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SRC began recruiting its first research scientists in 1984 — their charter, to advance the state
of knowledge in all aspects of computer systems research. Our current work includes exploring
high-performance personal computing, distributed computing, programming environments,
system modelling techniques, specification technology, and tightly-coupled multiprocessors.
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we gain is useful in the short term in enabling us to refine our designs, and invaluable in the
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Author’s abstract

Some methods for reasoning about concurrent programs and hardware devices have
been based on proof systems for temporal logic. Unfortunately, all effective proof
systems for temporal logic are incomplete for the standard semantics, in the sense
that some formulas hold in every intended model but cannot be proved. We evaluate
and compare the power of several proof systems for temporal logic. Specifically, we
relate temporal systems to classical systems with explicit time parameters.

A typical temporal system turns out to be incomplete in a strong sense; we exhibit a
short, valid formula it fails to prove. We suggest the addition of new rules to define
auxiliary predicates. With these rules, we obtain nonstandard soundness and com-
pleteness results. In particular, one of the simple temporal systems we describe is as
powerful as Peano Arithmetic.

Martin Abadi

Capsule review

In many systems of temporal logic, the relationship between time instants resembles
the ordering of the natural numbers. This correspondence is explored more fully in
this paper. The main result is that sufficiently-but not unreasonably—strong systems
of temporal logic are equivalent to Peano Arithmetic. This masterful paper establishes
similar correspondences for several weaker temporal logics.

Mark Manasse
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Errata for “The Power of Temporal Proofs”

September 8, 1989

The proof of Theorem 6.2 in “The Power of Temporal Proofs” is seriously
flawed. The claim was that all valid temporal formulas are arithmetical in
the proof system T3. The claim does not appear to be true. Indeed, Andréka,
Németi, and Sain, who uncovered the problem, recently sent me a paper with
a counterexample, “On the Strength of Temporal Proofs.”

The main role of the claim was as a stepping stone towards Theorem 7.2.
This claim, in turn, says that T} is complete for arithmetical formulas while
T3 is complete for all formulas. With the failure of Theorem 6.2, the result
proved in 7.2 is weaker. It holds simply that both T} and T are complete
for arithmetical formulas. More precisely, Theorem 7.2 should read:

For every formula u, ko P(u) = b7, uif u is arithmetical in F7,.
For every formula u, Fp P(u) = br, uif u is arithmetical in Fr,.

This final result may well be enough in practice—and, in particular,
for the purposes of program verification. On the other hand, it would be
pleasant to have a proof system complete for all formulas, rather than only
for arithmetical ones.

Incidentally, the paper by Andréka, Németi, and Sain addresses some of
the open questions in “The Power of Temporal Proofs,” and I recommend
it to the interested readers. It was presented at the 1989 International
Symposium on Mathematical Foundations of Computer Science. I would
also like to thank its authors for discovering this problem.
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1. Introduction

Temporal logic has been used extensively to reason about concurrent systems. Some
methods for verifying concurrent programs and hardware devices have been based on proof
systems for first-order temporal logic, FTL (e.g., [Pn], [OL], [MP3]). Thus, the quality
and especially the power of these verification methods depend directly on the power of
the underlying FTL proof systems (e.g., [MP1]). Unfortunately, all effective FTL proof
systems are incomplete for the standard semantics, in the sense that some formulas hold
in every intended model but cannot be proved. Evaluating temporal proof systems and
the corresponding verification methods is therefore a nontrivial problem.

In this paper, we first prove that all effective FTL proof systems are incomplete for
the standard semantics and then propose alternative notions of completeness. Specifically,
we consider a translation of temporal formulas into classical formulas with explicit time
parameters and ask questions such as “is the temporal formula u provable in (a given
system for) temporal logic if and only if its translation is provable in (a given system for)
classical logic?” We study three FTL proof systems. The first one, Ty, is an extension of the
usual Hilbert system of Manna and Pnueli ([MP2]) and equivalent to the resolution system
of Abadi and Manna ([AM]). This basic system is incomplete in a strong sense. We exhibit
a short valid formula that T fails to prove. The other ones, T} and T3, include Ty with new
natural rules for defining auxiliary predicates. We give simple characterizations of T} and
T,. For instance, our main positive result is that T is as powerful as Peano Arithmetic.
This characterization can be read as a nonstandard soundness and completeness theorem,
since it means that the formulas provable in T are exactly those that hold in every model
of Peano Arithmetic.

We concentrate on Hilbert systems because they are more usual and easier to under-
stand than systems of other kinds. However, our methods are general, and, for instance,
they immediately apply in the study of resolution systems ([A1]).

Recently there has been much related work on nonstandard logics of programs (e.g.,
[N], [BS], [Sal], [Sa2]), which proposes notions of completeness similar to ours. However,
the existing results for temporal logic, which we discuss in more detail below, consider
only provability of special classes of sentences, with restricted temporal formalisms, and
in rather weak systems. In particular, they are of limited relevance to the verification of
concurrent systems.

Section 2 reviews the syntax and semantics of FTL; the semantics of FTL is formulated
in two equivalent ways: in terms of possible worlds and through a translation to classical
logic. In section 3 we show that the standard notion of validity is intractable and suggest
some approximations based on provability in formal systems of arithmetic. In section 4
we describe the basic system Ty and prove a nonstandard completeness theorem and an
incompleteness theorem. In section 5 we extend Ty with rules to define auxiliary predicates
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and obtain the systems 7} and T,. We give nonstandard completeness theorems for T
and Tj; these completeness theorems and the one in section 4 are not very informative
by themselves, but we invoke them in section 6. We also discuss the connections between
these systems and resolution systems with skolemization rules. In section 6 we introduce
the useful notions of “clock” and “arithmetical formula.” Section 7 contains the main
soundness and completeness theorems for T; and 7. We compare our results with previous
ones in section 8 and pose some open problems in section 9. Some of the more tedious and
trivial proofs are relegated to an appendix.

The material of this paper has appeared in a preliminary form in [A2]. The full work
is discussed in [Al], where soundness and completeness issues for resolution systems are
discussed in more detail.

2. Temporal logic

Several logics of time have been proposed (e.g., [Ka], [Bu2], [VB1]). We consider one
specific temporal logic described by Manna and Pnueli ([MP1]), which is both general and
relatively simple. In the intended models, time is discrete, linear, and extends infinitely
toward the future. We refer to the propositional version of our logic as propositional
temporal logic (PTL) and to the first-order version as first-order temporal logic (FTL). In
this section we define PTL and FTL.

1. Syntax

Propositional temporal logic
A language of PTL is a countable collection of propositional symbols
DyqyTySye...
Given a language, PTL formulas are built up using
e propositional symbols in the language;

e connectives: for simplicity, we assume that the only connectives are — (“not”),
A (“and”), and V (“or”); we regard other connectives, such as true, false, D
(“implies”) and = (“is equivalent t0”), as abbreviations;

¢ modal operators: the modal operators we consider are the usual ones for discrete
linear time, O (“next”), [ (“always”), & (“eventually”), and the more general
U (“until”) and P (“precedes”).
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Thus, the formation rules for formulas are:
e all propositional symbols in the language under consideration are formulas;

o if u and v are formulas then so are ~u, u Av, u Vv, Qu, Ju, Ou, uld v, and

uPo.

First-order temporal logic
A language of FTL consists of a countable collection of predicate and function symbols
p’q’r’s"" 7a’b’c’f,g7h7""

We associate a nonnegative integer with each symbol in a language, as its arity. Proposi-
tional symbols and constant symbols are simply predicate symbols and function symbols
with arity 0, respectively. Given a language, FTL formulas are built up using

o predicate and function symbols in the language;
o the equality symbol =, which we treat as an additional predicate symbol;
¢ variable symbols, such as z,y, z, 79, yo, 20, Z1, Y1, 21, - - +;
e connectives and modal operators, as in PTL;
e the quantifiers V and 3.

The formation rules for terms are:

e all variable symbols are terms;

o if f is a function symbol of arity k and ¢,...,#; are terms then f(¢;,...,t)isa
term.

The formation rules for atomic formulas are:

e if p is a predicate symbol of arity k and ¢;,...,t; are terms then p(¢1,...,%x) is
an atomic formula;

o if t; and ¢, are terms then ¢t; = ¢, is an atomic formula.
Other formulas are obtained as follows:

o formulas are constructed from other formulas by application of connectives and
modal operators, as in PTL;

e if z is a variable and u is a formula then Vz.u and 3z.u are formulas.

Thus, all PTL formulas are also FTL formulas.
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Flexible and rigid symbols

In PTL, all propositional symbols are flezible, that is, we intend to give them time-
dependent meanings.

In FTL, it is particularly convenient and natural to give time-independent meanings
to some symbols, which we call rigid symbols, and time-dependent meanings to other
symbols, which we call flezible symbols. Thus, in a given language of FTL, each symbol is
either flexible or rigid. The equality symbol = is always rigid: two individuals are either
always identical or always different (of course, if a and b are flexible symbols then a may
equal b some times and may be different from b at other times; we attribute this to changes
in the denotation of a and b rather than to changes in the denotation of =).

A term or a formula is said to be rigid if it contains no occurrences of flexible symbols;
otherwise, it is said to be flexible.

For example, if busy is a flexible (time-dependent) unary predicate symbol and printer
is a rigid (time-independent) constant symbol, then

busy(printer) A O [O-busy(printer)

is a flexible formula. We intend to give the same value to printer in all states, and to make
the property of being busy time-dependent.

2. A possible-worlds semantics
Informally, FTL formulas are evaluated over sequences of states. If u and v are formulas
then
o (Owu means “u is true in the next state”;
¢ [Ju means “u is always true (from now on)”;
e < u means “u is eventually true”;

e ul{v means “u is true until v is true”; in particular, u is true forever if v is never
true (therefore, U is often called “weak until” or “unless”);

e u P v means “u precedes v”; that is, u must hold sometime before the first time
when v holds and must hold eventually if v never holds.

A formal semantics is described in terms of possible worlds ([HC]). Given a language,
a model M is a tuple (D, W, wq, Ry, Rz, 0, I).

e The domain D is a non-empty set.
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o W, the frame is a set with a distinguished element wy. Intuitively, W is the set
of worlds and wy the present world. (We require that there be just one domain
D common to all worlds, rather than a domain D,, for each element w of W, as
in some other modal logics.)

e R, and R; are two binary accessibility relations on W. Intuitively, R; corresponds
to “next” and R, to “eventually.”

e «a is an assignment of values to the variables, that is, a mapping from the set of
variables to D.

o The interpretation I gives a meaning to predicate and function symbols: for each
world w, I maps each predicate symbol p to a relation I(w,p) over D and each
function symbol f to a function I(w, f) over D. The meaning of rigid symbols
must be the same at all worlds.

