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Abstract.

Consider a particle that moves on a connected, undirected graph G with n vertices. At

each step the particle goes from the current vertex to one of its neighbors, chosen uniformly

at random. The cover time is the �rst time when the particle has visited all the vertices

in the graph starting from a given vertex.

In this paper, we present upper and lower bounds that relate the expected cover

time for a graph to the eigenvalues of the Markov chain that describes the random walk

above. An interesting consequence is that regular expander graphs have expected cover

time �(n logn).
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1. Introduction.

Consider a particle moving on an undirected graph G = (V;E) from vertex to vertex

according to the following rule: the probability of a transition from vertex i, of degree di,

to vertex j is 1=di if (i; j) 2 E, and 0 otherwise. This stochastic process is a Markov chain;

it is called a random walk on the graph G. In this paper we derive upper and lower bounds

on the expected cover time, the time taken by a random walk on G to visit all vertices in

V . (See [11] for a general reference on Markov chains.)

Formally, let fXtg be any discrete time Markov chain with state space S. (For the

random walk S = V above.) The hitting time Hij for i; j 2 S is de�ned by

Hij = infft : Xt = j j X0 = ig

and the cover time (or covering time) Ci, for i 2 S is de�ned as

Ci = max
j2S

Hij :

In other words, the hitting time Hij is the �rst time that state j is reached starting from

state i, and the cover time Ci is the �rst time every state in S is visited at least once

starting from state i.

Computer scientists originally became interested in analyzing the expected cover

times for graphs in an attempt to obtain bounds on the space complexity of undirected

st-connectivity [6] (Given an undirected graph G and two speci�ed vertices s and t in G,

determine if there is a path connecting s and t). There are several other topics in computer

science and graph theory that motivate the investigation of cover times:

� The study of the relations between combinatorial properties of graphs (such as cover

times, expansion etc.) and algebraic properties of graphs (the eigenstructure of the

associated adjacency matrix). Some recent papers in this long line of research are [1],

[7], and [9].

� The exploration of the special characteristics of expander graphs such as short covering

times, rapidly-mixing properties, the existence of short universal sequences for them,

etc.

� The simulation of token rings on arbitrary networks using random redirection of to-

kens: There is a plethora of protocols and algorithms designed for use on token ring

networks. It is desirable to be able to simulate these protocols on arbitrary networks
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and most notably on some of the extremely high-speed networks with limited bu�er

capacity that are currently being built. An obvious approach for doing such a simu-

lation is simply to route the token along a spanning tree of the network. A problem

with this idea is that it is not fault-tolerant; when some nodes or links become faulty

or 
ooded, an extensive recon�guration of the spanning tree might be required while

the old ring is not operative. These operations entail rather complicated and slow

mechanisms. An alternative approach, randomly routing tokens, is e�cient (if the

expected cover times are small), extremely fault-tolerant, and su�ers little loss of

e�ciency when several \colored" tokens are routed simultaneously.

There is a large body of previous work on cover times and related problems. First,

there is the classical solution to the coupon collector's problem, which shows that the

expected time to collect n coupons is �(n logn). This is essentially equivalent to showing

that the expected cover time for a random walk on the complete graph is �(n logn). There

are many other speci�c graphs for which the expected cover time has been computed. These

include paths, cycles, trees [10], bar-bell graphs1 [14], and d-dimensional cubes [4].

For arbitrary connected graphs, Aleliunas et al. [6] showed a general upper bound

E(Ci) = O(jEj jV j), starting from any vertex i, where jEj is the number of edges and jV j
is the number of vertices.

A super�cial examination of these problems might lead one to conjecture that adding

more edges to the graph would reduce the expected cover time. This is false. For example,

the complete graph, Kn, on n vertices, has expected cover time O(n log n); the bar-bell

graphBn, on n vertices has expected cover time 
(n3); and the line graph Ln, consisting of

a path of length n�1, has expected cover time O(n2). On the other hand Kn � Bn � Ln.
In this paper, we present relations between the expected cover time for graphs and

the rate of convergence of the corresponding Markov chain to its stationary distribution,

which in turn is determined by the second largest eigenvalue of its transition probability

matrix. A preliminary version of part of this work has appeared in [8]. Most theorems

refer to reversible Markov chains, that is, Markov chains for which �iPij = �jPji, where

� is a stationary distribution, and P is the transition probability matrix. A random walk

on a graph is a particular case of a reversible Markov chain: a stationary distribution is

�i = di=
�
2 jEj

�
; if (i; j) 2 E then �iPij = �jPji = 1=

�
2 jEj

�
; if (i; j) =2 E then �iPij =

1 The bar-bell graph on n vertices consists of two cliques each of size n=3, connected by

a path of length n=3.
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�jPji = 0.

