version. One difference that comes up right away is that in the
oriented world y may be in four projectively distinguishable positions with respect
to @ and b, and the cross ratio behaves differently in each case. So, let’s first consider
the case where y is on the open segment ab. See figure 3.

0 2 2
-1 -1 0
1 1 |-l| :2-8-4 -10-20:50)-50 =20
back -1 -2 -ZJ' -1-1-1 -1 -1 -1\[ 1 -1
omee 4L VLU LU VL)
a y b
front RN T
MHE g a M z.l_i &&@Tl_q 2
1 2 2 1 11 1 11 -1 -1
0 1 1
1 1 0

Figure 3. Values of (z : y | a : b) as a function of z.

In that case, as z moves forward on the line aV b, the cross ratio (z : y | @ : b) moves
forward on the line T,. Its value will be

front positive a and b
back negative e b and —a

" f bet 3
back positive th T 1s between —a and —b (5)
front negative —b and a

In particular, as ¢ moves from a to b along the segment ab, the cross ratio goes from
0 =[1,0] (when = a) to 1 = [1,1] (when z = y) to 400 = [0,1] (when z = b).

In case y is not on the segment ab, we can understand what happens by
noticing that if we replace any argument by its antipode, both coordinates of the
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cross ratio are negated. That is,

(~z:yla:b)=(z:-yla:b) (6)
=(z:y|-a:b)=(c:y|la:-b)==(z:y|a:b).

Therefore, if y is on the segment b(—a), we have only to replace (z:y | a: b) by
~(z :y | —a:b), and apply the above analysis. For example, we can say that as z
moves from —a to b the value of (2 : y | a : b) varies from [~1,0] through [—1, —1]

to [0, —1].
2.2. Symmetry properties

The cross ratio has a number of symmetry properties which follow directly
from the defining formulas. In particular, the cross ratio doesn’t change if we swap
the first pair of arguments with the second pair, or reverse the order of both pairs
simultaneously. That is,

(z:yla:b)=(a:blz:y)=(y:z|b:a)=(b:a|y:x). (7

Also, reversing only the first (or last) pair has the effect of exchanging the two
coordinates of the cross ratio. In the straight model of T, (the two-sided real line)
this is equivalent to taking the reciprocal. If we define 1/[r,s] = [s,r], we can write

(y:zla:b)y=(z:y|b:a)=1/(z:y]|a:b). (8)

Swapping the innermost (or outermost) pair is numerically equivalent to computing
one minus the original ratio, and moving to the antipodal range. More precisely, if
we define 1 — {r,s] = [r, r — s], then

(z:aly:b)=(b:y|la:a)y==(1—(z:y|a:b)) (9)

In all, the 4! = 24 possible permutations split into six equivalence classes with four
members each. If the original cross ratio is @ = [r, s], the other five values that can
be obtained this way are

8
@
Q

: b) = [r, 3] =a
ty|bia)=/s, 1] =1/«
: b)) =[-r,s—r]=~(1-a)
ty) =

a) =

y) =

8 8
Q
Sl

[s—r,—r]=-1/(1 - a)
[—s,r—s]==(1l-1/a)
[r—s,—=s]=-1/(1-1/a)

e e s e e e
8 8
S Q
N~

8
o~
S
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2.3. Invariance under projective maps

Lemma 1. For any points z,y,a,b of T,, and any projective map M of T| to
+T,, we have

(zM :yM |aM :zM)=(z:y|a:b). (11)

PROOF: Let M be the linear map of R? to itself that induces M. From definition
(4), we have

=M aM =M bM
(zM :yM | aM : M) = . , .
| oM yM aM yM
z a
= IR | Mf?
IKARE al |y (12)
e a z b
IKARE “lal |y
=(z:yla:bd)

QED.

This result makes it possible to compute the cross ratio of four points z,y, a, b lying
on an arbitrary one-dimensional space [. If ¢ is any isomorphism from [ to T, the
cross ratio (z :y | a: b) is by definition the same as (z¢ : yy | ap : bp), computed
according to equation (4). Lemma 1 above assures us that the cross ratio does not
depend on which isomorphism we use: if ¢, 7 are two isomorphisms from [ to T,
then n is a projective map of T, to itself, which means (z¢ : yp | ap : bp) =
(zn : yn | an : bn). By the same argument, we can generalize lemma 1 to any projec-
tive line; that is,

Theorem 2. The cross ratio of four collinear points is invariant under arbitrary
projective maps.
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2.4. Cross ratio as relative coordinates

Let z,y, a, b be four collinear points, with y on the segment ab. Viewed as a
function of z, the cross ratio (z :y | a: ) is a map that takes a to [1,0], y to 1, 1],
and b to [0,1]. By inspecting formula (4), we can see that, if the other points are
fixed, the coordinates of the cross ratio are homogeneous linear functions of those
of z. This function is therefore the map that takes the point frame (a,b,y) to the
standard point frame of T, with same signature (++4). In other words, the cross
ratio (z : y | a : b) gives the homogeneous coordinates of & relative to the point frame
(a,b,y).

Unfortunately, this is true only if y lies on the segment ab. In general, if
we compute the coordinates of z relative to (a,b,y) by the formulas given in the
previous chapter, we will get

a T a a Yy
sign| |o - abs , abs (13)
b Y x b
Comparing this with formula (4), we can see that the two agree only when
a a Yy
sign = sign = sign| |, (14)
Yy b

that is, when y is in the segment ab. The difference between the two formulas arises
because of the decision we made in chapter 12 to use the canonical simplex of T,
as the the main simplex of all standard frames. As a consequence, the formulas for
coordinates relative to a frame f = (s, ..8",u) treat the unit point u differently
from the other points. Replacing u by —u in f has no effect in the map M > Whereas
replacing one of the s* by —s* modifies the map so as to send e* to —s* instead of s'.

We could have removed the discrepancy by taking equation (13) instead of
(4) as the definition of cross ratio. However, the “absolute cross ratio” we would get
this way would not have the nice symmetry properties of the classical cross-ratio.
Alternatively, we could have defined standard frames in such a way that the formulas
for relative coordinates were equally sensitive to the orientation of all points of the
frame, and reduced to formula (4) in the one-dimensional case. The symmetrical
cross ratio would come out as a special case of relative coordinates. This would have
the disadvantage of making relative coordinates less predictable. The issue boils
down to which is more important in practice, symmetry or predictability. As I lack
the necessary experience, I will leave the issue open, without trying to unify the two

concepts.
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Chapter 14
Convexity

Convexity theory provides an important example of the advantages of the
two-sided approach. In affine geometry, a figure is said to be convex if it contains
every segment whose endpoints lie in the figure. This concept has no clean coun-
terpart in classical projective geometry, essentially because one cannot define un-
ambiguously the segment connecting two given points. By contrast, in two-sided
geometry the segment pq is well defined and unique, as long as the two points are
not antipodal. Moreover, it is a purely projective notion, that can be defined in terms
of join. Therefore, in two-sided geometry we can define a notion of convexity that
is preserved by projective maps, and yet preserves most of the properties of affine
convexity. This allows us to consistently apply the tools of projective geometry, and
in particular projective duality, to the development of theorems and algorithms in-
volving convexity. The result is a theory of convex sets that is cleaner and richer
than the affine version.

1. Convexity in classical projective space

Attempts to extend the notion of convexity to unoriented projective space
have followed two major approaches. The first approach is to assign special meaning
to some fixed line, say the line at infinity (0. A convex set is then defined as one that
avoids €, and that contains every line segment whose ends lie in the set and which
does not cross (2. The problem with this solution is that is doesn’t give us anything
new: by excluding Q) we are simply working on the affine plane, and losing most of
the advantages of projective geometry. For one thing, convexity will be preserved
only by those projective maps that take 2 to itself, i.e. the affine maps.

A second approach, due to Sylvester, is to say that a set X is convex if there
is some line [ disjoint from X such every line segment with ends in X that does
not cross [ is contained in X. The difference with the previous approach is that the
line ! is allowed to depend on X . This brand of convexity is preserved by projective
maps. Unfortunately, it lacks other properties we are accustomed to associate with
convexity, such as closure under intersection. In fact, the intersection of two convex
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sets may consist of two separate components. See figure 1.

Figure 1. Intersecting convex sets in the classical projective plane.

2. Convexity in oriented projective spaces

In oriented projective geometry we can use the affine definition of convexity
almost without change. Essentially, we can define a convex set as one which contains
every segment whose endpoints lie on the set. However, before we use this definition
we have to clarify the meaning of “segment,” especially in the case of antipodal
points.

2.1. Open and closed segments

Recall that in section 4:3.1 we defined the open segment pq, for two distinct
and non-antipodal points of T, as the set of all points = such that (p;z) and (z; q)
are proper simplices equivalent to (p;g). This condition is equivalent to pV r =
rVq = pVq# 0. For the purposes of the present chapter, it is convenient to extend
this definition by letting the open segment pp to be the empty set, and the open
segment p(—p) consist of a single element, the non-point 0. It is also convenient to
let the open segment p0 = Op be the empty set.

By definition, the closed segment pq is the open segment pg together with
the points p and q. If p and ¢ are distinct and not antipodal, the closed segment pq
is the shorter of the two closed arcs of great circle connecting them. If p = g we get
a single point, if p = ~¢ we get the two points plus the null object 0!, and if p =0
or ¢ = 0 we get only the two points.

2.2. Convex sets

Now that we know what a segment is, let’s go back to the definition of convex
set. What happens if the set contains pairs of antipodal points? By our definition,
the set must also contain the non-point 0. We can either forbid such pairs (on the
grounds that the segment connecting them includes the non-point 0), or accept them
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(since all points on the segment pq are in the set). These two alternatives lead to
two different notions of convexity:

Definition 1. A set X of points is quasi-convez if for any two non-antipodal points
p,q in X the segment pq is also in X.

Definition 2. A set X of points is strictly convez if it is nonempty, includes no
antipodal pairs, and for any two points p,q in X the segment pq is also in X.

In other words, a quasi-convex set is strictly convex iff it is non-empty and contains
no antipodal pair of points. Note that if X is contained in the front range of T, the
two definitions agree, and describe precisely those subsets of the front range that
are convex in the sense of affine geometry.

Examples of strictly convex subsets of T, are a single point, the interior of
a proper simplex, an open half-space, an open wedge (the intersection of two half-
spaces), and half of a straight line with at most one of its endpoints. In particular,
any affinely convex subset of the front or back ranges of the straight model is a
strictly convex set by definition 2. The converse is not true, however: as figure 2
shows, a strictly convex subset of T, may extend across both ranges, and look
rather non-convex at first glance.

(front)

Figure 2. A strictly convex subset of T, in the straight model.

Some examples of quasi-convex sets that are not strictly convex are: a straight line,
a closed half-space, a pair of antipodal points, the whole two-sided space, and one
half of a straight line with both its endpoints. Note that there is no quasi-convex set
that is bigger than the latter and smaller than a whole line: in terms of the spherical
model, if a quasi-convex set includes more than the closed half of a great circle, it
contains the whole great circle.
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3. Properties of convex sets

3.1. Invariance under projective maps

Note that since segments can be defined in terms of join, they are defined
on arbitrary two-sided spaces, not just on the standard space T,. Therefore, the
same observation applies to the notions of quasi-convexity and strict convexity.
Furthermore, since isomorphisms by definition commute with the join operation,
they must take segments to segments. We can immediately conclude that

Theorem 1. Quasi-convexity and strict convexity are preserved by isomorphisms
between projective spaces.

In particular, these notions are preserved by projective maps of T, to itself. Also,
theorem 1 implies that any projective properties of convex subsets that we can prove
on the standard two-sided space T, are valid also on any two-sided space of same
dimension.

3.2. Intersection properties

Theorem 2. Quasi-convez sets are closed under arbitrary intersections.

PROOF: Consider an arbitrary, non-empty family of quasi-convex subsets of T, and
let X be its intersection. Let p, ¢ be any two distinct, non-antipodal points of
X. The points p and ¢ must be in every member of the family; by definition
every member must contain the segment pg, which therefore must be contained
in X.

QED.

The following are obvious corollaries:

Theorem 3. Strictly convex sets are closed under arbitrary intersections, as long
as the intersection is non-empty.

Theorem 4. A subset X of T, is quasi-convez if and only if its intersection with
every line of T, is quasi-convexz.

PROOF: The “only if” part is a corollary of theorem 2, since a line of T, (considered
as the set of points) is quasi-convex.

As for the converse, suppose X is not quasi-convex. Then there are distinct,

non-antipodal points p,q in X such that the segment pq is not contained in X.

Let m be the line p V g; the points p and ¢ are in X Nm, but the segment pq is
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not. Therefore, if X is not quasi-convex, there is some line m such that X Nm
1s not quasi-convex.
QED.

Theorem 5. A subset X of a space S is strictly convez if and only if it is non-empty
and its intersection with every line of S is either empty or strictly convexz.

Note that a strictly convex subset of a line has one of the following forms: a point;

a proper line segment with zero, one, or two of its endpoints; or a half-line with at
most one of its endpoints.

3.3. The interior of convex sets

A useful property of convex sets is the following:

Theorem 6. In a space S with positive rank, a quasi-conver subset has empty
intertor if and only if it is contained in some hyperplane of S.

PROOF: The “if” part is trivial, since in spaces of positive rank hyperplanes have no
interior points.

For the “only if” part, observe that a subset X of T, that is not contained
in any hyperplane must include n points that are linearly independent when
viewed as vectors of R"; that is, it must include a proper v-dimensional simplex.
If n > 2, the points inside that simplex (with signature ++ - - 4, as defined in
chapter 4) are easily shown to be interior points of X, if X is quasi-convex. If
n = 1, the simplex has one vertex, and no points are inside it. However, in that
case the space T, = T is discrete (each point is both an open and a closed
set), so every point of X is interior. In any case, this shows that a quasi-convex

set not contained in any hyperplane must have some interior points.
QED.

Theorem 7. In a space of positive rank, a quasi-conver subset X with nonempty
intertor s contained in the closure of ils interior.

PROOF: The case when S has rank one is trivial, so let’s suppose rank(S) = n > 2. If
X has non-empty interior, it is not contained in any hyperplane of S. Therefore,
for any point € X there must be n — 1 other points that together with z form
a a proper (n — 1)-dimensional simplex. The point z is in the closure of this
simplex. The interior of this simplex is contained in the interior of X, therefore
the closure of the simplex is contained in the closure of the interior of X. Since
this holds for all £ € X, the theorem is proved.

QED.
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Theorem 8. Any open subset of a space S that is proper, non-empty, and quasi-
convez 1s strictly convez.

PROOF: Let X be such a set, and suppose it contained two antipodal points p, —p.
Since X is open, p must lie in some open neighborhood N C X. Let ! be any
line through p. The line ! includes —p, p, and points of N N! (an open subset of
[) that approach p on both sides. Since X is quasi-convex, it follows that [N X
must be the whole . Since this holds for all lines through p, X must be the
whole space, a contradiction. We conclude that X has no antipodal points, and
therefore is strictly convex.

QED.

Informally, theorems 7 and 8 say that quasi-convex sets that are not entirely flat
don’t have any flat appendages: they consist of an open strictly convex set and some
points on its boundary.

3.4. Analytic characterization of convexity

Analytically, a point r is on the closed segment pq if and only if its homoge-
neous coordinates linearly interpolate between those of p and q. If p = [z], ¢ = [y],
and r = (2], this condition means z; = az,; + (1 — a)y,, for all 7 and for some a
with 0 € a < 1. Since positive common factors can be ignored in homogeneous
coordinates, this is equivalent to there being (o, 8) # (0,0) and z; = az,; + By, for
all 7. In fact, we can conclude that r is on the closed segment pq if and only if r = p,
r = q, or there are z,y € R" such that p = [z], ¢ = [y], and r = [z + y]. It follows
that

Theorem 9. A subset X of T, is quasi-convez if and only if it contains the point
[z + y], for any distinct and non-antipodal points [z],[y] € X.

In the spherical model, we can see that a closed segment of R" that does not contain
the origin 0 = (0,..0) is mapped by central projection onto a segment of the two-
sided plane. This gives us two additional characterizations of convex sets:

Theorem 10. A subset X of T, is quasi-convez if and only if it is the central
projection on S, of Y \ 0, where Y is a convez subset of R".

PROOF: If Y is a convex subset of R", the quasi-convexity of its projection X follows
from the definition and from the observations in the preceding paragraph.

Conversely, let X be a quasi-convex subset of T,. Let’s consider X as a

subset of the unit sphere of R", and let Y be the union of all closed segments

connecting the origin of R" to a point of X. See figure 3. It is easy to check that
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Y is convex, and obviously the central projection of Y \ 0 on S, is X.

Figure 3. Convexity in T, and in R".

QED.

Theorem 11. A subset X of T, is strictly convez if and only if it is the central
projection of a convex subset of R™ \ 0.

3.5. Convexity and projective maps

Among the many trivial corollaries of theorems 10 and 11, we have:

Theorem 12. If X is a quasi-conver set of points and F is any projective function
defined on X, then F(X \ Null(F)) is quasi-convez.

PROOF: Let X be a quasi-convex subset of T, and F a projective function of T,
to T,. Following theorem 10, let Y be a convex subset of R" such that X is
the central projection of Y\ 0. Let F be a function of R® to R* that generates
the projective function F. Then F(X \ Null(F)) is the central projection of
F((Y \ 0) \ Null(F)) = F(Y \ Null(F)). By the definition of null space, F(Y \
Null(F)) = F(Y)\ 0. Since linear functions preserve convexity in R”, F(Y) is
convex. By theorem 10, it follows that X is quasi-convex.

QED.

Theorem 13. If F is a projective function, and X is a strictly convez set disjoint
from Null(F), then F(X) is strictly convez.

PROOF: Following theorem 11, let X C T, be the central projection of ¥ C R™ \ 0.
Let F' = [F] where F is a linear function from R™ into R*. Then F(X) is the
central projection of F(Y). From X N Null(F) = ¢ we have Y N Null(F) = @,
and therefore F(Y) C R¥\ 0. By theorem 11, F(X) is strictly convex.

QED.
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4. The half-space property

The set of all points in a two-sided space is quasi-convex, but not strictly
convex. How big can a strictly convex set be? Roughly speaking, not bigger than half
of the containing space. In this section we will make this statement more precise.