The evaluation function and the satisfaction relation
If dy,...,d, are elements of D then
Mo (zy «—dy,...,zp — dy)

denotes the model obtained from M by modifying its assignment function « to map the
variables z1,...,2, to dy,...,d,, respectively. If w is a world in W then

MQw
denotes the model obtained from M by modifying its present world to be w.

We define inductively the binary evaluation function 7, which evaluates terms in
models, and the binary satisfaction relation between models and formulas, =:

e For terms:

(M, ) = az),
(M, f(t1, ... tk)) = I(wo, £)(T(M,t1),...,7(M, tk)).

o For atomic formulas:

MEDp(t,...,tk) © I(wo,p)(T(M,t1),...,7(M,tk)),
M l=t1 =1y =4 T(M,tl) = T(M,t2).

e For connectives:

ME-u & MEu,
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MEuAve MEu A Mk,
MEuvv e MEu v MED].

e For quantifiers:

MEVzu e Vde D[Mo(z —d) =
ME3Jzu e Ide D (Mo (z —d)

ul,
¢ For modal operators:

.M i= OU =4 Ewl.[wolel A .M@w1 l= U],
MEOu & YVujweRew: D MQu; = ul,
M '= O U < Ewl.[wongl A M@w1 b= u],

MQuw; Fu ]
MEuwldv & Yw;. |weRywy D Vv
a’wz.(ngng A 'LU2R2’LU] A .M@U)Q t= 'U) i

MQu,; Fu
MEuPv & Jw;. |weRywy A A
ng.(wongg A woRow; D MQuw, l= 'ﬂ))_

Thus, [(Ju is equivalent to u U/ false. Furthermore, <> u and u P v are equivalent
to =[] ~u and —1((—|u) U v), respectively.

Standard models, satisfiability, and validity

The model M is standard if (W, wq, Ry, Ry) is isomorphic to (N,0,s, <), that is, the
natural numbers with the constant zero, the successor function, and the less-than relation.
In particular, Ry is a function and R is the reflexive transitive closure of R; in all standard
models.

We are interested in standard models because they are the intended models of temporal
logic. On the other hand, we need to consider other models as well, in particular when we
study soundness and completeness issues.

The formula u is satisfiable if some standard model M satisfies u, that is, M = u. The
formula u is welid if all standard models satisfy u; we denote this by |= u.

Free variables are implicitly universally quantified as far as validity is concerned: u is
valid exactly when Vz.u 1s valid.
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3. An arithmetical semantics

So far we have described models and the satisfaction relation in terms of possible
worlds. An alternative way to interpret FTL is to translate temporal formulas into classical
formulas that contain some arithmetic symbols. This arithmetical semantics is equivalent
to the possible-world semantics. However, it leads to some insights about the complexity of
FTL and about alternatives to the standard notion of completeness, typical of Correspon-
dence Theory, which studies connections between modal and classical systems ([VB2)).

For each temporal language L, we define a countable, two-sorted, classical language
Lo (“O” stands for “order”).

The sort Sy, which we interpret as the sort of natural numbers, is equipped with the
constant symbol 0, the function symbol s, the predicate symbol <, and the equality symbol
=. It is technically practical to consider that in actuality 0 and s are just convenient,
informal abbreviations for the unary predicate symbol 0, and the binary predicate symbol
sp, respectively. Countably many variables of the number sort are denoted by letters like
¢; terms of this sort are denoted by letters like m.

The equality symbol = and all predicate and function symbols in L are also in Lo, to
apply to terms of sort Sp, which we interpret as the sort of data. The arity of rigid symbols
in Lo is the same as in L. Terms of sort Sy cannot occur as arguments of these rigid
symbols. The arity of flexible symbols in Lo is their arity in L incremented by one. Terms

of sort Sy occur as last arguments of these flexible symbols, and in no other argument
position.

For example, a typical formula of Lo is 3zVi.[s(j) < ¢ D p(f(z,a,s(i)),:)]. Here, ¢
and j are intended to range over numbers; s and < have their usual intended meanings.
On the other hand, = ranges over some arbitrary data domain; a is uninterpreted in this
same domain; f is uninterpreted, with this domain as range, and two pieces of data and
one number as arguments; p is uninterpreted, with two arguments, one piece of data and
one number.

A two-sorted classical model for Lo consists of the following components: two sets
Dy and Dp, the universes for the sorts Sy and Sp, respectively; relations on Dy to
interpret 0,, sp, and <; relations of the appropriate types to interpret the other predicate
and function symbols; and two functions to assign values to variables, one for Sp and one

for Sy.

As usual, the satisfaction relation, =0, is defined inductively over formulas. By
M o w we mean that the two-sorted classical model M satisfies the Lo formula w, with
no assumptions on the properties of M (in particular, Dy need not even be countable).
We can give a standard semantics to Lo in the natural way, requiring that Dy be the
natural numbers, < the usual less-than relation between numbers, etc.. The interpretation
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of the data symbols is left open. By o w we mean that all standard models satisfy w.
Thus, o represents standard validity.

Any temporal formula in a language L can be translated into a classical formula in
the corresponding language Lo; informally, we may think of this classical formula as the
meaning of the temporal formula. The function P maps FTL formulas to their translations
in arithmetic.

For all u, let P(u) = P*(u,0), where P* is an auxiliary translation function
defined by:

p(P*(tl,m)v <o 7P*(tk’m))
if p is a rigid symbol
p(P*(t1,m), ... , P*(tg,m), m)
if p 1s a flexible symbol

)
*
O
\F
3
fl
ae
*
Q
o
3

P*Qu,m) = Vi> m.P*(u,1) (¢ and j are new variables)

P*(uld v,m) = Vi2>m.(P*(u,7)V Ij.(m < j <iA P*v,j)))
uPv,m) = F2>m(P*(u,1) AVj(m < j<id-P*v,j)))
and P* preserves connectives, quantifiers, and variables.

Furthermore, there is a natural function C to convert a possible-world model M into a
two-sorted classical model. The data domain in (M) is D, the domain of M; the number
domain in C(M) is W, the set of possible worlds in M; 0, s, and < correspond to wg, Ry,
and Rj, respectively. The assignment and the interpretation are not affected.

The following simple propositions express that the possible-world semantics and the
arithmetical semantics are fundamentally the same.

Proposition 2.1.

MEu & CM) Fo Pu).

Proof:
A simple inductive argument on the structure of u yields the result. |

The function C is a bijection. Let D be its inverse.

Proposition 2.2.

DIM) = u & M o P(u).
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Proof:
Given a classical model M, proposition 2.1 guarantees that

DIM) = v & C(D(M)) o P(u).
The result follows immediately, because C(D(M)) =M. |

Note that C maps standard possible-world models into standard classical models.
Also, D maps standard classical models into standard possible-world models. Thus, the
propositions yield:

Corollary 2.3.

Fu & o P(u).

Proof:

Suppose that —u holds in the standard possible-world model M. Then P(-u) holds in
the standard classical model C(M). Since ~P(u) = P(-u), =P(u) holds in the standard
classical model C(M). To check the other direction of the equivalence, suppose that =P (u)
holds in the standard classical model M, that is, P(—u) holds in M. Therefore, —u holds
in the standard possible-world model D(M). |

Thus, in a precise sense, if we redefine the meaning of a FTL formula u to be the
meaning of P(u), the semantics remains the same.

3. On standard incompleteness

We prove that standard validity is II}-complete (see, for example, [R]). In particular,
no effective system for FTL can be complete in the standard sense. Therefore, we propose
more realistic and practical notions of completeness.

1. The complexity of validity

A formula u is II} if u = (VR;...VRxVF,...YF.v) for some classical first-order
formula v, and 0, s, <, +, X, Ry,...,Rk, Fi,...,F are all the predicate and function
symbols in v. The complexity class II1 includes all problems no harder than the truth
problem for I1} formulas.

The following proposition and its corollary state that the validity problem is in the
class II7. Intuitively, the question of the validity of a temporal formula can be reduced to
the question of the truth of a II} formula—we replace times with numbers.
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Proposition 3.1.
=o is in II.

Proof:

If a formula has a standard model then we can construct a standard term model. As usual,
the domain of this model is a set of terms modulo equality in the original model. Since
the languages under consideration are countable, this term model is also countable.

In turn, if a formula has a countable model then we can construct a model with N
as data domain. To do this, we number the elements of the original model and say that
a relation holds for a tuple of numbers in the new model if it holds for the corresponding
data in the original model.

Thus, =,u if u holds in all standard models with N as domain. Therefore, all unin-
terpreted symbols in u can be taken to range over relations and functions on numbers. We
conclude that |=,u if and only if VR; ... VRiVF] ... VF).u holds for the natural numbers,
where 0, s, <, R,,...,Rk, F1,...,Fi are all the predicate and function symbols in u. This
reduces the question of the validity of u to the question of the truth of a II} formula. [

Since the translation function P is primitive recursive, we have:

Corollary 3.2.
= is in IT}.

The symbol = refers to validity over the standard models, which have frames isomor-
phic to the natural numbers. We exploit this to show that the upper bound of the previous
corollary is actually tight, that is, |= is II}-complete:

Theorem 3.3.
= is [I}-hard.
Proof:

It suffices to show a recursive translation function that embeds II! formulas in FTL. More
precisely, we want a function E to map II! formulas to temporal formulas such that u is

true if and only if = E(u).

Given u of the form VR ...VRVF) ...VF} v, with v a first-order formula, we may
drop the second-order quantifiers, since the notion of validity contains an implicit universal
quantification on free predicate and function symbols. More precisely, let E(u) = E'(v),
where E' is an auxiliary function. To define E’', we first “simulate” numbers in FTL. Let
0, s, <, +, and x be rigid uninterpreted symbols of the appropriate arities and a be a
flexible constant symbol. Let A be the sentence

Ve. Oa=z)A(Vz.Dd(a=2 > O a # 7))
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A(a =0)

A(VzVy.(s(z) =y = Qla=zAQa=y))
A(V2Vy(z Sy = Ola=2 A Sa=y)
AN(Vz.z+0=1)

A(VaVy.z + s(y) = s(z +y))

A(Vz.z x 0 =0)

A(VeVy.x x s(y) =z X y + z).