Our main results are the following:

Theorem 5. Let M be an irreducible reversible Markov chain on n states with transition

probability matrix P . Let 1 = �1 > �2 � � � � � �n be the eigenvalues of P . Let � =

(�1; �2; : : : ; �n) be the eigenvector corresponding to the eigenvalue 1, normalized so thatP
i �i = 1. (If M is aperiodic then � is the stationary distribution of M .) We rename the

states such that �1 � �2 � � � � � �n. Let � > 0 be a constant. Then the cover time C

starting from any state satis�es

E(C) � 1

1� �2

�
(2 + �)n lnn� n ln�1 +

X
1�i�n

� X
1�j�i

�i

��1��
1 + o(1)

�
:

This theorem has several interesting consequences:

1. Any symmetric, irreducible Markov chain has expected cover time O
�
n logn=(1��2)

�
.

(A Markov chain is symmetric if its transition probability matrix is symmetric.)

2. Any d-regular expander graph has expected cover time O(n log n).

3. Any connected graph has expected cover time O
�
n2 logn=(1� �2)

�
.

We also obtain two lower bound results:

Theorem 13. Let M be an irreducible and aperiodic, reversible Markov chain on n

states with transition probability matrix P . Assume that P is doubly-stochastic and

has eigenvalues 1 = �1 > �2 � � � � � �n. Let �max = max2�i�n j�ij. Suppose that

�max � 1 � n��1 for � > 0. Then the cover time C, starting from any state, satis�es

E(C) = 
(n logn).

Corollary 16. Let M be an irreducible and aperiodic, reversible Markov chain on n

states, with transition probability matrix P . Let 1 = �1 � � � � � �n be the eigenvalues

of P . If �2 � 1 � 1=(n lnn) then the expected cover time starting from the stationary

distribution of M is 
(n logn).

The two results above can be generalized to periodic Markov chains, but we omit the

proofs. For random walks on graphs, \the chain is aperiodic" is equivalent to \the graph

is not bipartite," and \the transition probability matrix is doubly-stochastic" is equivalent

to \the graph is regular."
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Aldous [5] has recently showed a general lower bound for random walks on graphs,

E(C) = 
(n logn) starting from the stationary distribution, but not necessarily from every

state.

2. The upper bound.

In this section, we present an upper bound on the expected number of steps needed to visit

all states in a reversible Markov chain with state space V . We decompose this process into

a sum of expected �rst passage times, each from a set of states S that the random walk

has already visited to a state in V � S. These expected �rst passage times are bounded

by a function of the eigenvalues of the corresponding transition submatrix. The critical

new result needed to exploit this bound is Lemma 1(b) below, which relates the largest

eigenvalue of this submatrix to the second largest eigenvalue of the complete matrix.

Lemma 1. Let M be an irreducible and aperiodic, reversible Markov chain on n states

with transition probability matrix P . Let S be a subset of the states of size s. Let R be

the submatrix of P corresponding to the set of indices S � S. Then
(a) All the eigenvalues of P and of R are real.

(b) Let the eigenvalues of P be 1 = �1 � �2 � � � � � �n, let �max = max2�i�n j�ij, and
let the eigenvalues of R be �1 � �2 � � � � � �s. Then

1� �1 � (1� �max)
�
1�

X
i2S

�i

�

where (�1; : : : ; �n) is the stationary distribution of M .

(c)

�2 � �max:

Proof: Part (a) is standard but we present its proof for completeness. Let D be the

diagonal matrix given by Dii = 1=�i. Then P = DA where A is given by Aij = �iPij

and is symmetric because of reversibility. It is easy to show that P has exactly the same

eigenvalues as the symmetric matrix B = D1=2AD1=2. Indeed, let x be a left eigenvector

of P corresponding to an eigenvalue �. Then xDA = �x implies (xD1=2)D1=2AD1=2 =

�(xD1=2): Since B is symmetric, it has real eigenvalues and hence P does. Similarly, R

has the same eigenvalues as the symmetric submatrix Q � B induced by the set of indices

S � S.
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We now prove part (b): A left eigenvector of B corresponding to the stationary

distribution of P is � = (
p
�1;
p
�2; : : : ;

p
�n): Let ~� be a positive left eigenvector of Q for

eigenvalue �1 (such a ~� exists by a weak analogue of the Perron-Frobenius theorem), that

is ~�Q = �1~�: Pad ~� to an n element vector by adding zeros for all indices not in S. Call

the resulting vector �. We normalize � such that

(�; �) = (�; �) = 1 (1)

(This is always possible because � and � are positive.)

We can write

�B = �1�+ w (2)

where w = (w1; : : : ; wn) and wi = 0 for all i 2 S. The vector w satis�es

(w; �) = 1� �1 (3)

because 1 = (�; �) = (�; �B) = (�B; �) = �1(�; �) + (w; �).

