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Perspective

Splines are the standard technique for mathematically modeling smooth shapes—such
as curves in the plane or surfaces in space—in computer-aided geometric design. The
basic idea behind splines is to cut the shape up into pieces and to model each piece
with polynomials, but to constrain the polynomials so that the joints between the
pieces are guaranteed to be smooth. There is a substantial body of mathematical
theory about splines, associated with such names as Bézier, de Casteljau, and de
Boor.

Polynomials, of course, are used in many places in mathematics. There is a standard
construction that converts a polynomial of degree n in one variable into an equivalent
polyomial in n variables that has degree 1 in each variable separately. The latter
polynomial is called the polar form of the former.

Recently, a new and perhaps simpler approach to the theory of splines has emerged,
based on converting each polynomial piece of the spline into its polar form. This paper
is a review of the resulting polarized approach to splines. The intended reader already
knows something about Bézier curves and is willing to try to understand a sentence
that includes the word “tensor.”



Author’s abstract

Consider the functions H (t) := ¢? and h(u,v) := uv. The identity H(t) = h(t,t) shows
that H is the restriction of h to the diagonal © = v in the uv_plane. Yet, in many
ways, a bilinear function like & is simpler than a homogeneous quadratic function like
H. More generally, if F(t) is some n_ic polynomial function, it is often helpful to study
the polar form of F, which is the unique symmetric, multiaffine function f(u;,...,u,)
satisfying the identity F(t) = f(t,...,t). The mathematical theory underlying splines
is one area where polar forms can be particularly helpful, because two pieces F and
G of an n_ic spline meet at r with C* parametric continuity if and only if their polar

forms f and g satisfy
fugye ooyt rye,r) =g(ua, .oy Uk, Ty. o, 7)

n—k n—k
for all u; through u.

This polarized approach to the theory of splines emerged in rather different guises
in three independent research efforts: Paul de Faget de Casteljau called it “shapes
through poles”; Carl de Boor called it “B-splines without divided differences”; and
Lyle Ramshaw called it “blossoming.” This report reviews the work of de Casteljau,
de Boor, and Ramshaw in an attempt to clarify the basic principles that underlie the
polarized approach. It also proposes a consistent system of nomenclature as a possible
standard.
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1 Introduction

The term “spline” is used in computer-aided geometric design to refer to a
family of techniques for modeling smooth curves and surfaces with parametric,
piecewise polynomial functions; see the survey article by B6hm, Farin, and Kah-
mann [4] or the textbook by Bartels, Beatty, and Barsky [1]. Recently, a new
polarized approach to the mathematical theory underlying splines has emerged
from the work of Paul de Faget de Casteljau [11] and others. The primary bene-
fits of the polarized approach are simplicity and clarity. The polarized approach
gives perspicuous labels to the points in diagrams and thus makes it easier to un-
derstand and to explain the standard theorems and algorithms involving splines.
This report concentrates on spline curves, which are the easiest case.

The polarized approach is based on the Polarizing Principle, which is a stan-
dard technique used in various places in mathematics. What the Polarizing
Principle does, as discussed in Section 2, is to convert polynomial behavior
into multiaffine behavior (or homogeneous polynomial behavior into multilinear
behavior). When applied to one of the polynomial pieces F of a spline, the Po-
larizing Principle converts that piece into its polar form, which is a symmetric,
multiaffine function f.

The power of polarization begins to show in Section 3, where we study the
de Casteljau Algorithm. When the de Casteljau Algorithm is used to compute
a point F(u) on a polynomial curve, all of the points that arise—input points,
intermediate points, and output points—are values of the polar form f of F.
Labeling each point as a value of f helps to clarify the iterated phases of affine
interpolations that constitute the de Casteljau Algorithm. Section 4 shows that
the same labeling also works for the de Boor Algorithm, which is essentially
the result of generalizing the de Casteljau Algorithm from the plain case to the
progressive case. Having established that polarization is at least a source of good
labels, Section 5 discusses a variety of methods for computing polar forms.

If a new approach to an established theory is to be convincing, it must provide
its own proofs of the important theorems, not just its own labels for the impor-
tant diagrams. Polarization can provide clearer and more enlightening proofs
when it is supplemented by two other mathematical principles: homogenization
and the tensor product construction.

Homogenization is a fancy name for the standard idea that the affine world,
where practitioners of CAGD prefer to work, can be viewed as a restricted subset
of the linear world, where mathematicians are more at home. For example, an
affine transformation of the plane is often represented as a 3-by-3 matrix whose
last column (or row) is the unit vector (0,0, 1). This representation depends on
the fact that homogenizing an affine map of the plane produces a linear map of
3-space, as discussed in Section 6.

The tensor product construction is a more powerful and more subtle idea.
It takes polar forms, which are symmetric, multiaffine functions, and converts
them into tensor forms, which are affine functions. By using both polarization



and the tensor product construction, we can convert a polynomial map into
something much simpler: an affine map. The price that we pay for simplifying
the map is making its domain more complex. If the affine space P is the domain
of an n-ic function F, the domain of the polar form of F is the Cartesian n'h
power of P (which is written P™), while the domain of the tensor form of F' is
the nth symmetric tensor power of P (which we shall write ©"P, by analogy
with the standard notation @"P for the asymmetric case). Sections 7 and 8
present a concrete construction of the symmetric tensor power space O"P, based
on formal polynomials. Section 9 discusses tensors more abstractly; it relates
the symmetric tensors that we use in the polarized approach to the alternating
tensors that many people know about from integration theory. We finally put
tensors to work for us in Section 10, where we use them to give an easy proof of
an important dangling theorem from Section 4.

The polar forms and tensor forms of single polynomials are enlightening,
but they are not new. The novelty in the polarized approach comes from the
interaction between polarization and the continuity conditions that are enforced
at the joints of a spline. Section 11 shows that the requirement of parametric
k*h-order continuity at a joint of a spline curve corresponds to a wonderfully
simple constraint on the polar forms of the two joining segments. Two non-
adjacent segments of a spline curve are still related to each other, as long as the
number of intervening knots does not exceed the degree; Section 12 extends the
analysis of Section 11 to this case, arriving at a similarly simple constraint on the
polar forms of two non-adjacent spline segments. Section 12 then concludes by
proving one version of the basic theorem about spline curves: that the B-splines
are a basis.

Section 13 touches on spline surfaces. In some sense, spline curves—and
bipolynomial spline surfaces, which are just spline curves of spline curves—are
too easy. It will be interesting to see, in the coming years, if the power and
simplicity of the polarized approach leads to any progress on the more subtle
problems of polynomial spline surfaces.

The polarized approach first appeared, in three different guises, in the in-
dependent work of three people: Paul de Faget de Casteljau, Carl de Boor,
and Lyle Ramshaw. One goal of this report is to clarify the interrelationships
between these three threads. (I am unavoidably biased by the fact that I un-
derstand my own work the best. I apologize for that bias and for any ways in
which I have inadvertently misrepresented the work of de Casteljau or de Boor.)
The last three sections briefly discuss the related work of de Casteljau, de Boor,
and Ramshaw. Section 14 discusses the “dual functionals” of de Boor from the
framework of this report and identifies them as bags of polar arguments. Sec-
tion 15 mentions Ramshaw’s concept of “overloading” and his handling of the
rational case. And Section 16 talks about de Casteljau’s technique for easily
designing quasi-interpolant spline methods that are as reproductive as possible,
given their other parameters.

In a work of this sort, which attempts to point out the connections between



different people’s work and to propose standards, it is particularly important
to be clear and precise. Therefore, we will pause from time to time to discuss
terminology and notation.

Note on “spline”: Some authors, de Casteljau among them, reserve the word
“spline” to refer to those piecewise polynomials of degree at most n that have
C™1 continuity at each joint between two adjacent pieces. That is, they demand
that splines have only simple knots. We shall use the word “spline” in its broader
sense, in which knots of multiplicity m—that is, joints with C"~™ continuity—
are allowed, even when m > 1.

Note on “n-ic”: The polynomial H(t) := ¢? is a polynomial of degree 2 and,
hence, is not a polynomial of degree 3. Nevertheless, is it correct to say that
“H is a cubic”? The adjective “n-ic” sometimes means “of degree precisely n”
and sometimes means “of degree at most n.” In this report, we shall assume the
latter, more inclusive meaning. For example, if one of the segments of a cubic
spline actually has degree less than 3—even if all of the segments do—we will
still feel free to refer to that spline and to each of its segments as cubic.

Note on “order”: Some authors use “order” rather than “degree” when defin-
ing splines, because “order” has the sense of “at most” built intoit. A polynomial
has order n + 1 if its degree is at most n. Unfortunately, there are off-by-one
problems: If a cubic spline is assembled from pieces of order 4, why isn’t it called
a quartic spline? In the polarized approach, the degree bound n actually counts
something—the polar form has n arguments—so the off-by-one problems would
be particularly severe. We shall stick with degree.

Math note: All the spaces in this report—affine and linear—are assumed to
be finite-dimensional.

2 The Polarizing Principle

The polarized approach to splines is based on the classical mathematical prin-
ciple of polar forms, which says, in essence, that we can trade one parameter
of degree n for n symmetric parameters, each of degree 1. Before discussing an
example of a polar form, we pause to clarify our nomenclature for functions of
degree 1.

Note on “linear” versus “affine”: The word “linear” in mathematics some-
times implies homogeneity and sometimes doesn’t. A polynomial F(z) is linear
if it has the form F(z) = az + b, where b # 0 is usually allowed. If we reinter-
pret F: R — IR as a transformation of a 1-dimensional linear space, however,
we must have b = 0 in order for F' to be called linear; that is, F' must also be



homogeneous. To avoid confusion, the word “linear” in this report always im-
plies homogeneity. When homogeneity is not implied, we use the word “affine.”
Under this convention, the polynomial F(z) := z+1 is not linear, but it is affine.

More abstractly, an affine combination is a linear combination whose scalar
coefficients sum to 1. A function is affine if it commutes with affine combina-
tions, while an affine space (or flat) is a set of points that is closed under affine
combinations. An affine frame for an affine space P is a set of points in P
that are affinely independent and whose affine span is all of P; that is, an affine
frame is the analog of a linear basis. Every affine frame for a p-dimensional space
contains precisely p + 1 points.

Now, an example of a polar form: Consider the cubic polynomial G(t) :=
t3+3t2—6t—8. A polar form for G is a symmetric, triaffine polynomial g(u,v,w)
that satisfies the identity g(¢,t,t) = G(¢). In order for g to be triaffine, that is,
an affine function of each of its three arguments when the other two are held
fixed, it must have the form

g(u, v, w) 1= cruvw + cauv + cauw + c4vw + csU + v + crw + ¢

for some real constants ¢; through cg. To make the identity g(t,t,t) = G(t)
hold, we must have ¢; =1, ¢; +¢3+ ¢4 =3, ¢s +¢c6 +¢c7 = —6, and cg = —8.
To make g(u,v,w) a symmetric function of its three arguments, we must have
¢y =c3 = ¢4 and ¢5 = ¢g = c7. We are left with the unique choice

g(u, v, w) := vow + uv + uw + vw — 2u — 2v — 2w — 8. (2.1)

Conversely, suppose that we are given the trivariate polynomial g(u, v, w) :=
wow + uv + uw + vw — 2u — 2v — 2w — 8. The identity G(t) = g(t,t,t) then
trivially determines the unique cubic polynomial G(t) := t3 + 3t* — 6t — 8.

From these two observations, we deduce that the two polynomials G(¢) and
g(u,v,w) are actually two different aspects of the same entity. That entity can
be viewed either as a cubic function of the single parameter ¢ or as a symmetric,
triaffine function of the three parameters u, v, and w. The quantity G(t) =
g(t,t,t) varies cubically as a function of ¢ because, when ¢ varies, all three of u,
v, and w are varying in parallel.

The correspondence between G and g doesn’t depend upon the particular
coefficients involved, nor does it depend in any essential way upon the fact that
G is cubic. More generally, we have the following, which is the nonhomogeneous,
univariate case of the Polarizing Principle.

Theorem 2.2 Univariate polynomials F(t) of degree at most n are equivalent
to symmetric, n-affine polynomials f(uy,...,uy,) in the sense that, given a poly-
nomial of either type, there exists a unique polynomial of the other type that
satisfies the correspondence identity F(t) = f(t,...,t).



Definition 2.3 If F(t) is a polynomial of degree at most n, the polar form
of F (or the n-polar form, if the intended degree bound n isn’t obvious from
the context) is the unique symmetric, n-affine polynomial f(uq,...,u,) that
corresponds to F' via the identity F(t) = f(t,...,t). A value f(uy,...,upn) of
the polar form is a polar value of F, and each u; that helps to determine such
a value is a polar argument to F. In contrast, F itself is the diagonal form of
F; a value F(t) is a diagonal value of F; and the t that determines a diagonal
value is a diagonal argument to F. Note that diagonal values are a special case
of polar values, the case in which all n of the polar arguments are equal.