The sentence A defines the numbers and the corresponding operations, by representing the
number ¢ as the value of a at time :. Furthermore, A guarantees that. all elements of the
domain represent numbers. More precisely, suppose that M is a model for a language that
includes the symbols 0, s, <, +, X, Ry,..., Ry, and F,...,Fi. Let D be the domain of
M and let Opm, sm, <M, +M, XM be the interpretations for 0, s, <, +, x, respectively.
If A holds in M then the structure (D,0m,3M, <M, +M, X M) is isomorphic to the natural
numbers with the usual arithmetic operations. Now let E'(v) = (A D v). The embedding
E has the desired properties. |

Remark: The proof does not use any flexible symbols other than one flexible constant
symbol. Therefore, the theorem holds even for restricted FTL languages where all predicate
symbols and (non-constant) function symbols are rigid.

Also, the proof does not require quantification in modal contexts: A does not con-
tain quantifiers in modal contexts, and v does not contain modal operators. As usual,
all quantifiers can be extracted (using skolemization); thus, the proof indicates that the
validity problem for FTL sentences of the form 3%.u, where u is quantifier-free, remains
I1}-complete. On the other hand, the validity problem for quantifier-free formulas is clearly
decidable, since it is essentially a propositional temporal problem. |}

Remark: The theorem was first proved by Parikh ([Pa2]). We have proved it again
independently. A third proof could exploit the theory of dominoes, as Harel’s intractability
proof for first-order dynamic logic ([Ha2]). [

2. Weaker notions of completeness

Thus, the standard concept of validity is overly demanding from a theorem-proving
perspective: no practical system could possibly be complete with respect to f=. Like
arithmetic ([Go]), temporal logic has no recursively enumerable axiomatization, that is, it
does not have any useful axiomatization at all. Weaker, recursively enumerable alternatives
to the standard concept of validity may be more appropriate and useful in the study of
FTL proof systems.
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For instance, consider equipping a two-sorted classical language Lo with a proof sys-
tem. Take bp to mean provability in first-order logic. Of course, we include the usual
equality axioms (reflexivity, symmetry, transitivity, substitutivity), and functionality ax-

ioms to the effect that there is a unique 0 and that successors are unique; we also give
natural axioms for 0, s, and < ([MW]):

Fo Vi.(s(2) # 0),
Fo ViVj.(s(i) = s(5) D i =),
Fo Vi.((: < 0) = (z = 0)),
Fo ViVi.(i < s(j) = (i = s(j) Vi < 7)),
Fo u[0] A (Vi.ufe] D uls(2)]) D (Vi.u[d)).
Given a proof concept I for FTL and a formula u, we may ask whether
Fu if and only if ko P(u).

The proof concept o takes into account a large class of nonstandard models, that is,
provability with ko is equivalent to validity over a class of models much larger than the
class of standard models. The equivalence “F u if and only if ko P(u)” is the least re-
strictive requirement we find acceptable: any FTL system incomplete with respect to ko
should probably be replaced with a system that translates temporal formulas into classical
formulas and then uses Fo.

Now suppose that the function symbols + and x are added to Lo—again, it is practical
to regard them as abbreviations for the ternary predicate symbols +, and X, respectively.
The new language is Lp (“P” stands for “Peano”). The usual Peano axioms for + and x
are added to Fo:

Fp Vi.(: + 0 =1),
Fp ViVj.(i + 5(5) = s(i + 7)),
Fp Vi.(z x 0 = 0),
bFp ViVi.(2 x s(j) =i x 5 +1).
Also, the induction schema is extended to the language with + and x. We obtain Fp.

Note that Fp is strictly more powerful than ko ([BS]). Given a proof concept F for FTL
and a formula u, we may ask whether

Fu if and only if Fp P(u).

Since Peano Arithmetic proves almost all valid sentences of practical interest, completeness
with respect to Fp is an attractive requirement.
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4. A basic proof system

We start the study of FTL proof systems with a description of a basic Hilbert system
Ty. This system is an extension to our languages of the Hilbert system of Manna and Pnueli
([MP2]), equivalent to the resolution system of Abadi and Manna ([AM]). We prove a very
nonstandard completeness theorem and a nonstandard incompleteness theorem for 7.

1. The proof system
Many Hilbert systems have been given for linear-time propositional temporal logics.

Gabbay, Pnueli, Shelah, and Stavi proposed the following one ([GPSS)):

o If Fyu and Fy(u D v) then Fyv.

o If Fyu then Fyg Ju.

e If u is a tautology then Fyu.

* Fuld(pD>¢) > (Op>O9).

e FeO(-p) =~ Qp.

* FrO(P 29 D(OP> 09

e FpDpAQOOp

e Fed(p > Op) D (p D Op).

e Fy(dpD(pUyq).

o Fu(pUq)=qV(pAO(pU ).

This system is complete for PTL with the operators (O, [], and &/. When the two
axioms involving U are deleted, the system is complete for PTL with the operators () and
(. Finally, the axioms kg & p =~ [0 —p and Fy(p P q) = —((-p) U ¢) handle & and P.

Manna and Pnueli have presented a similar Hilbert system for PTL and have extended
it to a variant of FTL where only constant symbols may be flexible. This extension is
based on the addition of traditional quantifier rules and a variant of the Barcan axiom,

(Vz.Owu) D (dVz.u).

We describe a basic Hilbert system Tp for FTL that also relies on traditional quantifier
rules and variants of the Barcan axiom:

o If br,u and bry(u D v) then kr,v.
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o If br,u then kr, Ju.

o If br,(u D v) and z is not free in u then kr,(u D Vz.v).
o If u is an instance of a schema valid in PTL then kg, u.
o If u is a rigid formula then Fr,u = Qu.

o If u is an equality axiom then br,u.

o bFr,dz.~u = —-Vr.u.

¢ kr,(Vz.w) D wh where 6 is the substitution {z « ¢t} and does not create any new
bound occurrences of variables or any new occurrences of flexible terms in the
scope of modal operators.

o Fr,(Vz. Qu) = (QVz.u).
o If z is not free in v then kp, [Va.(ulf v)| = [(Vz.u) U v].

The first axiom schema, “if u is an instance of a schema valid in PTL then Fryu,”
conveniently abstracts away all details of how PTL proofs are constructed. Of course, the
schema could be replaced with any complete system for PTL, such as the one described
above. In particular, we would have an induction schema, (J(x D Qu) D (v D Qu).

The last two axiom schemas resemble the Barcan axiom. They attempt to capture
the fact that the domain of discourse is time-independent.

2. A very nonstandard completeness theorem

In this section we present a nonstandard strong-completeness theorem for T;. We say
that the theorem is very nonstandard because it states the equivalence between provability
in Ty and validity over a large class of models. The theorem answers an immediate, natural
question about Ty and is useful in later sections.

A set of formulas ¥ is Ty-consistent if b, —(u1 A ... A u,) for all uy,...,u, € L.
A model of Ty is a model where all the theorems of Ty hold at every world. The system
To is trivially sound with respect to models of Tp; the following theorem says that Tp
is also complete with respect to models of 7,. The proof of the theorem is based on a
new variation on well-known techniques for constructing a model from a consistent set of
formulas.

Theorem 4.1. Very nonstandard strong completeness

If the set of formulas ¥ is Ty-consistent then ¥ holds in some model of Ty.



4. A BASIC PROOF SYSTEM 15

Proof:

The proof of strong completeness requires only usual techniques (e.g., [Gar], pp. 273-276)
when the logic does not include  and P. When the logic does include &/ and P, these
techniques fail. Moreover, typical known results for PTL (e.g., [GPSS]) do not extend to
FTL because the models constructed in their proofs satisfy formulas with ¢ and P only after
some steps impossible in first-order logics. Burgess ([Bul]) has proven other completeness
theorems for logics with the operators “since” and “until.” However, his results do not
immediately apply to a logic without past operators, because in his system reasoning about

the future may include intermediate deductions about the past, and it is not obvious that
these can be avoided.

We give a new construction of models of modal logics, to obtain a model M for a
consistent set of formulas £. We emphasize the difficulties found in the propositional case.
Our technique has the feature of extending to the first-order logic without any new insights.

We prove the theorem for languages with no flexible function symbols. This limited
version is all we use later on (in section 6) and entails no loss of generality (as is checked
in the appendix).

Throughout the proof, we claim that certain formulas are theorems of T, when they
are instances of simple valid PTL schemas. Similarly, we use some derived inference rules,
such as “if br, u then Fr, Qu,” that follow from the rule “if by, u then by, [Ju” by
propositional temporal reasoning,.

In the propositional case, given a Tj-consistent set of formulas ¥ we define a model
My as follows:

W = {(20,u0)|Z0 is a mazimally consistent set of formulas and uo is a formula},

wo = (X*, false) where =* is any maximally consistent extension of ¥ U {u| r, u},
Ry = {((30,u0), (Z1,u1))|for allu, Qu e Ty = u € L;},

Ry = {((Zo,u0), (Z1,u1))|us & Zo,u; € T1,and for allu,ullu; € Sy = u € 1},
p holds at (3¢, u0) if and only if p € I,.

Then we remove all worlds not reachable from wg, to obtain the model M.

Intuitively, the definitions identify the world w = (¢, uo) with the set of formulas X
that hold at w. The second component of a world, a formula ug, is a new technical device
whose intuitive meaning is explained below. Lindenbaum’s Lemma guarantees that if T is
Ty-comnsistent then ¥ U {u| Fr, u} has a maximally consistent extension. Therefore, we may
choose the initial world wy to satisfy ¥ and all the theorems of Ty. As usual, we define
accessibility in such a way that one world is accessible from another world if this relation
is acceptable in view of the formulas that the worlds contain. Thus, wR,w' whenever if
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Qu is in w then u is in w'. In usual completeness proofs, R; is defined similarly: wRaw’
whenever if [Ju is in w then u is in w’. The second argument of w', the formula u', makes
possible an important refinement: only the formulas that need to hold until v’ must be in
w'. In other words, we intend to read wRyw' as “w' comes after w, but before u' holds.”

All elements of ¥ appear in the initial world. Also, all theorems of T appear in all
worlds, since if br, u then b, Qu and b1, v U u;.

Note that if we had a rigid proposition symbol p then p would receive the same
value in all worlds, since kr, p = (O p, and hence (by propositional temporal reasoning)

Fr, (P> Op] A [~p D> O~p| and b, [p D (pUu1)] A [-p D ((~p) U u1)].