By the variational principle, �2 = maxx?� (xB; x)=(x; x): De�ne z = ���. Since z is
orthogonal to �, we obtain that �2 � (zB; z)=(z; z): Expanding this inequality via (2) and

(3), we obtain that

�2 �
((�� �)B; � � �)
(�� �; �� �)

=
(�1�+ w � �; � � �)

(�� �; �� �)

=
�1(�; �) � 1� �1 � (1� �1) + 1

(�; �) � 1
=
�1(�; �)� 1

(�; �)� 1
:

Hence,

1� �2 � 1� �1(�; �)� 1

(�; �)� 1
=

(�; �)(1� �1)
(�; �) � 1

or

(1 � �1) � (1� �2)
�
1� 1

(�; �)

�
:

We now need a lower bound on (�; �). From (1),
P

i2S �i
p
�i = 1; so by Cauchy's inequality,

1 =
X
i2S

�i
p
�i �

sX
i2S

�2i

X
i2S

�i:

Hence, (�; �) � 1=
P

i2S �i; so �nally,

1� �1 � (1� �2)
�
1�

X
i2S

�i

�
� (1� �max)

�
1�

X
i2S

�i

�
:

5



Part (c) is a consequence of the interlacing of eigenvalues of submatrices. (Once again,

this claim is standard.) To prove the claim, we use another form of the variational formula,

which states that if �2(M) is the second largest eigenvalue of the symmetric matrix Q,

and L(1) is any linear space of dimension 1, then

�2(Q) = min
L(1)

max
x?L(1)

(Qx; x)

(x; x)
:

Let � be the principal eigenvector of the symmetric matrix B and let the vector �� have

components ��i = �i if i 2 S, and ��i = 0 if i 62 S. Also, let ~� be the s element vector

corresponding to the components of � with indices in S. Finally, let x denote an s element

vector and y denote an n element vector. We have

�2 = min
L(1)

max
x?L(1)

(Qx; x)

(x; x)
� max

x?~�

(Qx; x)

(x; x)

= max
y?��

yi=0;i62S

(By; y)

(y; y)
� max

y?�

(By; y)

(y; y)
= �2 � �max:

The next lemma is standard, but presented for completeness.

Lemma 2. Let M be an irreducible and aperiodic, reversible Markov chain on n states

with transition probability matrix P , and stationary distribution (�1; �2; : : : ; �n): Let 1 =

�1 > �2 � � � � � �n be the eigenvalues of P . Let S be a subset of the states of size s. Let

R be the submatrix of P corresponding to the set of indices S � S. Let the eigenvalues of

R be �1 � �2 � � � � � �s and let �1 be a positive eigenvector of R corresponding to �1.

Then

R
(t)
jk �

�1j�1k

�j
�P

l �1l
�2�t1 +O

�r
�k

�j
�tmax

�

where �max = max2�i�s j�ij, and

P
(t)
jk = �k +O

�r
�k

�j
�tmax

�
;

where �max = max2�i�s j�ij.

Proof: Without loss of generality assume S = f1; : : : ; sg. Let ~D be the s by s diagonal

matrix given by ~dii = 1=�i. As in Lemma 1, we associate with R the symmetric matrix Q =

~D�1=2R ~D1=2, which has the same eigenvalues as R. Let �1; : : : ; �s be a set of orthonormal
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eigenvectors of Q with corresponding eigenvalues �1; : : : ; �s. We can always take �1 =

�1 ~D
1=2=k�1 ~D1=2k:
Applying the spectral decomposition,

Q
(t)
jk = �1j�1k�

t
1 +

X
2�l�s

�lj�lk�
t
l � �1j�1k�

t
1 +

X
2�l�s

j�lj j j�lkj
���tl��

� �1j�1k�t1 + �tmax

s X
2�l�s

j�lj j2
X

2�l�s

j�lkj2 � �1j�1k�t1 +O(�tmax);

where the last two inequalities are obtained by applying Cauchy's inequality and the or-

thonormality of the �'s. Hence

Q
(t)
jk =

�1j�1kp
�j�k

1P
l �

2
1l=�l

�t1 +O(�tmax):

By construction

R
(t)
jk =

r
�k

�j
Q
(t)
jk =

�1j�1k

�j
P

l �
2
1l=�l

�t1 +O

�r
�k

�j
�tmax

�
:

Finally, by Cauchy's inequality

X
1�l�s

�1l =
X
1�l�s

�1lp
�l

p
�l �

vuut X
1�l�s

�21l
�l

X
1�l�s

�l �

vuut X
1�l�s

�21l
�l

and the lemma follows in the general case.

For the case s = n, we take �1l = �l and the inequality above becomes an equality.

Lemma 3. LetM = (X0;X1; : : :) be an irreducible and aperiodic, reversible Markov chain

with transition probability matrix P . We rename the states such that �1 � �2 � � � � � �n
is the stationary distribution of M . Let 1 = �1 > �2 � � � � � �n be the eigenvalues of P .