4.1. Supporting half-spaces

Lemma 14. Every open or closed set of points that is strictly convez is contained
in the positive side of some hyperplane.

PROOF: Let X be an open strictly convex subset of T ,. We will prove the theorem
by induction on v. If v = —1 the theorem is trivially true: T_, has no points,
hence no strictly convex subsets (its only flats are the vacua, which are also the
universes). If v = 0, there are only two points, the universe " and its opposite.
In that case we must have X = {T'} or X = {=T}. Then the hyperplane A or
- A, respectively, will leave X on its positive side.

Now suppose v > 1. If X is strictly convex, it must be a proper subset of
T,, and disjoint from its own antipodal image —X. Its set-theoretic complement
T, \ X must be a proper nonempty subset of T . Since T, is connected, X and
T, \ X cannot be both open or both closed. On the other hand, the map z — —~z
is continuous and one-to-one, so X and —X are both open or both closed. We
conclude that ~X is a proper subset of T\ X. That is, there is some point p
that is neither in X nor in = X. Obviously, the same is true of —p.

Now let 7 be a right complement of p in T, that is, a hyperplane such that
pVm=17T.Let F be the projection of T, from p onto =:

Fz)=(pVaz)AT™ (1)

See figure 4.

p \/\
©
___“_u/wo

s’

Figure 4.
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The null space of this function is the set {p,—p}, and its range is the whole
hyperplane 7. Since X C T, \ Null(F), by theorems 11:1 and 11:2 F(X) is
open if X is open, and closed if X is closed. According to theorem 13, F(X)
is a strictly convex subset of 7. By induction, there must be a hyperplane [ of
7 that leaves F(X) on its positive side. That is, for all £ € X we must have
F(z) V1= n. Therefore pV F(z)VIi=pVr=7,. Since pV F(z) =pV z, we
have pV 2 VI = T, which implies z V ~(p V I) = 7. Since this holds for all
z € X, we conclude that X lies in the positive side of the hyperplane =(p V I).
QED.

4.2. Perfect half-spaces

Note that theorem 14 applies only to strictly convex sets that are either open
or closed. For general strictly convex sets the theorem is false: a counterexample is
the subset of T, consisting of one half circle plus one of its endpoints. Fortunately,
we can fix this problem quite easily, as follows.

Let us define a perfect half of a space S recursively as being

o the empty set, if rank(S) =0, or

e an open half-space of S, plus a perfect half of its bounding hyperplane, if
rank(S) > 0.

For example, a perfect half-line consist of an open half-line plus exactly one
of its endpoints. A perfect half-plane of T, consists of an open hemisphere of S,, an
open half-line on its boundary, and one endpoint of that half-line (figure 5).

Figure 5. A perfect half-plane of T,.

The perfect halves of a space S are all projectively equivalent. However, if rank(.S) >
1 they can be divided in two classes according to their “handedness,” that is, ac-
cording to whether the map relating them is positive or negative. For example, we
can classify the perfect half-lines of T according to whether they are open at the
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“forward” or at the “backward” end, as seen from any interior point. Note that the
antipodal image of a perfect half H of S is another perfect half of S (with same or
opposite handedness, depending on whether S has even or odd rank), and is exactly
the same as the set-theoretic complement S\ H.

It is not hard to prove recursively that the intersection of a perfect half-space
of S with any flat a of S is a perfect half of a. It is easy to see that perfect half-lines
are strictly convex. Because of theorem 5, it follows that any perfect half-space is
strictly convex. Since a perfect half-space includes one member of every antipodal
pair, it cannot be augmented without ceasing to be convex. In other words, perfect
half-spaces are mazimal strictly conver sets. The converse is also true: every maximal
strictly convex subset of a space S is a perfect half of S. This is a trivial consequence
of the following theorem:

Theorem 15. Every strictly conver subset of a space S is contained in a perfect

half of S.

PROOF: The proof is by induction on the rank of S. If § has rank zero, it has no
strictly convex subsets, and the theorem is vacuously true. So, assume S has
positive rank, and X is a strictly convex subset.

If X has no interior points, then by theorem 6 it is contained in some hy-
perplane f. If X has some interior points, then its interior is a strictly convex
open set. By theorem 14, the interior of X is contained in the positive side of
some hyperplane f. By theorem 7, X is contained in the closure of the interior
of X, and hence it is contained in the closure of f’s positive side.

In either case we conclude that X is contained in the union of f and the
positive side of f. If X N f is not empty, it is a strictly convex subset of f; by
induction, X N f is contained in some perfect half H of f. If X N f is empty, this
is trivially true. Therefore, X is contained in the perfect half of S consisting of
H and the positive side of f.

QED.

In fact, we can prove a much stronger result:

Theorem 16. Any strictly convex subset X of a space S is the intersection of the
perfect half-spaces of S that contain X.

PROOF: By theorem 15, there is at least one perfect half-space containing X, so the
intersection Y of all such half-spaces is well-defined. Obviously, X C Y. To show
that Y C X, we have to prove that for every point p ¢ X, there is a perfect
half-space that contains X but not p.

Consider such a point p. If =p € X, then any perfect half-space that includes
X automatically excludes p, and we are done. If -p ¢ X, then by theorem 13 the
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projection of X onto any hyperplane h complementary to p is a strictly convex
subset of A. By theorem 15, it is contained in some perfect half H of h. Let Y
be the set of all points of S that project onto H, plus the point =p. Obviously
Y contains X but not p; it is easy to check that Y is a perfect half of S.

QED.
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Chapter 15
Affine geometry

Oriented projective geometry is able to simulate all the constructions and
algorithms of affine, Euclidean and Cartesian geometry. We have only to think of
the straight model of T, and restrict our attention to its front range. A Euclidean
flat is simulated by the front part of a flat of T ; the projective maps that take the
front range to itself provide all Euclidean and affine transformations; and so on. In
this and the following chapters we will look into this emulation in more detail.

1. Cartesian coordinates

As we recall, the analytic and straight models of T, are related by central
projection
T, z z
[‘TO’ Zyy-- .’l)u] = (_1_’__2,'__,_1,) (1)
To o To
By definition, the projected point lies in front or back range, depending on whether
x, is positive or negative; if z, is zero, the projection is the point at infinity in the
direction (z,, z,,.. z,). This map is the standard way of converting from homoge-
neous to Cartesian coordinates. The inverse map is

() 25y..2,) = [£l, 2, 2,,..2,], (2)

where the weight coordinate is +1 for points on the front range, and ~1 for points
on the back.

In principle, formulas (1) and (2) are all we need to emulate Cartesian (hence
Euclidean) geometry in the two-sided framework. However, as the next few sections
will make clear, there are a few subtle points in the handling of signs which require
some careful thought.
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1.1. The midpoint of a segment

For example, let p = [u, a,b] and ¢ = [v, ¢, d] be points on the front range of
T,. The midpoint of the segment pg has Cartesian coordinates

d
}.<2+E,%-}-—)—L(va—}—uc,vb—i—ud) (3)

2\u v v) 2uv

Converting back to homogeneous coordinates, we finally get

mid([u, a,b], [v,¢,d]) = [2uv, va + uc, vb+ ud]. (4)

1.2. Natural or absolute?

This derivation is correct as long as p and ¢ lie on the front range. When
this is not the case, however, formula (4) produces unexpected results. Note that
formula (4) is a bilinear function of the coordinates of p and g: therefore, when p
or q is replaced by its antipode, the same happens to their “midpoint.” So, if p and
q are both on the back range, point (4) lies on the front range, and indeed is the
midpoint of —p and —~q. Worse still, when p and q are on opposite ranges, (4) gives
a point on the back range that is the midpoint of either p and —gq, or of —p and gq.

If we don’t like this behavior, we can use instead of (4) the formula

mid( [u,a,8], [v,¢,d]) = [[olu+ulv, lola+lule, [olb+uld].  (5)

This gives always a point on the segment pg (provided p and g are not both at infinity,
and p # —q). When p and ¢ are on the same range, the result is the midpoint of pg.
When p and ¢ are on opposite ranges, the result is the point where that segment
crosses the line at infinity.

The above situation is similar to the one we encoutered while defining cross-
ratio in chapter 13, and occurs over and over again in the derivation of formulas for
two-sided geometry. A straightforward way of deriving such formulas is to compute
the Cartesian coordinates of the operands, apply the appropriate Cartesian geometry
formulas, and convert the result back to homogeneous coordinates, with any divisions
eliminated by a suitable rescaling. However, the “natural” formulas we usually obtain
through this route give the intuitively expected result only for points on the front
range. It is often possible to modify these formulas (usually, by adding some absolute-
value operations in the right places) so that they retain their intuitive meaning over
a wider range of arguments. One disadvantage of these “absolute” formulas is that
they are not linear in the coordinates of the operands, and therefore the result
changes in a complicated way when the operands’ orientations are reversed. Only
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experience will tell which flavor of formula is best for practical use, or whether both
should be provided.

1.3. Why homogeneous coordinates?

The use of homogeneous coordinates for affine and Euclidean geometry, when
plain Cartesian coordinates are enough, may seem to some readers a mathematical
overkill and a waste of resources. One reason for doing so is the ability to handle
degenerate situations, such as the meet of parallel lines. This freedom to leave the
confines of the Euclidean plane in intermediate computations often simplifies the
programs enormously, even if the input data and the final results have to be rep-
resented in Cartesian coordinates. Another reason is standardization: life is much
simpler if all geometric software in a computer system uses the same data format.
Finally, with homogeneous coordinates we are often able to eliminate the need for
division operations, except at the very end when converting the results back to
Cartesian coordinates.

2. Two-sided affine spaces

Let’s now consider in particular how we can emulate affine geometry in the
two-sided framework. The notions of affine geometry include direction, parallelism,

affine map, affine ratio, midpoint, barycenter, and many others. They can all be
defined in terms of meet and join, if we let some distinguished hyperplane play a
special role in the definitions. This motivates the following definitions:

Definition 1. A two-sided affine space is a pair A = (S, h) where S is an oriented
projective space and h one of its hyperplanes, the horizon of A.

Definition 2. The canonical two-sided affine space A, consists of the space T,
with 2 as the horizon.

Recall that the hyperplane 2 of T, was defined as the flat generated by the last
v points (e!;..e") of the standard simplex. It follows immediately that the point
e’ lies on the positive side of Q. In the straight model of T,, Q is the hyperplane
at infinity oriented so that its positive side is the front range of T,. In the case of
T,, Q is the line at infinity that turns counterclockwise as seen from the origin. In
the case of T, () is the plane at infinity, oriented so that its circular arrow turns
clockwise as seen from the origin. The flats of T, contained in Q are called improper,
and all the others proper. By this definition, the universe T, is a proper flat, and
the vacuum is an improper one.

In what follows, by affine space I will usually mean a two-sided one. When
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necessary, I will say the one-sided affine space to refer to the classical one.

2.1. Directions

If a is a proper flat, then a A € is always defined, and is a flat at infinity
with rank one less than the rank of a. I will call this the direction of a, and denote
it by dira. Note that dir(—a) = —=(dir a).

For example, the direction of a proper line is the point of {2 where it exits
the front half of T . The direction of a proper plane is one of the two lines at infinity
that lie on that plane, namely the one which turns around the front part of the plane
in a way that agrees with the orientation of a. See figure 1.

back
range

front
range

dirm dirx

Figure 1. Direction of a plane of T;.

The hyperplane  cuts every proper flat a in two open subsets, one in each range of
T,. A point p will be in the front part of @ if and only if pV dira = a. In particular,
a point p is in the front range of T, if and only if po Q = +1.

As for the trivial cases, the direction of a point is A or A depending on
whether the point lies on the front or back range of T ; and the direction of T, is

Q itself.

2.2. Parallelism

A flat a is parallel to a flat b if dire C dir b, of dir b C dir a; I will denote this
by a || b. Note that the flats have to be proper. In particular, every flat is parallel
to itself and to its opposite, and to any sub- or super flat. A proper point is parallel
to every proper flat, and every proper flat is parallel to the universe 7.

Note that according to this definition the parallel predicate is symmetric
but in general not transitive: if a line ! is parallel to a plane 7, and 7 is parallel to
another line m, it doesn’t follow that ! || m. However, from a || b and b || ¢ we can

deduce a || ¢, if rank(a) > rank(b) > rank(c) or rank(a) < rank(b) < rank(c).
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If two flats a, b have the same rank k, their directions have same rank k—1. In
this situation we can distinguish the case where a and b are co-parallel (dir a = dir b)
from the case where they are contra-parallel (dir a = = dir b). [ will denote these cases
by a 17 b and a 1| b, respectively.

If fis a proper flat of rank r, and p is any point on the front range, then
pVdir f =pV (fAQ)is the (unique) flat with rank r that is co-parallel to f and
passes through p. This is the oriented version of Euclid’s Fifth Postulate: “through
a point not on a line there is a unique parallel to that line.” (If p lies on the back
range, this formula gives a flat contra-parallel to f).

2.3. Affine spaces and subspaces

The notion of direction and the predicates ||, I, and 1] can be defined relative
to an arbitrary affine space A = (S, h) in the obvious way. The direction of a sub-flat
f of § that is not contained in h is f Ag h, and two flats a,bin S are co-parallel iff
aAgh=>bAgh. The front range of A is the positive side of h relative to S, that is,
the set of points p such that p vV h = S. Their antipodals constitute the back range
of A.

If A= (S,h)is an affine space, and f is a flat contained in S but not in A,
then F' = (f, f Agh) is also an affine space: the affine subspace of A induced by f. It
is easy to check that the functions dir, ||, 17, and 7| defined relative to F' are simply
restrictions of the same functions defined relative to A. The front range of F' is the
part of f contained in the front range of A.

In particular, the affine subspaces of A = (T, ) have the form ( f, dir(f)),
where f is a flat not contained in 1. A two-dimensional affine subspace of A,, for
example, consists of a proper plane = and one of its two lines at infinity, whose
orientation must agree with the circular arrow on 7 as seen from the front range of
T,. See figure 1. In what follows, we will implicitly identify a flat f of T, with the
affine subspace of A, induced by f.

For each affine space A = (S, h) there are three other spaces which differ
from A only in the orientation of their parts, namely (=S, k), (S, -h), and (=5, =h).
Since =S A h = =h, only the last one is a subspace of A (and vice-versa), which
I denote by ~A. The other two alternatives, (=S, k) and (S, k) are subspaces of
each other. Their front and back ranges are switched with respect to A, and their
dir function is opposite to that of A.

2.4. Affine maps

Informally, an affine map is a geometric transformation that preserves par-
allelism. In the two-sided framework, I will define an affine map between two affine
spaces A = (S,h) and B = (T, k) as a projective map M from S to T that takes h
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to k. This is enough to ensure that M takes the front range of A to the front range
of B, and that M commutes with the functions dir, ||, 11, and i, relative to A and
B. That is,

dir(fM) = (dir(f))M,

(fM) T (gM) = f 49,
(fM)Up(gM) = fll, 9, and
(fM)llg (gM) < flla9

Let’s consider in particular the affine maps of A to itself. Recall that a projective
map of T, to T, is characterized by an n x m matrix with positive determinant.
An affine map M must in addition take the improper points e!,..e” to infinity; this
means M must be of the form

T 0 _0 _0 0
my my my === m,
1 1 1
0 my my --- m,
M= 0 m% mgmﬁ (6)
v v 14
.-0 ml m, .”mu-

% must be mapped

Moreover, since  is mapped to itself, the front origin O = e
to a point on the front range. From this and from the fact that M is positive, we

conclude that

mg > 0, (7)
and
mi .. mll’
: >0 (8)
my crm,

Conversely, it is easy to check that any map of the form (6) satisfying (7-8) is an
affine map of A to itself. For example,

o o

— N W
o
—~~
©
N’
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is an affine map of A, to A, whose effect is depicted in figure 2.

£ ’j./#':""
&

I
f // I
¥/l

|

Figure 2. An affine mapping of the plane.

In general, a projective map with the form of (6) takes A, to one of the four affine
spaces (T,,Q), (-T,,Q), (T,,-Q), (-T,,-Q). If m) > 0, then the front part of
A, is mapped into itself; this means the image is either A or —A , depending on
the sign of the cofactor (8). Conversely, if mJ < 0, the map exchanges the front and
back ranges of A ; this means it takes A either to the affine space (=T, ) or to

(T,,—Q), depending on the sign of the cofactor (8). For example, consider the map

-1 0 - 07
0 -1 0
N = . ) _ (10)
i1 0 0. —1]

This map takes every point of T, to its antipode, and therefore every flat f of rank
r to the flat - f. In particular, N takes T, to =T, and Q to -"~1Q: that is, it
takes the affine space A to either (T,,-Q) or (=T, 2), depending on whether v
is odd or even.

2.5. Affine frames

An affine frame for an affine space A = (S, k) is simply a mixed frame for
S with horizon h. Since h is already implicit in the space, an affine frame for A is
siply a proper simplex spanning S with no vertices on h.

Let s = (s%,..s%) and t = (¢°,..t*) be affine frames for two affine spaces
A = (S,h) and B = (T, g). Is there some affine map from A to B that takes s to
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t? As we know from the properties of mixed frames, there exists a projective map
from S to T that takes s to t and A to ¢ if and only if the two frames have the same
signature: that is, if st ogh = ¢t op g for all 2. When this happens, the map exists
and is unique.

How do we compute this map? In the most general case, where S and T' are
x-dimensional flats of T, and T, and the horizons h and g are arbitrary, we have
to compute the projective map relating two mixed frames, a problem we already
solved in chapter 12. As we discussed in that chapter, it is convenient to break down
the problem into two steps, by computing maps M, and M, from some “standard”
frame f of T, to the frames s and ¢, respectively. The desired map then will be the
composition M ,M,. In particular, we may let f be the standard mixed frame with
the proper signature, and compute M, and M, by formula (12:6).

2.6. Affine maps between subspaces of A

The formulas of chapter 12 become a little simpler if A and B are affine
subspaces of A, and A“, respectively; that is, if h = SAQ, and g =T A Q“. In
that case, the signature o of the frame s tells whether each point is on the front or
back range of T ; that is, o, = sign(sh). The map that takes the standard mixed
frame mfr_ of T to s is

0
‘1/33' 0 Sg "* s?
M, = : : (11)
0 11/s5] 85 *c 8,

The homogeneous coordinates determined by this map on the space A are the
barycentric coordinates relative to the simplex s, as discussed in section12:4.2.