Now we prove that all elements of ¥ hold in the initial world and all theorems of Ty
hold in all worlds, via a more general lemma:

Lemma 4.2. Truth lemma

For every world (X, uo), membership in £o and truth in (Xg, ug) are equivalent, that
18,

u€E Y, & M@(EQ,U()) }2 u.

Proof:

The proof proceeds by induction on the depth of modal operators in u. The base case,
where u is classical, is straightforward. For the inductive step, the proof proceeds by
induction on the structure of u. We establish the result for the base case, that is, for
formulas where the main connective is a modal operator. The cases for # and P subsume
those for [J and , since bp, ((Ju) = (u U false) and Fr, (O u) = (u P false). We omit

the routine arguments for the classical connectives, which constitute the inductive step.

e Supposethat Qv € £y. We want to show that O v holds at &y, that is, v € I; for
some (X;,u;) such that (2o, ug)R;1(Z1,u1). Note that if by, ~u then Fr, ~ QO y;
moreover, b, (Qu A Qu') D O(u Av') and br, ~Qu = O —u. Hence, since

¥y is consistent, &f = {u| Qu € I} is consistent as well: suppose that

br, ~(u! A ... Au¥) for some u,...,ufF € &7,
then

Fr, = OQu! AL AuF),
and hence

b, ~((Ou') A ... A(Oub)),
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with (Qu'),...,(Q u*) € Zy. Let ; be a maximally consistent extension of g
(there is one, by Lindenbaum’s Lemma) and u; an arbitrary formula. Clearly,

vE 21 and (Eo,UQ)Rl(El,ul).

Suppose that v P v' € L. We want to show that v P v’ holds at (Zg,uo), that
is, for some (X;,u;) such that (Zo,ue)R2(Z1,u1), v € L; and, for all (X2, uz)
between (Xg,uo) and (X;,u;) in the R, relation, v’ ¢ X3. Note that if b, —u
then kg, [0 —u and hence b, —=(uPv'); also br, (uPv' )A(W'UV') D ((uAu')Po').
Hence, since Ty is consistent, 5 = {v} U {uju U v' € Ty} is consistent as well:
suppose that

br, ~(v Aul A...Au¥) for some u!,...,uk € ¢,
then

Fr, ~(v Aul AL AWR) P YY),
and hence

Fr, ~((0 P o) AW U DY A .. A (u* U D)),

with (v P v'),(u! U v'),...,(uF U v') € £5. Let £; be a maximally consistent
extension of &7 (there is one, by Lindenbaum’s Lemma) and u; = v'. Clearly,
v € 3. Also, (Zg, ug)R2(Z1,v'):

1) v' € Xy, sincevPv' € 5 and b, v P o' D ',

2) v' € L4, since br, (~v') U v', and hence (-v') U v’ € ¥y and ' € 5.
3)Ifuldv' € Ly then u € I;, by the construction of ;.

Now suppose that for some (I3, u2) we have (Zg,uo)R2(22, u2)R2(21,v"). By
the definition of Ry, v' & L2, as desired.

Suppose that v U v' € ¥3. We want to show that v I v’ holds at (2o, ug), that
is, for all (21,u;) such that (Zo,ue)R2(Z1,u1), v € £; or, for some (X2,u2)
between (o, uo) and (X1, u;) in the R, relation, v’ € £,. Consider an arbitrary
(21,u1) such that (o, ue)R2(T1,u1). Either v uy € Tp or v/ P uy € Yo
because br, v U v' D [(vU uy) V (v P u1)]. In the former case, v € L; by the
definition of R;. In the latter case, we assume that v € ¥, and construct a
world between (Zg,uo) and (Z;,u;) where v’ appears. If v' € L; then we take
(Z2,u2) = (E1,u;). Clearly, v' € £,. The accessibility conditions are fulfilled:
since by, ullu; O (uVuy) and uy € &g, if uld uy € L2 then u € L;. Now suppose
that v' € £;. Since v € Ly we get (—v) P u; € Ly. Then v' P (-v A ') € 5y
follows, since bk, ((~v) Pui) A (vU v') D (v' P (-v A —v')). Note that if bp, ~u
then Fr, —(u P v'); also, br, (u P V')A (u' U V') DO ((u Au')Po'). Hence,
since Xy is consistent, 23“ = {v'} U {u|u'U (—v A ') € o} is consistent as
well (the argument is similar to the one in the previous case). Let ¥, be a

17
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maximally consistent extension of T (there is one, by Lindenbaum’s Lemma)
and uz = (~v A ~v'). Clearly, v’ € T,. To show that (£2,—w A ~v') is between
(Xo,uo) and (4, u;), we check:

1) (-v A ') € By follows from vU v' € g and b, vU v' D (v Vo').

2) (v A ') € X, follows from v' € Z,.

3) f ull (—v A ~v') € Ly then u € I,, by the construction of Ij.

4) uy € ¥y: Since (mv A —w') € Z;, (-v A =v') P u; € . Then note that
Fr, (7v A =v") Puy D (-uy) U (-v A '), Thus, (—u;) U (—v A =v') € Ty and
hence —u; € Xy (since (o, u0)R2(Z1,u1), as (1), (2), and (3) guarantee).

5) uy € ¥, follows from the hypothesis that (Zo, uo)R2(Z1,u3).

6) If uld u; € L, then u € £;: Equivalently, we show that if v € ¥; then
u P uy € Ey: Suppose that u € ;. Then —v A =v' Au € I;. Therefore,
(~v A-v' Au) P uy € Zy. Note that

br, (o A=~v' Au)Puy) D [((mv A= Au)Pug) U (-v A=),
Fr, [((Fo A =0 Au) Pug) U (v A ~v)] D ((uPu)U (~vA—')).

Thus, (u Puy)U (—v A —v') € Zp and u P u; € Iy (since (Do, uo)Ra2(Z1,u1), as
(1), (2), and (3) guarantee).

In all three cases, duality considerations ease the proof of the other direction of the
equivalence.

e Suppose that OO v holds at ¥g. We want to show that Qv € L. If Qv holds at
¥ then some (X;,u1) such that (g, uo)R1(X1,u1) contains v. Since ~v & ¥,
the definition of R; yields O -wv ¢ Xp. Since br, ~Qv = (O —wv, we obtain
O vE 20.

e Suppose that v P v' holds at £y. We want to show that v Pv' € L. We suppose
that v Pv' € Iy to show that v P v' does not hold at Xy, and thus obtain a
contradiction. Since v P v' ¢ ¥y and br, ~(v P v') = ((—v) U v'), we have that
(mv)U v' € Zy. Since the depth of modal operators in =(v P v') and (—v) U v’ is
the same, this implies that (—v) Y v’ holds at . Hence, v P v' does not hold at
o.

e Suppose that v U v' holds at ¥y. We want to show that v v' € Ly. We suppose
that v U v' € Xy to show that v U v' does not hold at ¥y, and thus obtain a
contradiction. Since v v' ¢ Ly and Fr, ~(vU v') = ((—v) P v'), we have that
(—v) P v’ € 5. Since the depth of modal operators in ~(v ¥ v') and (—v) P v’ is
the same, this implies that (—v) P v’ holds at . Hence, v v' does not hold at
2. 1

This concludes the propositional model construction. The first-order model construc-
tion 1s based on the propositional one. As is typical for first-order completeness proofs, the
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sets of formulas that appear in the construction of worlds are not only maximally consistent
but also saturated. (Recall that Xg b, u if for some u;,...,un € o, br, (U1A...Atg) D u;
Yo is omega-complete if Xg br, uft] for every term ¢ implies £y b1, Vz.u[z], where z is a
new variable; L, is saturated if it is both omega-complete and maximally consistent.)

Fortunately, the extension to FTL requires only two new propositions—all other details
are very similar to those given in [Gar], pp. 273-276; in particular, the extension is consid-
erably simplified by the presence of the Barcan formula. We show that if ¥, is a saturated
set then {u] Qu € o} and {ululf v' € £y} are omega-complete (this is analogous to the
key step in lemma 3 in p. 275 of [Gar]).

Proposition 4.3.
If 3 is a saturated set then {u|Qu € Xy} is omega-complete.

Proof:
Suppose that

{v| O v € Zo} br, ult]

for every term t. If kr, v D uft] then kr, (O v) D (Q ult]); also, br, (Que) A(Qui1) D
O(uo A u1). Hence, g F Qut] for every t, and Ty br, Vz.(Q u[z]) since Xy is omega-
complete. Furthermore, br, Vz.(QO u[z]) D O(Vz.u[z]). Since L, is maximally consistent,
O(Vz.u[z]) € Xp. Thus, (Vz.u[z]) € {v| Qv € o} and, immediately,

{vl O vE z:0} '"To (Va:.u[:c]),
as desired. |}
Proposition 4.4.

If 3y is a saturated set then {ulul v' € Ty} is omega-complete for every v'.

Proof:
Suppose that

{vlvU V' € Zo} Fry, ult]

for every term t. If br, v D u[t] then kg, (vU{v') D (uft]iv"); also, b, (vold V" )A(u1Uv') D
((uo Aur)Uv'). Hence, Ly F (uft]) U v' for every t, and Ty br, Vz.[(u[z]) U v'] since X
is omega-complete. Furthermore, br, Vz.[(u[z]) U v'] D [(Vz.u[z]) U v'], because the new
variable £ does not occur in v'. Since I is maximally consistent, (Vz.u[z]) U v' € Z,.
Thus, (Vz.u[z]) € {vlvUd v' € o} and, immediately,

{v|vuv' € E0} l"To (VIB.'U.[:B]),
as desired. | |
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Remark: The proof of theorem 4.1 does not require all schemas valid in PTL. For in-
stance, we do not exploit the connections between (O and &. Thus, the same completeness
proof applies to some other modal logics with different axioms about time. [

3. A nonstandard incompleteness theorem

The completeness theorem of the previous section may appear as a first promising
step in proving that T} is reasonably powerful. Furthermore, systems equivalent to T are
often empirically satisfactory. As we prove here, however, br, is surprisingly weak—not
even complete with respect to Fo:

Theorem 4.5. Nonstandard incompleteness

There is a formula ug such that o P(ug) but ¥, ug.

Proof:
Fix the language to contain only the flexible constant symbol a and the flexible predicate
symbol p. Let ug be

[(Vz. & a = 2) A p(a) A (Va¥y.(p(z) A Ole =z A Qa =y)) D p(y))]
D (Vz.p(z)).