Let S be a subset of states and let R be the submatrix of P corresponding to the set of

indices S � S. Let T (i; S) be the time

T (i; S) = inf
t
(Xt =2 S j X0 = i 2 S):

Then

E(T (i; S)) �
�
(2 + �) lnn� ln�1

1� �max

+
1

1� �1

��
1 + o(1)

�
;
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where �max = max2�i�n j�ij, � > 0, and �1 is the largest eigenvalue of the matrix R.

Proof: Let the eigenvalues of R be �1 � �2 � � � � � �s and let �1 be a positive eigenvector

of R corresponding to �1. The value T (i; S) is the time when a random walk starting at

state i 2 S �rst moves to some state in V �S. The probability that a random walk starting

at i 2 S does not leave S within the �rst t steps is
P

j2S R
(t)
ij . Let �1 and �2 be positive

values to be determined later. Then

E(T (i; S)) =
X
t�0

X
k2S

R
(t)
ik � �1 +

X
j2S

R
(�1)
ij

X
k2S

X
t�0

R
(t)
jk

� �1 +
X
j2S

P
(�1)
ij

X
k2S

X
t�0

R
(t)
jk :

By Lemma 2,

E(T (i; S)) � �1 +
X
j2S

�
�j +O

�r
�j

�i
��1max

���
�2 +

X
k2S

X
t��2

R
(t)
jk

�

� �1 +
X
j2S

�
�j +O

�r
�j

�i
��1max

��
�

�
�2 +

X
k2S

X
t��2

�
�1j�1k

�j
�P

l �1l
�2�t1 +O

�r
�k

�j
�tmax

���

� �1 + �2 +
��21

1� �1
+O

�
s��2max

1� �max

�
+O

�
�2
p
s��1maxp
�1

�

+O

�
��1max

�1

��21
1� �1

�
+O

�
s3=2
p
�1

��1+�2max

1� �max

�
:

Now set

�1 =
l
log�max

��1
n

�m
and

�2 =
l
log�max

�
1

n1+�

�m
;

where � > 0. With these values

E(T (i; S)) �
�
(2 + �) lnn� ln�1

1� �max

+
1

1� �1

��
1 + o(1)

�
:

We now put together these lemmas to obtain the main theorem for chains that are irre-

ducible, aperiodic, and reversible .
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Theorem 4. Let M be an irreducible and aperiodic, reversible Markov chain on n states

with transition probability matrix P . We rename the states such that �1 � �2 � � � � � �n
is the stationary distribution of M . Let 1 = �1 > �2 � � � � � �n be the eigenvalues of P

and let �max = max2�i�n j�ij. Let � > 0 be a constant. Then the cover time C starting

from any state satis�es

E(C) � 1

1� �max

�
(2 + �)n lnn� n ln�1 +

X
1�i<n

� X
1�j�i

�i

��1��
1 + o(1)

�
:

Proof: Let Ti be the �rst time that i states have been seen. Then C = Tn and E(C) =P
1�i�n�1E(Ti+1 � Ti): Let Si be any set of states of cardinality i and let �1(Si) be the

largest eigenvalue of the submatrix of P corresponding to the set of indices Si � Si. Let
�1(i) = maxSi �1(Si). Then via Lemma 3

E(C) �
X

1�i�n�1

�
(2 + �) lnn� ln�1

1� �max

+
1

1� �1(i)

��
1 + o(1)

�

� 1

1� �max

�
(2 + �)n lnn� n ln�1 +

X
1�i<n

� X
1�j�i

�j

��1��
1 + o(1)

�
;

where the �nal inequality follows from Lemma 1(b).

This theorem easily generalizes to Markov chains that are irreducible but not neces-

sarily aperiodic as follows.

Theorem 5. Let M be an irreducible reversible Markov chain on n states with transition

probability matrix P . Let 1 = �1 > �2 � � � � � �n be the eigenvalues of P . Let � =

(�1; �2; : : : ; �n) be the eigenvector corresponding to the eigenvalue 1, normalized so thatP
i �i = 1. (If M is aperiodic then � is the stationary distribution of M .) We rename the

states such that �1 � �2 � � � � � �n. Let � > 0 be a constant. Then the cover time C

starting from any state satis�es

E(C) � 1

1� �2

�
(2 + �)n lnn� n ln�1 +

X
1�i�n

� X
1�j�i

�j

��1��
1 + o(1)

�
:

Proof: Consider the Markov chain M 0 with transition probability matrix P 0 = 1
2
(I + P ).