2.7. Standard affine frames

A minor inconvenience of using mfr, as the intermediate frame is that it is
not an affine frame of A (recall that the horizon of mfr, is (o), rather than Q).
Therefore, the map M, of (11) does not take the affine space A, to A, but rather the
space (T,, (0)). If we use (11) only as a tool for computing maps between two affine
subspaces A and B, the fact that M, is not affine is irrelevant, since the composition
M M, will be.

However, suppose that for some reason we need a map like M, all by itself,
and we want it to be affine. Then, instead of the standard mixed frame of T,, we
can use the standard affine frame of A, consisting of the origin

u’ =[1,0,0,0,0,..]=0
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and the x azial units

u! =[1,1,0,0,0,..]
2
u?=11,0,1,0,0,..]
(12
w® =(1,0,0,1,0,..] )

The points ul, .. u* are the points at unit distance from the origin on each coordinate
axis of the front range. See figure 3.

t(1,0)

/‘ [1,1]

1,0]

[1,1,0]

Figure 3. The standard affine frames of T, and T,.

Actually, this is only the first member of a family of 2" standard affine frames. In
general, the standard affine frame with signature o, denoted by afr , consists of the
points aouo, alul, ..ou”.

2.8. The map determined by an affine frame

Suppose A = (S,h) is an affine space, and s an affine frame for A with
signature 0. The map from A, to A that takes the standard affine frame of the
former to the simplex s can be computed by relating both to the standard mixed
frame of T, . That is, we compose the projective map taking afr_ to mfr, with the
map taking mfr_ to (s, k), computed by formula (12:6).

In particular, if A is an affine subspace of A, the map that takes afr to s
turns out to be

-

S0 0 e 0 Tl e o7
—1/38 1/8(1) 0 0 3(1) si ......... Sll/

M ~1/s) 0 1/s2

W

0 K K K L o
._L—]‘/SO 0 « .. 1/30“ __SO Sl ..... S |
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130 0 130 0 130 0
I RN
- SO 30 -50 30 SO 30 (13)
N S S T N
T S A sE sy -

The coordinates determined by this map are the affine coordinates relative to the
frame s. In this coordinate system, point s' gets coordinates aioui. The weight
coordinate of a point will be positive or negative depending on whether the point is
on the front or back part of S.

2.9. Affine interpolation

An important application of affine coordinates is the problem of affine in-
terpolation: given two points a, b on the front range of T, divide the segment ab in
two parts whose lengths (in the straight model) are in a given ratio A : 1 — A. In
other words, find the point ¢ on the segment ab that is A of the way from a to b. See
figure 4.

1-2)d

Ad \é_(_,/—%\
f”_—/: b
d
Figure 4. Affine interpolation.

This is a generalization of the midpoint problem we discussed briefly in section 1.2
above. One way to approach this problem is to find an affine map M from A, into
A onto the line a V b that takes the standard affine basis of the former to the pair
a,b; that is,

[1,0] — a,

[1,1] — b. (14)

Then the point A the way from a to b is the image of ) (viewed as a point of the
two-sided line A ) by the map M, that is, [1, \]M. According to (13), the map M
satisfying (14) is

Mapy = (15)
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The point ¢ will then be

c = [1, /\]M(a,b)

a b a a b a
I R U A T A P VO LY
’ a, + (b0 ao)’ a, + /\(bo ao) (16)
= [agby, Aaghy 4+ (1 = A)bga,, .. Aagh, + (1 — N)bya, ], (17)

which is also what we would get by interpolating the Cartesian coordinates in the
normal way. Observe that in formula (17) the purpose of multiplying the coordinates
of a by b,, and those of b by a,, is to normalize both points to have the same weight
ayby. After this normalization the homogeneous coordinates from 1 to v are the
same as the Cartesian ones, expressed in a common scale. That being the case, we
can obtain the desired point ¢ by interpolating the homogeneous coordinates in the
givenratio A : 1 — A,

2.10. Absolute interpolation

Note that formula (17) is multilinear in the coordinates of the given points.
It is therefore a generalization of the “natural” midpoint formula (4), and, like it,
gives the intuitively correct result only if a and b lie on the front range. (Note that
this assumption was necessary to ensure that the frame a, b had positive signature,
so that {1,0] and (1, 1] got mapped to a and b by M. It was also used in the passage
from equation (16) to (17), which is valid only if the product ayb, is positive.) When
a and/or b lie on the back range, neither (16) nor (17) give the result one would
expect. The first formula always puts ¢ on the front range, while the second puts it
on the front if a and b lie on the same range, and on the back if they lie on opposite
ranges. That means the midpoint of a and b, for example, may not even lie on the
segment ab. This is hardly what one would expect of an “interpolation” formula.

Is there a formula that agrees more closely with the intuitive idea? If ¢ and b
are both on the back range, we might just take the antipodal of formula (16) or (17).
That corresponds to replacing the map M by -~ M, the map from T, to the affine
line a V b with horizon - dir(a V b) instead of dir(a V b). However, when a and b lie on
opposite ranges, we must give up any hope of using an affine map for interpolation,
since some point A of T, in the finite range 0 < A < 1 must be mapped to a point
at infinity, and no affine map can do that.

This problem is one we already encountered in chapters 12 and 13, and stems
from the way the standard affine frame afr, was defined. Recall that the horizon
of afr_ is always 2, while the vertices of the main simplex may be u' or —u' as
necessary to give the desired signature. If we want to have the interval from 0 to
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1 mapped to the segment ab (or in general, the interior of the simplex (u?;..u*)
mapped to the interior of the given simplex s), we must do the opposite: we must use
a standard frame whose main simplex stays fixed at (u%;..u*), and whose horizon
varies according to the desired signature.

It is easy to see that such a frame cannot be an affine frame, except when
0 = ++---+ (when we can use ) as the horizon) or 6 = ——- .. — (when we can
use —=2). One possible choice that agrees with these two cases is to use (0,0, —
0gy 0y — 0y, .. 0, — 0y) as the horizon. The corresponding map is

T 0 Mim.o 0 0
1/s) 0 0o .- 0 Sg 8 rer e een s?
—|1/s3 |1/S(1)‘ 0 .- 0 sbost ol s
M|s| = — I/Sg O il/s%'
- 1/33 0 0--- ]1/33|“ __Sg S'f ......... 55__
0 0 0
[ o, S B2 Sy ]
|59 B £
v —o SL_S1 5 S2 Sy _ Sy
=Y skl s ETE] lssl 18] |1 . (18)
o e S s s s s,
o0 sl Isgl IsEl s ls§|  Isg| -~

In particular, when the simplex s is a pair of points a,b, we get the “absolute”
interpolation map

M B Slgn ao |a0| Iaol
Ia;bl B . (b) . ( ) bl al bl/ aV
sign — signfa —_ . -
L=180%) = SEM ) Tl T Tagl Bl Tao] (19)
_ i a lbo| a, |b0| a, lbo‘ H
L 5 |a0|—a0|b0| by lagl = ay 1ol --+ b, lagl — a, |by]

The point ¢ that is A the way from a to b, in the “absolute” sense, is then

c = [1, ’\]A/I|a,b|

= [ao |6 + A(Bg lag| — aq 1861 5 ay 1bg] + A(by |ag| — a; 18])
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1 a, lbg] + A(b, lag| — a, (b)) | (20)

=[abo—}—ﬂao,ab1+ﬂal,ab2+ﬂa2,...,aby+ﬁau] (21)

where o = Alag|, and B = (1 — A) |b,|. That is, we scale each homogeneous tuple by
the positive factors |b)| and |a,|, so that their weights have the same absolute value
but still the original signs, and then we interpolate the homogeneous coordinates in
the ratio A : 1 —A. This agreees with (17) when both points are on the front range,
and gives the intuitively correct result when both are on the back range. In either
case, as A goes from 0 to 1 the point ¢ moves from a to b, with uniform “speed.”

What happens now when a and b are on opposite ranges? It is not hard to
see that as A goes from 0 to 1 the point ¢ will still traverse the segment ab, but not
at a uniform rate: ¢ speeds up as it moves away from a, reaches infinity when \ = %,
and then slows down as it moves towards b on the opposite range. Note that this
s a generalization of the “absolute” midpoint formula (5). Note also that both (5)
and (21) give the null object 0 if a and b are both at infinity, or if a is the antipodal
of b rotated 180° around the origin (that is, if a = [=bg,by5-..,b,]).

2.11. Measure of a simplex
In Cartesian geometry, the area of a triangle with vertices (z°,y°) z!,y!),
and (z2,4?) is given by
1 20 4
% 12!y, (22)
1 2?2 42

with the sign depending on the triangle’s orientation. In general, the v-dimensional
measure of a simplex of R” with vertices (},..z!) is given by

1 x? a:g

12! .. gl
L o (23)
(v+1)!

From this and from the homogeneous-to-Cartesian formulas we get an expression
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for the v-dimensional measure of a simplex s of A, namely

38 . 32
! 24
n!sdsh - sk (24)
14 14
SO .0 SV
For consistency, we may want to write this as a point of T,
0 0
S " 5,
vol(s) = | n!-spsg---sp, | : (25)
14 14
So Sy
Note that this is a multilinear formula, which means
vol(—s%, 5!, 5%, .. 8") = vol(s?, —s!, 52, .. s")
1 2 (26)

= ... =vol(s, s}, s%,.. 1s") = ~vol(s?, s, s%, .. s")

The orientation of s is given by the sign of the second coordinate of vol(s) only. An
alternative, “absolute” formula is

o

0
30 .--S

<

vol(s) = | n!- |sgs(1) - -sgl | : (27)

v

v
30 “ e SU

which is always a point of the front range of T, (or infinite), and whose numerical
sign gives the orientation of s.

Since affine maps preserve the ratio of measures, we can use formula (25)
or (27) to compute the ratio between the measures of two simplices s,? contained
in the same x-dimensional affine subspace A of A . We have only to compute an
affine map M that takes A to A, compute the measures of M(s) and M(?) in A,
and take their ratio. We can compute this ratio even if s and ¢ lie in distinct but
parallel affine subspaces of T : it suffices to compute a translation T that takes B
to A, and proceed as above with s and T'(t).

This is the best we can do within affine geometry. To compute the absolute
simplex measure in a proper subspace of A, or the simplex measure ratio between
non-parallel subspaces, we need non-affine concepts such as congruence and distance-
preserving maps, which we will study in chapter 17.
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Chapter 16
Vector algebra

We can emulate the linear vector space R” in a v-dimensional affine space
A by selecting a fixed point o on the front range of the latter as the origin. Then we
represent any vector v of R” by a point v on the front range of A. The addition of
two vectors u, v can be carried out by construcing the parallelogram with corners at
o, u, v. The product of a vector v by a scalar A can be done by affine interpolation
(or extrapolation) between o and v in the ratio A : 1 — A. In doing so, we gain
the ability to handle infinite-length vectors, which are often handy. We also gain a
second copy of RY, namely the points on the back range of A. This feature may
be useful in some situations, and is harmless at worst: if we don’t need it, we can
simply ignore the distinction between v and —v. Formally,

Definition 1. A two-sided vector space is a triple V = (S, h,0) where S is a two-
sided space, h (the horizon) is a hyperplane of S, and o (the origin) is a point
of S on the positive side of h.

In particular, we can take A = A and 0o = O = [1,0,0,..], which means we
represent a vector (z,,z,,..z,) of R” by the point (1,z,,z,,..z,) of T, (this is of
course the familiar Cartesian-to-homogeneous mapping). The resulting space is the
canonical two-sided vector space V, = (T ,,Q,0).

A subspace of a two-sided vector space V = (5, h,0) is any triple (f,g, o)
where f is a flat of S that contains o, and ¢ = f A h. That is, (f,g) is an affine
subspace of (S, h), and o is on the front range of (f, g). In particular, (=S, -k, —0) is
a vector subspace of V' = (S, h,0), denoted by —=V. Observe that the other variants
(S, h,-0), (S,~h,0), (S,~h,—0) and so on are not subspaces of V by this definition.

1.1. Translations

In general terms, a translation is a projective map between two co-parallel
subspaces of an affine space- A = (S, h) that preserves the direction of every subflat.
Obviously, a translation is a special case of affine map, one that maps every point
of h to itself, and not just the hyperplane h to itself. A translation in a vector
space V = (S, h,0) can be uniquely characterized by the image of the origin o. This
establishes a correspondence between translations and the points (vectors) on the
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front range of V. In particular, the translation of V, that takes the origin O to the
point ¢ = [zg,..z,} is

.’1?0 .’L’l Il'2"'(l,'y
00z, 0 -~ 0
00z O (1)
100 0 -]

Conversely, any matrix of this form with 2, > 0 defines a translation. If z,, is negative
(meaning the point z is on the back range) then the corresponding translation (1)
is an affine map from A to -"A , that swaps the front and back ranges.

1.2. Vector addition

If we equate the vectors of a two-sided vector space V with its translations,
we can add two vectors by composing the corresponding translations. This operation
is is given by a simple formula:

- -

Iop Ty Ty ©°° Ty, —yo Y19 Y,
0z 0--0f{l0y 0--0
0 0 =z 0 0 0 y, 0

00 0 -~z [[O0 0 0 -y

1 -4 U

200 Zo¥ + ¥o%1 To¥s +YgTy -+ Toy, - Yo%, |
0 ToY, 0 0
= 0 0 ToYo 0 (2)
L 0 0 0 ToYo

The formula for vector addition is therefore

[zg, - - x,)+ [yg, - y,]
=[2e¥y, To¥y + Yoy oYy + YoZas -+ > To¥y T YTy ]

3)

The same formula results if we add two vectors by mapping one of them (viewed as
a point) by the translation matrix associated with the other.
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Formula (3) gives the correct result if z, and y, are positive, that is, if the
two vectors are points of the front range. If only one of z and y is a point at infinity,
that point will also be their sum. If both & and y are at infinity, the sum is the
undefined point 0. Formula (3) is multilinear, and hence a “natural” formula in the
sense discussed before: we have (=z)+y = o+ (—y) = =(z +y) for all z,y. It follows
that = + y is a front vector if z and y are on the same range, and is a back vector
if they are on different ranges. Note that adding the front origin O = [1,0,0,.. 0]
to a vector leaves it unchanged, whereas adding the back origin -0 = [-1,0,0,..0]
sends the vector to its antipode (the vector with the same Cartesian coordinates,
but on the other range).

1.3. Vector negation

The inverse of the translation (1) is given by the matrix

[z —zy —Ty o~ |

0 z, O0 0

0 0 =z 0 (4)
10 O 0 |

This gives a formula for the additive inverse of a vector,

—[zg,..2,] = [z, —Ty, =Ty, .. —T,] (5)
Indeed, we have
T+ (—z)= [ TOTy, TeT; — ToTy, ToTy — LTy, « .., ToZ, + ToT, ]
= [(z4)%,0,0,...,0]

which is the front origin O if z is a proper point, and the null object 0 if z is at
infinity. The difference of two vectors is then

[x07"‘ru] “[y()a--?/u] (6)
= [5’30340’ YoTy — To¥1y YTy — Tp¥ps --- 5 YTy — TolY, ]
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1.4. “Absolute” vector addition

As one might expect, there is an “absolute” alternative to the vector addition
formula (3):

[zg,--2,] + (Yo, - 9,]

(7)

1
= [ 5(zq lvol + o lzol) Izl vy + ol 21 s - 17| 5, + Iyl 2, ]

If z and y are both on the front range or both on the back range, formula (7) puts
r + y on that same range; otherwise it returns a point at infinity in the direction
of (-z) + y or = + (—y), depending on whether z is on the front or back range,
respectively. However, if £ = —(—y) the result is the null object 0.

1.5. Multiplication by a scalar

The scalar multiplication of a point = = [z, ..] by a real number B is given by
B-z = [z,, Bz, BT,,..]. Equivalently, we can use the formula Sz = [z,/8,2,2,,..]
if 8> 0,0r Bz = [~z4/B,—2,, —T,,..] if B < 0. Note that —1-z = [z, —z, —25,..]
is the additive inverse —z of z, as defined above. The proper way to view these
formulas is to imagine the scalars as elements of T, the two-sided line. Then the
scalar multiplication is given by

[ﬂ(], ,31] : [370, Ty, Loy ] = [ﬂozo, ﬂlzl ’/811:23 ] (8)

The range of T, on which the product 3 -z lies is determined by the product of the
signs of their weights 8, and z,. So, for example, multiplication by (3, —2] (which
lies on the front range of T,) produces the vector (—%) -z on the same range as z,
whereas multiplication by [—3,2] gives the antipodal of the above vector.

1.6. The two-sided real line

When v = 1, the operations of addition and multiplication by a scalar
defined above become addition and multiplication of two elements of T:

[130 ,371] + [yo’ yl] = [fcoym ZToY; + yoml]a

(9)
[.’EO, 5’51] : [yov y1] = [-’Eoyo’ xlyl].
As for subtraction and division, it suffices to define
—[xo, '751] = [m07 —1'1]’ (10)

1/{zg,z,] = [z, zy)-
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Note however that

T+ (-z) = [:Eo,xl] + [xoa —xl] = [(zo)Z, 0]
which is normally the front origin, but is undefined when z, = 0. Also,

z-(1/z) = [zg, 7,] - [z, 7)) = [zg715 7474]

which is [1,1] if # is positive, [-1, —1] = =[1,1] if z is negative, and [0,0] = 0 if z is
infinite or zero ([0, 1] or {£1, 0]). With these caveats, formulas (9) and (10) allow
us to do arithmetic on T, as if it were a two-sided version of the real line.