Intuitively, ug says that if @ enumerates the domain in a sequence of instants, p holds for
the first element in the enumeration, and if it holds for an element then it holds for its
successor in the enumeration, then it must hold for all elements in the domain. In a sense,
ug establishes a connection between induction on time and induction in a domain.

Significantly, b, uo. To show this, it suffices to construct a model M of Ty where ug
fails. Let the domain and the set of worlds in the model, D and W, both equal N + Z,
that is, a copy of {0,1,...} and a copy of {...,—1',0',1',...}. The initial world wy is 0,
R, is the union of the successor functions on N and Z, R; is < with m < n' for all m and
n (in other words, we put N before Z). In the initial world, p(z) holds if and only if z is
in N; in all other worlds, p(z) is always false. In world ¢, a has value :.

The formula

(Ve. Sa = z) A p(a) A (VaVy.(p(z) A Ola =z A Qa=1y)) D py))

L 2
holds in M. However, (Vz.p(z)) does not hold. Therefore, uy is falsified in this model. We
still need to check that M is a model of T,. We show that all instances of schemas valid
in PTL hold at every world; all the other axioms and rules of T; are sound for constant-
domain possible-world models. In fact, we only consider the schemata (O ~u) = ~(Qu),

Ou D (AQOuw), udv = [pVuAQ(uldv)], and O(x O OQu) D (v D [Ju)—since these
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schemata, added to others which hold for all possible-world models, yield the complete
PTL axiom system of Gabbay, Pnueli, Shelah, and Stavi ([GPSS])).

¢ The schema (O —u) = =(Q u) holds at all worlds in M since R; is a function.

o The schema [Ju D (u A O Ju) follows from u U v D [v V u A O(u U v)] (proved
below), since [Ju = (u U false) holds in all possible-world models.

e The schema ulf v O [vV u A O(u U v)] holds at all worlds in M: Assume that
ul v holds at some arbitrary world w,. Since R is reflexive, either v or u must
hold at w; (by the semantics of ¢ for possible-world models). If v holds then
vV uA OQ(ul v) holds. Otherwise, consider the world w; such that w; Ryws. It
suffices to show that u & v holds at w,, that is, that u holds until v holds in the
“future” of w,. Since R; C Rz and R; is transitive, any ws such that woRyw;
also satisfies wy Rw3. By our hypothesis, either u holds at w; or v holds at
some world w4 such that w; Ryws and wgRows. Since v does not hold at w, and
R; — (Ry o Ry) = {(w,w)|lw € W}, wy must satisfy wyRows and wyRyws. In
short, for any w3 such that wy Ryws3, either u holds or v holds at some w4 such
that wy Rpw,s and wyRyws, that is, u Y v holds at ws.

o The schema [v Vu A Q(uld v)] D ull v holds at all worlds in M: Assume that
vVuA O(uldv) holds at some arbitrary world w;. If v holds at w;, ul{ v holds as
well, by the reflexivity of R; and the semantics of #. Otherwise, assume u« holds
at w; and u U v holds at its successor world, w,. Therefore, for all ws such that
wa Row3 either u holds or for some w4 such that wy Ryws and wyRyws, v holds.
Since u holds at w; and R; — (R; o Rz) = {(w,w)|w € W}, we can derive that
for all w3 such that wyR,w3 either u holds or, for some w4 such that wyRow,
and wqR3ws3, v holds. Since R; C Ry and R; is transitive, any such wy must
also satisfy w; Raw,, so for all ws such that w; Ryws either u holds or for some
wy such that w; Ryws and wyRyws, v holds, that is, u U v holds at w;.

¢ The induction schema, [J(u > Qu) D (u D OJu), is satisfied at all worlds in M:
Suppose that for a formula u we have u and [J(u O Qu) at some world w;. We
want to show that [Ju holds at w;. Certainly, « must hold at the world ws such
that wy Ryw,. For all formulas v, for all ¢,; such that 1R3: and 1R,j, that is,
for all worlds accessible from world 1, v holds at world : if and only if v holds at
world j. (The proof is a trivial inductive argument on the syntactic structure of
v, where the base case concerns atomic formulas and the inductive step concerns
formulas built up with the various connectives.) In particular, all worlds w3 such
that wy Ryw; are indistinguishable from world w,. Therefore, u must hold at all
wsy such that wyRyws. Since Ry — (R; o Rp) = {(w,w)|w € W} and u holds at
wy, u holds at all w; such that w; Ryws, that is, [Ju holds at w;.

Intuitively, however, uo is true. In fact, it is true in the standard semantics, and
even in the weak nonstandard semantics determined by ko, since FoP(ug). The basic
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idea behind the proof of P(uy) is that p(a(z),0) implies p(a(s(z)),0) for all 7, so induction
yields p(a(z),0) for all :. Note that here p is interpreted at time 0 while its argument a
refers to other times. In the modal system where time is implicit this double reference
is impossible; therefore, we cannot formulate a temporal version of the simple inductive
proof just described within a classical language. [

5. Auxiliary definitions

As we showed in the previous section, Ty is surprisingly limited. An analysis of its
incompleteness and of how informal temporal theorem proving is carried out gives rise to
new rules. Similar rules can be added to other proposed FTL systems.

In the first subsection we describe two extensions of Tp. In the second subsection we
give some preliminary completeness theorems that we use to obtain stronger ones in section
7. In the third subsection, we briefly discuss the connection between rules to discharge
definitions and skolemization rules.

1. Two systems with auxiliary definitions

In practice, proofs often involve auxiliary predicate and function symbols. For in-
stance, if we define the auxiliary rigid predicate g such that ¢(z) holds if and only if p(z)
holds at the initial world, we obtain a proof for the sentence uo exhibited in the previ-
ous incompleteness theorem 4.5. We show that [Jg¢(a) holds inductively, and then use
(Vz. O a = z) to derive Vz. O ¢(z). Since g is rigid, this simplifies to Vz.g(z). By the
definition of ¢, we reach the desired conclusion, Vz.p(z).

Useful auxiliary objects are not always rigid. In some cases, flexible objects have been
introduced in informal proofs. Thus, Hailpern and Owicki have given inductive definitions
for “history variables” and used them in proofs ([HO]).

We propose to allow definitions for rigid and flexible auxiliary predicates in formal
proofs. Some restrictive kinds of definitions are actually sufficient for completeness pur-
poses, but general forms seem more elegant and practical. Definitions for auxiliary func-
tions could be formulated similarly. However, for simplicity, we derive them from defini-
tions for predicates (since any provably functional predicate can be manipulated as the
corresponding function).

Rigid predicates are defined explicitly by formulas of the form

Vzi...Ver.p(zy,...,28) = u,
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where p is the new rigid predicate symbol being defined and p does not occur in u.
For flexible predicates, we are content with primitive-recursive definitions of the form

Vzl...‘v’xn.[p(xl,...,wn) =u A OO p(z1,...,z0)) Ev)]a

where p is the new flexible predicate symbol, p does not occur in u, and p does not occur
in the scope of any modal operator in v. We also require that p does not occur in the
scope of ¥ or - in v in order to keep definitions simple; this requirement is essential for
our soundness results and seems generally easy to satisfy in practice. These definitions are
analogous to primitive-recursive definitions in classical logic. Sometimes we refer to them
simply as recursive definitions.

Definitions may be iterated, in the sense that defined symbols may be used in new
definitions.

Given a temporal language, we add an infinite supply of new rigid and flexible predi-
cate symbols for definitions to use. We require that definitions define only these predicate
symbols. Note that there is a largest (typically infinite) set D, of possible explicit defini-
tions when only explicit definitions are considered, up to renaming of the defined predicate
symbols. Similarly, there is a largest set D., of possible explicit and recursive definitions
when both explicit and recursive definitions are considered.

We extend the Hilbert system Ty with sound rules to exploit definitions. We allow
the discharge of explicit definitions at the end of proofs to obtain the system 7} and the
concept br, from Ty and by :

o If br,w then bk w.
o If r,(d D w) and d defines a rigid predicate not occurring in w then br,w.

We allow the discharge of both explicit and primitive-recursive definitions at the end of
proofs to obtain the system T, and the concept b, from Ty and br,:

o If bryw then Fr,w.
e If br,(d D w) and d defines a predicate not occurring in w then kr,w.

Remark: We could allow the discharge of definitions at any point in proofs (rather
than only at the end). However, this would unnecessarily complicate our proof systems.
In particular, the soundness theorem of section 7 would still apply as an upper bound on
the power of T} and T, after some minor modifications. |

2. Two very nonstandard completeness theorems

Consider two models M and M', with interpretation functions I and I', respectively.
) p
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We say that M' ezpands M (or is an ezpansion of M) if M and M' are identical except that
I' extends I to give meanings to some new predicate and function symbols. Expansions
preserve the meaning of formulas that do not contain the new symbols:

Proposition 5.1.

If M' expands M and the formula u does not contain any of the symbols that M’
interprets but M does not interpret, then M u & M' k= u.

Proof:
We prove that for all assignments o and all worlds w

M-a)owkEu & (M - a)QwlEu

by induction on the structure of u. Both the base case and the inductive step are trivial.

We say that M’ e-ezpands M if M' expands M and satisfies each definition in D,.
The model M is a model of T} if some model of T e-expands M. Intuitively, models of T}
are models of Ty that can be expanded to satisfy all explicit definitions while remaining
models of Ty.

Tj is trivially sound with respect to models of Ty. A set of formulas ¥ is T} -consistent
if r, ~(u1 A ... Auy) for all uy,...,u, € ¥. Theorem 4.1 immediately yields that T} is
strongly complete with respect to models of Tj:

Proposition 5.2. Very nonstandard strong completeness

If the set of formulas ¥ is T)-consistent then ¥ holds in some model of Tj.

Proof:

If ¥ is Ty-consistent, then b1, —(u1A...Aup) for all uy,...,u, € . The rule for definitions
guarantees that b, ~(diA.. . AdpAuiA...Auy,) forall uy,...,u, € Tandd,,...,dn € D..
Therefore, ¥ U D, is Tp-consistent, and has a model M of Ty by theorem 4.1. In particular,
M satisfies ©. Furthermore, since M e-expands itself, M is also a model of Ty. |

Similarly, we say that M' er-ezpands M if M’ expands M and satisfies each definition
in Der. The model M is a model of Ty if some model of T er-expands M. Intuitively,
models of T, are models of T; that can be expanded to satisfy all explicit and all recursive
definitions while remaining models of Tj.