Exercise 2.4 Compute the 4-polar form h that results when the polynomial
G(t) = t3 + 3t> — 6t — 8 above is viewed as a degenerate quartic. (The answer
h(u,v,w,z) has fifteen terms, two of which are uvw/4 and uv/2.) Note that h
is related to the 3-polar form g of G given in Equation 2.1 by the formula

9(u, v, w) + g(u,v,2) + g(u, w,z) + g(v, w, z)

h(u,v,w,z) = 1 .

Convince yourself that this identity expresses the 4-polar form of any cubic in
terms of its 3-polar form.

The Polarizing Principle applies to multivariate polynomials also, but the
concept of a degree bound is more complicated in the multivariate case. We can
either bound the total degree in all the variables or bound the degree in each
variable separately. Those different ways of bounding the degree give rise to
different polar forms, as discussed in Section 13.

A homogeneous polynomial has a polar form that is multilinear, not merely
multiaffine. This fact isn’t very interesting, however, until one turns to the
multivariate case, since a univariate polynomial F(¢) must be a scalar multiple
of t" in order to be homogeneous of degree n. The n-polar form of t" is, of
course, the n-linear polynomial uy - - - u,.

While polar forms are new to spline theory, their use has long been stan-
dard in other areas of mathematics. For example, consider quadratic forms
and bilinear forms in linear algebra. It is well known that, for each quadratic
form F:V — R on a linear space V, there is a unique symmetric, bilinear form
f:V xV — R that satisfies the identity F(z) = f(z,z). This fact is precisely the
Polarizing Principle applied to multivariate polynomials that are homogeneous
of total degree 2.

The Polarizing Principle can also be applied to more than one polynomial at
a time. In the case of interest to us, the polynomials involved are the coordinates
of a parametric, polynomial curve. Let L denote a 1-dimensional affine space,
that is, a line. A polynomial curve is a function F: L — @ from the parameter
space L to some affine object space Q) with the property that, for u in L, each
coordinate of the point F(u) in @ is given by a polynomial in u. To polarize
a polynomial curve £, we polarize each coordinate polynomial separately, using



the same degree bound n for all coordinates. The n-polar form of F that results
is the unique symmetric, n-affine function f: L™ — @ satisfying the identity

F(u) = f(u,...,u).

Math note: The discussion above presumes that a “polynomial function” is, by
definition, a function that is given by polynomials when expressed in coordinates.
Abstractly, it is better to turn things around by defining an n-ic polynomial
function to be the diagonal of an n-affine function. Note that this definition is
coordinate-free and hence extends easily to infinite-dimensional spaces. One then
uses arguments like those in Theorem 2.2 to prove that, in the finite-dimensional
case, the polynomial functions are precisely those functions whose coordinates
are given by polynomials.

Even though many areas of mathematics use polar forms, the terminology
based on the word “polar” seems to have fallen out of favor in the last half-
century. While algebra books up through van der Waerden [29] generally used
the name “polar form,” more recent books often leave the correspondence of
Theorem 2.2 nameless. (For example, Lang doesn’t mention polar forms, al-
though he does refer to the “polarization identity” in a related context [15].)
Because Ramshaw was not aware of “polar form,” he proposed an alternative
system of nomenclature in which f was called the “blossom” of F' [19, 20]. One
advantage of Ramshaw’s proposal was that the term “blossoming” suggests the
revealing of hidden structure, which describes pretty well what happens when
we convert from F to f. The term “polarization,” on the other hand, suggests
concentration into opposing extremes, which is not at all the right idea. While
“blossoming” has a certain charm, “polar form” is a better name for f than
“blossom.”

The words “pole” and “polar” are used in various places in mathematics
that are not at all related to the Polarizing Principle. For example, consider the
poles of a sphere, polar coordinate systems, and the poles of a complex analytic
function. Those uses don’t seem likely to be confused with the uses proposed in
Definition 2.3.

The words “pole” and “polar” are also used in projective geometry, when
discussing conic sections [27], higher order plane curves (25}, and quadric sur-
faces [2]. There is more chance of confusion in this case, because these uses
are related to the Polarizing Principle. To understand the relationship between
the “polar” in projective geometry and the “polar” in Definition 2.3, we must
distinguish between the two different ways that polynomial functions are used
to model shapes: parametric models and implicit models.

Suppose that we want to model a shape S in an affine space (), where
dim(S) = s and dim(Q) = q. A parametric model for S defines S as the range of
a function F: P — @, where P is an s-dimensional parameter space. For exam-
ple, the quadratic function G: R — R? given by G(u) := (u,u?) is a parametric
model for the standard parabola in the plane. An implicit or Cartesian model



for a shape S, on the other hand, defines § by the formula § = F~1(0), where
F:@Q — R is a function from the object space Q to a result space R of dimension
g — s. The quadratic function H: R? — R given by H(z) = H({z,1)) := y — 2?
is an implicit model of the same standard parabola.

In this report, we are applying the Polarizing Principle to the pieces of splines,
which are parametric models of shapes. In the parabola example, the polar form
of the parametric model G is the symmetric, biaffine function ¢g: R x R — R?2
given by g(u1,ug) := ((u1 + u2)/2, wyus).

Exercise 2.5 Verify that the point g(u1,u2) is, in fact, the intersection of the
tangent lines to the parabola at the points G(u1) and G(u.).

Projective geometry, on the other hand, models its shapes implicitly. In the
parabola example, if we use a bound of 2 on the total degree, the polar form of the
parabola’s implicit model H is the symmetric, biaffine mapping #: R2 x R? — R
given by

_nty

h(z1,22) = h({z1,11), (z2,¥2)) := 5 = T1%2,

The most interesting thing about A is where it assumes the distinguished value
0. If we fix z1, the equation h(2z1,2;) = 0 constrains 2z; to lie on some line, call it
£ := {22 | h(z1,22) = 0}. If 2; is outside the parabola, then ¢, is precisely the
line joining the two points where lines through z, are tangent to the parabola.
If z; lies on the parabola, then ¢, is the tangent line through z,. And if z; is
inside the parabola, then ¢, is entirely outside it. The correspondence between
z, and £, is a duality between points and lines called the polarity of the conic.
Of the dual pair z, and ¢,, the point z; is called the pole and the line ¢; is called
the polar [27].

Going up by 1 in dimension, an implicit model of a quadric surface in 3-space
defines a duality between pole points and polar planes in a similar way [2].

Going up in degree instead of in dimension, suppose that H: R? — R is an
implicit model of an algebraic plane curve C of degree n, for n > 2. The polar
form of H is a symmetric, n-affine map h: (R?)® — R. If we fix k of the polar
arguments of f at w; through wy, the remaining function

(Zkt1se-1Zn) = MWy, oo WE, Zk 1y v ey 2Zn)

is symmetric and (n — k)-affine, and it is hence the polar form of an implicit
model of an algebraic plane curve D of degree n — k. When wy = -+ = wj; = w,
the curve D is called the k" polar curve of the pole point w with respect to C;
an (n — 2)" polar is a conic and an (n — 1)* polar is a line [25].

Open problem 2.6 If C is a polynomial (or rational) plane curve that is mod-
eled both implicitly and parametrically, study the relationships between the po-
lar forms of the two models of C. For example, if G and H are parametric and im-
plicit models of a common parabola, as above, the identity h(g(u, u), g(u,v)) = 0

-J



0,r,1 1
9(0’0,1) g( r ) 9(0 1)

g(r,1,1)

G(1)=9(1,1,1)

g(0,0,0) = G(0)

Fig. 1: The de Casteljau Algorithm, plain case, computes a diagonal value

holds between the polar forms g and h. Note that the curve C must be rational,
that is, of genus zero, in order to have a rational parametric model. It must lie
in a plane in order to be implicitly modeled by a single polynomial, rather than
by some non-principal ideal.

Math note: We are tacitly assuming in this report that the coefficient field is
the real numbers R. While any field of characteristic zero would work just as
well, fields of finite characteristic cause trouble when polarizing a polynomial
whose degree equals or exceeds the characteristic. Some authors define polar
forms slightly differently than we have done in order to address this problem.
For example, van der Waerden [29] defines the polar form f of a quadratic form
F on a linear space by using the correspondence identity f(z,z) = 2F(z), rather
than f(z,z) = F(z), because he wants to deal with fields of characteristic 2.

3 The plain case of the de Casteljau Algorithm

What does polarization have to do with splines? We begin to trace the connec-
tions in this section by studying the de Casteljau Algorithm from a polarized
point of view.

Note: To reduce the overloading on the comma, we shall borrow from the pro-
gramming language Pascal by writing (z .. y) for an open interval and [z ..y] for
a closed interval.

Let G be a cubic parametric curve and let g be the polar form of G. Suppose
that we know the four polar values ¢(0,0,0), ¢(0,0,1), g(0,1,1), and g(1,1,1)
and that we want to compute, from them, the diagonal value G(r) = g(r,r,7)
for some 7 in [0..1]. Figure 1 shows one way to proceed. (The four input points
9(0,0,0), 9(0,0,1), ¢(0,1,1),and g(1,1,1) need not be coplanar. If they are not,
then G is a twisted cubic curve, lying in the affine 3-space that they span.)



Since the polar form g is affine in its third argument, the line joining the
points ¢(0,0,0) and ¢(0,0,1) must be the line ¢(0,0,u) for all u, and the point
9(0,0,7) must be located r of the way from ¢(0,0,0) to ¢(0,0, 1) along this line.
The points g(0,7,1) and g(r,1,1) can be constructed similarly. These three affine
interpolations constitute the first phase of the algorithm.

During the second phase, we need to appeal to the symmetry of g as well as
to its triaffineness. Since g is symmetric, the first phase output ¢(0,0,r) could
equally well be labeled ¢(0,7,0). Then, since g is affine in its third argument,
the point g(0,7,7) must be r of the way from ¢(0,7,0) to ¢g(0,r,1). The point
g(r,r,1) can be constructed similarly.

The third phase finishes the job, constructing g(r,r,r) by interpolating be-
tween ¢(0,7,7) = g(r,r,0) and g(r,7,1).

Of course, this algorithm is not new. The four starting points g(0,0,0),
g(0,0,1), ¢(0,1,1), and g(1,1,1) are called the Bézier points of the cubic curve
segment G([0..1]), and the algorithm above for computing G(r) from the Bézier
points is the de Casteljau Algorithm. The polarized labels, however, are new.
Note that all of the geometric structure of the diagram is captured by those
labels, together with the facts that the polar form ¢ is symmetric and triaffine.

Much of the importance of Bézier points comes from the fact that they can
be used as handles that control the shape of the curve.

Theorem 3.1 If a, b, ¢, and d are any four points in an affine space @, there
exists a unique cubic curve F: L — () whose polar form f:L3 — Q satisfies
f(0,0,0) = a, f(0,0,1) = b, f(0,1,1) = ¢, and f(1,1,1) =d.

Proof: The de Casteljau Algorithm makes it obvious that there can’t be more
than one such cubic F, since it allows us to compute any diagonal value F(r) =
f(ryr,r) for v in [0 .. 1] by performing affine interpolations that depend upon
only the known values a, b, ¢, d, and r. These diagonal values F(r) are more
than enough to completely determine F'.

Proving the existence of some such cubic F is harder. There are two strate-
gies: one computational and the other conceptual.

In the computational strategy, we construct the required cubic curve F by
performing the same affine interpolations that the de Casteljau Algorithm would
have performed, had we assumed that some F existed. The first phase of affine
interpolations produces the points (1 —~r)a+rb, (1 —r)b+rc, and (1-r)c+ rd.
The second phase interpolates between these points in pairs, while the third
phase produces the final output point

(1-r)%a+3r(1 = 7)’b+3r%(1 = r)c + r°d.

This formula defines a cubic curve; call it F((r). With a little thought, we can



write down the polar form f of F:

flu,v,w):= (1= u)(1l-v)1-w)a
+ (w1 -v)(1 = w)+ (1 —uw)v(l - w)+ (1 -u)(l-v)w)b
+ (uv(l - w) + w(l — v)w+ (1 — w)vw)ec
+ uvw d.

Note that f(u,v,w) is symmetric, is triaffine, and satisfies f(r,r,7) = F(r);
therefore, f is indeed the polar form of F. Since it is easy to check that
£(0,0,0) = a, f(0,0,1) = b, f(0,1,1) = ¢, and f(1,1,1) = d, we conclude
that a satisfactory cubic curve F does exist. 0O

The conceptual strategy uses tensors and linear algebra to prove that F' must
exist without explicitly constructing it. One attraction of the conceptual strategy
is that it generalizes from the plain case to the progressive case more gracefully
than does the computational strategy. We will return to the conceptual strategy
in Section 10.

4 The de Casteljau Algorithm, progressive case

The de Casteljau Algorithm can be generalized in several ways. In this section,
we explore four successive generalizations.

Note on “bag”: It will be useful to have a name for the entire collection, say

(u1,...,uyn), of n polar arguments that determines a polar value. This collection
isn’t a sequence, because order doesn’t matter. But it also isn’t a set, because
repeated elements do matter. We shall call the collection (u1,...,us) a bag of

polar arguments; some authors use the term “multiset.”