1.7. Linear maps

The linear maps of R” are simulated in T, by projective maps that keep
both Q and the origin fixed. They have the form

o~ -

gy 0 0 --- 0

0 ayy ap -+ ay,

0 ay ay -+ ay, (11)
18 0 a’ul auZ avu_L

where a, is positive, and corresponds to the linear map of R” to R” whose coefficient
matrix consists of the ratios a;;/ay, for 7,5 € {1..v}. In particular,

z, 0 0 0

0 =z, O 0

0 0 =z 0 (12)
[0 0 0 z, |

is the matrix of a scaling map, whose effect is to multiply the ith Cartesian coordinate
by the ratio z;/z,. A convenient way to specify such a map (for example, to a
graphics package, or to a procedure that builds scaling maps) is to give the point
[z4, 2y, .., ,], which is the image of the standard unit point u = [1,1,..1] by the
desired map. When z; = z, = --- =z, we get a a uniform scaling, whose effect is
to scale all vectors by the same ratio z,/z,. Again, for consistency we may want to
think of this ratio as the two-sided fraction [z, z,].
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Chapter 17

Euclidean geometry on
the two-sided plane

We can emulate Euclidean geometry in the two-sided space T, by looking
at the two ranges of the straight model as copies of the v-dimensional Euclidean
space. This allows us to define perpendicularity, congruence, angular measure, and
other Euclidean concepts by means of the familiar tools of Cartesian geometry. This
interpretation turns T, into a canonical two-sided Fuclidean space.

If we want to define two-sided Euclidean spaces in a more abstract way, we
must find some “fundamental” object from which all other Euclidean concepts can
be derived by projective tools. In affine geometry, for example, this role is played by
the horizon hyperplane. In Euclidean geometry we can use as fundamental objects
a horizon hyperplane, plus a polarity relation restricted to flats on that hyperplane,
as shown below.

1. Perpendicularity

First of all, let’s define what it means for two flats of T, to be perpendicular.
When v < 3, we want two flats to be perpendicular if and only if their front parts are
perpendicular in the Cartesian sense. To do that, we need some auxiliary definitions:

1.1. Orthogonal directions

Let a,b be two directions of T, that is, two subflats of 2. By definition, a
and b are orthogonal if they are polar to each other. In terms of the homogeneous
model, this means a and b are orthogonal subspaces of R" contained in the sub-
space z, = 0. In particular, two points z,y of Q are orthogonal if and only if their
homogeneous coordinates satisfy z,y, +---+z,y, = 0.
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1.2. Normals

Let a be a proper flat of T,. Its normal direction (or simply its normal) is
the improper flat norm(a) satisfying

dir(a) L norm(a)
dir(a) V norm(a) = .

(1)

In other words, norm(a) is 2 [ dir(a), the right polar complement of a relative to .
This is the flat set consisting of all points at infinity that are orthogonal to dir(a).
It follows from this definition that

norm(a) = (O V dir(a))"

aVnorm(a) = T

(2)

v

This definition of “normal direction” generally agrees with the usual one, as applied
to the straight model, except for our convention of using points at infinity to repre-
sent directions. For example, the normal of a line [ of T, is a point at infinity in the
direction 90° counterclockwise from I, as seen from the front range. See figure 1.

norm(!)

Figure 1. The normal of a line.

The normal norm(r) of a proper plane 7 of T, is a point at infinity whose direction
is perpendicular to 7 (in the straight model of T,). The orientation of norm() is
derived from that of 7 by the right-hand rule, as shown in figure 2. The normal of
a line [ in T, is a line at infinity, which is the direction of any proper plane that
is perpendicular to /, in the usual sense. The line ! and its normal are positively
oriented in T,. See figure 3.
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front range back range

Figure 2. Normal of a plane in T,.

front range back range

Figure 3. The normal of a line in T,.

Observe that norm(r) is on the negative side of 7, but norm(l) is on the
positive side of /. In general,

aonorm(a) = +1

norm(a)oa = (_1)rank(a)corank(a).

In particular, norm(h) o h = (—1)” for any hyperplane h of T,,.

1.3. Perpendicular flats

In general, I will say that two proper flats a, b are perpendicular if dir(a) C
norm(b), or norm(a) C dir(b). For example, two proper lines [,m of T, are perpen-
dicular if and only if their directions are two polar points of Q2. In the straight model,
this condition means there is a plane that contains one line and is perpendicular to
the other. Note that two perpendicular lines of T; may or may not intersect. See
figure 4.

A line is perpendicular to a plane of T; if and only if the normal direction

of the plane is the direction of the line, or its opposite. In the straight model, this
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dir(m) = norm(l)

dir(l) = norm(m) front norm(l)

range

Figure 4. Perpendicular lines of T, and T.

agrees with the usual definition. See figure 5.

dil‘(l) = norm(n—) B VR

Figure 5. Perpendicularity between a line and a plane of T;.

Two planes of T, are perpendicular if and only if their normal directions are polar
(orthogonal) to each other. This is equivalent to saying that the directions of the
two planes (two lines at infinity) meet at a right angle on the sphere at infinity €.
See figure 6.

Since normals and directions are complementary with respect to {2, we have
dir(a) C norm(b) & dir(b) C norm(a). It follows that perpendicularity, like paral-
lelism, is a symmetric relation: a is perpendicular to b if and only if b is perpendicular
to a.

Note that if a is perpendicular to b, and b to ¢, we cannot in general conclude
that a is parallel to c. For a counterexample, let @, b, and c be the Cartesian axes of
T,. However, the conclusion a || b is legitimate for some rank combinations, namely
when rank(a) > 1 4 corank(b) > rank(c), or rank(a) < 1 + corank(b) < rank(c).
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Figure 6. Perpendicular planes of T,.

Two common instances are when a, b, ¢ are lines of T,, or a and c are lines and b is
a plane of T.

Formulas for many familiar constructions of Euclidean geometry follow read-
ily from the definitions above. For example, the flat of maximum rank that is per-
pendicular to a proper flat ¢ and passes through a proper point p is given by the
formula p V norm(a). In particular, the perpendicular bisector of a segment pq is
given by m V norm(p V q)), where m is the segment’s midpoint. The perpendicular
projection onto a flat a is the map

z + (z V norm(a)) A a.

And so forth.

2. Two-sided Euclidean spaces

All concepts of Euclidean geometry can be derived from the notion of per-
pendicularity. As we saw, perpendicularity in turn can be derived from the polarity
predicate L, restricted to the points of ). We can generalize these definitions to
arbitrary two-sided spaces by letting any fixed hyperplane & play the role of €, and
any suitable relation 7 on flats of & play the role of the polarity predicate. Formally,

Definition 1. The canonical two-sided Euclidean space of dimension v is the triple
E, = (T,,Q,1,), where L is the standard polarity relation restricted to
subflats of .

Definition 2. A two-sided Fuclidean space is a triple (S, h, p) isomorphic to the
canonical space E, for some v.

Here “isomorphic” means there is an isomorphism 7 from the affine space (S, k) to
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A, =(T,,Q,), such that = py & (zn) L (yn), for all points z,y of h. Note that a
two-sided Euclidean space is a two-sided affine space with the extra structure given
by the orthogonality predicate p.

Definition 3. A subspace of an Euclidean space (S, h, p) is a triple (T, g,0) where
T is a projective subspace of S, g is TAgh, and ¢ is the restriction of the relation
p to the subflats of g.

As in the affine case, there are three other spaces with the same point set as E, and
the same points at infinity, namely (£T,, £, Lg). Of these only (=T,, =, Lg) is
a subset of E , denoted by —E,,.

3. Euclidean maps

In classical geometry a Euclidean map can be defined as a map that preserves
congruence: two segments have equal length if and only if their images have equal
length. Examples are translations, rigid rotations, and uniform scalings. Euclidean
maps also preserve perpendicularity, and indeed they are the only maps that do so.
Therefore, it is reasonable to use this property to define Euclidean maps of T :

Definition 4. A Euclidean map or similarity between two Euclidean spaces E =
(S,k,p) and F = (T,g,0) is an isomorphism ¢ from S to T' that changes the
polarity relation p into o.

That is, Sp = T, hp = g, and (z¢) o (yp) <& z p y for all z,y C k.
In words, a Euclidean map is a projective map that takes orthogonal directions to
orthogonal directions. Two obvious examples of Euclidean maps are the translations
and uniform scalings defined in chapter 15. Those maps keep all points of § fixed,
and therefore trivially preserve the polarity relation among those points.

Note that every Euclidean map is affine, but not vice-versa. For example,

100
011 (3)
001

is a map that takes the orthogonal directions [0,1,0] and [0,0,1] to the directions
[0,1,1] and [0,0,1], which are not orthogonal.
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3.1. Analytic characterization

Analytically, a Euclidean map of T, has a matrix of the form

T..0 0 0 o0
mg m; my, oo M,
1 1 1
0 my; m, - m,
M=|0 mim?... m? (4)
14 14 14
[ 0 m{ my .- my |

where mJ and its cofactor are positive, and rows 1 through v are orthogonal vectors
with identical length A. That is,

> m}cmfC =0 and ) (m;.c)2 = \? forl<i<j<w. (5)
1<k<v 1<k<v

It is easy to check that any map of this form takes 7, to T,  to Q, and preserves
polarities on ). Conversely, it is easy to show that any map that preserves the
polarities between all points [e'] and [e’ + €], for 1 < i < j < n, must be of this
form.

Now consider a map M that satisfies (4) and (5) but has a negative coefficient
m or a negative determinant. Such a map still takes improper points to improper
points and preserves their polarities, but may reverse the orientation of T, or Q. That
means M is a map from E, to one of the four Euclidean subspaces (+T,, £0, L).
For example, consider the vector negation map N which sends every vector of \'S
to its additive inverse, and the antipode map A, which sends every point to its
antipode:

Note that
T N =-"T, T A=-"T, T,AN =T,

QN=-"0 QA=-'Q, QAN=Q,. ™

v

So, N is a map from E, to =*E , and A is a map from E, to -*(=T,, Lg).
In what follows, a “Euclidean map of a space E = (S, h,p)” means a Eu-
clidean map from a space E to any of its four related spaces (£S5, £k, p).
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3.2. Isometries

An isometry is a Euclidean map that preserves volumes. Analytically, this
condition means that the quantity A% in formula (5) is (mJ)%. Translations are
obviously isometries, and so are the maps /N and A defined above. It is easy to show
that every Euclidean map is the composition of an isometry with a uniform scaling.
More precisely, a map of E, that enlarges the volume of every simplex by a factor

of 7 is the product of an isometry of E, and a uniform scaling by |T|l/n.

3.3. Rotations

We may define a rotation as an isometry of a space to itself, that is, an
isometry that preserves the orientations of the universe and of the horizon. An
example is any orthonormal transformation of R” with determinant +1, applied to
both ranges of the straight model. However, rotations also include the translations
of A, various helical (screw-like) motions, and also some maps that swap the front
and back ranges, such as the antipodal map A above (when v is even), or the map

T_1 -
0
-1

0 '1

L Al

For any pair of distinct axes ¢,7 in {1,r}, and any angle 6, the map

i J
_ ! ! ]
! 0
1 - cos § —sind
(9)
j — —sind cos 0
| 1|

rotates each range of the straight model by the angle 6 around a (v — 2)-dimensional
“axis,” the flat (e’ v e’)".
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Note that rotations are closed under composition and inverse. In fact, every
rotation can be written as the product of a translation, a rotation that doesn’t move
the origin, and zero or one instances of the rotation (8) above (or any other fixed
rotation that swaps the front and back ranges).

3.4. Reflection across a hyperplane

Isometries that map the universe S to =S are called reflections. An impor-
tant example is reflection across a proper hyperplane h = (h) = (h,.. ") of E,.
Let g be the hyperplane co-parallel to h that passes through O, that is, ¢ = (g)
where g = (0,h!,.. h*). Then the ( Euclidean) reflection across b is by definition the
map

R, = [(gh')I —2h"g]. (10)
Expanded, this formula becomes
[ A2 — 2hOh1 —2h002 ... —2h%07 ]
0 AZ—2pla! —2h'R% ... — 2R'RY
R, = ; ~2h%R1 A% — 2p%R2 : (11)
| o — 2R} = |

where A2 = gh'f = k=1 hXR*. Tt is straightforward to check that R, is an isometry,
that it keeps every point on k fixed, and that it swaps the point norm(h) = [~g] =
[0, —h!,.. —R¥] with its antipode. See figure 7.

Figure 7. Reflection of T, across the line (1,-2,-3).
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Note that all coefficients of R, in formula (11) are homogeneous second-degree
polynomials in the coefficients of h. This means the orientation of & is irrelevant,

i.e. Rh = R‘!h'

3.5. Reflection across ()

Another example of reflection is the map

r_1 -
0
1
Rq = AN = _ (12)
Il 0 1]
which in the straight model sends the point (z,,..z,) of the front range to point
(—z,,..—z,) of the back, and vice versa. That is, it sends vector z of the two-sided

vector space V, to the antipodal of its additive inverse, the vector —(—z).

In the spherical model, this map simply mirrors the unit sphere across the
plane , = 0 of R". We may call this map reflection across (). Note that it takes
E, to the space (=T, 2, Ly). See figure 8.

j

L

proembecadana

L
1
I/

Figure 8. Reflection of T, across Q.

The product of two reflections is a rotation. For example, the product R, R,
where h and g are parallel hyperplanes, is equivalent to a translation by twice the
displacement from A to g. If h and g intersect in a proper hyperline [, the product
Ry R, is (in the straight model) a rotation of each range around the “axis” [, by
twice the angle between h and g. In particular, reflection across two perpendicular
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hyperplanes gives a rotation of 180° around their common hyperline I: every point z
is mapped to the point y such that [ is perpendicular to the segment zy, and passes
through its midpoint.

This holds in general for the result of reflecting T, across k pairwise perpen-
dicular hyperplanes, with [ replaced by the flat set of co-rank & that is their common
intersection. It is customary to call the resulting map R, the reflection across [, even
when it is a rotation (k even). For example, by reflecting across all the proper main
hyperplanes (el), (e?), ..., (e¥), we get the reflection across the origin,

It can be shown that any isometry of E  is the product of at most v + 1 reflections
across proper hyperplanes, and at most one instance of R,. The isometry is a rota-
tion or a reflection depending on whether the total number of terms is even or odd,
and it swaps the back and front ranges if and only if it includes R,,.

4. Length and distance

Although we defined Euclideans maps as transformations that preserve per-
pendicularity, they turn out to preserve distances as well. To make this statement
meaningful, we must define “distance” in a two-sided Euclidean space. It turns out
that there are at least two distinct definitions, each with its own advantages and
disadvantages. This is another instance of the “natural versus absolute” dilemma
we faced in the definition of frames and cross ratio.

4.1. Distance through isometries

Let’s consider the two-sided line 7] embedded in T, in the standard way,
that is, as the line O V el. For any vector z of V, except +0, there is exactly one
unoriented hyperplane A of T, such that the reflection of z across h lies on the
closed half-line of T, that goes from [1,0] through [1,1] to [—1,0]. In the straight
model, that hyperplane is the bisector of the angle determined by the line 7] and
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the line O V z. See figure 9.

o len(z) T,
Figure 9. Reflecting a point of T, onto Tj.

The matrix of the reflection is

1 0

0 =z,/A

0 z,/A (14)
[0 z,/A]

where A = /z,z; + -~ 7,Z,. By definition, the length of the vector x is the image
of z under this map, namely

len(z) = [z, \/xlxl +-z,z,] (15)

Note that the length is sensitive to the sign of the weight coordinate, and no other.
Specifically, the length of a front vector is a positive front number, and that of a
back vector is a negative back number:

len[1,1,1] = [1,V2] =V2

lenl,-1,-1]=[1,V2] =+V2
len[~1,1,1] = [-1, V2] = ~(—=v2)
len[-1,-1,-1] = [-1,V2] = =(-V2).
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4.2. Inner product of vectors

Another equivalent way of defining length in E, is through the inner product
in two-sided vector spaces. From the Cartesian coordinate formulas, the inner or dot
product of two front vectors z and y of V is given by

T T Z9Y+ -t 2.y,

— . 1
Tey zeve (16)

This can be written as the two-sided fraction

[xoyo’ T,Yy +$2y2+"'+%yu]- (17)

Note that z e y is a front number if both vectors are on the same range, and a
back number if they lie on different ranges. In either case, the numerical value
(disregarding range) is the classical dot product of the two vectors (ignoring their
ranges). Said another way, sending z or y to its antipode also sends =  y to its
antipode, but doesn’t change its numerical value. Note that the dot product is
infinite if any operand is infinite, except that the dot product of two orthogonal
infinite vectors is the null object 0 = [0, 0].

Note that the dot product of z with itself is precisely the square of the length
of z, as defined by formula (15).

4.3. Euclidean distance

The Euclidean distance between two points [z,,..z,] and [y,,..y,] of the
front range is the length of their difference as vectors. From (15) and from the
formula for vector difference (16:6), this boils down to

dist(z,y) = len(z — y)

= len[ To¥Yo» YoT1 — ZTo¥1r YoT2 — To¥szs -+ -5 YT, — ToY, ] (18)

= [ ToYos \/(yoxl - fcoy])z + (yozy - moyy)2 ]

Note that
dist(z,y) = dist(y, z)

and
dist(z,~y) = dist(—z,y) = —(—dist(z,y))

for all x,y. Also, dist(z,z) = 0, dist(z, ~z) = -0 for any proper point z. From the
properties of vector sum in V, it follows that the distance as defined above is a
front positive number if £ and y are on the same range, a back negative number if
they are in opposite ranges, plus infinity if one of them is at infinity, and undefined
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if both are at infinity. More precisely, the distance increases monotonically from 0
to co as y moves away from z on the same range, and then increases monotonically
from —oo to -0 as y moves on the opposite range from  towards —z. See figure 10.

Figure 10. Distances from (2,1,3] on the two-sided plane.

Note that the curves of equal distance in figure 10 project as concentric circles in
the straight model.

4.4. Closeness and shortness

This jump from 400 to —oo as points move to opposite ranges may be an
inconvenience in some geometric algorithms, since it means the numerical distance
does not increase monotonically as the two points move apart. In such cases, we
can obtain a monotonic measure of separation by taking the numerical inverse of
formula (18), which we may call the closeness of the two points:

cls(z,y) = 1/ dist(z,y)

= \/(yol'l —zoyy)2 4 + (YT, — To¥,)? > ToYo ] (19)

This quantity is always a front or infinite number. It decreases monotonically from
+00 to —oo as y moves straight away from z towards ~z (or vice-versa). It is positive
if £ and y are on the same range, zero if one of them is at infinity, negative if they
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are on opposite ranges, and undefined if both are at infinity. See figure 11.

o1~

Figure 11. Closeness to [2,1,3] on the two-sided plane.