T3 is trivially sound with respect to models of T5. A set of formulas L is T5-consistent
if ¥, ~(u1 A ... Auy) for all uy,...,u, € . Theorem 4.1 immediately yields that T; is
strongly complete with respect to models of T5:

Proposition 5.3. Very nonstandard strong completeness

If the set of formulas ¥ is Ty-consistent then ¥ holds in some model of T5.
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Proof:
The argument is identical to the previous one. |}

Thus, models of T; and T, can be expanded to satisfy all the appropriate definitions
at once. As we argue now, they can also be expanded to satisfy any chosen definitions.
Let M be a model of T} (or T;), and M’ one such “full” expansion. Given a subset of
D. (or D.,) with definitions for the auxiliary predicates p;,ps,..., we may restrict the
interpretation function in M’ to give meanings to the symbols in the original language, to
P1,P2,---, and to no other auxiliary symbol. The model we obtain, M", is an expansion
of M and a model of T} (or T3), since M’ is an e-expansion (or an er-expansion) of M".
Therefore, models of T} and T can be expanded to satisfy arbitrary explicit or recursive
definitions while remaining models of T; and T5.

3. On resolution systems

In some resolution systems, skolemization has a role similar to that of the rules to
discharge definitions because, intuitively, skolemization introduces an auxiliary function
(instead of an auxiliary predicate).

For instance, suppose that there is a resolution proof of (d D u), that is, refutation of
—(d D u), where d is a definition for the new rigid predicate p(Z) with the formula w[Z]. We
can construct a resolution proof of u, that is, a refutation of —u. Intuitively, we introduce
a skolem function instead of a defined predicate. The skolem function maps Z to some
distinguished element a if and only if w([Z] holds in the present. A slight complication
arises in that we need to consider the trivial case where the domain contains a single
element.

In particular, the resolution system R ([A1}) includes a skolemization rule that intro-
duces rigid skolem function symbols. Thus, our results on T carry over to R. On the other
hand, the resolution system of Abadi and Manna ([AM]) does not include a skolemization
rule and is analogous to Tp.

6. Clocks and arithmetical formulas

In this section we define the class of arithmetical formulas. We have a completeness
result for arithmetical formulas for 7;. Arithmetical formulas are also useful in the study
of T, although our completeness theorem for T} is not restricted to arithmetical formulas.
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1. Definitions and examples

Sometimes a clock is a useful device in proofs. For instance, a program counter may
help us prove properties of a program even though the program never refers to the program
counter. In some logics of programs, clocks are actually not only useful but sometimes
necessary ([Pal]).

Informally, a clock is a formula ¢ that distinguishes a set of tuples of elements of
the domain at each point, without repetitions. The distinguished tuples in a world
can be thought of as the “time” of that world. (For instance, the formula c[z] may be
program-counter = z.) More precisely, ¢ satisfies the clock condition

Cle): (O3.c[z]) A(OVE.(c[Z] > OO ~cl])).

The formula c is a clock for u if we can use C(c) to show u, that is, if we can prove
C(c) D u then we can prove u (or, as we often say, “u reduces to C(c) D u”). More
precisely, consider a proof concept F (for instance, one of bz, br,, Fr,). The formula c is
a clock for u in Fif

F C(c) D u implies | u.

Thus, the provability of u with a clock suffices to guarantee the provability of u. Note that
we do not require that ¢ be in the original temporal language under consideration: ¢ may
include auxiliary predicate symbols introduced in definitions. The formula u is arithmetical
in | if there exists a clock for u in F (the name was chosen because arithmetical formulas
have a most natural interpretation in arithmetical universes ([Hal))).

Ezamples:

¢ The formula Jz3y.(z # y) is trivially not arithmetical, in any sound system:
it can be proved using a clock (if a clock exists, then the domain contains two
distinct values) but not without a clock. We do not know of more subtle examples
of formulas which are not arithmetical.

e Consider br,. Suppose we are interested in
u: [A A OVz(a=2z D Oa>z)] O Vy.Oa >y,

where A is some basic collection of axioms about arithmetic, a is a flexible con-
stant symbol, and all other symbols are rigid. The formulas in the antecedent, A
and (JVz.(a = 2 D Qa > z), imply that @ must take a different value at each
instant. Therefore, we can prove

[A A OVz(a=2DQa>z2)| DCla=z),

and derive [C(a = z) D u] D u by propositional reasoning. Therefore, a = z is a
clock for u.
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e Consider tr,. Suppose we are interested in
u: [Vz.(s(z) # 0) AVzVy.(s(z) = s(y) Dz = y)] D v

for some formula v. For instance, we may imagine that v expresses some temporal
property of programs on numbers, and that is why some basic facts about 0 and
s appear in u. In T,, we can give a definition d, for a flexible predicate c that is
a clock for u:

Ve.[(c() = (2 = 0)) A TI(O e(2)) = Iy.(ely) Az = s()))]-
Intuitively, c is the clock that gives the times 0, 1, 2, .... Note that
[Va.(s(z) # 0) AVaVy.(s(z) = s(y) Dz =y) Ade] DC(e)  (¥)

is provable in T5.

To check that c is a clock for u, we simply need to reduce u to C(c) D u. Suppose
that C(c) D u has a proof in T;. Let D be the conjunction of the definitions
involved in this proof and in the proof of (x). Then (D A C(c)) D u is provable
in Ty. By propositional reasoning,

[Vz.(s(z) # 0) AVzVy.(s(x) = s(y) D & = y) A de A DlDou

and hence (d. A D) D u are also provable in T;. We discharge the definitions, to
conclude that u is provablein Th. |

As the examples suggest, many of the formulas that arise in reasoning about com-
putations are arithmetical. For the systems Ty and T it suffices that the formulas in
question mention some (provably) non-repeating term—which may represent a program
counter or just some program variable. Furthermore, all instances of valid PTL schemas
are trivially arithmetical, since they are provable. It is therefore reasonable to suggest that
many important FTL formulas are arithmetical in br, and bz, .

For the system of most interest to us, T, arithmetical formulas are even easier to
find. Typically, infinite-state systems operate on domains such as the integers, the lists, or
the strings. By proposition 6.1 (below), formulas that involve some basic theory of such a
domain are arithmetical in br,. This basic theory needs to refer only to elementary facts
about a “successor” operation, e.g., successor for integers, concatenation for lists and for
strings; intuitively, this “successor” operation suffices to construct a clock, that ticks by
applying the operation to its current value.

Given a formula s,(Z, §], where & and ¢ have the same length, let Inj(s,) denote
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VEVGVZ. ((35[Z,9) A 5[, 2]) D 7 = 3)
A

VIVVZ.((sp[Z, 7] A 8p[§7,2]) D & = 9)
A

Vavy. [(sp[Z, 9] = O 557, 9])
and Range(sp) C Domain(s,) denote

3Z.(37.5, |7, §] A VZ.ms,[Z, 7))
A
VE. (35,7, ] D 37.5,[%, 2)).

The formula Inj(s,) asserts that s, denotes a rigid injective partial function; the formula
Range(s,) C Domain(sp,) that there is at least one “0-like” element to start a sequence of
function applications.

Proposition 6.1.

If ¥, [(Inj(sp) A(Range(sp) C Domain(s,))) D u] D u for some formula s,[Z, §] then
u is arithmetical in br,.

Proof:
The flexible predicate c is defined by

VZ.[(c(Z) = 37.5,[2, §] A VZmsp[2, 2]) A OO (F)) = 3-(c(@) A sp[3 2D)]-

The clock condition C(c) can be proved from Inj(s,) A (Range(sp) C Domain(s,)) and the
definition of c. As in the previous example, the reduction of u to C(c) D u follows by
propositional reasoning and definition discharges. |

2. A basic theorem

Intuitively, we would like to know that many formulas are arithmetical, because this
makes easier completeness arguments: since we may use clocks to prove arithmetical formu-
las, these formulas may be easier to prove than arbitrary ones. As pointed out above, both
propositional formulas and formulas that refer to a “successor” operation are arithmetical.
In practice, most formulas fall into one of these two groups; this informal observation has a
formal counterpart, which is the central idea in the following proof that all valid formulas
are arithmetical in T5.

Theorem 6.2.

If |= u then u is arithmetical in br,.
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Proof:

We prove the theorem for formulas with no function symbols. A proposition in the ap-
pendix shows that this restriction does not entail any loss of generality.

We suppose that |= u but u is not arithmetical in br, and derive a contradiction. Since
u is not arithmetical in r,, for all formulas ¢ we have that Fr,C(c) D u but b, u. The
completeness of T, for models of T} yields that —u holds in some model M of T5. Now we
argue that M must be rather simple. Later on we derive that —u holds in some standard
model M,, thus contradicting the assumption |= u.

Given a n-ary predicate symbol p we expand M with a relation for the rigid 2n-ary
symbol <, defined by

g<y = [(-p(@) Ap@) P (p(Z) A -p())]-

Intuitively,  is less than 7§ if, the first time that p distinguishes one from the other, p is
false for ¥ and true for §. In other words, 7 is less than ¥ if the sequence of values of p at
I is lexicographically less than the sequence of values of p at .

We also expand M with relations for the associated equivalence relation ~ and the
associated order <:

Ty = ~(E<yV §<I),
I<y = (@T~f§V Iy.

Suppose that the relation < gives rise to an infinite chain of tuples of elements in the
domain. Without loss of generality, we may assume that the chain is infinite “forward”
(otherwise, we consider > instead). Now we define a successor function after the (arbitrary)
starting point z*

(Z,9) = FSTANT<yAVE(F STV F<T)
A clock can be constructed:

(&) = (&~ 2) AO((O (D)) = 37.(c() A s(4, %))

The expansion of M we obtain satisfies C(c), still satisfies —u, and still is a model of T5.
On the other hand, C(c) D u holds in all models of T3, since br, C(c) D u. Thus, we

derive a contradiction. Hence, < cannot give rise to infinite chains.

This implies that for each predicate symbol p in u there are only finitely many ~-
equivalence classes. In other words, for each p there are only finitely many possible patterns
for p(Z) as £ varies. This allows us to “split” p into a rigid component and a flexible
propositional component.

The model M can be expanded with time-independent relations for the rigid symbols
T1,...,Tk; we define r;(Z) to hold if 7 is in the equivalence class ;. Also, we can introduce
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relations for the flexible proposition symbols qi,..., gk, to represent the possible patterns
of p(£). More precisely, g; is true in a certain world if p holds for the i’s in the equivalence
class ¢ in that world. After all these expansions to M, we have a model M’ of —u.