First, the starting parameter interval in the de Casteljau Algorithm doesn’t
have to be [0 .. 1], nor is it necessary for the new parameter value r to lie inside
the starting interval. For example, we could also build Figure 1 by treating
the four Bézier points ¢(0,0,0), g(0,0,r), g(0,r,7), and g(r,r,7) of the segment
G([0..7]) as the given data and treating 1 as the new parameter value. It would
then take us three phases of affine extrapolations to construct the rest of the
diagram, working from left to right. In what follows, we shall denote the starting
parameter interval by [s .. ¢] and the new parameter value by u.

Second, the de Casteljau Algorithm easily extends from cubics to n-ic poly-
nomial curves for any n. In the n-ic case, we perform n phases of affine interpo-
lations, each of which adds one more copy of the desired diagonal argument u
to the bag of polar arguments. After n phases, we have added n copies of u to
the bag, that is, we have constructed the point f(u,...,u) = F(u).

Third, the de Casteljau Algorithm can be used to compute polar values of
F just as easily as diagonal values. To compute the polar value f(u1,...,un),

10



Fig. 2: Computing ¢(2,3,4) in two different ways

we control each phase of affine interpolations with a different polar argument,
say the i*P phase with u;. The left half of Figure 2 shows this version of the de
Casteljau Algorithm computing the polar value ¢(2,3,4) from the four Bézier
points of the cubic segment G([0 .. 6]). The right half of Figure 2 shows what
happens when the polar arguments are used in the reverse order. Note that
the final result is the same, even though the intermediate points and lines are
different.

Our fourth—and most important—generalization of the de Casteljau Algo-
rithm deals with the structure of the bags of polar arguments in the n+ 1 input
polar values. So far, we have been starting the de Casteljau Algorithm with
Bézier points; when n = 3, we started with the polar values g(s, s, s), g(s,s,t),
g(s,t,t), and g(t,t,t), for some s # t. We shall refer to that situation henceforth
as the plain case. More generally, we can start with g(r1,r2,73), g(r2,73,74),
g(rs,r4,75), and g(r4,rs,76), where the values 71 through rg satisfy the six dis-
equalities given in the following table:

m|#
re | £ | #
3| £ #|F

We shall refer to this fancier situation as the progressive case, because the four
bags of polar arguments (ry,72,73), (72,73,74), (73,74,75), and (r4,75,7¢) are
generated as a window of width three progresses along the sequence [rq,...,7s).
Note that the progressive case reduces to the plain case when we set 7y =, =
r3 = s and r4 = r5 = 1 = t; in particular, all six disequalities reduce to the
single disequality s # t.

Figure 3 shows the de Casteljau Algorithm in the cubic, progressive case
computing the polar value g(u1,u2,u3). Note that the six disequalities in the
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g(ur,r3,74) 9(7'3,7'4,7‘5)

g(ra,73,74)

g(uy, ua, u3)
g(u1, uz,r3) g(uy, u2,74)

g(uy,rg, 7‘3)
g(uy,rq,75)

g(T’1,T'2, 7‘3)

9(7'4, Ts5, 7'6)

Fig. 3: The de Casteljau Algorithm, progressive case, computes a polar value

table above are just what is needed to guarantee that none of the six affine in-
terpolations involved in the de Casteljau Algorithm entails dividing by zero. For
example, one of the interpolations in the first phase locates the point g(uy,72,73)
by interpolating between g(r1,72,73) and g(r2,73,74). If we had r = 7y, it
would follow that g(r1,79,73) = g(r2,73,74) and we would be unable to calcu-
late the location of g(uy,7,73) from that single datum (except in the special
case ujy = ry).

Definition 4.1 For any n, we shall call a sequence of 2n numbers [rq....,725]
progressable if the (";’1) disequalities r; # rp4; for 1 <4 < j < n are satisfied.

Let F be an n-ic curve and let [rq,...,72,] be a progressable sequence. The
progressive case of the de Casteljau Algorithm takes, as input, the n + 1 po-
lar values of F' whose argument bags consist of n consecutive elements from
the progressable sequence—in symbols, the polar values f(Tk41,...,Tk+n) for
k in [0 .. n]. It performs n phases of affine interpolations, where the i*" inter-
polation of the j'h phase for j in [1..7n] and ¢ in [0 .. n — j] interpolates be-
tween f(Uy,... Ui 1sTidsr--->Titn) a0d f(U1, oo Ujo1, Tigjaty - Tikns1) tO
produce f(u,...,Uj, Titj+1,--+Ti+n). The 0" interpolation of the n'h phase
produces the output value f(uy,...,un).

Theorem 4.2 Let [ry,...,T2,] be a progressable sequence of points in the affine
line L, and let ag through a, be arbitrary points in an affine space Q. There
exists a unique n-ic curve F:L — @ whose polar form f:L™ — Q satisfies
f(Tkt1y---sThin) = ak for k in [0 .. n].

Proof (half given here, half postponed): The uniqueness of F follows easily
from the de Casteljau Algorithm, just as it did in Theorem 3.1. Once again, it
is the existence of F that is the hard part. And once again, there are two proof
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strategies: computational and conceptual. Unfortunately, the computational
strategy gets fairly complicated in the progressive case. We leave it to the
following exercises, and we defer our proof of existence in the progressive case
until Section 10, where we will use the conceptual strategy.

Exercise 4.3 Give a computational proof of the existence of F'in the n-ic, plain
case, hence generalizing the proof of Theorem 3.1 from degree 3 to degree n. In
particular, show that the interpolations that the de Casteljau Algorithm would
perform to compute f(ui,...,u,) from f(s,...,s), f(s,...,8,t), ..., f(t,...,1)
if F did exist result in the output value

t—u,~) H (uj—s)

>, I+ aj)-
nJ=0 i€l (t $/ eg\t—s
TuJ={1,...,n}

Use this expression to define a symmetric, n-affine function f: L™ — @, and let
F be its diagonal. Then, for £ in [0 .. n], verify that

f(8y.iy8,t,..0,t) = ag.
N e N e’
n—k k
Exercise 4.4 Give a computational proof of the existence of F in the full-blown
n-ic, progressive case. Tracing through the de Casteljau Algorithm, you will find
that its output is bo n(ui1,...,un), where b; j(u1,...,u;) for j in {0..n] and ¢ in
[0..n — 7] is given by
a; ifj=0

Ui — Tiy s
J i+

bij-14+ ————
Titn+l — Titj Titntl = Titj

b; ;= T i1 — Uy :
i, B o o S B bit1,j-1 otherwise.

(This recurrence is the heart of the de Boor Algorithm.) The output function
bo n(u1,...,un) is clearly n-affine, but it is not at all clear that it is symmetric.
Explicitly verify that by, is symmetric by studying what happens when two
adjacent arguments u; and uj;y; are interchanged. Then make the definition
f:= bg» and verify that f(rx41,...,7k+n) = a, for k in [0 .. n].

5 Methods of polarization

Our study of the de Casteljau Algorithm shows that polar forms can be an
enlightening way to view spline algorithms. In this section, we will try to gain
more perspective on the mathematical process of polarization by studying eight
different methods for computing polar information about a polynomial from
diagonal information.
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5.1 Using differential geometry

One of the prettiest and most geometric ways to compute polar values applies to
non-degenerate polynomial curves and uses differential geometry. For example,
consider a twisted cubic curve F(t), lying in some 3-space, and suppose that we
want to compute the polar value f(u,v,w). If u, v, and w are distinct, it turns
out that f(u,v,w) is precisely the intersection of the three osculating planes to
the curve F(t) at t = u,t = v, and ¢t = w. If two of the three polar arguments are
equal, say « = v, the resulting point f(u,u,w) must lie in the osculating plane
to F at u twice, which means that it must lie on the tangent line at u. Thus,
f(u,u,w) is the intersection of the tangent line at u with the osculating plane at
w. When all three polar arguments are equal, the resulting point f(u,u,u) lies
in the osculating plane to F at u three times, which means that it must be F(u),
as we already knew. These ideas can be extended to curves of degree greater
than 3 by considering osculating flats of dimension greater than 2.

Unfortunately, this method fails whenever the n-ic curve F' is degenerate in
the sense that F lies in some flat of dimension less than n. For example, if
F is a cubic curve that lies in a plane, then all of the osculating planes of F
coincide, so we can’t use their intersections to compute polar values. A single
cubic polynomial is even more degenerate, since it corresponds to a cubic curve
that lies in a line.

5.2 Using the elementary symmetric functions

Algebraic methods of polarization have the advantage that they are not confused
by degeneracies. In Section 2, we found that the polar form g(u, v, w) of the cubic
polynomial G(t) = t3 + 3t% — 6t — 8 is given by

o, v, w) = wvw + 3 (EPJF_“;"_”}E) e <u_+_§ig) .

In general, suppose that F(t) is an n-ic polynomial given to us explicitly as a
linear combination of powers of t. Let g¢(u1,-..,u,) denote the k'" elementary
symmetric function of n arguments, that is, the n-variate polynomial that is com-
puted by choosing & of the u; and forming their product, then summing those
products over all (2) possible choices. Note that o is a symmetric, n-affine func-
tion, whose diagonal is given by ok(t,...,t) = (Z)tk. In particular, the n-polar
form of the monomial t* is precisely ak/(’;). Thus, we can compute the polar
form f(uy,...,un) of F by replacing each power t* in the linear combination for

F with ok(uy,... ,un)/(',:)

5.3 Using probability theory

The method of elementary symmetric functions can be reinterpreted probabilis-
tically. Suppose that the polar arguments u; through u, are fixed. The quantity
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or(uy,..., un)/(:) then denotes the average value of the product of k of the po-
lar arguments, the average being taken over all (}) ways of picking which k of
the polar arguments to include in the product. This average is a quite reasonable
thing to substitute for the simple value t*, given that the n polar arguments
through u, have replaced the single diagonal argument ¢.

5.4 Using the Taylor series of an auxiliary function

If we like, we can hide the complexity of sums with (}) terms by finding those
same sums in the Taylor series of an appropriately-defined auxiliary function.
Let h(z) be the auxiliary function h(z) = [], ¢;<,(#i—2z). Note that h is an n-ic
polynomial with the polar arguments u; through u, as its roots. If we compute
the (n — k)'! derivative of A(z) and then evaluate that derivative at z = 0, we
find that

D =RBp(0) = (=) *(n — k)l ok(ur,...,un).

Thus, we can compute polar forms by substituting for t* the quantity

Uk(ul,.. .,un) _ k! ((—D)"_kh)((])'
(%) n!

Carl de Boor used this method to compute polar values (in his terminology, to
define the “dual functionals”) [9, 10].

5.5 Saving symmetry for last

Instead of hiding the sums, another alternative is to simplify them, at least
conceptually, by combining them all into one huge sum with n! terms. In
this method, we achieve first multiaffineness and then symmetry. For exam-
ple, consider the cubic polynomial G(t) := t3 + 3t> — 6t — 8. The function
hi(u, v, w) := uvw 4 3uv — 6u — 8 is obviously triaffine, and it obviously satisfies
the identity G(t) = hy(¢,t,t); but hy isn’t symmetric. The same is true of the
function hg(u,v,w) := (u — 2)(v + 1)(w + 4), since G(¢) happens to factor as
G(t) = (t — 2)(t + 1)(t + 4). We can compute the polar form g by explicitly
symmetrizing some function like hy or hy; that is, we define g(u,v,w) to be

h(u,v, w) + h(u,w,v) + h(v,u,w) + h(v,w, u) + h(w, u,v) + h(w, v, u)

5.6 Polarization formulas with rational coefficients

The algebraic methods that we have discussed so far start with some explicit
diagonal formula for F'. Another important class of methods are those that start,
instead, with a finite number of diagonal values of F'. Of course, once we know
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any four diagonal values of a cubic curve such as F, say F(r;) for in [0 .. 3], we
can use Lagrange interpolation to construct a diagonal formula for F:

Fy= Y Foy) [ ==

-
0<5<3 0<ig3 'J
i

We can then find f(u,v,w) by substituting ak/(i) for t* in the Lagrange inter-
polant. Things work out particularly neatly if we choose the r; cleverly.

Perhaps the neatest choice, due to de Casteljau [12}, is to pick ry = u, 7y = v,
and r3 = w, while leaving r¢ arbitrary. By a wonderful coincidence, the term
involving F(ry) drops out, leaving the following 3-term polarization formula for
cubic curves:

(w = v)’F(u) (w — u)?F(v) (v — u)* F(w)
3(w—u)u—v) Hw-v)(v—u) 3(v-w)(w-u)

flu,v,w) =

Among other things, this result implies that the four points G(0), G(r), G(1),
and ¢(0,7,1) in Figure 1 must be coplanar.

Analogous wonderful coincidences can be engineered for curves of any degree
n, but odd degrees work out more neatly than even degrees. If we express the
polar value f(ui,...,u,) as an affine combination of the diagonal values F(ro)
through F(r,), it turns out that the term involving F(ro) drops out precisely
when det M = 0, where the matrix M = (m;;) for ¢ and j in [1..n] is given by
m;j = r; — u;. When n is odd, choosing r; = u; makes M a skew-symmetric
matrix of odd order, which guarantees det A = 0. The case n = 3 is de Castel-
jau’s formula above, while the case n = 1 is the trivial formula f(u) = F(u).
When n is even, however, it takes more work to find choices for the r; that
make det M = 0. When n = 2, the F(rq) term drops out if the pair of points
(r1,72) is harmonically conjugate to the pair (ui,uz). Tor example, choosing
r1 = (2u +v)/3 and r, = 2u — v gives the 2-term formula

OF (E5£2) - F(2u—v)
8 |

Math note: Instead of ry = (2u + v)/3, it would be more natural to choose
r1 = (u + v)/2. Unfortunately, this forces the corresponding choice r; = oo.
The right way to interpret the quantity F(co) in this context involves extending
F into a homogeneous quadratic F,, as discussed in Section 6, leading to the
homogenized polarization formula

f(u,v) =

f(u,’U) = f*(’l_t, T)) — F*(ﬁ+ 1?7) ; F*(ﬁ — 1_)).