Similarly, we can define the shortness of a vector x of V, as the inverse of its length,
that is, the closeness of £ and the front origin:

shr(z) =1/ len(z) = [\/xlxl +---+z,r,, 2 ]. (20)

The shortness decreases monotonically from +o0o to —oo as z moves straight away

from O towards —O. It is positive for front vectors, zero for infinite vectors, and
negative for back vectors.

4.5. Congruence and length ratio

Strictly speaking, length and distance are not proper concepts of Euclidean
geometry. They depend on a distinguished unit of length, and are not conserved by
arbitrary Euclidean maps. Indeed, our definitions of length and distance are based
on some concepts that cannot be derived from E itself, such as the canonical em-
bedding of T, the homogeneous coordinates of a point, and so on. As a consequence,
we cannot extend those definitions to general Euclidean spaces. What we can do in
abstract Euclidean geometry is measure the ratio of two distances, and in particular
check if they are congruent. This ratio is given by the formula

[aobo\/}:::l(xoy,- — ¥o%;)? %yo\/ZZ:l(aob.- — bya,)? ]

This ratio is conserved by arbitrary Euclidean maps. It is a front positive point of

T, if and only if a lies on the same range as b and z lies on the same range as y.
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5. Angular measure and congruence

In classical Euclidean geometry we can measure not only lengths and dis-
tances, but angles as well. We can compare the angles between two pairs of lines
by superimposing one on the other by means of a Euclidean transformation. In the
same way we can compute the ratio between two angles, and the measure of an
angle.

Extending these notions to two-sided geometry is relatively straightforward.
In fact, we will see that in two-sided geometry angles can be handled somewhat
more elegantly than in classical geometry, because they can be treated as points of
the space, and hence operated upon with the geometric tools we already have at our
disposal.

5.1. Angles as points at infinity

Observe that the angle between two proper lines is only a function of their
directions, and not of their absolute positions. Therefore, measuring the angle be-
tween two lines of E, corresponds to measuring the separation between two points
at infinity. That is, the angular metric for lines of E, is equivalent to a distance
metric on ).

Let z = [0,z,, z,] be a point at infinity of T,. The angle between the cardinal
direction e! = [0,1,0] and z is

arc tan(z,/z,) if z; >0,
arg(z) = { sign(z,) - (7/2) if z, =0, and (21)

arc tan(z,/z,)+7 ifz; <O0.

This function is available in most programming languages as a two-argument arc-
tangent procedure.

Of course, the angle arg(z) is determined only up to a multiple of 27 radians.
Measuring angles by (21), or any real-valued formula, has the inconvenience that it
introduces two spurious pieces of information: the unit of angular measure (radians,
degrees, cycles, etc.), and the disambiguating criterion that picks one value out of
the infinitely many equivalent ones. For many uses, it is both simpler and cleaner to
represent angles as points of 1,, without reducing them to real numbers. That is,
we let the point [0, 2, z,] represent the angle between the vectors (1,0) and (z;,z,)
of R2. In other words, we represent the angle a by the point [0,cos a, sin a].
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5.2. Angle arithmetic

With this representation, it is still possible to add, subtract and compare
angles using only the four arithmetic operations. Let us denote the operations on
angles by o + 3, o = 8 and Za; their corresponding formulas are

0,z,,z,] + [0,4,9,] = 0,2,y; — z3y5, 2o, + 1Y)
[07 1’317:’32] = [O,yl, yz] = [0s$1y1 + 2y, Ty — xlyz] (22)
[0, z,, z,] = [0, z,, —z,].

To understand these formulas we have only to reinterpret the angle 0,z,,z,] as
the argument of the complex number z, + iz,. Then equations (22) are simply the
formulas for multiplication, division, and conjugation of complex numbers, except
that the formula for £ = y omits division of the result by the positive real number

VZeTo T 2,21vYeYo T ¥191-

For example, the angle between two lines I and m of T, is simply the angular
difference between their directions, that is, dir(m) = dir({). If I = (1% {!,1?) and
m = (m% m!,m?), we have dir(l) = [0,/%, ~1'] and dir(m) = [0, m?, —m!], and
therefore

ang(l,m) = [0, m*® + m!'I!, m2I' — m!1?). (23)

This formula can also be derived by computing the angular difference between nor-
mals, instead of directions. Note that the angle between two lines of T, as defined
above ranges over all points of {2,. In higher-dimensional spaces, however, the angle
between two intersecting lines is ambiguous, because there is no consistent way to
orient the plane containing them. That means we cannot distinguish an angle from
its negative. Given two directions z = [0, z,,..z,] and y = [0,y,,..y,], the best we
can do is compute the co-sine of the angle between them,

1% +--- +xuyu
Va ottty

cosang(z,y) = (24)

For consistency, we may want to represent this angle as the point [0, ¢, V1 — ¢%] of
1,, where ¢ = cosang(z,y). Note that this angle is always between 0 and = radians,
inclusive.
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6. Non-Euclidean geometries

In the same spirit, we can use oriented projective geometry to emulate ori-
ented versions of the classical non-Euclidean geometries. For hyperbolic geometry,
we use a two-sided version of Beltrami’s model, consisting of all flats that intersect
the unit disk of the front and back ranges. That is, we take all points [z, .. z,] such
that zlzd + .- + z,r, < z,%,, and the flats obtained by joining those points. See
figure 12.

Figure 12. The two-sided hyperbolic plane.

The hyperbolic maps are then defined as the projective maps of T, that take this
set to itself. Those maps can be used to define hyperbolic congruence and perpen-
dicularity, and hyperbolic metrics for distances and angles.

For elliptic geometry, we use the whole T,, and define the elliptic maps
as those that preserve the standard polarity L. As in the hyperbolic case, those
maps can be used to define the distance metric of elliptic geometry, which is simply
the great-circle distance on the spherical model of T,. In fact, measuring angles
in the Euclidean space E, is equivalent to measuring distances on (2, viewed as
the elliptic space of dimension v — 1. The equivalence is made evident by the map
[0,z,,..2,] = [z;,..7,], which takes 2, to T,_,. These representations are rea-
sonably efficient, and most of the data structures and operations of T, (join, meet,
projective transformations, etc.) can be used for non-Euclidean geometry without
modification.

7. Final remarks

The summary of the last three chapters is that it is possible and convenient
to emulate a variety of geometrical spaces in the two-sided space T, in a way that
retains the main advantages of the latter, such as the ability to distinguish antipodal
directions and plus infinity from minus infinity. There are still many elementary ge-
ometric problems we can’t discuss for lack of space (such as, for example, computing
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angles and distances between arbitrary flats). Hopefully, the reader will have little
trouble in figuring out the necessary formulas on his or her own.
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Chapter 18
Representing flats by simplices

The analytic model of two-sided spaces has so far been limited to the repre-
sentation of points (by homogeneous coordinates) and hyperplanes (by homogeneous
coefficients). In this chapter we are going to consider one possible extension of these
concepts to flats of arbitrary rank, namely the simplez representation. As one might
expect, this representation has an analog in the unoriented framework. Compared
to that, the handling of orientations requires no additional arithmetic: we have only
to pay a bit more attention to the signs of coordinates and to the order of operands.

1. The simplex representation

A straightforward way to encode a flat a with rank k € {2..n — 2} is the
simplex representation, consisting of a k X n real matrix

0o 0 0

ao 0,1 .o a”
(1)

Kk _K K

(10 al PN a”

whose rows are the homogeneous coordinates of the vertices of any positive simplex
of a. As we saw in chapter 4, two simplices are equivalent (determine the same flat) if
and only if their matrices a and b satisfy a = Kb, where K is some k X k matrix with
positive determinant. In other words, the flats of T, with rank k can be identified
with the equivalence classes of k x n matrices under this relation.

I will denote the class of all matrices equivalent to (1) by using square
brackets instead of round ones. That is, for any proper simplex a’,..a*, I will write

0 0 0

ay a; ... a,
aA®valv...vaes =

K K K

ag ay ... a;

where a* = [af,, . aj,]. I will call any member of this class a coordinate matriz for the
flat a® V -+ -V a*.
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In particular, the universe T’ of T, is represented by the class of n x n
matrices with positive determinant, and its opposite =1 by those with negative
determinant. The vacua A and —-A must be handled as special cases, since the
obvious representation (a 0 X n matrix) doesn’t distinguish between them.

Of course, the simplex representation can also represent unoriented flats.
We have only to regard two coordinate matrices equivalent if they are related by a
k X k matrix with nonzero determinant.

2. Manipulating the simplex representation

2.1. Simplex orientation

Let s = (3% ..s") be a simplex of T, with n vertices. The orientation of s
is given by the sign of the determinant of its coordinate matrix. That is,

0 0 0
80 sl .« e SV
IS S U
. 0 v . 0 -1 v
sign(s’,..s"”) = sign
v 14 174
so sl . SV

Many interesting properties of the sign function follow immediately from this def-
inition. For one thing, transposing any two vertices of a simplex reverses its sign,
as does replacing any vertex by its antipode. A cyclic permutation of all vertices
preserves the sign of the simplex if the rank n is odd, and reverses it if n is even. This
is because a cyclic permutation of n objects is equivalent to n — 1 transpositions.

In particular, if (p; ¢; r) is a positive triangle of T,, so are its cyclic permuta-
tions (¢;7;p) and (r;p; q). On the other hand, if (p;¢;r;s) is a positive tetrahedron
of T, then (g; r; s; p) and (s;p; ¢;7) are negative tetrahedra, whereas (r; s; p; q)isa
positive one.

2.2. Join, meet, and relative orientation

Computing the join of two flats in the simplex representation is quite easy:
we simply stack the coordinate matrix of one on top of that of the other (provided
their ranks add to at most n).

However, other operations are substantially harder. To check whether two
matrices s,t represent the same flat, we have to test whether there is a k x k real
matrix A with positive determinant such that s = At. To compute a" or a” we have
to find a basis for the orthogonal complement of the row space of the matrix of a.
To compute the meet of two flats, we have to find a suitably oriented basis for the
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intersection of the row spaces of their matrices. To test the relative orientation of
two flats, we have to compute the determinant of the n x n matrix resulting from
their join.

These computations can be carried out in practice by Gaussian elimination
and similar numerical methods, with roughly O(nk?) running time. The algorithms
are identical to those of unoriented projective geometry, except that we must be
careful to preserve the orientation implicit in the order of the rows. For example,
when swapping two rows of a simplex we must multiply one of them by —1.

3. The dual simplex representation

Recall that an hyperplane & of T, can be represented by n homogeneous
coefficients h’, such that for any point z = [z,,..z,] we have

zoh =sign(zgh® + z k' + - + 2, b*). (2)

Hyperplane coefficients are the basis of the dual simplex representation for flats
of arbitrary rank. The idea is to represent a flat a of T, with co-rank k by the
coefficients of k hyperplanes hg, ..k, whose meet, in that order, is the flat a. It is
convenient to write those numbers as an n x k coefficient matriz

0 0
ao LY aK
%
) 3)
14 1 4
ag ... a;

where column j gives the coefficients of the jth hyperplane.

Observe that in this case we have a™ = (ao)’4 VeV (an)". The homogeneous
coordinates of the point (a'-)'* are the coeflicients of the hyperplane a;, viewed as a
row vector: (a;)? = [a?,..a?]. It follows that the (primal) simplex representation of
the flat a is the k x n matrix whose rows are the columns of (3), in the same order.
We conclude that a coefficient matriz for a flat a is the transpose of a coordinate
matriz for the flat a™.

From this it follows that two coefficient matrices a, b denote the same flat of
f';”k if and only if there is a k¥ X k matrix K with positive determinant such that
b= aK.I will denote the class of coefficient matrices equivalent to (3) by horizontal
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square brackets above and below the matrix. That is, I will write

—n n)

0 0

ay ... a,

a o

ayANayA---ANa, =
14 v
ag ... a,
where a; = (a?,..a”). As expected from duality, the positive vacuum of T, is

represented by the class of n X n coefficient matrices with positive determinant, and
the negative vacuum by those with negative determinant. The universes +1 and =1
must be handled as a special case, since their coefficient matrices have zero columns.

Note that every point of a flat is on every hyperplane containing that flat. We
conclude that if A is the k X n coordinate matrix of a flat, and B is its n x (n — k)
coefficient matrix, then the product AB is the zero matrix of size k x (n — k).
Conversely, if this is true of two full-rank matrices A and B, then they denote the
same flat, except for orientation.

Symmetrically, the dual simplex representation makes it quite easy to com-
pute the meet of two flats: it suffices to glue their coefficient matrices side by side.
On the other hand, other operations (including join) require some variant of the
Gaussian elimination algorithm.

3.1. Mixed representation

The simplex representation is also highly redundant, especially when k is
close to n. The condition for equivalence stated above implies that the set of all flats
of rank k in T, has dimension kn — k%, and yet their coordinate matrices have kn
coefficients. In particular, a hyperplane has n(n —1) coordinates, even though it can
be represented by only n coefficients.

To avoid this high storage cost, we can use a mized representation, in which
a flat is represented by either a simplex or a dual simplex, whichever is smaller. That
is, we use the coordinate matrix if the rank k is < n/2, and the coefficient matrix
when k > n/2 (when k = n/2 we can use either form). This mixed strategy reduces
the wasted storage, but doesn’t eliminate it completely. The maximum waste now
occurs with flats of intermediate rank k ~ n/2, which have = n/2 coordinates or
coefficients, but only ~ n2?/4 degrees of freedom. One advantage of this strategy is
that the polar complement operations I and - become trivial.
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3.2. Converting between coordinates and coefficients

It is often necessary to compute the dual matrix of a flat from the primal one,
or vice-versa. In particular, if we use the mixed representation described above, we
will often have to do this conversion as part of join or meet operations. As discussed
above, this problem can be reduced to that of computing the coordinate matrix of
a" given that of a. This can be done by Gaussian elimination.

4. The reduced simplex representation

A more promising way to reduce storage costs and the ambiguity of the
matrix representation is to represent each flat by some “canonical” simplex. If we
choose canonical simplices with matrices of a particular simple form, we can usually
encode the latter with far less than kn elements.

In particular, we may consider the reduced simplices whose coordinate ma-
trices have the form described below. I say that a k x n matrix a is reduced if there
are k integers 0 < jy < j; < -+ < j, < v (the pivot columns) such that, for all ,

(i) af, is £1if =0, and 1 if i > 0.
ii) a* is the only nonzero element in column Jis
Ji 1

(iii) a}, is the first nonzero element in row i, for all i.

For example, here is a reduced simplex of rank 4 in T,:

.jo j1 j2 j3
! ! L
0o 1EE o[ o o[
0 0 0 0o 1[3] o of37] )
00 0 0 0 0 1 of6]0
00 0 0 0 0 0 1[9[]]

Conditions (i) and (ii) say that the k x k submatrix of a formed by columns
Jo»--J, 15 the identity matrix, except that its first element may be —1. Condition
(iii) implies that any other matrix equivalent to a that satisfies (i) and (ii) will have
a sequence of pivot columns that is lexicographically larger than jg, ... It follows
that there is at most one reduced matrix equivalent to a given one, or, in other
words, that every flat contains at most one reduced simplex.

On the other hand, we can transform any given simplex to an equivalent
reduced one, by a straightforward variant of the Gaussian elimination algorithm. The
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only novelty is that during the algorithm we must watch for operations that reverse
the orientation of the simplex (namely, swapping of two rows and multiplication of
a row by a negative number), and compensate for them by also negating the first
Tow.

This shows we can represent an arbitrary flat of T, with rank k by a triplet
(J, R, s), where s is a sign bit giving the value of ago, J is the set of pivot columns,
and R is a linear array containing the remaining variable elements of the reduced
simplex, namely a} for j > ¢,5 ¢ J. These elements are shown boxed in example (4).
This information occupies at most k(n — k) floating-point words plus n + 1 bits of
storage. (Again, we are not counting the space needed to store the ranks k£ and n.)

The operations of meet, join, and relative complement can be computed by
reconstituting the operands to the full simplex representation, computing a simplex
for the result, and reducing it as described above. It is possible to combine all those
steps and get algorithms that work directly with the reduced operands and reduce
the result on-the fly; however, the relatively modest savings in space and arithmetic
operations one would obtain this way must be balanced against the cost of increased
program complexity.
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Chapter 19
Pliicker coordinates

Pliicker (or Grassmann) coordinates are another way of extending homo-
geneous coordinates to flats of arbitrary rank. Compared to the various flavors of
simplex representation, Pliicker coordinates have the advantage of being mathemat-
ically more elegant, and the disadvantage of requiring more storage and computer
time. Therefore, Pliicker coordinates are valuable mostly in theoretical work, and in
computations restricted to two- and three-dimensional space.

1.1. The Pliicker coordinates of a line

In chapter 7 we saw that a flat a of rank r is uniquely determined if we
know its orientation relative to all flats of co-rank r. For example, a line [ of T, is
uniquely determined by the values of / o h when h ranges over all lines of T,. Let
(u;v) and (z;y) be simplices spanning [ and h, respectively. The value of [ o h is
then given by
Ug Uy Uy Uy
loh =sign %o P12 s .
Lo Ty Ty Ty

Yo Y1 Y2 Y3

We can expand this determinant into a sum of six terms, each being the product
of a 2 X 2 minor from the first two rows, and the “complementary” minor from the
bottom two rows. That is,

loh =
sign( Lo1yhyaay — Lozy sy + L2y Prosy + losyPpazy — Lasyhiony + lasyBiony )

where

u; U,

; T, T

i Y
Yi Y;

lijy = o v, and kg = :

It follows that the line [ is uniquely determined by the six minors 1{01}, 1{02}, ey 1{23}.
These are the Pliicker coordinates of the line.
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Observe that the choice of the simplex (u;v) affects the Pliicker coefficients
of { only by a positive factor. That is, if (p;¢q) = A(u;v) for some 2 x 2 matrix A
with positive determinant, then the Pliicker coefficients m {ij) computed from (p; q)
will satisfy My} = |A| l{,-j}. For example, the line [ determined by the simplex

(639%) (1)

has Plicker coordinates

12| _|10}_ _
’{01}—|02“ 2 ’{02}—|01’— 1 ’{12}—l21

13 123 03] _
1{03}—'00’— 0 ’{13}“20“‘6 ’{23}‘~10}—‘3'

This six-number representation of lines doesn’t seem to be well known in the com-
puter graphics community. One notable exception is Patrick Hanrahan’s geometry
calculator!l]. Lines are commonly represented as a pair (point, direction vector), as
a pair of points, or as the intersection of two planes. In three dimensions, all those
schemes are generally less elegant and computationally less efficient than Pliicker
coordinates.