In M',
OVZ[p(@) = Vi (i@ A )l (%)

For each predicate symbol p there is a different number k¥ and a different set of defined
symbols r1,...,rk,q1,...,qk for which a similar equivalence holds.

The original formula —u can be rewritten using the equivalences (*): each atomic for-
mula is replaced with the corresponding disjunction. The formula obtained, v, is equivalent
to —u in all models where the equivalences hold.

An inductive argument on the structure of v shows that v is equivalent to a Boolean
combination of propositional temporal formulas and formulas where all symbols are rigid.
Typical transformations are to rewrite [J(u; Vuz) to uy V[J us, if uy is rigid, and to rewrite
Vr.(uq1 V ug) to (Vz.uy) V ua, if us is propositional. Therefore, v is equivalent to a formula
of the form

(WAud)V ..o v (Ul AuR),
with u! rigid and u} propositional for all i.

Since v holds in M, for some i the formulas u} and u} must hold in M’. By the
standard completeness theorem for PTL ([GPSS]) u} must also have a standard model. We
may take this model with the same domain and the same interpretation of rigid symbols
as M’ —since these choices do not affect the truth-value of the formulas u} and the model
remains standard. Finally, the model can be expanded with relations for the flexible
predicate symbols defined with the equivalences (*). The model we obtain is M,. Since u}
and u hold in M,, v holds as well. Since the equivalences hold, M, satisfies —u. Thus, we
have constructed a standard model for ~u and contradicted the hypothesis that = u. |

Remark: The proof of theorem 6.2 requires that the logic include the operator P, even
if the formula u under consideration includes only (O, [J, and . Fortunately, we can
refine the proof to guarantee that the theorem holds even for a logic without &/ and P.
The only step we reformulate is the definition of the rigid predicate symbol <.

First we define the flexible predicate symbol p; (7, 7) so that p; (&, ¥) holds if and only
if p(Z) A —~p(¥) has already held, that is,

p(Z,9) = (&) A -p() A OO n(E ) = ((F, ) vV O() A ~p()))-

Similarly, we define pz(Z, %) so that p;(Z,7) holds if and only if ~p(Z) A p(7) has already
held. Then < is defined by

< gE O[p2(§ag) A ﬂpl(:l—':’:‘f)L l
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7. Soundness and completeness

The main results of this section are the soundness and completeness of +r, and b,
with respect to Fo and Fp, respectively. The completeness theorem for br, refers only to
arithmetical formulas. The more important completeness theorem for br, applies to all
formulas.

The soundness theorem states that modal temporal reasoning can be transformed into
classical reasoning with explicit time parameters; in fact, the transformation is based on a
step by step simulation.

Theorem 7.1. Soundness

For every formulau, br,u = FoP(u) and br,u = FpP(u).

Proof:

The argument is similar for both systems. A modal proof of u consists of a proof within
To and some definition discharges within Tj or T;. We show how to simulate the first part
(classically) and how to eliminate the second part.

First, we show how to construct a classical proof of P([Jv) from a modal proof of v
in Tp, for an arbitrary v. The construction proceeds by induction on the structure of the
proof of v. We consider [Jv rather than v in order to handle the case where the last rule
in the proof is the one that introduces [J. The extra [] is easy to delete at the end of this
construction, that is, if P([Jv) is provable then so is P(v).

e For all axioms v of Ty, P([Jv) is provable:

s Let v be an instance of a schema valid in PTL. A completeness result
for PTL ([GPSS]) enables us to consider only the cases where v is one of
a few simple axioms for PTL. All of the proofs are routine.

s Let v be an instance of u = (Qu for some rigid formula u. Then
P(Ov) = Vi > 0.[P*(u,t) = P*(u,s(i))]. Since u is rigid, the sys-
tems of arithmetic prove P*(u,m) = P*(u,m') for any m and m' (this
can easily be checked with an induction on the structure of u). It im-
mediately follows that they prove P([Jv) as well.

s Let v be an equality axiom. Then P([(Jv) = Vi > 0.P*(v,1) and P*(v,1)
is one of

(x = z)’

(t=yDy=rz),
(z=yAy=2Dz=2),

(z =y D P*(t,i)0 = P*(t,1)),
(z =y D P*(w,)8 = P*(w,i)),
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for some term ¢ and some formula w, where § = {z « y} and y does
not occur bound in w. In all cases, P*(v,1) is a classical equality axiom;
therefore, the systems of arithmetic prove P*(v,1), and hence P([Jv).

Let v be 3z.~w = ~Vz.w. Then
P(Ov) = Vi > 0.(3z.~P*(w,i) = ~Vz.P*(w,i)).

Since the systems of arithmetic properly include the predicate calculus,
they certainly prove 3zr.~P*(w,i) = —-Vz.P*(w, ) for any P*(w,1), and
hence P([Jv).

Let v be (Vz.w) D wé for some formula w and some substitution § =
{z « t} that does not create any new bound occurrences of variables or
any occurrences of flexible terms in the scope of modal operators in w.
Either z does not occur in the scope of modal operators in w or ¢ does
not contain any flexible symbols. In either case,

P*(wb,i) = P*(w,1){z « P*(t,1)}.
Then
P(Ov) = Vi > 0.[(Vz.P*(w,i)) D (P*(w,i){z — P*(,4)})].

The quantifiers in P*(w, ) are those in w and some additional quanti-
fiers over numbers. The former could not bind any of the data variables
in P*(t,%), since these variables occur in ¢ and the rule application does
not create any new bound occurrences of variables in the original modal
proof. The latter could not bind any number variables in P*(t,1), since
the substitution does not create any new occurrences of flexible terms
in modal contexts. Therefore, {x « P*(t,i)} does not create any new
bound occurrences of variables in P*(w,z). Since the systems of arith-
metic properly include the predicate calculus, they certainly prove

(Vz.P*(w,i)) O (P*(w,i){z « P*(t,7)}),
that is, (Vz.P*(w,?)) D P*(wé,1) , and hence P([(Jv).
Let v be (Vz. Q u) = (Q Vz.u). Note that

P((Yz. O u),i) = Ya¥3.(sp(2,5) O P*(u,5)),
P*((OVz.u),i) = Vi.(sp(3,5) D Yz.P*(u, 7)),

and that these two formulas are provably equivalent. The provability of
P(Ov) follows.
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» Let v be [Vz.(ull w')] = [(Vz.u)U u'], with z is not free in u'. Asin
the previous case, P*(Vz.(ull u'),i) and P*((Vz.u)U u',i) are provably
equivalent. The provability of P([(Jv) follows.

o All rules in Ty can be simulated (e.g., if we can infer w from v then we can infer

P(Ow) from P([Qv)):

s Assume that P({Jwe) and P([OJ(wo D w;)) are provable to show that
P(Ow,) is provable as well. We have

P(D ’UJo) =V: 2 O.P‘(wo,i),
P(['_'](wo D) wl)) =V 2> 0.(P*(wo,i) > P*(wl,i)).

By classical reasoning it follows that
Vi > 0.[P*(wo,1) A (P*(wo,3) D P*(w1,1))],
and then Vi > 0.P*(w;, ), that is, P([(Jw,).

= Assume that P([Jw) is provable to show that P([][Jw) is provable as
well. The formula P((Qw) > P({J O w), that is,

Vi 2 0.P*(w,1) D (Vi 2 0)(Yj > i).P*(w, j),

is provable, since ko (: > 0 A j > i) D j > 0. Hence, we can prove
P(OOw).

= Assume that P(CJ(we D wy)) is provable and z is not free in wq to show
that P([O(we D Vz.w;)) is provable as well. We have

P(C(wo D wy)) = Vi > 0.(P*(wo, i) D P*(wi,5)).

Since ko Vi.(z > 0), it follows that P*(wq,:z) D P*(ws,:) is provable.
The variable z is not free in P*(wy, 1), since it is not free in wq. By the
classical rule of introduction for V, we derive P*(wq,1) D Vz.P*(w1,1),
that is, P*(wo,¢) D P*(Vz.wy,). Therefore, we can prove

Vi > 0.[P*(wo,1) D P*(Vz.wy,i)],
that is, P((O(wo D Vz.w1)).

We have transformed the part within T of a proof of u into an analogous classical
proof. In the modal proof of u we discharge definitions to obtain the final result u from
some theorem of T;. We show that definitions are superfluous in the classical proof of
P(u), that is, if d is a definition and P(d D v) is provable then so is P(v).
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e If d is an explicit definition and ko P(d D v) then o P(v):
Assume that ko P(d D v). We have
P(d D v) = [P(d) D P(v)],
and P(d) is of the form
Vzy ... Verp(zy,...,20) = w[zy,...,T,].

We may replace every occurrence of p(t1,...,t,) with the corresponding instance
w(ty,...,ts] in the proof of ko P(d) D P(v) —possibly after some renaming of
bound variables to avoid unwanted captures. Every step of the proof is still legal
since ko does not distinguish p(ty,...,t,) from w[t;,...,t,]. We obtain a proof
of

Fo (Vz1...Vzp.w = w) D P(v),
and, therefore, a proof of ko P(v).

o If d is a recursive definition and Fp P(d D v) then Fp P(v):
Assume that Fp P(d D v). We have

P(dDv)=[P(d) D P(v)],

and P(d) is the primitive-recursive definition for a predicate symbol p. By classi-
cal coding techniques from Peano Arithmetic ([Kl], sections 48 and 49), p is also
definable explicitly, say by d’'. The definition d’ is of the form

Vzy ...V Vip(zy,. .., z0,1) = w(z1,...,Tn,i).

Furthermore, +p d'’ O P(d), and hence also kp d' D P(v). As above, we
may replace every occurrence of p(t1,...,t,,m) with the corresponding instance
wlt1,...,tn,m] in the proof of kp d' O P(v). Again, every step of the proof is
still legal. We obtain a proof of

Fp (Vz1...Vz,Viw = w) D P(v),
and, therefore, a proof of Fp P(v). |}

The completeness theorem, converse to the soundness theorem, states that classical
reasoning with explicit time parameters can be transformed into modal temporal reasoning.
The transformation is more than a trivial simulation, though; in particular, we exploit the
existence of clocks.