5.7 Polarization formulas with constant coefficients

One difficulty with the cubic formulain the previous section is that its coeflicients
are rather complicated. By tolerating four terms instead of only three, we can
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simplify the coefficients all the way to constants. In particular, making the
choices 1o = (u+v4+w)/3, m=u+v—w,m=u+w-v,and 3 =v+w—u
results in the cubic polarization formula

2TF (2etw) — Plutv—w) — Flutw—v) — F(v+w—u)

f(u,v,w)z 24

(One advantage of extending F into the homogeneous cubic F,, as discussed
in Section 6, is that it allows us to cancel the 27 = 3% outside against the 1/3
inside: 27F, ((& + 9+ )/3) = Fu(@ + o+ @).)

Polarization formulas with constant coefficients exist for all n, but they—at
least, the ones that I know—have exponentially many terms. The simplest n-ic
formula [21] has 2™ — 1 terms:

f(ul,...,un)=% 3 (—)"‘kk"F(%Zui).

SC{1,...,n} i€S
k=|S|

The number of terms can be reduced to 2*~! when = is odd, as in the case n = 3
above, by using +1 and —1 as the coefficients on the polar arguments u;, rather
than 1 and 0:

S =g X OTRF(H(Tu-Tw)).

SuT={1,...,n} €S JET
SNT=0
ISI=IT|=k>0
The same reduction can also be achieved when n is even, but homogenization
or some other technique must be used to deal with the problem of diagonal
arguments, such as u; — uy when n = 2, that cannot be rescaled to become
affine combinations of the u;.

Math note: One advantage of the polarization formulas in this section is that
they involve only affine combinations. They express a polar value as a fixed
affine combination of diagonal values, whose diagonal arguments are fixed affine
combinations of the original polar arguments. As a result, they can be used to
polarize surfaces (and k-folds for k¥ > 2) as well as curves. The cubic formula in
Section 5.6, on the other hand, applies only to curves, since it has coefficients
that are rational functions of the polar arguments.

5.8 Using integration by parts

Our final method of polarization is a weird one, an example of the complex dis-
guises in which polarization can hide. It is the method that E. T. Y. Lee used in
his short proof of the Oslo Algorithm based on de Boor’s “dual functionals” [17].
Let h(z) = [];<icn(%i — z) be the auxiliary function from Section 5.4, and let
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¢(z) be any smooth (say C*) function with the properties that ¢(z) = 0 when-
ever z is sufficiently small and ¢(z) = 1 whenever z is sufficiently large. If we
define g(z) by the formula g(z) := @(z)h(z), it turns out that, regardless of the
detailed behavior of ¢, we have

flug, ... ug) = —17/ F(z)g"tV(z) dz,
n!

-0

where g("*1) denotes the (n + 1)** derivative of g. The proof begins by noting
that the integral on the right-hand side must be a symmetric, n-affine function
of the polar arguments u;, because the auxiliary function A(z) is. Therefore, it
suffices to verify the identity in the diagonal case, in which A(z) = (u — z)™.
Checking that the right-hand side evaluates to F(u) in the diagonal case is an
exercise in integration by parts, which we omit.

6 Homogenizing

In order for polarization to achieve its full potential when applied to splines, it
has to be helped by two other classical mathematical principles: homogenization
and the symmetric tensor product construction. In the following sections, we
consider those accessory principles briefly. This section deals with homogeniza-
tion.

There are two mathematical worlds in which mathematics of our current
flavor can be done: the affine world and the linear world. The affine world
consists of affine spaces, affine maps, and polynomial maps. The linear world
consists of linear spaces, linear maps, and homogeneous polynomial maps. Prac-
titioners of CAGD prefer to work in the affine world, while mathematicians prefer
to work in the linear world. There are good reasons behind both preferences, as
we will see shortly. Homogenization is the glue that connects the two worlds. To
be more accurate, the affine world is really a subset of the linear world, looked at
through a kind of blinders. Homogenization is the process that takes an object
in the affine world and constructs the corresponding object in the linear world,
in essence, removing the blinders.

Practitioners of CAGD use homogenization frequently, although they may
not realize it. For example, an affine transformation of p-space is generally
represented as a (p + 1)-by-(p + 1) matrix whose last column (or row) is a
unit vector. This representation is precisely an instance of homogenization. If
F:P — P is an affine transformation of the p-dimensional affine space P, the
homogenized form of F is alinear transformation Fi: P, — P, of the linear space
P,, where dim(P,) = p 4+ 1. Practitioners represent the affine map F by storing
the matrix of the linear map F,.

Consider spaces to begin with. We homogenize an affine space by extending
it to become a linear space of the next higher dimension.
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Definition 6.1 If P is an afline space, the linearization of P is a linear space
P, together with a linear functional w: P, — R, called weight, that satisfies
P =w™1(1). Let P. = w™!(c) denote the set of all elements of the linearization
P, that are c-heavy, that is, that have weight c. Each P, is a hyperplane parallel
to P = P;. Careful people doing geometry in P distinguish between the 1-heavy
elements of P;, which are called points, and the 0-heavy elements of Py, which
are called vectors (more precisely, free vectors on P). For example, adding a
vector to a point gives a point.

Linearization is a simple process when considered in coordinates. In the most
common case, the affine space P comes equipped with a Cartesian coordinate
system. This means that a particular point z in P has been chosen along with a
basis of vectors 6, ..., 6, for the linear space Fy. Every point u in P can then
be written uniquely in the form

(The coordinates of u are indexed with superscripts rather than with subscripts
because, as we will see later, a point u in P is actually a contravariant 1-tensor
on P, and convention dictates that contravariant indices go upstairs.) To extend
this coordinate system into a coordinate system on all of P,, it suffices to allow
the coefficient of z to be different from 1. That is, an arbitrary element e of the
linearization P, can be written uniquely in the form

e = (el,...,e”;eo) =e'z + Z e's;.
1<i<p

Note that the new coordinate e® measures weight; that is, w(e) = €. Following
standard practice, we shall write the weight coordinate last, even though we
index it with 0.

Exercise 6.2 Show that a barycentric coordinate system for an affine space P
can be extended to its linearization P, simply by removing the restriction that
the coordinates must sum to 1. In the resulting coordinate system for P,, show
that weight is given by the sum of the coordinates.

Note: So far, we have been writing particular points in the affine line L simply
as real numbers, tacitly assuming a Cartesian coordinate system on L. But
once we remove our blinders to reveal that L is actually a line lying in the
2-dimensional linear space L,, we must distinguish between the real number u
and the point in L whose coordinate is u, which we shall do by writing the latter
as @. That is, we have @ = (u;1). For example, as shown in Figure 4, the
expression 3 denotes a point in L = Ly, while 1 + 2 = 21.5 denotes a 2-heavy
element of L,. Also, we shall use § to denote the unit vector on L with positive
sense; that is, § = (1;0) =1~ 0.
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Fig. 4: The linearization L, of the affine line L

Next, we consider an affine map F: P — @ from one affine space to another.
Homogenizing the map F means extending it to a linear map Fi: P, — @, from
one linearization to the other. To see that F, exists and is unique, choose an
affine frame [ro,...,rp] for P. Since [ro,...,rp] is also a linear basis for P,
the conditions F,(r;) := F(r;) determine a unique linear map F,. This linear
map F, must agree with F on all of P because every point in P is an affine
combination of the r;.

In addition to being linear, the homogenized map F, is special in another
way: it is weight-preserving. That is, since w(F(u)) = w(u) =1 for all u in P,
we must have w(F,(e)) = w(e) for all e in P,. Thus, the homogenized forms of
affine maps are weight-preserving, linear maps.

In coordinates, homogenizing a map corresponds to making its defining poly-
nomials be homogeneous. For example, consider the affine map G(t) := 2t + 3
from L to @, where dim(Q) = 1. More formally, we have G(f) = 2t + 3, that is
to say, G({t; 1)) = (2¢+3;1). To homogenize G, we replace the weight coordinate
of the argument by a variable, say w, and we add a factor of w to each constant
term in the defining polynomials: G.({t;w)) = (2t + 3w; w). Note that G, has
the matrix (; (1)) (or perhaps ((2) “;‘), depending upon your conventions); the last
column has the special form ((1’) precisely because G, is weight-preserving.

In an analogous way, homogenizing an n-ic polynomial map F: P — () means
extending it to become a homogeneous n-ic polynomial map Fy: Px — Q4. There
is always a unique way to perform this extension, and the resulting extension
F, has the special property that it is weight-ezponentiating, that is, w(Fi(e)) =
w(e)® for all e in P,. In coordinates, we multiply each term in the defining
polynomials by whatever power of the weight coordinate of the argument is
necessary to bring the total degree up to n. For example, the homogenized form
of the standard parabola G({t;1)) = (¢,t%;1) is given by G.({t; w)) = (tw,t*; w?).
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The linear world has a simpler formal structure than the affine world, but
the affine world involves one less dimension, because the affine blinders prevent
us from seeing all of the elements whose weights differ from 1. Practitioners of
CAGD prefer to work in the affine world when possible in order to save that
dimension. Since they deal primarily with curves and surfaces, it is a significant
conceptual advantage for them that the corresponding domain spaces in the
affine world have dimensions 1 and 2, rather than 2 and 3. Mathematicians, on
the other hand, deal with general k-folds. For them, the formal simplicity of
the linear world outweighs the disadvantage that the domain of the linear-world
version of a k-fold has dimension k 4+ 1. Once we understand homogenization,
we can get the best of both worlds by moving back and forth as appropriate.

How does homogenization interact with polarization, for polynomial curves?
If F:L — @ is an n-ic curve, we can polarize F to produce f: L™ — Q or
we can homogenize F' to produce Fi: L, — Q.. Using both polarization and
homogenization, in either order, we can also transform F' into a symmetric,
multilinear map f,:(L,)" — Q.. For example, the standard parabola G(t) =
(t,t%) has the homogenized polar form g, given by

tyws + tawy

Ix((t1; wr), (t2; we)) = < 5

»tlt'.’;wlw2>-

A homogenized polar form f, is weight-multiplicative, that is, it satisfies the
identity w( fi(e1,...,en)) = [T, w(e:).

Thus, a polynomial curve F has four different forms—either F', F,, f, or f,—
depending upon what combination of homogenization and polarization have been
applied. We shall call these forms the diagonal form, the homogenized diagonal
form, the polar form, and the homogenized polar form. In the next two sections,
we will arrive at our grand total of six forms by adding two more to the list: the
tensor form f© and the homogenized tensor form f2.

7 Modeling symmetric tensors as Z-polynomials

If F:L — @ is an n-ic curve, the homogenized polar form of F is a multilinear
map fo: (L))" — Q.. We would like to understand f, thoroughly. The tensor
product construction is a general technique in mathematics that replaces mul-
tilinear maps with linear maps on a more complicated domain space [18]. It
behooves us to apply the tensor product construction to f,.

For readers who already understand tensors, the only challenge involved—
and it isn’t hard—is the symmetry of f,. As a result of that symmetry, we
will work with symmetric tensors and a symmetrized form of the tensor product
operation, analogous to the alternating tensors and the alternized form of the
tensor product that are used in integration theory.

Unfortunately, tensors are a wee bit subtle and many people do not under-
stand them or are even scared by them. Spline theory should be a good chance
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for such people to get over their fears, because the symmetric variant of the
tensor product construction is easier to understand than the asymmetric or al-
ternating variants. In each case, tensors behave algebraically like some flavor of
polynomials. In the symmetric case, it is ordinary polynomials; in the asymmet-
ric case, it is polynomials in non-commuting variables; in the alternating case,
it is polynomials in skew-commuting variables.

One way to start thinking about tensors is to consider putting a geometric
structure onto bags of polar arguments. Let F: L — () be a cubic curve, and let
f:L®* — @ be its polar form. Regardless of which F we have chosen, we know
that _ . .

f(i,‘_l,g) — f(0’4’5) ; f(2’4’ 5).

(Recall that we now distinguish between the point % in L and the scalar u.) We
also know more complicated facts, such as the relationship

(7,7, 7) = (1= )£ (0,8,0)+3r(1 - r)/(0,0, 1)+ 3r2 (1 - ) (0, T, 1) + °A(T, 1, T).

Note that f is a free variable in these formulas. It would be simpler if the bags of
polar arguments themselves actually lay in some affine space. Then, a statement
like oo -
(0,4,5) +(2,4,5)

2 b
without the f’s, could be interpreted as a geometric fact about that space. Thus,
we would like to view the bags (%, v, W) as points arranged in an affine space in
such a way that precisely the same geometric facts hold of the points (&, v, @)
as must hold of the image points f(&,?,w) for any cubic curve F.