ClearlyM 0 is irreducible, aperiodic, and reversible and E(Ci(M
0)) = 2E(Ci(M)) from any

starting state i. Furthermore, if 1 = �1 > �2 � � � � � �n are the eigenvalues of P , then

P 0 has eigenvalues 1 = �01 � �02 � � � � �0n, where �0i = 1
2
(1 + �i). Finally, the stationary

distribution of M 0 is �. Hence the result follows immediately by applying the previous

theorem to M 0.
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Corollary 6. Let M be any symmetric, irreducible Markov chain with transition proba-

bility matrix P . Then its expected cover time starting from any state satis�es

E(C) � (2 + �)n lnn

1� �2
�
1 + o(1)

�
;

where �2 is the second largest eigenvalue of P and � > 0.

Proof: We apply the previous theorem. In this case �i = 1=n for all i.

We now apply this result to expander graphs. An (n; d; k)-expander is a d-regular

graph G(V;E) on n vertices, such that for every set X � V with jXj � n=2, its neighbor-

hood satis�es j�(X) �Xj � k jXj. (For a subset X of V , the neighborhood of X is de�ned

as �(X) = fv 2 V j (v; x) 2 E for some x 2 Xg :)
Alon [1] has proven that if G is an (n; d; k)-expander then the transition probability

matrix for a random walk on G has second largest eigenvalue �2 < 1� k2=
�
d(4 + 2k2)

�
.

Corollary 7. Consider a random walk on a d-regular expander graph. Its expected cover

time starting from any state satis�es E(C) = O(n logn).

Corollary 8. Let P be the transition probability matrix corresponding to a random walk

on a connected graph G. The expected time to visit all states in G satis�es

E(C) � n2 lnn

1� �2
�
1 + o(1)

�
;

where �2 is the second largest eigenvalue of P .

Proof: Let di be the degree of node i in G. Then �i = di=
P

i di and therefore �i � 1=n2

for all i.

In general the bound of Corollary 8 cannot be improved as the following example

shows: Let I be the n by n identity matrix and let J be the n by n matrix consisting of

all 1's. Consider the graph G on 2n vertices with adjacency matrix A, where

A =

�
J I

I 0

�
:

This graph has n vertices connected to form a complete subgraph, each connected to

one other distinct vertex. It is not di�cult to see that the cover time of this graph is

�(n2 logn). Since �max = 1=
p
n, Corollary 8 gives a tight bound for this graph.
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3. Application to universal sequences.

Let G be a graph on n vertices. At each vertex v, let the edges incident with v be given

the distinct labels 1; : : : ; d(v), where d(v) is the degree of v. The labels at the two ends

of an edge are not necessarily equal, that is, each edge is labeled twice. A sequence � in

f1; : : : ; ng� is said to traverse G from v if, by starting from v and following the sequence of

edge labels �, one covers all the vertices of G. (We make the convention that a label not

present at the current vertex results in a null move.) Let G be a collection of graphs. We

say that � is universal for G if it traverses every graph in G, from every starting point v.

The original motivation for obtaining bounds on the lengths of universal sequences

comes from the attempt to prove bounds on the deterministic space complexity of the

reachability problem for undirected graphs. Aleliunas et al.[6] have shown that there exist

sequences of length O(d2n3 logn) that are universal for all labeled graphs on n vertices with

degree bounded by d. For d-regular graphs the bound can be improved to O(dn3 logn)

via the results in [10]. Using the results of Lemmas 1 and 3, we show that there exist

sequences of length O(dn2 logn) that are universal for graphs with �2 bounded away from

1.

We start by considering connected graphs that are not bipartite (and hence the Markov

chain is aperiodic) and then generalize the result to arbitrary connected graphs.

Lemma 9. Consider a random walk on a d-regular graph G on n vertices. Assume that

G is not bipartite. Let the corresponding Markov chain have transition probability matrix

P with eigenvalues �1 � � � � � �n. Let �max = max2�i�n �i. Let � > 0. Then the cover

time C starting from any state satis�es

Pr

�
C >

4n lnn

1� �max

+ t

�
� exp

�
n ln(t + n)� t(1� �max)

n

��
1 + o(1)

�

Proof: Let v be any starting position. Let the random variable Tk be the �rst time that

k vertices are seen, starting from v. Let S be any connected set of states of cardinality k

and let T (i; S) be the time that a random walk starting at state i 2 S �rst leaves S. Fix

� > 0. Then

Pr (Tk+1 � Tk > � + t) � max
i;S

jSj=k;i2S

Pr (T (i; S) > � + t) :

Let S be the subset of vertices and i the state in S for which the right hand side above is

maximized, and let R be the submatrix of P corresponding to the indices S � S. Let �1

11



be the largest eigenvalue of the matrix R and let �max = max2�j�s j�j j. Then following

the proof of Lemma 3 (applying Lemma 2 and the fact that regular graphs have stationary

probabilities all equal to 1=n) we derive

Pr (Tk+1 � Tk > � + t) =
X
j2S

R�+t
ij =

X
h2S

R
�=2
ih

X
j2S

R
�=2+t
hj �

X
h2S

P
�=2
ih

X
j2S

R
�=2+t
hj

�
X
h2S

�
�h +O(��=2max)