1.2. Pliicker coordinates for general flats

The discussion that led us to the Plicker coordinates of a line is equally
valid for a flat a of arbitrary rank k in any space T,. By the separation theorem,
a is uniquely determined by the values of a © A where h ranges over all flats of T,
with rank m = n — k. Therefore, if s is any positive simplex of a, and z a positive
simplex of A, then

0 0
Sp 8] cev - s,
K K K
. 30 Sl ...... SV
aoh = sign . (2)
0 Tp -oe on y
" u
TG Ty oo enn T

We can expand the determinant (2) into a sum of terms, each being the product of
a k x k minor determinant from the first k£ rows, and an m x m minor determinant
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from the last m rows:

aoh= > (—1)|I>J|a1h (3)
IuJ={0..v}
[I|=k,|J|=m
where
0
Siy e S
a{io,il,...,i;} = 3 : (4)
s:-‘o s
and
0 0
Tiy wov Tj,
h{jOvjl’-"ju} = E E : (5)
' :c;fo x;-‘“

The exponent |I > J| in formula (3) is the number of pairs i > j with : € I and
J € J. (The latter is simply the number of inversions in the permutation of {0..v}
that consists of all elements of I followed by those of J.)

From formula (3) we conclude that a is uniquely characterized by the (Z)
minor determinants a;. Those numbers are by definition the Plicker or homogeneous
coordinates of a. The set {i,7,,...,1,} of the columns included in the determinant
(4) is the label of that coordinate. The labels range over all k-element subsets of
N ={0,..v}.

From linear algebra we know that the determinants (4) are all zero if and
only if the rows of the matrix

0 0 0
30 31 e sy
0o 0 0
30 31 cee SV

are linearly dependent, that is, if the simplex s is degenerate. Therefore, the Pliicker
coordinates of a flat are not all zero.

As in the case of lines of T;, the particular choice of the representative
simplex s°,..s" (and any scaling of the homogeneous coordinates of each s*) affects
the Plucker coordinates of a only to the extent of multiplying all of them by some
positive real number. We conclude that two flats of T, are the same flat if and only
if their Plicker coordinates differ only by a positive factor.

Because of this scale ambiguity, it doesn’t make sense to refer to the mag-
nitude of a Pliicker coordinate in isolation, but only to a complete set of them. We
might consider normalizing the coordinates in some way (e.g., so that their squares
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add to 1); however, as in the case of point coordinates, this normalization is usually
not worth the cost.

1.3. The natural order of coordinates

In formulas and in computer programs it is more convenient to write the
homogeneous coordinates of a flat in some canonical order, so that the labels can be
omitted. A convenient choice is to enumerate the labels in increasing order of their
binary value.

By definition, the binary value of a finite set X of natural numbers is
binvX = ¥ . 2%. Note that if we write binvX in base two, then the elements

of X are the positions of the “1” bits, from right to left. For example,
6 43 O
|

binv {0346} = 1011001, = 89,,.

When dealing with Plucker coordinates we have often to consider the collection of
all subsets of N with a fixed size k. I will denote by k:i the ith subset of this list,
in order of increasing binary value, starting from 7 = 0. If k:2 = X, I will call ¢ the
indez of X, and write 1 = #X. Note that #X is usually different from (and much
smaller than) binv X. For example, the list of the three-element subsets of N and
their binary values are

30 31 32 33 34 35 36 37 38 39 310 ---
{012} {013} {023} {123} {014} {024) {124} {034} {134} {234} {015} ---
7 11 13 14 19 21 22 25 26 28 35 ---

In general, a set I precedes another set J in this ordering if maxI < maxJ, or
max ] = maxJ and I\ {maxI} precedes J\ {maxJ}. We can obtain this ordering
also by writing each subset as a decreasing sequence of numbers, and sorting those
sequences in increasing lexicographic order. Note that for any j all subsets of {0 .. j}
occur together at the beginning of the list, and before any subset involving elements
greater than j.

I will use the notation [z, 2,, ...]F for the flat of T, with rank k whose
Pliicker coordinates are zg, z;, ..., listed in the natural order of their labels. There-
fore, the label set of z, is k:i. For example, I will denote the line of example (1)
as

I=[2 1, 2, 0, —6, =3 %
T
{01} {02} {12} {03} {13} {23}
With this convention, the uniqueness and equivalence properties of Piicker coordi-
nates can be restated as follows: For any k, [xo,xl,...]k and (yg, 9y, - - JF are the
same flat if and only if z, = ay; for some a >0 and all 3.
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1.4. Points and hyperplanes

Note that when k£ = 1 this notation coincides with the one we have been
using for plain homogeneous coordinates. That is, the point with Pliicker coordinates
[ug, uy,...]! is the point with homogeneous coordinates [ug,uy, .. .].

A hyperplane or T, has n Pliicker coordinates, whose labels are the sets
{0,..v} \ i for each i. These coordinates are the coefficients of the hyperplane as
commonly used in graphics programming, except that they are listed in reverse order
and half the signs are reversed. We will examine this in more detail later on.

1.5. Vacuum and universe

The universe of T, and its antipode have a single coordinate, whose label
is the entire set {0..v}. It is easy to see that Tv = [+1]*, and -Tv = [-1]*.
By convention, the flats of zero rank (the vacua) also have a single coordinate,

whose label is the empty set and whose sign describes the flat’s orientation. That
is, A =[+1]° and -4 = [-1]°.

1.6. Lines in the plane

A line ! of T, has three Pliicker coordinates, namely 1{01}, 1{02}, 1{12}. If (u;v)
is a positive simplex of ! with u = [ug, u;, u,] and v = [vy, v,,v,], then

Uy Uy Uy Uy Uy Uy

lony = o2y = lagy =

Yo Uy Vg Uy vy Yy

Here are some lines of T,, and their Pliicker coordinates:

Figure 1. Some lines of T, and their Plicker coordinates.
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edvel = [1,0,0]2 the z-axis
e’ ve? =10,1,0) the y-axis
elve? =[0,0,12 Q
e’ VvI[1,1,1] =1,1,0)? bisector of first quadrant
[1,1,0] V [1,0,2] =[-1,2,2]> see figure 1.

1.7. Canonical flats

Let I = {i4,7,,...,%,} be any subset of N = {0,..v} with size k and 7, <
i, < -+ < i,. By definition, the join of the canonical points €%, .. e's, in that order,
is the canonical flat of T, with label 1, denoted by el. Its Pliicker coordinates are all
zero, except for (el); = 1.

For example, the canonical lines of T, are

el®} = e®ve! =[100000)® z-axis
el02} —edve? ={010000> y-axis
el12} —elve? =[001000)% line at infinity of the zy plane
el03) —elve® =[000100)% z-axis
el13} —elve® =[000010]* line at infinity of the zz plane
el23} —e?ve® =[000001)? line at infinity of the yz plane.

2. The canonical embedding

Recall that the canonical embedding of T, into a space T, with u > v is
obtained by appending u — v zeros to the homogeneous coordinates of every point.
In general, if a is a flat of rank k in T, its canonical embedding a is obtained by
appending p — v zero columns at the right end of its coordinate matrix:

0 0 0 0 0 0
30 Sl o o e su 80 sl ) SV 0 o« e O
—
0 .0 0 0 0 0 ...
Sg 87 't 8, 8y 8y - SVO 0

What is the effect of this embedding in terms of Pliicker coordinates? The flat a
has (',':) coordinates, each labeled with a subset of {0..u} with size k. Now observe
that in the natural order of these sets, all those that are subsets of {0..»} occur

together at the beginning of the list. Therefore, the first (’,:) Pliicker coordinates
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of & are exactly the coordinates of a. Moreover, any other coordinate of & is zero,
since it is the determinant of a k X k matrix that includes at least one zero column.
We conclude that the canonical embedding of T, into T, merely appends (',?) — (',;)
zeros to the Pliicker coordinates of every flat of rank k.

3. Plicker coefficients

The Pliicker coefficients of general flats are related to the homogeneous
coefficient of hyperplanes in the same way that Pliicker coordinates are related to
point coordinates. If a is a flat with coefficient matrix

0 0
RS ... RS

hy e

hy ... kY
(that is, @ = hg A--- A h,, where h; = (hg-,..) is the hyperplane 47)), then the
Plicker coefficients of a are by definition the k x k minor determinants of that
matrix: ‘ ,
R ... R
a{j01j1,--'yjn} —_
Ko ... hix
As in the case of coordinates, it is convenient to list the Pliicker coefficients of a
in the natural order of their label sets. I will denote the ith element of this list
(counting from 0) by a'; 7 is the indez of the coefficient. I will also write (c?, c!,...)¥
to denote the flat of co-rank k with Pliicker coefficients c?,¢!,.... Like the Pliicker
coordinates, the Pliicker coefficients are unique only up to a positive scaling factor.
The Plicker coeflicients of a flat @ are distinct from but closely related to
the Pliicker coordinates of a. As we shall see in the next chapter, to convert from
one representation to the other we have to reverse the order of all elements, and
negate some of them. In particular, a line of T, with coefficients (a, b, ¢) has Pliicker
coordinates [c, —b,a)?, and conversely.
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4. Storage efficiency

The Pliicker representation for a rank k flat of T, requires (',:) coordinates,
versus the kn required by the simplex representation. Obviously, Pliicker coordinates
are far too expensive for large values of k£ and n. For v < 4, however, they are no
more expensive than the simplex form, as shown below:

rank of space =n 23 4 5

rank of flat =k 111 241 2 3|1 2 3 4
Simplex = min {kn, (n — k)n} 213 3{4 8 4|5 10 10 5
Pliicker = (7}) 203 3[4 6 4[5 10 10 5| (g
Reduced simplex = k(n —k)+11 |2 |3 3|4 5 4|5 7 7 5

dim FX = k(n — k) 12 2|3 4 3|4 6 6 4

! Assuming the siﬁn bit and the pivot indices together use no more space
than one matrix element.

As the table shows, for two-, three-, and four-dimensional geometry the Pliicker
coordinate representation is no bigger than the (unreduced) simplex representation.
In fact, it is slightly smaller for lines in three-space (six numbers instead of eight).
The reduced simplex form is somewhat more economical than the Plicker one, but
it is not clear whether that is enough to offset its other drawbacks.

5. The Grassmann manifolds

According to the homogeneous model, the set F fl of all rank k flats of T,
is also the set of all k-dimensional oriented linear subspaces of R". This set is the
oriented Grassmann manifold. VI XIV)

From the simplex representation, we know that every element of F ﬁ is an
equivalence class of RF*® (the k x n matrices), where two matrices are equivalent
if one is obtained from the other through multiplication by an k x k matrix with
positive determinant. The set of these matrices has dimension k2. From these obser-
vations it follows eventually that F f' is a manifold of dimension kn — k% = k(n — k).
These numbers are listed as the bottom row of table (6).

Notice that in general there is a wide gap between the dimension of F. ﬁ and
the number of coordinates used by the simplex and Pliicker representations. This
gap is already evident for lines in three-space (k = 2, n = 4): the set of all such lines
is only a four-dimensional manifold, but each line has six Pliicker coordinates. One
of these six degrees of freedom is “wasted” by equivalence under positive scaling.

The other is lost because not all sextuples Iy, .. s of real numbers are the Pliicker
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coordinates of some line. In fact, this happens if and only if the numbers satisfy the
equation
Lls =Ll + L, =0. (7)

In general, (Z) real numbers 2y, z;,... can be interpreted as the Pliicker
coordinates of a flat of rank k of T, if and only if they are not all zeros, and they
satisfy a number of equations of the form

0
for r = 0,1,..., where the coefficients ’\ijr are in {—1,0,+1}. For more details see
for example the book by Hodge and Pedoe.[2:V /]

6. References
(1] P. Hanrahan: A homogeneous geometry calculator. Technical memo 3-D no. 7,
Computer Graphics Laboratory, New York Inst. of Technology (September 1984).

(2] W.V.D. Hodge, D. Pedoe: Methods of algebraic geometry. Cambridge University
Press (1952).
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Chapter 20
Formulas for Pliicker coordinates

Let’s now examine the question of computing the basic operations of oriented
projective geometry — join, meet, and polar complement — given the homogeneous
coordinates of the operands, as defined in the previous chapter.

1. Join

According to the definition, the join of m points p? V pl V- -V p# is the flat
whose Pliicker coordinates are all the m x m minor determinants of the matrix

0
R .
po Py e - ph

Let us now compute the join of two arbitrary flats a and b of T, given their Pliicker
coordinates. Let r = rank(a), s = rank(b), t = r + s = rank(a V b) (we must of
course have ¢ < n for the join to be defined). Let u be a positive simplex of a,
and v be one of b. Let also u* = [uf),u'i, ) ..,uf,], and v* = [vé, .. ,vl';] for all <. Then
(u®..u"; v .. v#) is a positive simplex of aV b. The Pliicker coordinates of ¢ = a Vb
are therefore the ¢ X ¢ minor determinants of the ¢ x n matrix

0 0 0
(ug uy .. ... uuw
p P P
UO ul ...... u
C = (1)
03 0 v
0 Up e oee Y
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That is, the coordinates are the numbers

0 0 0
Uko ukl ...... uk-,—
p P p
(a\/b) e _ uko ukl ...... ukr
{ko,..kr} - {ko,..kT} - 0 0 0
v v v
ko kl ------ k‘r
[ 4 g o
Uko vkl ------ vk.r

where {k,,..k,} ranges over all sorted subsets of {0,..v} of size t. We can expand
each determinant cy in terms of the r x r minors of the first r rows, and the s x s
minors of the last s rows, according to the formula

(aVb)g = 3 (1)U gp; (2)

IulJ=K
Ini=p
[T=r,|J|=s

This formula is easily derived from the definition of determinants. Observe that the
coordinates cyx of a V b are sums of products of the form a;b; with coefficients £1.
The coordinates of the join are therefore bilinear homogeneous functions of those of
its two operands.

2. Incidence

The formulas for join also give us a way to test whether a point lies on a
flat, or whether two flats intersect. Recall that a point z is incident to a flat a if and
only if a V£ = 0 (provided we consider z and —z to be incident to each other, too).
In general, flats a and b intersect if and only if a Vb= 0.

Algebraically, two flats a and b of T, have a point in common if and only
if the rows of the join matrix C in (1) are not linearly independent. In this case,
the minor determinants cy are all zero. This suggests we define the homogeneous
coordinates of the null object 0F as being [0,0, ..., 0]F.

With this convention, formula (2) will automatically return the correct value
in all cases. In fact, the test aV b = 0 is a convenient way to check whether two flats
a and b intersect, and in particular whether a point a lies on a flat 5. In general,
for two flats of ranks r and s in T, this method tells us to evaluate ( Tis) bilinear
functions of the coordinates, and check whether they are all zero.

In particular, a point ¢ = [z,,..,] lies on a flat a if and only if zV a = 0,
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that is

%(—1)"”‘\" ziagy = 0 (3)
1€

for all K € N with |K| = rank(A) + 1. For example, a point z = [z,,..z;] of T, is
on the line a = [ag, .. ag)? if and only if

a,Ty — .z, + a,z, =0
a Ty — 3T, +ayzy; =0 (4)
asx, — a3z, +a,7, =0

asT; —a,T,+a,ry =0.

As written above this test seems unnecessarily expensive, since it requires 12 multi-
plications, 8 additions, and 4 tests for zero. In contrast, if we represent a line as the
intersection of two independent planes, we can test for incidence with 8 multiplica-
tions, 6 additions, and 2 tests for zero.

However, note that the linear equations (4) cannot be all independent. Since
they are necessary and sufficient conditions for z to be on the line a, their solution
space is two-dimensional. This means exactly two of the equations are redundant:
we can write them as linear combinations of the other two, which must be linearly
independent. The latter determine two distinct unoriented planes whose intersection
is the line a.

So, when testing a point against a given line, it is advantageous to examine
equations (4) first and select two independent ones. One way to do that is to look for
a non-zero coordinate a It and pick the two equations where that coordinate appears
as a coefficient. By inspection one can check that the two equations have the form

...iaja;i :t...+0.zk:{:...=0
'..+0.$i:t...iajmk +...=0

and therefore are linearly independent. Therefore, the test for incidence reduces
in the worst case to five zero tests to find a non-zero a;, plus six multiplications,
four additions, and two zero tests to check the two corresponding equations. If
lines and points are randomly distributed in space (for most definitions of the word
“random”), then on the average the incidence test will terminate after only three
multiplications, two additions, and two tests for zero.

In general, if a is a flat of rank k in T, the set of all vectors z € R"
that satisfy the system of (k:—l) equations given by formula (3) is a subspace of
dimension k. So, there are exactly n—k linearly independent equations in that system
which define n — k£ hyperplanes whose intersection is a. Each of these hyperplanes
is characterized by a label set K C N with k£ + 1 elements; the ¢th coefficient of that
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hyperplane is

{ (1)K g, ifi €K, (5)

0 if 1 ¢ K.

It turns out that if the Pliicker coordinate ay is non-zero, the hyperplanes with label
sets J U {7}, for each 7 € N \ J, are independent. This is obvious once we realize
that, among those n — k hyperplanes, the one with label set K = J U {7} is the
only one with a non-zero coefficient for ;. Notice also that each of the hyperplanes
(5) has at most k + 1 non-zero coefficients. Therefore, the point incidence test for
a reduces to a search for a non-zero Pliicker coordinate, followed by (n — k)(k + 1)
multiplications, (n — k)k additions, and n — k tests for zero in the worst case. For
random inputs, that reduces to a little more than k + 1 multiplications, k additions,
and one test for zero, on the average.

3. Relative orientation

The formula for a V b becomes a bit simpler when the two flats have comple-
mentary ranks, that is, when rank(a) + rank(b) = n. In that case, the result is a flat
of rank n: the universe 7" of T, its opposite, or (if the two flats are not disjoint)
the undefined flat 0".