First warning: One obvious candidate for an affine space containing the bags
(@, %, ) is the Cartesian power space L>. But L3 is not the space that we desire.
It is true that the relationship (1,4,5) = ((0,4,5)+(2,4,5)) /2, which must hold
in the space we desire, does hold in L®. But the relationship (0,1,2) = (0,2,1)
must also hold in the space we desire, and it doesn’t hold in L3. Furthermore,
the relationship (1,1,1) = ((0,0,0) + (2,2,2))/2 must not hold in the space we
desire, and it does hold in L3.

The space that we desire is actually the third symmetric tensor power of L,
which we shall write QSL. In this section, however, instead of being abstract
and talking about tensors, we will be concrete and model O°L as a certain space
of formal polynomials. Don’t be fooled into thinking that this concrete model is
the sole truth. There are other models, and, from an abstract point of view, no
one model is any better than any other.

In our concrete model, O°L := {Z3 + aZ?® + bZ + ¢ | a,b,c € R} will
denote the affine 3-space consisting of all monic, cubic polynomials in a formal
variable Z. We will view a bag (%,?,w) as corresponding to the polynomial
(Z —u)(Z —v)(Z — w) in O’L. That is, (@, ,®) corresponds to the unique
monic, cubic Z-polynomial that has the three real numbers u, v, and w as its
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roots. Note that the Z-polynomial (Z — 1)(Z — 4)(Z — 5) does lie halfway in
between (Z — 0)(Z — 4)(Z — 5) and (Z - 2)(Z — 4)(Z - 5) in O°L. Similarly,
note that (Z — 0)(Z — 1)(Z —-2) =(Z — 0)(Z — 2)(Z — 1). But (Z - 1) is not
halfway in between (Z — 0)3 and (Z — 2)3. So far, so good.

Second warning: Every bag (@, %, @) corresponds to a Z-polynomial in O°L,
but not every Z-polynomial in (J°L corresponds to a bag. That is to say, not
every monic, cubic polynomial has three real roots. This is one of the main
subtleties behind tensors: In order to turn the collection of all bags (%,%, @) into
an affine space with the proper structure, we have to add in some other points
as well, points that don’t correspond to any bag. A Z-polynomial that has three
real roots is called a simple 3-tensor, while the others are compound 3-tensors.
Remember: Not every tensor is simple.

Math note: We could eliminate the problem of compound tensors when com-
puting the tensor powers (O"L of the affine line L by enlarging our coefficient
field from the real numbers to the complex numbers. But if dim(P) > 1, there is
no way to avoid compound tensors when computing the tensor powers (O"P of
P, even if the coefficient field is algebraically closed. That is, most multivariate
polynomials don’t split into affine factors, even over the complex numbers.

The following theorem shows that the space of Z-polynomials Q"L has pre-
cisely the geometric structure that we desired.

Theorem 7.1 Let L be the affine line, let Q"L denote the space of all monic,
n-ic polynomials in the formal variable Z, and let () be any affine space. Symmet-
ric, n-affine maps f: L™ — Q and affine maps f®: Q"L — @ are equivalent in the
sense that, given a map of either type, a unique map of the other type exists that
satisfies the correspondence identity f(@y,..., %) = fO((Z —w1) -+ (Z — u,)).

Proof: The easy direction of the proof assumes that we are given the affine map
f®. The correspondence identity then determines all of the values of f, and it
does so in a way that guarantees that f will be symmetric and n-affine.

The hard direction starts with a symmetric, n-affine function f. By eval-
uating f on the n + 1 argument bags that consist entirely of 0’s and 1’s, we
can determine the values that we would like f® to have on the polynomials
(Z-0)""%(Z—-1)" = Z""¥(Z—1) for i in [0..n]. Since the matrix of coefficients
of these polynomials is triangular with nonzeros on the diagonal, we deduce that
these polynomials form an affine frame for ©"L. Therefore, there exists a unique
affine map f© that has the correct values on these n+ 1 polynomials. It remains
to check that the correspondence identity always holds.

From whatever function f® we have obtained, we can use the correspondence
identity as in the easy direction of the proof to define a symmetric, n-affine
function g. This function ¢ must agree with the original f at least on the
argument bags that consist entirely of 0’s and 1’s. In other words, f and ¢
must have the same Bézier points. But then the plain case of de Casteljau’s
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Algorithm shows that f and g must be identical, so the correspondence identity
always holds. 0O

Exercise 7.2 If f and f°® are maps that make the correspondence identity of
Theorem 7.1 hold in every diagonal case, that is, F(#) = f®((Z — u)") for all
u, show that every polar case must also hold.

Definition 7.3 If F: L — Q is a polynomial curve of degree at most n, the affine
map f®:O"L — Q that corresponds to F' via the identity F(#) = f®((Z — u)")
is the tensor form of F. An argument to f® is a tensor argument to F, and a
value of f® is a tensor value of F.

Polar values f(%i,...,%n) of F are the special case of tensor values f®(e)
in which the tensor argument e = (Z — u1)---(Z — uy,) is a simple n-tensor.
Diagonal values F(z) of F are the special case of tensor values in which the
tensor argument e = (Z — u)" is a perfect n'" power.

Exercise 7.4 Let G:L — () be the standard parabola in the plane @ given by
G(t) := (t,t?). Show that g®(Z% + aZ + b) = (—a/2,b). Conclude that ¢° is an
affine isomorphism between O2L and . The points of @ inside the parabola
are precisely the tensor values g®(e) of G whose tensor arguments e in O’L are
compound.

8 Adding X’s and Y’s to the Z-polynomials

The Z-polynomials are a satisfactory concrete model for the symmetric tensor
powers (O"L of the affine line L. But we have to use somewhat different poly-
nomials when modeling either the tensor powers ©"P of an affine space P with
dim P > 1 or the tensor powers of a linear space.

First, let’s pause to refine our understanding of the Z-polynomial model.
Theorem 7.1 associates the Z-polynomial (Z — uy)---(Z — u,) with the bag of
polar arguments (4j,...,un), all in one step. It is simpler instead to associate,
for all u, the affine Z-polynomial (Z — u) with the point @ in L. We then
define the Z-polynomial associated with a bag of points to be the product of
the Z-polynomials associated with the points separately. With this convention,
the Z-polynomial model for the symmetric tensors boils down to the simple rule
u—(Z - u).

Putting things another way, we can use the association & — (Z — u) to define
a commutative and associative product operation on the points of the line L.
Each point corresponds to a monic, affine Z-polynomial, while a product of n
points corresponds to a monic Z-polynomial of degree n. This multiplication is
called the symmetric tensor product at the element level. It doesn’t seem to have
a standard symbol; we shall write %1 ®-- - 4, for the symmetric tensor product
of the points #;. In the model @ — (Z — u), the tensor product @) ® -+ ©® 4y is
modeled by the formal polynomial (Z — u1)---(Z — un).
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The rule @ — (Z — u) isn’t the only way to model tensors as formal polyno-
mials. The rule %@ — (Z + u) would work just as well, for example. In the model
that results from this rule, it is the negatives of the roots of a Z-polynomial that
are the points in the associated bag, rather than the roots themselves.

Homogenization provides a more interesting alternative model. Let X be a
second formal variable, and consider the model @ — (uX+ Z). A bag of n points
is associated, in this model, with a formal polynomial that is homogeneous of
degree n in X and Z and in which the coefficient of Z™ is 1.

One advantage of the homogenized model @ — (uX + Z) is that it allows us
to combine points by taking linear combinations, as well as affine combinations.
Consider, for example, the linear combination 3—2 = §, where § := (1;0) = 1-0
denotes the unit vector on L that has positive sense, as shown in Figure 4. In
our original model % — (Z — u), the vector § = 3 — 2 is modeled by the formal
polynomial (Z — 3) — (Z — 2) = —1, that is, by the scalar —1. It seems unwise
to use scalars as models for anything but themselves. The homogenized model
2+ (uX + Z), on the other hand, models é by (3X + Z)—-(2X 4+ Z) = X, which
is fine.

In fact, the homogenized model @ — (uX + Z) extends easily to give us a
model for symmetric tensors in the linear world, that is, tensors on L,: With
each element (t; w) of L,, we associate the polynomial (tX + wZ). Having made
the association (t;w) — (tX + wZ), we can then combine the elements of L,
however we like with addition, scalar multiplication, and the symmetric tensor
product. The resulting abstract algebra is called the symmetric tensor algebra
on L, [16], which we shall write OL,. We are modeling (OL, as the algebra
of all polynomials in X and Z. An n-tensor on L is an element of (DL, whose
modeling polynomial is homogeneous of degree n. In particular, a 1-tensor on
L is just an element of L,. The weight of an n-tensor is the coefficient of Z™ in
its formal polynomial. The affine symmetric tensor power space (O"L consists
precisely of all 1-heavy n-tensors on L. The linear symmetric tensor power space
Q@®"L, consists of all n-tensors of any weight.

Exercise 8.1 Prove the linear-world variant of Theorem 7.1; that is, show
that symmetric, n-linear maps f,:(L,)" — Q. are equivalent to linear maps

f:O"L, — Q..

A second advantage of the homogenized model @ — (uX + Z) is that it
extends easily to higher-dimensional affine spaces. Suppose that we want to
model the symmetric tensor powers O" P of an affine plane P. Inventing a third
formal variable Y, we can use the model (u,v) — (uX +vY +Z). More generally,
we can associate the polynomial (uX + vY + wZ) with the element (u,v; w) of
the linearization P,. The linear space (O"P, is then modeled as the set of all
polynomials that are homogeneous of degree n in X, Y, and Z. The affine space
O™P is the 1-heavy part of O"P,, that is, those polynomials in O"P, whose
coefficient of Z™ is 1.
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Diagonal Form Homogenized Diagonal Form

FL*Q F*:L*'—"Q*
degree at most n homogeneous of degree n
weight-exponentiating
Polar Form Homogenized Polar Form
fiL"—Q fer (L) — Q4
symmetric, n-affine symmetric, n-linear

weight-multiplicative

Tensor Form Homogenized Tensor Form
f:0O"L - Q ff:QnL*—"Q*
affine linear

weight-preserving

Fig. 5: The six forms of the polynomial curve F

Exercise 8.2 If P is an affine plane, the tensor square @2P of P under the
model (u,v) — (uX + vY + Z) is the 5-dimensional affine space

O'P = {aXY +bXZ+cYZ +dX? +eY® + Z%|a,b,c,d,e € R}.

Note that at most 4 dimension’s worth of the polynomials in this space can model
simple 2-tensors on P, since the expression (11X + 1Y + Z)(u X + v.Y + Z)
has only four parameters. Characterize the simplicity of a 2-tensor on P as an
algebraic relationship among the coefficients a through e. (Answer: a? + b%e +
c’d = abe + 4de.)

Concrete models are a good way to develop one’s intuition about tensors,
especially in the symmetric case, where they can be based on formal polynomials.
It is also important to understand tensors from an abstract perspective, however.
We tackle that task in the next section. In particular, we will go to some
lengths to clarify the analogy between the symmetric case of the tensor product
construction, which we need, and the alternating case, which arises in integration
theory. We note in passing, however, that we can now convert any polynomial
curve into six different forms, as shown in Figure 5. Polarization takes us from
the first row to the second row; tensoring, from the second row to the third row;
homogenizing, from the first column to the second column.

9 Symmetric tensors in the abstract

Let P be an affine space. From an abstract point of view, the n't symmetric
tensor power of P is an affine space A together with a symmetric, multiaffine
map @: P* — A that has the following property:
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For any affine space  and for any symmetric, multiaffine map
f: P" — @, there exists a unique affine map f®: 4 — Q that satisfies

f=f%0q.

This property implies that the maps f and f© are in one-to-one correspondence.

If any such pair [A, ¢] of a space A and map ¢ exists, it is easy to show that
any other such pair [B,%] will be isomorphic to it in a unique way. Therefore,
it makes sense to reserve the special name (O"P for the space 4 and the special
notation (uy,...,un) — w3 O ---® u, for the map ¢. In the last two sections,
we constructed a concrete mode] for A and ¢ based on formal polynomials and
hence demonstrated that the symmetric tensor power does exist.

The tensor product construction comes in many different flavors. Perhaps
the most basic is the one that converts a multilinear map hA: V) x -+- x V,, = W
(not necessarily symmetric) into a linear map A®:V; ® --- @ V,, — W via the
correspondence identity hA(vy,...,v,) = h®(vi ® -+ ® v,,). If the special case
in which V; = --- = V,, = V, the domain of A® is written @™V and its elements
are called n-contravariant tensors on V.

Math note: One advantage of the linear world over the affine world is that the
linear world has a duality: The dual space V* of the linear space V is the set
of all linear functionals from V' to R. The elements of the asymmetric tensor
product space

RV :=VR---VRV*'Q® --@V*

m n

are called m-contravariant, n-covariant tensors on V. That is, in tensor theory,
contravariant means primal and covariant means dual. (See Dodson and Pos-
ton {13] for the story of how those names were chosen.) All of the tensors that
we use in this report are purely primal, that is, purely contravariant. We shall
therefore abbreviate the term “n-contravariant tensor” to “n-tensor.”