�X
j2S

�
�1h�1j

�h(
P

l �1l)
2
�
�=2+t
1 +O(��=2+tmax )

�
:

Setting � = 4 lnn=(1� �max), we get O(�
�=2
max) = O(1=n2) and since �max � �max and

�max � �1; we obtain that

Pr (Tk+1 � Tk > � + t) �
X
h2S

�
1

n
+O

�
1

n2

��X
j2S

�
n

�1h�1j

(
P

l �1l)
2
�t1 +O

�
�t1
n2

��

� �t1(1 + o(1)):

Finally by applying Lemma 1(b),

Pr (Tk+1 � Tk > � + t) �
�
1� (1 � �max)

n � k
n

�t �
1 + o(1)

�

�
�
1� 1� �max

n

�t �
1 + o(1)

�
:

Let � =
�
1� (1 � �max)=n

�
. Then

Pr (Tk+1 � Tk > � + t) �


xt
� 1

1� �x
�
1 + o(1)

�
;

where the notation hxti f(x) means the coe�cient of xt in the formal power series expansion

of f . Therefore

Pr (C > � + t) �


xt
� 1

(1 � �x)n
�
1 + o(1)

�
=

�
n+ t� 1

t

�
�t
�
1 + o(1)

�
� (t + n)n�t

�
1 + o(1)

�
� exp

�
n ln(t+ n)� t(1� �max)

n

��
1 + o(1)

�
:

12



Theorem 10. Let G be the collection of all d-regular graphs on n vertices with �2 � 1�c
for some constant c > 0. There exist universal sequences for G of length O(dn2 logn).

Proof: First, we generalize the previous lemma as in the proof of Theorem 5, to get rid of

the requirement that G is not bipartite. We obtain that

Pr

�
C >

8n lnn

1� �2
+ t

�
� exp

�
n ln(t + n) � t(1� �2)

2n

��
1 + o(1)

�
:

Therefore the probability that a randomly chosen sequence ~� from f0; 1; : : : ; d � 1g� of

length 8n lnn=(1� �2) +�dn2 lnn does not traverse any �xed graph G 2 G is bounded by

exp
�
(2 � �cd=2)n lnn +O(n log logn)

�
. Since the number of graphs in G is at most nnd,

the probability that there exists a G 2 G that ~� doesn't traverse is at most exp
�
(2 + d�

�cd=2)n lnn+O(n log logn)
�
; which is less than 1 for an appropriately chosen value of �.

Hence, there exists a sequence � of length O(dn2 logn) that is universal for G.

4. The lower bound for rapidly-mixing chains.

In this section, we will show that a rapidly-mixing doubly-stochastic Markov chain on

n states, requires 
(n logn) expected steps to visit all states. (A rapidly-mixing chain

is a chain for which �max � 1 � �, for a constant �.) For example, the Markov chain

corresponding to a random walk on a regular expander graph satis�es these conditions.

We use the fact that a rapidly-mixing Markov chain gets close to the stationary

distribution in time proportional to logn. Since the Markov chain is doubly-stochastic,

the stationary distribution is uniform. Therefore, if s states have been seen, the expected

number of new states seen in the next k steps is close to k(n� s)=n, for appropriately
chosen values of k. This is essentially what we expect if we were to apply a coupon

collector's argument. By judiciously choosing k as a function of s and repeating the

argument, one can prove an 
(n logn) lower bound on the time to see all n states.

Lemma 11. Let M be a Markov chain on n states with transition probability matrix P .

Assume that P is doubly-stochastic. Let the random variable Ts be the �rst time that s

states are seen. Suppose � is such that
���P (t)

ij � 1
n

��� � 1
n3

for t � � . Then

E(Ts+r � Ts) �
1

2

�
nr

n� s

�
� �s

n� s +O(1);

for integers s and r satisfying 0 � s < n, and 0 � r � n� s.

Proof: Suppose that the random walk has visited a set of states S of cardinality jSj = s.

De�ne Nk to be the number of new states seen in the next k steps and Rk(i) to be

13



the number of steps spent in S out of k steps, starting in some state i 2 S. Then

Rk(i) =
P

j2S

P
1�m�kX

m
ij , where X

m
ij is an indicator random variable, which is 1 if the

random walk has moved from state i to state j after m steps, and 0 otherwise. Therefore,

E(Rk(i)) =
X
j2S

X
1�m�k

P
(m)

ij �
X
j2S

X
��m�k

P
(m)

ij � (k � � )s
�
1

n
� 1

n3

�
:

On the other hand

E(Nk) � k �E(Rk(i)) �
n� s
n

k +
�s

n
+

(k � � )s
n3

: (4)