A flat of rank n has only one Pliicker coordinate cy, where N = {0,..v}.
Since positive scale factors do not matter, the only important property of that
coordinate is its sign. We conclude that ¢y is simply the relative orientation function
a ¢ b. According to formula (2), its value is given by

oN= D (=)™ layb,

IuJ=N
INl=Q
|I|=1',|J|=8

that is, B
S (~1)>Rlay by ©)

KCN
[K|=r

aob=sign(

where K is the set complement of K relative to N = {0,..v}.
4. Polarity

The condition for two points of T, to be polar is obviously that the dot
product of their homogeneous coordinates be zero:

[‘TO’ <. J:V] 1 [y01 e y,,] And $0y0+' LY, = 0.
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In general, the condition for a point x to be polar to a flat a is
Z(—l)l{ibK'xiaK =0
i€K

for all K € N with |K| = rank(a).

4.1. Polar complement

Let a be a flat of T, with rank r. Its polar complements in T, are given by
() = (-1)*>Klag (7)

() = (~)I*>Klag (8)
where K denotes the complement of K with respect to N.

4.2. Meet

Formulas for the meet of two flats can be obtained by combining those for
join and polar complement. From a A b = (a" v 7)™ we get

(anb)g = . Z (_1)|J>I|‘11b1 (9)
IDI=N
[Lj=r, |J|=s

4.3. Representative simplex

With the polar complement formulas above we are able to select a represen-
tative simplex from a flat b, given its Pliicker coordinates. We have only to compute
the polar complement a = 4" (formula (7)), then find a set of independent hyper-
planes that contain the flat a (formula (8)), and finally list the polar complements
of those hyperplanes.

5. Formulas for computers

In practice, a procedure that computes A V B will be given the Pliicker
coordinates of the operands in natural order, as two arrays a4, a,..] and [by, b,,..],
and is expected to return the result C in the same format.

Since Pliicker coordinates are practical only for spaces of dimension four or
less, the best way to implement the basic geometric operations (V, A, F, etc.) is to
write a separate routine for each combination of operand ranks, with summations
expanded by hand. The resulting formulas are given in the tables below.



204 20. FORMULAS FOR PLUCKER COORDINATES

5.1. Formulas for one-dimensional geometry

In one dimension the only non-trivial flats are points. The join, meet, and
relative orientation of two points are given by the same formula, but the polar
complements F and - are distinct:

) . b line « point V point i .
point + point vacuum «— point A point point «— point

Cy — —ay sign « point ¢ point Cp—

GG 4 € & —q

co + agby; — a;b,

5.2. Formulas for two-dimensional geometry

In two dimensions the interesting flats are points and lines. The formulas for
join of two points and meet of two lines are the same, and therefore can be computed
by the same routine:

line « point V point
point « line A line

cp — aob1 - alb0
¢ — agh, — a260
€y — a1by — azb,

The relative orientation of a point and a line and that of a line and a point are also
given by the same formula, and the polar complements are the same:

plane « line V point line « point"
plane « point V line line — point™
vacuum +— point A line pOiIlt — line}_
vacuum < line A point point « line™

sign « point ¢ line
. . . Cop & a4
sign « line ¢ point

¢, — —a,

cy aob2 — alb1 + a2b0 cy — a4
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5.3. Formulas for three-dimensional geometry

In three dimensions the intersting flats are points, lines, and planes. Unlike

the previous cases, the join of two points and the meet of two planes are given by
different formulas:

line « point V point line « plane A plane
Co — agby — ab, Co agh, — a,b,
¢, « agb, — a,b ¢, «— agh, — ayb,
Cy — ayb, — a,b, Cy — agby — azb,
¢y +— agby — azb, ¢y + a;b, — a,b,
cy — a1by —ajzb; ¢y — ayby; — azb,

Cy — (12b3 — a362 Ccg — azb3 — a3b2
plane « line V point point « line A plane
o — aob2 —a,b; + a2b0 o — agby, — alb1 + azb,
¢, + agb; — azb; + a,b, ¢, «— agb; — ayb, + a,b,
cy — ayby — (13b2 + agb, Cy — ayby — a2b2 + agb,
cy — azb3 - a4b2 + a5bl cy & a3b3 — a4b2 + (15b1

The relative orientation of a point and a plane and that of a plane and a point
are also given by the same formulas, even though the operation is anticommutative.
What happens is that the formula for ¢ «— a V b (a point, b plane) is antisymmetric
in a and b. Therefore, interchanging a and b in the formula and negating everything
gives back that same formula:

space «— plane V point
space « point V plane
vacuum « point A plane
vacuum « plane A point
sign « point ¢ plane
sign «— plane ¢ point

Co — aob3 — a1b2 + a261 - a3bo
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Here is how we compute the relative orientation of two lines:

space « line V line
vacuum « line A line
sign « line ¢ line

Co — a0b5 —a.b, + a2b3 + a3b2 — a4bl + agb,

This being a space of odd dimension, the two polar complements are distinct, for
points and planes, but the same for lines:

line « line"
plane — point” line « line™ plane — point™
point «— pla,ne}_ c — a point « plane_*
0 5
Co +— —Gy ¢« —ay Co — 4y
¢ — a, Co — a4 ¢ & —a,
Cy — —ay €3~ Gy G2 4
cy — @ €y — —a, c3 — —a
G — 9

5.4. Four-dimensional geometry

In four-dimensional geometry the complexity of the formulas begins to get
prohibitive, and there are few simplifying coincidences:

line « point V point plane «— 3-space A 3-space
¢y — agh; —a by o — aghy — a; by
¢ — agh, — ayb, ¢; + agh, — ayb
cy +— asby, —ayb; ¢y — apby — ajb
c3 — agby — asb c3 +— apb, — a,b,
¢y + a;by; —ajzh; ¢y «— aby, — ayb,
C5 — ayby — azb, cg +— ayby — agb;
cg + aghy — aby cg «— aby —ab,
¢y — a,b, —aub; Cq — ayby — agb,
cg — ayb, —a,b, cg ¢« azb, — a,b,
cg — azh, —a,by g ¢+ agb, — a,b,
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plane « point V line

line « 3-space A plane

¢y — agb, —a;b; + a,b,
¢ « agby — a;by + azb,
Cy — agbs — ayb;y + azb,
¢3 — ayby — ayb, + a;b,
¢y +— agby; — a,bg + a b,
cg — agbg — aybg + a b,
Cg — aybg — ayb, + ayb,
Cq7 — agby — asbg + a b,
cg + arby — azb; + a,b,
Cg — by — a3by + a b

— agby —a;b; +ayb,
— agby; — a b, + azb,
— agbg — a;b; + a.b,
— ayb; — a,by + azb;
— agbg — ayb; + a,b,
= ayby — a3by + a,b,
— a;b; — ayby + ayb,
—a,by — aybg + a,b,
— a;by — azbe + a, b,
— ayby — azbs + a,b,

3-space « point V plane

point « 3-space A line

— agby — a;b, + a,b; — asb,
— apbg — a; by + a,b, — a,b,
— agbg — a; by + azb, — a,b,
— agby — ayb; + azb; —a,b,
— a1by — aybg + azhg — a,by

— agbg — a;by + ayby — a3b,
— agb; —a,b, + ayb, — a b,
— agbg — a,bg + azb, — a,b,
— agby — a,bs + azb, —a,bs
— a,by — a,bg + azb; — a, b,

3-space « plane V point

point « line A 3-space

— agb; — a by + a,b, — asb,
— agby — asb, +agb, — agh,
—a;b, —a,b; + a,b, —agh,
— ayby — agby + azb, — agb,
— azb, — agby + agh, — agb,

— agby — a,by + azb; — agb,
— apb, — a,b, + a,b, — ayb,
—ayb, — a,b; + azb, — agh,
—azb, — a,b; + agh, — ayb,
— agh, — a;b; + agh, — ayb,

plane « line V point

line «— plane A 3-space

¢y + agby — a6, + a,b,
¢; «+ agby — aszb; + a,b,
Cy + arby — ajb, + agb
¢y + ayby —asb, + agh;
¢, — agb, — agh, + asb,
cs + ayby — agh, + agh,
Cg + ayby — azb, + agh,
¢y + azby — agby + agb,
cg — asb, —asby + agh,
¢y + aghy — agb, + agb,

S

— agb, —a;b; + a,b,
— agb; — ayb, + agb,
— agb, — azb, + agh,
— a,by — ayb, + a4b,
— a,b, — azb, + agh,
e ayb, — asb; + agb,
— a,by — agb, + asb;
—a,b, — agh, + agb,
—agh, — aghy + ayb,
— azb, — agb; + agb,
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3-space « line V line

o + agbs — a;b, + ayb; + ayby — a,b) + agh,
¢; « agbg — a;by + ayb6 + aghy — a;b; + agh,
Cy agby — azb, + a,bg + agh, — a,b; + ayb,
¢y — a by — azbg + aghg + aghy — aghy + agb,
¢y — ayby — a,bg + agby + azbs — agh, + agb,

point « plane A plane

Co — a0b7 — a1b5 + a2b4 + (14b2 - a5b1 + a.,b0
¢ +— agbg — a;bg + azb, + a,by; — agh, + agb,
Cy — a0b9 - azbe + (13b5 +agby — asb2 + agb,
L a,by — aybg + azb; + azby — agh, + ayb,
¢y — azby — agby + aghy + a;bg — aghs + ayb,

The relative orientations of points vs. 3-space and 3-space vs. point are given by
the same formula. Again, it is a case of both the formula and the operation being
antisymmetric in a and b:

4-space «— 3-space V point
4-space « point V 3-space
vacuum + point A 3-space
vacuum « 3-space A point
sign « point o 3-space
sign « 3-space ¢ point

Co — b, — a1b3 + ayb, — azh, +a.b,

On the other hand, the formulas for line vs. plane and plane vs. line are different,
even though the operation itself is commutative:

4-space « line V plane
vacuum « line A plane
sign + line ¢ plane

¢y + agby — abg + ay by + azbg — abs +agb, — agh; + azb, — agh, + a4b,




20. FORMULAS FOR PLUCKER COORDINATES 209

4-space « plane V line
vacuum « plane A line
sign + plane ¢ line

¢ — agby — a by + ayb, — azbg + a by — asb, + aghy + a;b, — agh, + agb,

The two polar complements coincide:

plane « line" line pla.ne'_
plane « line™ . line « plane™
3-space « point
.
€y — ag 3-space « point Co — Gy
€ & —q4 point «— 3-space” € & —ag
Cp &= O point «— 3-space™ C & 4
Cq — —a Ch— a
3 6 o — a, 3 6
C4 — Cl5 C4 - —05
¢ — —a
Cy — —a, 1 3 Cs — a,
C2 — 02
Cg «— Gg Cg — —ay
—— €4 — 4o
Cs 9 Cg & —4
€9 7 G Cg = Gy

Note that the formulas for join in (v —1)-dimensional geometry can be obtained from
the v-dimensional ones by dropping all terms that involve non-existing coordinates.
It follows that procedures for two- and three-dimensional join can be coded so as to
share substantial portions of their code.

If we want to do geometry in spaces of dimension higher than four, or of
variable dimension, then this case-by-case approach is not feasible, and we have to
write a single routine that computes formula (2) for all combinations of r, s, and n.
However, in higher dimensions the Pliicker coordinates themselves are impractical,
and the simplex representation is more appropriate.

6. Projective maps in Pliicker coordinates

We have seen that computing the image of a point by a projective map
means post-multiplying its homogeneous coordinates by the associate matrix. What
about flats of higher dimensions? The answer is rather straightforward:

Theorem 1. The image of a flat [a,, a, ...|F by a projective map M = [M] is the
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flat [by, by, .. JF where
b =2 a, (M), (10)
3

and M) s the (Z) X (Z) matriz whose elements are all kx k minor determinants
of M, in natural order of row and column labels.

PROOF: Comnsider a k-dimensional flat a with coordinates [ao,al,...]k. Let u =

(u%;..u*) be a representative basis of a in the homogeneous model (so that

a = <u’,..u">), viewed as a k x n matrix. Recall that a; is the coordinate

whose label is the integer set I = k:7, that is, the determinant of the k X k minor
formed by taking the columns of u whose indices are in the set I.

Let aM =b=[b,.. b J¥. A representative simplex of b is v = (v7;..v")

) ; m—-1
where v} = ¥, u;MJt Therefore, the coordinate with label set J is given by the
determinant
0o .0 0
Jo J1 vjlc
1 1 1
b ij vjl v]lc
i R
K K K
Yjo Vi Yjx

Z“:OM"’ Z”u"”" o M (11)

Z%W Z%M” Zu.n po

ZU'OM'O Zule'l Zuu :

where jg, j;,..J, are the elements of J in increasing order, and each 7, ranges
from 0 to v. Note that each column of (11) is a linear combination of columns
of the u matrix. Since the determinant of a matrix is a multilinear function of
its columns, we can expand equation (11) into

o ,0 . .0

i Wiy 7T Ui
10 1) ix 10 AAt1 tx
580> MM (12)
. . Jo 1 s
10 §1 . .
K
U‘O U'-l ’U,”c
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where the z; still range independently over 0 .. v.

In summation (12), any term with two or more equal i’s is zero. Moreover,
two sequences 2, ...7, which differ only on the order of the elements will give
rise to two terms that differ at most in their signs. More precisely, formula (12)
1s equivalent to

0 0 0
ig 1] uin
1 1 1
_ 10 1 i [I=l tx(0) palr(1) tx(x)
b= X | S 22D M M T My
0<ig< <<t <V | ¢ : T

K K

Ui g ul

where 7 ranges over all permutations of 0. .x, and ||| is the number of inversions
in w. But the second summation is simply the minor determinant formed by lines
Jo---J, and columns 7, ...¢, of matrix M:

0 .0 ... 0 0 ML L Mie
Uiy Uiy Ui MJo MJo MJo
1 1] 0 ML Mis
u: u u . MJ1 M]1 Mn

bJ _ Z :io i1 :n

0<ip<t; < <tx <V

u® uf oo u® MO MR L M
Jr e Ix

Therefore, we conclude

by = > a(M®))
I

where I ranges over all k-element subsets of 0 .. v.
QED.

For example, if M is the matrix

1 3 5 1
2 1 0 2
1 2 0 4
1 0 0 1
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then M(?) is the matrix

(13 15|35 113151
21((20]||10||22]|12]|]02
13| |15]|35]|]11]]31]]51
12|110f|20]|14]||24]|]|04
21|]20]]10[|22]|12]]02

yo |1t 2lirofjzofjraf|2a]fos
13||15]|35|]11]]31]]51
1o0{|1of{oo|]11]]0o1f]o01
21]]20|]10]]22]|12|]|02
10{|10]]oo0|{11||o1]]01
12|]10]]20|]14]]|24]]04

\l1oll10llool|11]]o1|]o1]/
(=5 =10 -5 0 5 10)
-1 -5 —10 3 10 20
3 0 0 6 0 0
-3 -5 o 0 3 5
2 0 0 0 1 0
\ -2 0 0 -3 2 0/

This result is of little practical value, since computing the matrix M(*) and apply-
ing it is much too expensive. In general it is far more efficient to use the simplex
representation (reduced or not), and map each vertex of the simplex through the
original matrix M. This takes O(kn?) time, including the O(k%n) cost of putting the
mapped simplex in reduced form. Even if the given flat and the answer are repre-
sented by Pliicker coordinates, it is more efficient in general to find a representative
simplex, map its vertices, and compute the Pliicker coordinates of the result by the
join formula.

This is already true even in the simplest non-trivial case, namely lines in
three-space (n = 3,k = 2). Computing the matrix M®) costs 72 multiplications (u)
and 36 additions/subtractions (). Once we have this matrix, the cost of mapping
a line is 36y + 30a. If instead we compute two independent points from the Pliicker
coordinates, map those points through M, and compute the join of the images, the
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total cost will be about 8(3u+2a)+6(p+2a) = 30u+28a, plus some logic overhead.
(Note that the representative points computed as described in secion 4.3 have only
three non-zero coordinates). By comparison, mapping an arbitrary pair of points
(an unreduced simplex) through the map M costs 32u + 24c. Mapping a reduced
simplex and reducing the result costs in general 4(2p +2a) + 10 4+ 5a = 18y + 13a.
In spaces of higher dimensions Pliicker coordinates are even more expensive, because
the size of the matrix M), (2) X (’,:), grows exponentially with » and k.