If [61,...,68p)is a basis for V, every n-tensor e in @™V can be written uniquely

in the form

e = Z e @ ® B, -
1<kt 0k <p

One way to think about this is to say that the tensor e can be modeled as
a formal polynomial that is homogeneous of degree n in the non-commuting
formal variables 6; through 6é,. It is more common, however, to think about
the p™ coordinates (e"’l"'k") as forming an n-dimensional array. It is this latter
point of view that lies behind the physics definition of a tensor as an array of
numbers that transforms according to a certain rule.

A particular n-tensor e is called symmetric if its coordinate array is symmet-
ric, that is, if interchanging the values of k; and k; does not change the value
of the coordinate e*-5» The n-tensor e is called alternating if its coordinate
array is skew-symmetric, that is, if interchanging k; and k; negates e*1--*= (and
hence e*1-¥» = 0 when k; = k; for i # j).
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Math note: Things might be simpler if the tensor e were also called “skew-
symmetric,” instead of being called “alternating.” The term “alternating” is
preferred, however, because of a distinction that arises in the case of a coefficient
field of characteristic 2. A bilinear map h:V? — W is called alternating if
h(v,v) = 0 for all v, while h is called skew-symmetric if h(u,v) + h(v,u) = 0
for all u and v. If the characteristic is not 2, the two notions are equivalent.
In characteristic 2, however, “skew-symmetric” and “symmetric” are equivalent;
every alternating map is symmetric; but not every symmetric map is alternating.

Integration theory deals with multilinear functions that are alternating, such
as the determinant. (Actually, the things that one integrates over a manifold are
differential forms, which are alternating covariant tensor fields. Here, we discuss
the simpler case of alternating contravariant tensors.) The alternating case of the
tensor product construction converts an alternating, multilinear map h: V* — W
into a linear map h*: A"V — W via the correspondence hA(vy,...,v,) = h*(vi A
-+ Avy). The space A"V is called the n'" alternating tensor power of V or the
ntt exterior power of V.

If [61,...,6,) is a basis for V' as above, each element e of the alternating

tensor power space A"V can be written uniquely in the form

e= E ekrekn Sgy Ao A b,
1<k1 < <ka<p

We can think of this sum as a formal polynomial in the skew-commuting variables
61 through é,, or we can think of the coefficients (ekl"'k") for1 <k <---<
kn, < p as forming a triangular array. But the most common model for the
space A"V is yet a third alternative: We identify A"V with the subset of @"V

consisting of all alternating n-tensors via the rule
5k1 /\"'A(Sk,. = Alt((ﬁk1 ®"'®6k,,)- (9.1)

In this rule, Alt denotes the alternizer, the function that projects all of @"V
down onto the subspace of alternating n-tensors; in particular,

1
Alt(bp, @ - ® 8k,) = = Z sgn(p) 6’%(1) QR --® 6kp("),
) Pesn

where S, denotes the symmetric group on {1,...,n} and sgn(p) is +1 if the per-
mutation p is even and —1 if p is odd. In the model resulting from Equation 9.1,
the alternating tensor product at the element level is defined by alternizing the
asymmetric tensor product. For example, 3A5 = Alt(3®5) = 3®5-5®3)/2.
Converting to the standard Cartesian basis [0,6] for L., we have

(0436)® (0+56) — (0 +56) ® (0 + 36)

=0®6-61®0.
5 0® ®0

3A5 =
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The polarized approach to splines deals with multilinear functions that are
symmetric, such as the homogenized polar form f, of a polynomial curve. The
appropriate theory is completely analogous to the alternating case. We can
convert a symmetric, multilinear map h: V™ — W into a linear map h®:Q"V —
W via the correspondence A(vy,...,v,) = h®(vy ®--- O v,), where the space
O™V is the n*h symmetric tensor power of V.

Each element e of O™V can be uniquely expressed in the form

ky..oky
e= Y MR 006,
1<k £ Skn <p

We can think of this sum as a formal polynomial in the commuting variables §;
through 6,, as we did in Section 8, or we can think of the coefficients (k=)
for1 <k <--- <k, < pasforming a triangular array. (The triangular array is
a bit larger in the symmetric case, since the indices k; are allowed to be equal.)
A third alternative is to identify O™V with the subset of @V consisting of all
symmetric n-tensors, via the rule

6k, @+ @ bk, :=Sym(bp, ® - -+ ® bk, ), (9.2)

where Sym denotes the symmetrizing projection given by

1
Sym(6x, ® -+ ® bk,) = t Z Okoy @ =7 ® biyqy-
’ Pesn

In this third view, the symmetric tensor product at the element level is defined by
symmetrizing the asymmetric tensor product. For example, 305 = Sym(3®5) =
(3®5+45® 3)/2. In terms of the Cartesian basis [0,6], we have 30 5 =
090+4006+46®0+156Q 6.

Math note: The nonzero coordinates of an alternating n-tensor are partitioned
into equivalence classes of size n!, whose elements differ at most in sign. Some
authors try to make certain coordinate formulas cleaner in the alternating case
by multiplying the right-hand side of Equation 9.1 by n! [28]. The price that they
pay for this rescaling is a messier definition of the alternating tensor product at
the element level. In particular, if e; is an alternating A-tensor and e, is an
alternating {-tensor, the rescaled model has e; Aey = ((k+ DR l!) Alt(e; ®e3z).
Other authors get the same rescaled model in a different way by omitting the
division by n!in the definition of Alt [18]. Indeed, that division must be omitted
in the case of finite characteristic, where we might have n! = 0. But omitting it
destroys the desirable property that Alt(e) = e for an alternating tensor e.

A symmetric n-tensor can have all of its coordinates nonzero, and the equiv-
alence classes into which they are partitioned are of different sizes, depending
upon how many indices are repeated and how often. IHence, the analogous
rescaled model is less attractive in the symmetric case.
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The asymmetric and symmetric cases of the tensor product construction
make perfect sense in the affine world, as well as in the linear world, and we
shall use the same symbols: ® and ®. Defining the alternating case in the affine
world would be tricky, since the fundamental condition h(v,v) = 0 is not an
affine relation; we won’t bother to try.

Exercise 9.3 If P is an affine space of dimension p and @ is an affine space
of dimension ¢, verify the following dimension formulas by presenting either a
linear basis or an affine frame, as appropriate:

dim(P,® Q.)=(p+1)(¢+1) dm(P®Q)=pr+p+q

dim(®"P,) = (p+ 1)* dim(@"P) = (p+1)" -1
dim(A"P,) = (”:1) (not applicable)
dm(@"F,) = () Gm(@"P) = (*47) - 1.

10 Poles and pole systems

It is time for us to reap some reward from our investment in the conceptual
complexity of tensors. In this section, we use tensors to complete the proof
of Theorem 4.2 via the conceptual approach. We first pause to promulgate a
valuable notational convention.

The symmetric tensor product operation at the element Jevel is a commuta-
tive product; for example, 203 = 3(® 2. As a result, it doesn’t hurt to omit the
special multiplication symbol and to write this product simply 23. That is, when
points, vectors, or other symmetric tensors are multiplied together henceforth,
the symmetric tensor product is the intended flavor of multiplication. With this
convention, we can use exponential notation to write the k" Bézier point of
the n-ic curve segment F([0..1]) in the form f®(0™~*1¥), which is a dramatic
improvement over our previous notation

f(,...,0,1,....,0) = f°00---00010---01).
N et N e’

-

n—k k n—k k

Note that the success of this convention depends critically on the fact that we
are distinguishing between the scalar u and the point % in the afline line L. For
example, 23 is a 1-heavy 2-tensor on L; it is not at all the same thing as 6.

Recall that Theorem 4.2 dealt with the progressive case of the de Casteljau
Algorithm. We suppose that [7y,...,72,] is a progressable sequence of points
in L, that Q is some affine space, and that ag through a, are points in Q. We
would like to conclude that there exists a unique n-ic curve F:L — () whose
polar form satisfies f(Fx41,.-.,7k+n) = ax for k in [0.. n]). The uniqueness of F
follows easily from the de Casteljau Algorithm, but we have not yet demonstrated
the existence of F.
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Proof (of existence in Theorem 4.2): Using polarization and the tensor product
construction, we know that n-ic curves F: L — () are equivalent to affine maps
f°:O"L — Q via the correspondence F(%) = f°(%"). Thus, in tensored form,
our problem is as follows: Show that there exists a unique affine map f© that
satisfies the constraints f®(Fx41---Tktn) = ak for k in [0 .. n]. (By our new
conventjon, the expression 7x41:::7Tryn is shorthand for the n-tensor 74y @
<+ @ Frgn on L)

But affine maps are quite simple things. Let [eg,...,e,] denote some se-
quence of n-tensors on L. Our ability to specify an affine map f© by specifying
the values f®(ex) depends upon the geometric relationships that hold among
the ex in ©"L. First, an affine map f° satisfying f®(ex) = ax exists for all
sequences [ag,...,a,| precisely when the e, are affinely independent. Second,
the equations f®(ex) = ax are enough to completely determine the affine map
f®, leaving no room for further choices, precisely when the e, affinely span all
of O"L.

The relevant n-tensors e, for the proof of Theorem 4.2 are given by e; :=
Tk+1 ' Tken for k in [0 .. n]. From the progressive case of the de Casteljau
Algorithm, we already know that the affine map f® is uniquely determined.
Therefore, we may conclude that the tensors ex = x4y - -+ Tr4n must span all of
(O"L. But there are n + 1 of them, and (O"L is an affine space of dimension n.
By linear algebra, the only way that the e, can span is if they are also affinely
independent. Therefore, we may conclude that some satisfactory afline map f©
will always exist. O

Through the tensor product construction, we can bring linear algebra to
bear on the problem, and linear algebra lets us deduce by simple counting that
F exists if and only if F is unique. Roughly speaking, since the n+ 1 constraints
on F' are spread out enough that they determine all of the values of F' uniquely,
they must also be spread out enough that they don’t make any contradictory
demands about any particular values of F'.

Exercise 10.1 Reprove the fact that the n-tensors ep := Fiyq--: Tryn are
affinely independent by expanding them in coordinates and computing a de-
terminant. In particular, use the formula 7, = 0 + 746 to show that

— - An—lgl
€k = Thbl  Frgn = O OUTki1y-. - Then) 07716,
0<i<n

where o; denotes the /" elementary symmetric function, as in Section 5.2. Con-
clude that the e, will be independent if and only if det(M ) # 0, where M = (my;)
is the matrix given by my; = o(Tk41,---,Tk+n) for k and I in [0..n]. Prove that

det(]\/I) = H (rn+i - Tj)
1<i<y<n

by imitating the computation of the Vandermonde determinant, and use the
progressability of the sequence [7y,...,725] to conclude, once again, that the e,
are affinely independent.
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Another way to describe Theorem 4.2 is as a result about “polar interpola-
tion,” as opposed to “diagonal interpolation.” If @y through %, are n+1 distinct
points in L and ag through a, are arbitrary points in an affine space @, the La-
grange Interpolation Formula computes the unique n-ic curve F: L — () satis-
fying the diagonal conditions F(%;) = a;. That is, the Lagrange Formula solves
the problem of diegonal interpolation. In the corresponding problem of polar
interpolation, we start with n + 1 bags of polar arguments to F', say By through
B, and we try to specify a curve F using the polar conditions f(Bj) = a,. Let
bx denote the simple n-tensor on L that corresponds to the bag Bi. Polar inter-
polation is more subtle than diagonal interpolation because it is not enough for
the bags By merely to be distinct. Instead, the tensors by must be affinely inde-
pendent, so that they form an affine frame for ©"L. The situation in which the
by do form a frame is important enough that it deserves its own nomenclature.

Definition 10.2 If By through B, are bags of n points in L with the property
that the corresponding simple n-tensors by through b, form an afline frame for
"L, then an n-ic curve F can be uniquely specified by arbitrarily specifying
the polar values f(By) = f®(bx). In this situation, we shall call the sequence of
polar values [f(Bo),-.., f(Bn)] a pole system for F. A pole is one of the polar
values f(By) in a pole system. Thus, a pole is a polar value that we may use as
a handle to control the shape of the function.

The plain and progressive cases of the de Casteljau Algorithm are two sources
of poles and pole systems.

Definition 10.3 A plain frame for Q"L is an affine frame consisting of the
tensors 3" %t* for k in [0.. n] and 5§ < . The images under f© of the elements
of a plain frame are precisely the Bézier points of the n-ic segment F([3..1]);
they form a plain pole system. Each Bézier point is a plain pole.

A progressive frame for ©"L is an affine frame consisting of 7541 - - - T4.p foOr
k in {0 .. n], where [F,...,T2,] is a progressable sequence. The image under f©
of the elements of a progressive frame form a progressive pole system, and each
point in a progressive pole system is a progressive pole.

Note on “pole,” “plain,” and “progressive”: De Casteljau introduced the

term “pole” [11], but he meant by it any polar value, whether or not that
polar value was part of a pole system. lle also invented the wonder{ul name
“progressive pole.” I am proposing the name “plain pole” to replace his “simple
pole,” in order to avoid confusion with simple tensors and with the simple poles
of a complex analytic function.