Recall that Tr is the time needed to see r di�erent states. Plainly

Pr(Ts+r � Ts � k) = Pr(Nk � r) �
E(Nk)

r
;

and hence

E(Ts+r � Ts) =
X
k�0

Pr(Ts+r � Ts � k) � r +
X

r<k�U

�
1� E(Nk)

r

�

where U is an upper limit to be determined. Replacing E(Nk) from equation (4), we obtain

E(Ts+r � Ts) � r +
X

r<k�U

�
1� n� s

n

k

r
� �s

nr
� (k � � )s

rn3

�

� U � U(U + 1)

2

�
n� s
nr

+
s

rn3

�
� U �s

nr
:

Taking U =
j

nr
n�s

k
, we get

E(Ts+r � Ts) �
nr

n� s �
1

2

�
nr

n� s

�
� �s

n� s +O(1):

Lemma 12. Let M be a Markov chain on n states with transition probability matrix P .

Assume that P is doubly-stochastic. Let the random variable Ts be the �rst time that s

states are seen. Suppose � is such that
���P (t)

ij � 1
n

��� � 1
n3

for t � � . Then
(a)

E(Tbs+rc � Tbsc)�
1

2

�
nr

n� s �
nr

(n � s)2 �
n

n� s

�
� �s

n� s +O(1);

for reals s and r satisfying 0 � s < n, and 0 � r � n� s.

14



(b)

E(T� (m+1)n
m+2

� � Tb mn

m+1c) �
1

2

n

m+ 2
+O(�m);

for any positive integer m.

Proof: For part (a) we apply the previous lemma and the fact that

n brc
n� bsc �

n(r � 1)

n� s+ 1
� nr

n� s + 1
� n

n� s �
nr

n� s �
nr

(n� s)2 �
n

n� s :

For part (b), we substitute in part (a) with s = mn
m+1

and r = n
(m+1)(m+2)

. We obtain

E(T� (m+1)n
m+2

� � Tb mn

m+1c) �
1

2

�
n

m+ 2
� m+ 1

m+ 2
� (m + 1)

�
� �m+O(1)

� 1

2

n

m+ 2
+O(�m):

We now apply Lemma 12 to sets of increasing size to obtain the main result.

Theorem 13. Let M be an irreducible and aperiodic, reversible Markov chain on n

states with transition probability matrix P . Assume that P is doubly-stochastic and

has eigenvalues 1 = �1 > �2 � � � � � �n. Let �max = max2�i�n j�ij. Suppose that

�max � 1 � n��1 for � > 0. Then the cover time C, starting from any state, satis�es

E(C) = 
(n logn).

Proof: From Lemma 2,

P
(t)
ij =

1

n
+O(�tmax):

Since (1� 1
n1��

)t � 1
n3

for t > 3n1�� lnn, we have
���P (t)

ij � 1
n

��� � 1
n3

for t � n1��, � > 0.

Applying the previous lemma

E(C) �
X

0�m�U

E(T� (m+1)n
m+2

� � Tb mn

m+1c) �
X

0�m�U

�
1

2

n

m+ 2
+O(�m)

�

� n lnU

2
+O(n + �U2):

for any integer U > 0 and � � n1��.
Choosing U =

p
n=� , we obtain

E(C) � n ln(n=� )

4
+O(n):

Since we can take � = n1��, we obtain E(C) = 
(n logn):
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5. The lower bound for slowly-mixing chains.

In order to show that the cover time for slowly-mixing reversible Markov chains (chains

for which limn!1 �2 = 1) is large, it su�ces to show that there exists a pair of vertices

i and j such that the expected �rst passage time from i to j is large. We obtain such a

result by proving an identity that relates the weighted average over all pairs of vertices i

and j of E(Hij ), the expected hitting time, to the eigenvalues of the transition probability

matrix.

Lemma 14. Let M be an irreducible and aperiodic, reversible Markov chain on n states,

with transition probability matrix P and stationary distribution (�1; : : : ; �n). Let Pij(z) =P
m�0 p

(m)

ij zm be the generating function for the probability that a particle in state imoves

to state j in m steps. Then

Pij(z) = �ij + �j
z

1� z +Aij (z);

where

Aij(z) =
X

2�k�n

'ki kj
�kz

(1� �kz)
;

and 1 = �1 > �2 � : : : � �n are the eigenvalues of P , and  1; : : : ;  n and '1; : : : ; 'n are a

biorthonormal basis of left and right eigenvectors corresponding to �1; : : : ; �n.

Proof: By the spectral theorem

Pij(z) =
X
m�0

X
1�k�n

'ki kj(�kz)
m = �ij +

X
1�k�n

'ki kj
�kz

(1 � �kz)
:

Since the right eigenvector '1 can be taken as (1; 1; : : : ; 1) and the corresponding left

eigenvector  1 is (�1; : : : ; �n), we obtain the claimed result.