7. Directions and parallelism

The direction of a flat is easily computed from its Pliicker coordinates. Recall
that the coordinates of  are [0,..0,1]*"1. Therefore, the direction of a flat a of
rank r is the flat of rank r — 1 whose coordinates are

(dira)g = (a A Q)k

InJ=K
Iul={0..v}
{Tj=r
|[J|=n-1
- Y (cponT,
In{1..r}=K
Iu{1..r}={0..v}
{l=r
0 if 0 € K,
= {aOUK if0 ¢ K. (13)

where 0 U K is a shorthand for {0} U K. For example, the direction of a line [ in
three-space is the point z with coordinates

Ty =0, 2y =lorp Ty = ooy Ty = oy

or, in positional notation, dir[l,..]*> = [0, ly, 1, ]. In the same way we get
formulas for the direction of a line of T,,

dir[lm llv 12]2 = [0, loa 11]1
and a plane of T;:

dirfhg, hys kg, g = [0, 0, hy, 0, hy, k)%
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7.1. Parallelism

Recall that a 1T b was defined as a shorthand for dira = dir b. From formula
(13), we see that a 17 b if and only if the Plicker coordinates of a whose label set
includes 0 are a positive multiple of the corresponding coordinates of b. For example,
if a and b are two lines in three-space, we have [ag, .. ag]? T [8, .. b5]? if and only if

ag=Ab, and a; =Ab; and a; = Ab,

for some A > 0. If f is a proper flat of T, and p is a point on the front range, then
the flat passing through p and with same rank and direction as f has coordinates
given by the formula

(pvdirflg= 3 (-1 p(dir f);
JuJ=K
INJ=@
11j=1, |J|=r—1

= (=D VT, (dir Py
1€

= Y (1)K

{0 if0eK\q
€K

fouK\i f0gK\:

{pofK if0 €K,

3 (~1)l>KNl foukyi 10 € K.
€K

For example, in three-space the line through p = [p,..p;] and parallel to the line
I=[ly,.. 1) is

(Polor Polys Prly — Pl Poly, P13 — p3lys Pols _P311]2- (14)

The analogous formula for two-dimensional geometry is obtained by dropping the
last three coordinates, that is,

[Polos Polys Pily — Polol’
The plane through p parallel to h = [hg, .. k,]? is

[Pohgs P1Rys P2hgy PyRy — Pohy + p3hl’.
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oF null object withrank & . . . . . . . . . . . ... . ... 44
M] the projective map induced by the linearmap M . . . . . . . 68
F functional inverseof . . . . . . . . . . .. .. ... .69
zF image of z by function ¥ . . . . . . . . . . . .. 69
I, identity functiononset A . . . . . . .. .. .. .. 69
FG composition of functions F and G, in thatorder . . . . . . . 69
M, projective maps of T, toitself . . . . . . . . .. .. 70
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utv sumof anglesuandv . . . . . . . . . .. .o 179
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binv(X) binary valueofset sCIN . . . . . . . . . ... ... 192
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absolute formulas 129, 144, 153, 160

addition

. of two-sided vectors 158, 160
. of two-sided fractions 160
. of angles 179

adjoint 75

adjugate 75

affine frame 149

. standard 150

. signature 151

. to affine map 151
affine geometry 143-156
affine map 147

. eftect on directions 148
. effect on parallel flats 148
. from affine frames 151
. interpolation 152

. matrix 148, 150

. swapping ranges 149
affine space 145

. canonical 145

. subspace 147

algebra of orientations 10
angles 178-179
antipodal points 14, 19
area of a triangle 155
argument of a vector 178
arrangement 108

. categorical 109, 121

. similar 108

. span 108
automorphism of T, 77
back range see range
Barnabei, M. 11, 12

Index

barycentric coordinates 120, 152
basis equivalence 30
Berman, G. 11, 12
binary value of an integer set 192
blank pages 28, 46, 76, 82, 94,
106, 130, 142, 162, 182, 198

Blumenthal, L. M. 12
Brini, A. 11, 12
bundle 80-81
canonical basis of R" 34
canonical embedding

see canonical inclusion map
canonical flats 194
canonical inclusion map 79-80
. in Plicker coordinates 194
cardinal point 34
Cartan, E. 11
Cartesian coordinates 4, 143
. disadvantages 5-7, 145
. interpolation 144, 152
. to homogeneous 4, 16-18, 143
celestial sphere 25
central projection
. of a convex set 136
. of the projective plane 5
. of the two-sided line 16
. of a two-sided space 16-18
circular arrow see orientation of a plane
Clifford, W. K. 11
closeness 176
coefficients see homogeneous coefficients
collineation see projective map
complementary flats 45, 59, 64

see also polar complement
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computing
. affine interpolation 152
. angles 178-179
. area of a triangle 155
. closeness 176
. cross-ratio 125, 129
. distance 173
. image of a hyperplane 75
. image of a point 73, 103-105
. image of a flat 184, 209
. incidence 199
. Inverse map 104
. join 184, 199, 204-209
. meet 184, 186, 203, 204-209
. meet of two lines 5-6
. midpoint- 144
. null space 101
. perspective map 96, 101
. point-in-simplex test 36-37
. polar complement 88,
183, 203, 204-209
. projective map 100, 116-119
. ratio of lengths 177
. relative orientation
184, 202, 204-209
. shortness 177
. signatures relative to a simplex 36
. simplex measure 155
. simplex orientation 184
. volume of a tetrahedron 155
congruence
. of angles 178
. of segments 177
conic section 6
contra-parallel flats 147
conversion see coordinates
convex set 8, 131-141
. as intersection of half-spaces 140
. central projection 136
. characterization 134, 136

. closure 135
. definition 133
. degenerate 135
. in R" and T, 137
. 1in a projective space 131
. interior of 135
. Intersection 134, 140
. projective invariance 134, 137
. on the projective plane 8
. open 135
. perfect half-space 139
. projection on a hyperplane 138
. quasi-convex 133
. strictly convex 133, 136
. supporting half-space 138
Sylvester’s definition 131
convexity see convex set
coordinates
. as cross-ratio 129
. barycentric 120
Cartesian
see Cartesian coordinates
. dual see homogeneous coefficients
Grassman see Pliicker coordinates
. homogeneous
. see homogeneous coordinates
. matrix 185, 186
. Plucker see Plucker coordinates
. relative to a frame 119
. storage 145
co-parallel flats 147
co-rank 54
corkscrew arrow
see orientation of a three-space
co-sine of angle between vectors 179
Coxeter, H. S. M. 12
cross-ratio 123-129
. arithmetic 127
. as relative coordinates 129
. 1n projective space 123-125
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. in two-sided space 126-129
. projective invariance 128
. symmetry properties 127
“absolute” version 129
degenerate simplex
see simplex, improper
direction 146
. as angle 178
. in Plicker coordinates 213
. in R¥ 14
. normal 164
. of a flat 146
. on the projective plane 8
. orthogonal 163
dxstance 175
dot product 175
double covering of P, by T, 16
duality 7, 83-93
. advantages 93
. formal 84
. on the projective plane 7
. on the two-sided plane 9, 83-93
see also polar complement
duomorphlsm 83-84
. and projective maps 92
. composition 92
. general 92
. of T, 84, 89
see also polar complement
elhptlc space 180
equality of flats 64
Euclid’s fifth postulate 147
Euclidean geometry 25, 163-181
Euclidean map 168
. characterization 169
. matrix 169

. see also isometry, rotation, reflection

Euclidean space 163, 167
. general 167
. subspace 168

extensor 11
fifth postulate of Euclid 147
Flannery, B. P. 105
flat set 19
flat 13, 19
. image under projective map 72
. improper 145
. orientation 19, 29-38
. opposite 19
. proper 145
. representation 183,
185, 186, 189-197

frame 107-122

affine see affine frame
. coordinates 119
. definition 109
. equivalence 118
. image under projective map 109
. one-dimensional 119
. mixed see mixed frame
. negative 111
. orientation 111
. oriented span 111
. point see point frame
. positive 111
. signature 111

. span 111
. standard 113-121
. type 110

see also cros-ratio
front range see range
Gaussian elimination 103, 118, 187
generalized inverse 99, 104
geometric calculus 11
Golub, G. 105
graphical conventions 15
Grassmann, H. G. 11
Grassmann manifold 196
Grassmann coordinates

see Plucker coordinates
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great circle 19

great subsphere 19, 20
half-space 62

. perfect 139

handedness see orientation
Hanrahan, P. 197

Hestenes, D. 11, 12

Hodge, W. V. D. 197
homeomorphism

. between flat sets 72
homogeneous coefficients

. matrix 185, 186

. of a hyperplane 66, 75

. signed 9, 66

. in relative orientation 66

. meet 186

homogeneous coordinates 4, 16, 191
. advantages 5-7

. to Cartesian 4, 16-18, 143

. dual see homogeneous coefficients
. equivalence 16

. for projective plane 4

. for two-sided plane 16

. formulas 6

. interpolation 136

. matrix 185, 186

. Pliicker see Pliicker coordinates
. relative to a frame 119

. storage 145

. weight-normalized 4

horizon

. of an affine space 145

. of an Euclidean space 163

. of a hyperbolic space 180

. of a two-sided vector space 157
. of a mixed frame 110
hyperbolic space 180
hyperplane 19

. image under projective map 75
. see also homogeneous coefficients

see also Plucker coordinates

see also sides
improper line 22
improper plane 25
improper point see point at infinity
incidence 60
. in Plicker coordinates 200
infinity point see point at infinity
inner product see dot product
interior of a simplex 34-37
interpolation
. affine 144, 152
. of homogeneous coordinates 136
intersection
. of convex sets see convex set
. of flats see meet
isometry 170
. as product of reflections 173
. composition 172
. matrix 169

see also reflection, rotation
isomorphism
. canonical inclusion 79-80
. of two-sided spaces 77, 83, 167
join  39-46
. associativity 43
. commutativity 39, 42, 43
. image under projective map 73
. in a bundle 81
. in a general two-sided space 77
. in a subspace 79
. in Plucker coordinates 199, 204-209
. in the simplex representation 184
. in the opposite space 79
. in the straight model 40
. null object 44
. of a point and a line 41
. of complementary flats 60-61
. of two flats 42
. of two points 39-41
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. rank 43
. undefined 44
. with opposite flat 39, 41, 43
with vacuum 43
Joke 67, 219, 223
Jordan curve 7
least-squares inverse 99, 104
left complement
see complementary flats,
polar complement
left side see sides
left-hand orientation 26

length
. of a vector 173
. ratio 177

line 2-4, 9, 13, 19, 21-23

. at infinity 2, 22

. improper 22

. Jjoining two points see join

. of a two-sided space 13, 19, 21-23
. of the projective plane 2-4, 7, 9

. proper 22

. segment see segment

two-sided 9, 13, 21-23, 126-129, 160

hnear map 161
main simplex
see frame, point frame,

mixed frame

matrix

. of a linear map 161

. of a projective map
see projective map

. of a simplex see simplex

. of an affine map 148, 150

. of an Euclidean map 169

. of a reflection 171, 172

. of a rotation 170

measure

. of a simplex 155

. of angles 178-179

meet 47-58

associativity 55-58

. co-rank 54

. commutativity 48, 55

. existence 50

. formulas 186

. image under projective map 73
. in a bundle 81

. in a general two-sided space 77
. in a subspace 79

. in different dimensions 53

. in Plicker coordinates 203

. in the opposite space 79

. null object 51

. of complementary flats 60-61
. of a line and a plane in T, 51
. of two flats 50

. of two lines 5, 6, 9, 47

. of two planes in T; 52

. orientation 48, 52

. rank 54

. relative 49

. undefined 47, 49, 51

. uniqueness 50

. with opposite flat 48, 53

with universe 53

Menger, K. 12

midpoint of a segment 144
mixed frame 110

. equivalence 118

. horizon 110

. main simplex 110

. one-dimensional 119

. signature 112

. standard 114

. to projective map 117
mixed representation 186
models

. analytic 4, 16

. spherical 3, 13, 21, 24
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. straight 3, 14-15, 22-23, 24, 26
. homogeneous 4, 37

Modenov, P. S. 12
Moore-Penrose inverse 99, 104
multiplication

. of a vector by a scalar 160

. of two-sided fractions 160
Moébius band 8

natural formulas 128, 144, 158-159
natural order of integer sets 192
negation

. of a two-sided vector 159

. of a two-sided fraction 160
negative side see sides
non-Euclidean geometry 180
normal direction see direction
null object 44, 51

null space see projective map
numerical value 17, 126, 156, 160
operations

. on angles 179

. on two-sided fractions 160

. on vectors 158-160

opposite 19

. under projective map 73

. of an affine space 147

. of an Euclidean space 168

. of a point see antipodal points
. of a two-sided space 79

. of a vector space 137

optical illusion 67

orientability of the projective plane 7
orientation

. circular 9

. of a flat 19, 29-38

. of a great circle 32

. of a great sphere 31

. of a line 9,19, 22-23, 32

. of a plane 19, 24-25, 32-33

. of a segment 32

. of a simplex 184

. of a tetrahedron 33

. of a three-space 26, 33

. of a triangle 9, 32-33

. of a real vector space 37

. of a two-sided vector space 157
. of a zero-dimensional flat set 31
. of front and back ranges 22, 24, 26
. of the two-sided plane 9

. of the universe T, 34

. of the vacuum 20

. relative see relative orientation
oriented projective see two-sided
oriented vector space 37

origin 34, 157

orthogonal directions 163
parallel flats 146

. in Plucker coordinates 213
parallel through a point 147, 214
parallelism 146

. affine invariance 148
Parkhomenko, A. S. 12
Patterson, R. 12

Peano, G. 11
Pedoe, D. 197
Penna, A. 12

perpendicular directions see direction
perpendicular flats 165-167
perspective

. back-of-camera clipping 10-11
. projection 67-68, 71, 96

. matrix 101

plane

. at infinity 25

. improper 25

. of a two-sided space 19, 24-25
. proper 25

. projective 2-4, 7-8

. two-sided 13-16, 24-25
Plicker coefficients 195
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Pliicker coordinates 189-214
. characterization 197
. dual 195
. equivalence 191
. formulas 199-214
. label sets 191
. natural order
. of a flat 190
. of a hyperplane 193
. of a line of T, 193
. of a line of T, 189
. of a point 193
. of a universe 193
. of a vacuum 193
. under projective maps 209
. storage 196

to simplex representation 203
pomt 2, 13-19
point at infinity
. as angle 178
. as direction 146
. of projective plane 2
. of two-sided plane 14
point frame 110
. equivalence 118
. main simplex 110
. one-dimensional 119
. signature 111
. standard 113
. to projective map 116

unit point 110
polar complement 85-92
. as duomorphism 89-91
. effect on meet and join 89-91
. effect on projective maps 89
. in Plucker coordinates 202, 204-209
. in the simplex representation 184
. in the analytic model 88
. in three-space 87
. inverse 85

. involutory properties 86
. on the two-sided plane 86
. relative 91-92
polar directions 85, 163
polar flats 85
. in Plicker coordinates 202
positive side see sides
positive turn see orientation of a plane
Press, W. H. 105
projection
. central see central projection
. from a flat onto another 96, 102
. from a point onto a hyperplane 96,
. perspective see perspective
. polar 96, 102
projective frame
see frame, point frame,
mixed frame
projective function
see projection, perspective,
projective map
projective map 6, 67-76
. adjoint 75
. adjugate 75
. affine see affine map
. as homeomorphism 72, 99
. as isomorphism 77
. canonical embedding 102
. composition 72, 98
. continuity 72, 99
. determined by two frames 109
. effect on
. convex set 134, 137
. closed subsets 99
. cross-ratio 128
. flats 72
. frames 109
. hyperplanes 75
. join 73, 98
. meet 73
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. open subsets 100 . negative 14
. Plicker coordinates 209 . of an affine space 147
. opposite flat 73 . of an Euclidean space 163
. . vacuum 72 . of a vector space 157
. equivalence 69, 95 . of a hyperbolic space 180
. Euclidean see Euclidean map . positive 14
. examples 70-71, 74 rank 20
. from a mixed frame 117, 121 . complementary see co-rank
. from a point frame 116, 121 . in a general two-sided space 78
. from a simplex 115 . of join 43
. Gaussian LU factorization 103 reduced simplex representation 187
. generalized 95-105 reflection
. group properties 72 . across §) 172
. in a one-dimensional space 81 . across proper hyperplane 171
. induced by a linear map 68-69 . composition 172
. inverse 72, 99, 102 . onto I; 173
. many-to-one 95-105 relative orientation 59-66
. matrix 73, 100, 103, 209-212 . commutativity 61, 63
. natural domain 98, 101 . projective invariance 75
. null space 95, 101 . formulas 184
. of T, to itself 70-75 . from join and meet 60-61
. on the two-sided plane 9 . in a subspace 79
. orientation-preserving 68 . in Plicker coordinates 202
. orientation-reversing 68 . in the opposite space 79
. perspective see perspective . of a point and a hyperplane 62
. polar extension 98 . of a point and a line 59-60
. polar projection 102 . of a point and a plane in T; 62-63
. range 101 . of O and @ 63
. representation 103-105 . of two lines in T; 64
. restriction 98 . of two points on a line 62
. rotation see rotation . separation theorem 64
. similarity see Euclidean map . see also complementary flats
. singular value relative polar complement. 91-92
decomposition 104-105 representation of flats 183-197
. SVD 104-105 representative simplex 203
. translation see translation Riesenfeld, R. F. 7, 10, 12
range of a projective function 101 right complement
ranges 14, 22-26 see complementary flats,
. back 14 polar complement

. front 14 right side see sides
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right-hand orientation 26
Rota, G.-C. 11, 12

rotation 70, 170

. composition 172

scaling map 161

scaling of a two-sided vector 160
Schréder, F. E. 11

segment 32, 34, 132

. closed 132

. division in given ratio 152
. midpoint 144

. on the projective plane 8
. open 132

separation theorem 64, 118, 190
shortness 176

sides

. left 59

. negative 62

. of a hyperplane 62

. of a line 7, 59-60

. of a plane 62

. of O 63
. positive 62
. right 59

sign-valued function 61
signature
. of a frame 111-112
. of a point w.r.t. a simplex 35
signed homogeneous
see homogeneous
signed predicate 61
sign of a simplex 184
similarity see Euclidean map
simplex 29
. as basis of R¥ 30
. as matrix 31, 183
. canonical 34
. degenerate 29
. dimension 30
. dual 185

. equivalence 30-31

. from Plucker coordinates 203
. improper 29

. interior 34

. main 110

. measure 155

. orientation 184

. proper 29

. reduced 187

. representation 183-188
. signature 35

. sign 184

. span 30

. standard 34

. vertex 29

. with 2 vertices 29, 32

. with 3 vertices 29, 32-33
. with 4 vertices 33

singular value decomposition 104-105

Sobczyk, G. 11, 12
subspace 78

. bundle 80-81

. geometric operations 79
. induced by a flat 78

. join 79

. meet 79

. of an affine space 147

. of an Euclidean space 168
. of a vector space 157

. relative orientation 79
SVD 104-105

Sylvester, J. J. 131
tetrahedron . 33

. volume 155

Teukolsky, S. A. 105
three-space 19

. canonical 26-27
topology

. of projective space 3, 7-8
. of T, 9,13, 16, 22-23
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translation 70

. as a vector 157

. matrix 158
triangle 32, 35

. area 155
two-sided fraction 17,

126-129, 160, 174-179

. arithmentic operations 127, 160

. cross-ratio 126-129

two-sided line 13-14, 17, 19, 21-23,

126-129, 160, 174-179

two-sided plane 9, 13-18, 19, 24-25

two-sided space 13

. affine 143-156

. canonical 13-16

. Euclidean 163, 167

. general 77

. hyperbolic 180

. vector 157-161

. models see models
subspace 78

two-sided three-space 13, 15, 26-27

two-sided vector algebra 160

undefined object see null object

uniform scaling 161

unit point see point frame
universe 13, 12, 24, 26, 38
. orientation 34, 38
vacuum 20

. image under projective map 72

. join with 43

van Loan, C. F. 105
vector (two-sided) 157
. algebra 157-160

. dot product 175

. length 174

. angle 178-179

. as translation 157

vector space (two-sided) 157-161

. horizon 157

. maps 161

. origin 157

. subspace 157

vertex of a simplex 29
Vetterling, W. T. 105
volume of a tetrahedron 155

weight coordinate 16
Whitehead, A. N. 11
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