11 The polarized view of continuity

While the polar form of one polynomial curve in isolation is worth studying, the
real power of polarization in the theory of splines comes from the simple way
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that parametric continuity constraints at a joint between two polynomial pieces
interact with their polar forms. Our next goal is to study that interaction.

Open problem 11.1 A simple interaction arises only when the continuity con-
straints are parametric. Several weaker notions of continuity for spline curves
have generated a lot of interest recently, under the general rubric of “geometric
continuity.” One of those notions corresponds to parametric continuity after
some regular reparameterization, while the other is a weaker notion proposed by
Boehm [3]. Saying anything interesting about either type of geometric continuity
from the polarized approach is an important open problem.

Before considering parametric continuity, we must establish some connection
between polarizing and differentiating. This is easy to do, now that we also
know about homogenizing and tensoring. Indeed, we wouldn’t have been able to
proceed without homogenizing in some form, since, if the values of a polynomial
curve F' are points in the affine space @, then the values F'() of the derivative
of F are vectors on @, that is, 0-heavy elements of the linearization Q.

Let F: L — @ be an n-ic curve, and let f@: ("L, — Q. be the homogenized
tensor form of F. Since F(7) = f2(7"), we have

l
F'(7) = - f2(F").

Since the map f2 is linear, it commutes with the operator d/dr. We then appl
P Jx p PPLY

the rule for differentiating an n‘" power:

F'(F) = ff(%?") = ff(nf"”%f).

The value d7/dr is simply § = (1;0), the unit vector on L. The final result is
F'(F) = nf2(67™71).

Thus, to evaluate the derivative of F' at 7, we replace one of the n copies of 7
among the polar arguments of F by a vector that gives the direction of differen-
tiation; and we multiply by an annoying scale factor of n.

The reason for the annoying factor is that, when we vary the argument 7 of
F(7), all n of the arguments of the polar form f(#,...,7) vary in parallel. If
only one of them varied, the rate of change in the result would be

d . _ N _ _
;lfu-_f(ul,...,un) = filin, ooy Uic1, O, Wig1y - -y iln ).
1

But when all n of them vary in parallel, the rate of change is magnified by a
factor of n.

If we compute higher derivatives by repeating the process above, we find that
FU(F) = nkfo(8577=%), where the falling-factorial power n% out front is an

33



abbreviation for the annoying scale factor of nk := n(n —1)---(n =k + 1). In
particular, note that the n'? derivative of the n-ic polynomial F has the constant
value F(™(F) = n!f2(6™).

If we like, we can dehomogenize these formulas by rewriting the vector § as
a difference of points. For example, substituting § := (¢ — 5)/(t — s) and 7:= 3
gives the standard formula for the k'® end-point derivative of an n-ic segment
F([5..1]) as a k*® difference of its plain poles (that is, of its Bézier points):

> (§)erirer,

0<i<k

F®(5) = s )k

(t-

Exercise 11.2 Extend these differentiation results to the case of a map F: P —
@ with dim(P) > 1 whose total degree is bounded by n. For example, show that
the second directional derivative D¢ D, F(u) of F at u in the directions £ and n
(where £ and 7 are vectors on P) is given by D¢ D, F(u) = n2f2(énun~?).

Theorem 11.3 Two polynomial curves F(u) and G(u), each of degree at most
n, agree to k* order at a point 7 if and only if their n-polar forms f and g have
the property that

flr,eo Bk Tye oy T) = g(Urye ey UkyTyuney T)
——’

n—k n—k

for all @y through iy, that is, if and only if F and G agree on all bags of polar
arguments that contain at most k values different from 7.

For example, in the case k£ = 0, we are told that F and G agree to 0'" order
if and only if f(7,...,7) = g(F,...,7), that is, if and only if F(7) = G(F). In the
case k = n, we are told that F and G agree to n'® order, that is, are identical,
if and only if all of their polar values agree.

Proof: The curves F' and G agree to k'" order at 7 precisely when F()(7) =
GO(F) for i in [0 .. k]. Translating the i*" condition into tensor terms gives
(617~ = g®(6'7™*); the annoying numeric factor of nt appears on both
sides, and hence cancels out. Thus, F and G agree to k*" order if and only if the
relationship f2(e7™~*) = ¢2(e7™~*) holds whenever e has the form e = § 7%~
for <in [0 .. k].

On the other hand, the identity

f(ﬂl,...,ﬂk,F,...,f) = g(ﬂl,...,ﬂk,f,...,f)
n—k n—k
corresponds to the relationship f2(eF™~*) = g®(eF™*) for e = 4, - -~ @tx. Thus,
the polar-form condition in Theorem 11.3 is satisfied if and only if the relation-

ship f2(er™ %) = g2(eF™ *) holds whenever e is the product of k£ points in
L.
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The set of all e in O*L, for which the identity f2(er™ k) = g2(e™*) holds
must be a linear subspace § of @kL*. The k-tensors 675~ for 7 in [0..%k] form a
basis for OFL,. Thus, F and G agree to k*" order if and only if $ = OL,. But
there are also bases for O*L,, such as (3%,551F ... t*] for 5 # £, each of whose
elements is a product of k points. Thus, it is also the case that the polar-form
condition is satisfied if and only if § = @kL*. We conclude that agreement to
k™ order and the polar-form condition are equivalent. O

Exercise 11.4 Prove that two n-ic curves F and G agree to k't order at 3 if
and only if each of the first £ + 1 plain poles of the segment F([3..{]) coincides
with the corresponding plain pole of G([3..7]).

We can rephrase the result in Theorem 11.3 as follows: Two n-ic curves
agree to k' order at 7 if and only if their polar forms agree on all bags of polar
arguments that are superbags of

This concept is begging to be polarized.

Definition 11.5 If F,G: L — Q are two n-ic curves and B = (y,...,7~x) is
a bag of n — k points in L, we say that I and G agree on all superbags of B if
the identity

f(ﬂlv"'sﬁkvflv"‘7i;‘n—k) :g(ﬁlv-"sﬁks"—‘ly'nvf'n—k)
holds for all %, through @ in L.

Note that the condition “agreement on all superbags of B” becomes stronger
as the bag B gets smaller. For example, agreeing on all superbags of (7y,...,7,)
means merely that a single polar value is the same, while agreeing on all su-
perbags of the empty bag means identity. In the next section, we will find
that any two segments of a spline curve agree on all superbags of the bag of
intervening knots.

Exercise 11.6 Show that two cubic curves F' and G agree on all superbags of
(#,9) for @ # v if and only if each of the middle two plain poles of the segment
F([w .. 7]) coincides with the corresponding plain pole of G([& .. 9]).

12 The polarized view of spline curves

We now tackle spline curves with parametric continuity constraints from the
polarized approach.
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Let [t_i] be a nondecreasing sequence of knots in the affine line L, under
the standard convention that a knot #;41 = ;42 = <+ = f;4mn of multiplicity
m 2> 1 is the parameter value of a joint in the spline where C™~™ continuity is
required. The largest multiplicity that we allow in a knot sequenceis m = n+1,
corresponding to C~! continuity, that is, to a completely unconstrained joint.

An n-ic spline curve F with the knot sequence [t_,-] is a piecewise polynomial
function F: L — () with one piece for each pair of distinct, adjacent knots. That
is, if #; < t;41, the spline curve F follows a single n-ic polynomial F; over the
nonempty interval (Z; .. fi4+1). The n-ic segment Fi([f; .. {i4+1]) joins on, at its
right end, to the left end of the segment Fiim ([fitm - fitm+1]), where m is the
largest integer such that £;41 = -+ = {;3m. In order for the assembled segments
[Fi] to form a spline, this joint is required to have at least C™~™ continuity.
By Theorem 11.3, this is equivalent to the requirement that F; and Fjy,, must
agree on all superbags of (£i41,---,%it+m)-

Two non-adjacent segments F; and F; of a spline F' are still related to each
other, as long as the total number 7 — ¢ of intervening knots is at most n. One
of the advantages of the polar approach to splines is that it gives us a simple
way to describe the relationship between F; and F in general, regardless of the
multiplicities of the j — ¢ intervening knots: The curves F; and F; must agree
on all superbags of (fit1,...,t;).

Theorem 12.1 Let [t_,-] be a knot sequence in L and, for each i with t; < t;41,
let F;: L — @ be an mn-ic curve. The sequence of curves [Fi] forms a spline with
the knot sequence [t_,-] if and only if the following condition holds: For all ¢ and
jwithi <j<i+mn,t; <tiy1, andt; <tjy1, the curves F; and F; agree on all
superbags of the bag (ti1,...,t;) of intervening knots.

Proof: We already observed that Theorem 11.3 handles one direction of the
proof. If the superbag condition holds for all pairs F; and Fj, it follows that
any two adjacent segments F; and Fiy,, must agree on all superbags of the
bag (fi+1,.--,ti+m). By Theorem 11.3, this means that F; and Fi;,, agree to
(n — m)*" order at the separating knot ;11 = f;4m, so F; and Fii,, do fit
together properly.

In the other direction, suppose that all of the F; fit together to form a spline;
we must show that the superbag condition holds for all pairs of segments F; and
Fj. Let my, mgy, and so forth be the multiplicities of the knots that intervene
between F; and Fj, so that Zk my = j — i. Since the segment F; joins its right-
neighbor Fiy,,, with C™~™! continuity at t;+1 = ti4+m,, Theorem 11.3 tells us
that F; and F;4.,, must agree on all superbags of (£;31,...,ti4m,). In a similar
way, Fitm, must agree with its right-neighbor Fijm, +m, on all superbags of
(titmy41s---slitmi+ms). And so on. By transitivity, we conclude that F; and
F; will agree on all superbags of (tiy1,...,t;). O

Suppose that F' is an n-ic spline curve. What does Theorem 12.1 say
about the values of the various polar forms f; on the argument bag B :=
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(tk+1s---stk4n), which consists of n consecutive knots? If i and j are any
two indices that lie in [k .. k + n], the bag ({;4+1,...,t;) will be a sub-bag of
By. Therefore, by Theorem 12.1, all of the f; for ¢ in [k .. k + n] must agree
on a common output value for the input bag By. The resulting polar values
ay = fi(tk+1,..-,tk4n) are important, because they can be used as handles
that control the shape of the spline curve F.

Theorem 12.2 Let n be a nonnegative integer and let [t_k] be a knot sequence
in the affine line L whose knots have multiplicity at most n + 1. For any affine
space (Q and for any sequence [aj] of points in Q, there exists a unique n-ic spline
curve F: L — () with knot sequence [t_k] that satisfies

ap = f,'(t—k_'_l,... at—k+n) for k S ) S k + n. (123)

Proof: Let (f; .. #;+1) be a nonempty knot interval, and consider the sequence
of 2n knots S := [fi_n+1,...,fi+n], centered at the interval (Z; .. ¢;41). Since

ticng1 S -- <t <tiy1 <0 < iy

every element of the first half of S is distinct from every element of the second
half, which implies that S is progressable. Hence, the points f;(tx+1,--.,tk4n)
for k in [¢ — n .. {] constitute a progressive pole system for f;. By Theorem 4.2,
there is a unique n-ic curve F; that satisfies ay = fi(fk4+1,.--,k4n) for k in
[i—n.i].

Since the constraints in Equation 12.3 uniquely determine every segment F},
we deduce that there can’t be more than one satisfying spline F. To prove
that there is one, we must show that the F; determined by Equation 12.3 do fit
together properly to form a spline. Using Theorem 12.1, fix any ¢ and j with
i<j<i+n, t; <ty andt; <ijp1. We must show that the segments F; and
F; agree on all superbags of (fi4+1,...,t;). From Equation 12.3, we know that
both fi(tks1,-.-stitn) and fj(Tks1,-- ., thsn) are equal to ay for k in [j —n ..14);
hence, they are also equal to each other. That is to say, f; and f; agree on the
bags formed by the rows of the following parallelogram:

tj—n+1 t:j—n+2 t:i t_i+1 t:j _
tj—n+2 ti tipa ti tit
P ORI PR AU P
tiv1 ti tigr oo lign-1 tign

To finish the proof, we cut the middle j — ¢ columns out of this parallelogram
and collapse the two remaining triangles to form a smaller parallelogram.

Let [ := n — j 4+ 7 and let g; denote the symmetric, multiafline function of
[ arguments formed by fixing (j — ¢) of the arguments of f; at ¢;4, through
t;. That is, define g; by gi(@1,...,@) = fi(@1,...,U,tit1,...,t;). Let g;
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denote the analogous restriction of f;. Proving that F; and F); agree on all
superbags of (fi4+1,...,t;) is equivalent to showing that g; and g; are identi-
cal. Since f; and f; agree on the rows of the parallelogram above, we deduce
that g; and g; agree on each sequence of [ consecutive knots from the sequence
T := [tj—nt1s--sbistip1,-+ s tign] of 20 knots. Furthermore, the sequence T is
progressable, since each element of its left half is strictly less than each element
of its right half. Thus, g; and g; have a progressive pole system in common, so
they must be identical. 0O

The sequence [a,] in Theorem 12.2 plays the same role for an entire spline
curve that a pole system plays for a single curve; that is, the points a) are
handles with which we can control the shape of the spline. Since the sequence
[ax] includes a system of progressive poles for each segment F;, we shall refer to
the points a; as the progressive poles of the spline F'. The a are also called the
de Boor points of F or the coefficients in the B-spline expansion of F.