Theorem 15. LetM be an irreducible and aperiodic, reversible Markov chain on n states,

with transition probability matrix P and stationary distribution (�1; : : : ; �n). ThenX
1�i�n
1�j�n

�i�j E(Hij ) =
X

2�k�n

1

1� �k
;

where the random variable Hij is the hitting time (or �rst passage time) from i to j, and

1 = �1 > �2 � : : : � �n are the eigenvalues of P .

Proof: We start from the well-known identity

Hij(z) =
X
m�0

Pr(Hij =m)zm =
Pij(z)

Pjj(z)
:
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Because M is reversible,

�iPij(z) = �jPji(z):

Therefore, via the previous lemma, we obtain that

X
1�i�n
1�j�n

�i�jHij (z) =
X

1�j�n

�j

Pjj(z)

X
1�i�n

�iPij(z) =
X

1�j�n

�2j

Pjj(z)

X
1�i�n

Pji(z)

=
X

1�j�n

�2j

Pjj(z)

1

(1 � z)
=

X
1�j�n

�2j

(1 � z) + �jz +Ajj(z)(1 � z)
:

Di�erentiating with respect to z and setting z  1, we obtain

X
1�i�n
1�j�n

�i�j E(Hij) =
X

1�j�n

�
1� �j +Ajj (1)

�
= n� 1 +

X
2�k�n

�k

1� �k
:

Corollary 16. LetM be an irreducible and aperiodic, reversible Markov chain on n states,

with transition probability matrix P . Let 1 = �1 > �2 � � � � � �n be the eigenvalues of P .

If �2 � 1� 1
n lnn

then the expected cover time starting from the stationary distribution of

M is 
(n log n).

Proof: If �2 � 1 � 1
n lnn

, then Theorem 15 implies that
P

1�i�n

P
1�j�n �i�j E(Hij ) =


(n logn): Hence, there is a j such that
P

1�i�n �iE(Hij ) = 
(n logn): But the expected

cover time starting from the stationary distribution is de�ned as

E(C�) =
X

1�i�n

�iE(Ci) �
X

1�i�n

�iE(Hij ) = 
(n logn):

The following corollary was also proven by Landau and Odlyzko [12] via a completely

di�erent approach.

Corollary 17. Let P be the transition probability matrix of an irreducible and aperiodic,

reversible Markov chain on n states, corresponding to a random walk on an undirected,

connected graph G, with maximum degree d. Let 1 = �1 > �2 � �2 � � � � � �n be the

eigenvalues of P . Then

�2 � 1� 1

n2d
:
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Proof: Aleliunas et al.[6] show that for any undirected, connected graph with maximum

degree d, E(Ci) � dn2, for all i. Thus we have
X

2�k�n

1

1� �k
=

X
1�i�n
1�j�n

�i�j E(Hij ) � max
i;j

E(Hij ) � max
i

E(Ci) � dn2:

Clearly 1=(1��k) � 0, for k � 2. Hence, 1=(1� �2) � dn2, and the corollary follows.

Mazo [14] considered a closely related measure to our average �rst passage time,

denoted N , and de�ned by

N =
1

n(n� 1)

X
1�i�n

X
1�j�n
j 6=i

E(Hij ):

Mazo was interested in determining which chains minimize and maximize the quantity N

and showed via a rather di�cult proof that for random walks on connected, undirected

graphs, N is minimized for the complete graph. He also conjectured that it is maximized

for the bar-bell graph. Using our formula, we prove both results for the quantity N 0 =P
1�i�n
1�j�n

�i�j E(Hij).

Corollary 18. Consider a a random walk on an undirected graph with n vertices and no

self loops. Let

N 0 =
X
1�i�n
1�j�n

�i�j E(Hij ):

Then N 0 is minimized for the complete graph.

Proof: We have shown that

N 0 =
X

2�k�n

1

1� �k
: (5)

Because the trace of the transition probability matrix is 0, and the trace is equal to the

sum of the eigenvalues, we have
P

2�k�n �k = �1. But the function on the right-hand side

of (5) is Schur-convex (see [13] pp. 54{58) and hence is minimized when �k = � 1
n�1

for all

k, 2 � k � n. Since these are precisely the eigenvalues of the Markov chain corresponding

to the random walk on the complete graph, the claim is proven.

Corollary 19. Consider a random walk on an undirected graph with n vertices. Let

N 0 =
X
1�i�n
1�j�n

�i�j E(Hij ):
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Then N 0 = O(n3) for all graphs and N 0 = �(n3) for the bar-bell graph.

Proof: Again we use the bound E(Ci) � n3 for all i. Thus we have

X
2�k�n

1

1� �k
=

X
1�i�n
1�j�n

�i�j E(Hij ) � max
i;j

E(Hij ) � max
i

E(Ci) � n3

and so N 0 = O(n3) for all graphs. But for the bar-bell graph Landau and Odlyzko [12]

have shown that �2 = 1� c
n3

(for some constant c), and the corollary follows.
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