With Theorem 12.2, we end our development of the theory of spline curves via
the polarized approach. The reader must now judge whether or not the polarized
approach is a good thing. The polarized labels certainly bring a new clarity to
the de Casteljau and de Boor Algorithms. It is unfortunate that the associated
proofs aren’t simpler. The computational proof strategy, in Exercise 4.4, seems
both tedious and a bit mysterious; it shows that bg, is symmetric without
explaining why. The conceptual strategy is both elegant and enlightening, but
it depends upon the tensor product construction, which is rather subtle, even in
the symmetric case.

The reader might enjoy comparing the polarized approach to the last great
revolution in spline theory, which was knot insertion algorithms. Some years ago,
people realized that many different problems about splines could be solved by
knot insertion. To a devotee of the polarized approach, this is hardly surprising:
A knot insertion algorithm is just one particular, algorithmic way of computing
polar values of the segments of a spline from that spline’s progressive poles.

13 Polynomial and bipolynomial spline surfaces

Spline surfaces are significantly more subtle than spline curves.

Suppose that we want to model a surface parametrically by giving each
coordinate of a point on the surface as a polynomial in two real parameters, say
u and v. There are two different types of degree bounds that we can impose on
the coordinate polynomials: Either we can bound the total degree in u and v
jointly or we can bound the degrees in u and in v separately.

If we bound the total degree by n, the resulting map is properly thought
of as a function F: P — @Q, where P is an affine parameter plane and @ is the
object space. In particular, the degree bound is not affected by the choice of the
Cartesian coordinate system (u,v) for P. The obvious name for such surfaces is
polynomial surfaces of degree at most n. They are sometimes called “triangular-
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patch surfaces”; but one can cut a patch of any shape out of any surface, at least
in principle.

If we bound the degree in u by m and the degree in v by n separately, the
resulting degree bounds do depend upon our choice of coordinate system in the
parameter plane. Indeed, the resulting surface is best thought of as a function
G:U xV — (@, where U and V are two different afline parameter lines. For
each fixed u in U, the function v + G(u;v) is an n-ic curve; for each fixed v
in V, the function v — G(u;v) is an m-ic curve. I like to call such a surface G
a bipolynomial surface of degree (m;n). The term “bipolynomial” generalizes
the names “biquadratic” and “bicubic”, which are the standard terms for the
particular cases m = n =2 and m=n = 3.

Note that every n-ic polynomial surface is also a bipolynomial surface of
degree (n;n) and that every (m;n)-ic bipolynomial surface is also a polynomial
surface of degree (m+n). Thus, the distinction between the two types of surfaces
arises only when particular degree bounds are involved.

Exercise 13.1 Show that the polar form f of an n-ic polynomial surface F
takes, as arguments, n points in the parameter plane P. On the other hand,
show that the polar form g of an (m; n)-ic bipolynomial surface G takes m points
in U and n points V as arguments.

Bipolynomial surfaces are often called “tensor-product surfaces,” but that
name is the result of incomplete understanding. Both types of surfaces can
be converted into affine maps by means of the tensor product construction.
An n-ic polynomial surface F: P — (Q has the tensor form f®:O"P — Q,
while an (m;n)-ic bipolynomial surface G:U x V — @Q has the tensor form
92:O"U @ O™V — Q. The only difference between the two cases is that
tensoring F' involves only the symmetric case of the tensor product construction,
while tensoring G requires one instance of the asymmetric case as well as the
symmetric case.

A bipolynomial spline surface is just a spline curve of spline curves. Polar-
ization and tensoring handle such spline surfaces just as neatly as they handle
spline curves. The only difficulty is a notational one: Since two different afline
lines are now involved, we must keep track of which polar arguments come from
U and which from V| as we multiply them together to form tensor arguments.
One choice is to keep track positionally. In this scheme, the tensore = 01®234
is the product of five points: 0 and 1 in U and 2, 3, and 4 in V. (The tensor e
is a tensor argument for a bipolynomial surface of degree (2;3).) On the other
hand, we can continue to think of the multiplication operation on points as com-
mutative if we adopt some other convention to keep track of where the points
come from. I like the notations u, read “u-in,” for the point (u) in U and 9,
read “v-out,” for the point (v) in V. With this convention, the tensor e could

\\\\\

be written as the simple product e = 01234, with its five factors in any order.
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Open problem 13.2 The other major category of regular spline surface are
the box spline surfaces. Ramshaw (23] discusses this case at length but with
little success. Find a natural and helpful polar form for a patch of a box spline
surface. In particular, your polar form must have the appropriate constraints on
the higher-order derivatives of the surface built-in, in some fashion.

Open problem 13.3 Use polar forms in an enlightening way to study spline
surfaces based on irregular partitions of the parameter plane.

14 B-splines and the work of Carl de Boor

In the last three sections of this report, we consider the three pioneers of the
polarized approach in turn, presenting their perspectives briefly. Carl de Boor
comes first, so it is time to talk about B-splines.

The traditional approach to the theory of spline curves places a great deal
of weight on B-splines, although we have hardly mentioned them so far. Every
knot sequence [fx] has an associated sequence [Bjn41(%)] of n-ic B-splines.
(The second index is n + 1, rather than n, because convention dictates that
B-splines be indexed by order, rather than by degree.) The ;' member of this
family is the real-valued spline function Bjn41: L — R whose progressive poles
(b, k] are given by

. [1 ifk=j
Bik = {O otherwise.
If F is the n-ic spline curve on the knot sequence [fk] with progressive poles
[ak], the B-spline Bj n4+1 quantifies the influence exerted by the progressive pole
a; on the value of F. That is, we can expand any spline as an affine combination
of its progressive poles, with the B-splines as the coefficients:

F(@) = Z Bjn1()a;.

To say more or less the same thing in another way, we can express any real-valued
spline function F as a linear combination of B-splines, where the coeflicients are
the progressive poles [a;] of F. Thus, the B-splines form a basis for the space
of all real-valued splines on the knot sequence [fk]; that is the way that a
traditionalist would rephrase our Theorem 12.2.

The B-splines can be defined in three different ways. They were originally
defined by a formula involving divided differences [6]. The other two definitions
are both recurrences, and they are, in some sense, dual to each other.

One of the recurrences is called the B-spline recurrence [7]:

_ 1 Ifl—l.E(t_t_+1)
B. — IR
51(8) { 0 otherwise

_ t'+ +1— U _ u—t;
Bjng1(i) = ————DBj41.0(7) + :

=B (%)
titnt+1 = L1 tign —t; 7"
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It expresses a B-spline of degree n as a linear combination of B-splines of degree
n — 1; but note that the linear combination is not an affine combination.

The other recurrence is the one the lies at the heart of the de Boor Algo-
rithm [8]. To compute Bj,41(@), first find ¢ so that @ lies in (Z; .. £;31), and let
Bjnt1, denote the n-ic polynomial that the B-spline B; ,41(%) follows for o in

t; ..t;+1). Adopting the abbreviation ay () for the polar value
g A

@k (8) 1= bjng1,ilThars s lhdn—ts By. .., U)
———
!

of Bj nt1,i whenever k lies in the interval [i+[—n..i], we have Bj ny1(@) = a; (%)
where

N _ {1 ifk=j
ako(E) = {O otherwise

lhdn—t+1 — U u— g

ag-1,(8)+

———akyl(ﬂ).
tegn—it1 — tk tegn—ty1 — Lk

ok 1) =
Note that the linear combinations in this recurrence are actually afline combi-
nations.

One of the benefits of the polarized approach is that it lets us study spline the-
ory without needing to talk about divided differences. Indeed, Carl de Boor and
Klaus Hollig invented the polarized approach in order to convert from defining
B-splines by means of the divided-difference formula to defining them by means
of the B-spline recurrence [9, 10]. The dual functionals A; 4+, that they define
correspond precisely to polar evaluation. That is, if F' is an n-ic spline, we have
Aint1(F) = fi(tit1,...,ti4n), where j is chosen so that the interval (¢; .. %;41)
contains their parameter 7. In particular, note that their dual functionals are
dual only in the sense that any evaluation map is dual. For example, the map
i3 defined by p3(F) := F(3) is a “dual functional” that performs diagonal eval-
uation.

Of the two recurrences for the B-splines, it isn’t clear which is the best
one to take as the definition and how to verify the other one most efficiently.
Ramshaw [20] and deBoor [9, 10] each took a stab at this problem. More recently,
Ilans-Peter Seidel has made further progress [26].

15 The work of Ramshaw

There are two ideas in Ramshaw’s monograph {20] that are worth mentioning
lere: overloading and the rational case.

Each segment of a spline curve F is a polynomial curve F and has a polar
form fi. It gets annoying, after a while, to specify the subscript & all the
time. Note that the exact value of & often doesn’t matter. We know from
Theorem 12.1 that all of the polar forms fi for & in [7..j] agree on all superbags
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of (ti41,..-,%;). Thus, any k in [z .. j] would work equally well in an expression
of the form fk(f,'+1, . ,t—j, U1y..., ’l_l,n_j_*.,‘).

This annoyance suggests that it might be worthwhile to establish a conven-
tion whereby an appropriate subscript £ is chosen automatically, based on the
bag of polar arguments. Note that the diagonal form F of the spline involves
just such a convention: We interpret F(%) to mean Fj(u) where k is chosen so
that the interval (fx..fx41) contains @. A convention of this kind is analogous to
overloading in a programming language, where a single function symbol is used
to denote one of several functions, depending upon the types of the supplied
arguments. Thus, we can say that F(@) is the overloaded diagonal form of the
spline [Fk]. Analogously, we can invent an overloaded polar form f(u1,...,4n)
for the spline [Fk].

Overloading is more subtle in the polar case than in the diagonal case, be-
cause there are n polar arguments to consider. If those arguments are completely
arbitrary, in fact, there is no reasonable convention for automatically choosing
an appropriate k. But there are conventions that work well when the polar ar-
guments are sufficiently close together. Ramshaw defines and studies two flavors
of overloading, which he calls tame and wild [22].

Ramshaw also considers what the polarized approach can say about rational
curves and surfaces, instead of polynomial ones [24]. A rational map is a function
whose coordinates are given by the quotients of polynomials. It is best to rewrite
those quotients, if necessary, so that all of the denominators are the same, that
is, to put all of the coordinates over a common denominator. This common
denominator plays the role of a generalized weight coordinate. Polynomial maps
are the special case of rational maps in which this weight coordinate is identically
1. Roughly speaking, the polarized approach treats rational maps as follows: A
rational map has a polar form that is multiprojective and a tensor form that is
projective. There is a subtle point, however, about degenerate rational functions,
that is, rational functions of degree m that are being considered as n-ic for some
n > m; the polar forms of such maps are not uniquely determined.

16 The seminal work of Paul de Faget de Casteljau

Paul de Faget de Casteljau deserves the lion’s share of the credit for inventing
the polarized approach. He also realized from the start the connection with the
mathematical concept of polar forms.

The first half of his book [11] is a polarized approach to the theory of spline
curves. In comparison with this report, de Casteljau focuses more on patterns
and techniques, less on definitions and properties. Ile represents his splines
throughout using an overloaded polar form.

In the second half of his book, de Casteljau builds on the correspondence
between a spline and its progressive poles to present a simple technique for de-
riving a wide class of spline methods that are elsewhere called quasi-interpolants.
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Most of the curve methods used in practice fall into this class. Deriving quasi-
interpolant methods with de Casteljau’s technique is like shopping: You pick
the degree n, the level of parametric continuity k, and the width—that is, the
number w of input points upon which each segment of the spline will depend.
From de Casteljau’s technique, you get a rule that tells you where to put each
of the plain poles of each spline segment. The spline method that you get will
be optimal in a sense that involves the concept of reproductive power. A spline
method has reproductive power r if, whenever the method is given input data
that all comes from a single polynomial curve of degree at most r, the approxi-
mating spline that the method outputs is precisely that polynomial curve. The
spline methods given by de Casteljau’s technique have the highest level r of
reproductive power possible, given their other parameters (n,k,w). Except for
several classes of special cases, this best possible r is given by

= n+1
- n—-~k|’

In the special cases, the n + 1 in the numerator is reduced to n.

Note on “reproduction”: The term “reproduction” comes from the litera-
ture on quasi-interpolants. De Casteljau used the French word “restitution,”
which his translator rendered into English sometimes as “reconstruction” and
sometimes as “restoration.”

Open problem 16.1 One of the limitations on de Casteljau’s technique is that
it does not allow its user to demand at the outset that the resulting spline
method be interpolatory. Some collections of parameters (n,k,w) do produce
spline methods whose output curves interpolate their input data, but others do
not. If we demand interpolation, it appears that the highest reproductive power

possible is given by
_ n-—1
r=w n—k—-1]|"

(For example, it is impossible to achieve C"~! continuity for an interpolatory n-ic
spline method with bounded width.) Find a simple technique, analogous to de
Casteljau’s, that generates interpolatory spline methods that are as reproductive
as possible.
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