Theorem 7.2. Completeness

For every formula u, FoP(u) = bpu if u is arithmetical in br,.
For every formulau, FpP(u) = bru.
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Proof:

Since the translation function P preserves standard validity and Fp is sound, FpP(u)
implies that |= u, and hence that u is arithmetical in br,. Therefore, it suffices to prove
that for every arithmetical formula u (with clock ¢) FoP(u) = bruand FpP(u) = bp,u.
The main steps of the proof are:

1) we use the clock to define some predicates and functions on the domain (0, s,
<, and ~ for Ty, and also + and X for T3);

2) these predicates and functions satisfy the usual properties of 0, s, <, =, +, X,
and this can be shown within T} and Tj;

3) the clock also helps translate u into a FTL formula Q(u) syntactically similar
to P(u);

4) furthermore, Q(u) can be shown equivalent to u within T}, so it suffices to
construct a proof of Q(u);

5) the proof of Q(u) is identical in structure to that of P(u), except that the
usual axioms about 0, s, etc., are treated as theorems.

We present the completeness proof step by step. We may assume that there are no
function symbols—though we use some as abbreviations. A proposition in the appendix
checks that this entails no loss of generality. Also, at some points we claim that certain
formulas are provable within T} and leave the corresponding arguments for the appendix.

Step 1:
e First we define the rigid numberhood predicate n by Vz.[n(Z) = O [7]].
e We define the rigid zero predicate 0, by VZ.[0,(Z) = c[Z]].
¢ We define the rigid successor predicate s, by
VEVY.[sp(Z, ) = O(c[] A O e[g])]-
¢ Similarly, we define < 7 as O(c[z] A O cy]).

e Also, we define 7 ~ § as O(¢[Z] A c[g]). The relation = is intended as an approx-
imation to =.

e In T, primitive-recursive definitions can be exploited to define the rigid predicate
+p. First we define the flexible predicate p; by

Vavy.[pi(E,9) = (§ 2 9) AO(Opi(,9) = 32.(p1(F,2) A 55 (7,9))) -



36 7. SOUNDNESS AND COMPLETENESS

Intuitively, p1 (&, %) holds at time k if Z + k = §. Therefore, we define +, by
VEVIVZ[+p(Z, 4, 7) = O(cld] A p1(Z, 2)))-

e Similarly, X, can be defined in T,. First we define the flexible predicate p; by
VaVG.[p2(Z, §) = 0,(9) A O((Op2(Z,9)) = 32.(p2(E, 2) A +5(3, 5, 7))
Intuitively, p2(Z, §) holds at time k if Z x k = y. Therefore, we define x, by
VIVIVZ[xp(Z, ¥, Z) = O(c[g) A p2(Z, 7).

Step 2:

The defined symbols can be shown to satisfy most of their usual axioms within 7;.
One important qualification is that the full substitutivity-of-equals property does not hold
for ~. However, the substitutivity properties we obtain are sufficient for our purposes.
Similarly, enough (but not all) instances of the induction schema can be proved; rigid
predicate definitions are essential in these proofs.

More precisely, let A represent the definitions for auxiliary predicates (A includes the
definitions for n, 0p, sp, <, and ~; when addition and multiplication are involved, A also
includes the definitions for p;, +,, p2, and X,). Then

Fr, (C(c) A 4) D 3Z.n(7).

This guarantees that the predicate n can be treated as a sort. Any proof of u using n as a
sort can be transformed into a proof where n is a predicate (this is justified in a proposition
presented in the appendix). From now on, we denote variables of this sort by letters like
¢, and terms of this sort by letters like m.

We write Jji.u(t] as an abbreviation for
Fiult]) AVIVI[ulz] Aulj] D i ~j].
The predicates 0p, sp, +p, and x, can be thought of as functions on the sort defined by n:
b1, (Clc) A A) D Fji.0,(2),
Fr, (C(e) A 4) D Vidysy(i, ),
Fr, (C(c) A A) D ViVy3ik. +, (3,7, k),
br, (C(c) A A) D ViVidik. X, (3,5, k).

Therefore, it is convenient to use the functional abbreviations 0, s, +, x for 0p, sp, +p,
Xp, just as in Lo and Lp.
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Also, ~ is an equivalence relation and enjoys some useful substitutivity properties; ~
acts like = on the sort defined by n:

Fr, (C(c) A A) D Vi.(i =),
Fr, (C(e)ANA) DViVy.(i~j Dj~1),

Fr, (C(e)AA) DViVVE(G~jAj ~ k) Dik),

Fry, (C(c) A A) D Vivi.(i ~ j D O(cfi] A a) = O(clj] Aa)) if a is atomic,
Fr, (C(c) A A) D ViVj.(i ~ j D afi] = afj]),

if a is an atomic formula with predicate symbol n, 0,, sp, <, 22, 45, or X,.

We say that a formula is c-formed if it is built up from atomic formulas with relation
symbol n, 0, sp, <, =, +,, and X,, and from formulas of the form (¢[m] A a), where a
is atomic. The substitutivity property we need follows from the last two facts by induction:

Fr, (C(c) A A) D ViVy.(2 ~ § D ufé] = u[j]) if u is c-formed.
Other theorems guarantee that the defined symbols satisfy the appropriate axioms:
Fr, (Cle) A A) D Vi(s(z) £ 0),
Fr (C(c) A 4) D Vi¥i.(s(i) = s(j) D i = j),
b1, (Ce) A A) D Vi((: £0) = (i > 0)),
b1 (C(e) A A) D ViVj.(i < s(j) = (i = s(j) Vi <)),
Fr, (C(c)NA) DVi(t401),
1 (C(e) A 4) D ViVi(i + 5(7) = s(i + ),
br, (C(e) A A) D Vi.(i x 0~ 0),
Fry, (C(e)ANA) DViVy.(i x s(J) ~ 1 x j+1),
Fr, (C(c) A A) D [u[0] A (Ve.ulz] D uls(z)]) D (Ve.ulz])] if u is c-formed.

Step 3:

We define the translation function Q by Q(u) = Q*(u,0), where @* is an auxiliary
translation function such that:
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p(th o ’tk)
if p is a rigid predicate symbol

<>(c[m] Ap(ty, ... ,tk))

if p is a flexible predicate symbol

Q* (p(ta, - .. Jtk)ym) =

Q*(Ou,m) = Q*(u,s(m))

Q*(Ou,m) = Vi>m.Q*(u,i) (i and j are new variables)
Q*(Ou,m) = 3i > m.Q*(u,i)

Q*(ulv,m) = Vi2m.[Q*(u,i)V Ij.(m < j <iAQ*(v,5))]
Q*(uPv,m) = 3i 2 m.[Q*(u,i) AVj(m < j <iD=Q*(v,)))]

and Q* renames bound variables and preserves connectives and quantifiers.

Step 4:

The function @ provably preserves meaning. First we prove:

Lemma 7.3.

Fr,(C(c) A A) D (Q*(u,m) = O(c[m] Aw)) for all u and m.

Proof:
The lemma is proved by induction on the structure of u. It suffices to show that

b1 (C(e) A 4) D @ (p(ty, -, ti),m) = O(clm] Ap(ty, ... 1)),
b (C(e) A 4) D Q@*(~u,m) = O(c[m] A —~u),

br (Cle) A 4) D Q% (u1 Aug,m) = O(cfm] A (ur Aua)),
Fr (Ce) A A) D Q*(ur V uz,m) = O(e[m] A (us V us)),
Fr (Ce) A A) D Q*(Vz.u,m) = O(c[m] A Vz.u),

Fr (C(c) A A) D Q*(Fz.u,m) = O(c[m] A Jz.u),

b (C(e) A 4) D @*(Qu,m) = O(dm] A Ow),

b (C(e) A 4) D @*(Ou,m) = O(elm] A Qw),

br (C(e) A 4) D @7 (O usm) = Oem] A O w),
Fr(C(e) A 4) 5 @*(uld v,m) = O(e[m] Aull v),

b (C(e) A 4) 2 @*(u Pv,m) = O(e[m] AuP o),
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with the induction hypothesis that the lemma holds for all proper subformulas of the
formulas under consideration.

By the induction hypothesis, it suffices to show that

Fr(C(e) A A) D p(ty,... . tx) = O(c[m] Ap(ta,. .., 1)) if pis rigid,

Fr(C(e) A A) D O(em] A plty, ..., 1)) = O(cm] A pltas ..., 1)) if p is flexible,
b1 (Ce) A A) D = O(e[m] A w) = O(e[m] A -u),

k1, (C(e) A 4) D (O(elm] Aur) A {elm] A uz)) = O(elm] A (uy A ua)),

b, (Cle) A A) D (O(e[m] Aur) V O(e[m] A ug)) = Oelm] A (ur V up)),
Fr(C(e) A A) D Va'. O(cm] A ufz']) = O(c[m] A Ve.ulz]) if ¢’ is a new variable

(in particular, ' does not occur in c[m]),

b1, (C(c) A A) D 32’ O(c[m] A u[z']) = O(e[m] A Fz.ulz]) if ' is a new variable

(in particular, ¢’ does not occur in ¢[m}),
P, (C(e) A 4) 5 O(e[s(m)] Au) = O(e[m] A Ow),
Fr(C(e) A A) D Vi 2 m. O(cli] A u) = Ole[m] A Qu),
Fr (Cle) A A) D Fi 2 m. O(cli] A w) = O(efm] A O ),

Vi > m. [O(cfi] Au)V Fj.(m < j < i A O(cli] A v))]]
Fr(Ce)AA)D | =
| O(e[m) Auld v)

'ai_z m. [O(eli] Au) AVi.(m < j <iD =] A v))]}

| O (efm] AuP o)

The second formula is trivially provable. Duality considerations enable us to omit the
cases for V, 3, , and P. Also, the case for [] is subsumed by the case for &/ and can be
omitted. The remaining cases are treated in the appendix. [

)

Fri(C(c) A A) D

Theorem 7.4.

Fr,(C(c) A A) D (u = Q(u)) for all u.

Proof:
In the appendix we check that

Fr(C(c) A A) D (u = O(c[0] A u)) for all u.
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The lemma, yields
Fr,(C(c) A A) D (u = Q*(u,0)) for all u.
Now it suffices to point out that @*(u,0) = Q(u). 1

Step 5:

The formula u is provable if (C(c) A A) D u is provable (in the appropriate system).
By step 4, it suffices to show that (C(c) A A) D Q(u) is provable.

The formulas Q(u) and P(u) have identical syntactic structures, except that formulas
of the form >(c[m] A p(ty,...,tk)) occur in Q(u) where atoms of the form p(t,...,tk, m)
occur in P(u). This difference is insignificant enough that the proof for P(u) can be applied
to (C(c) A A) D Q(u), with four minor modifications:

o The assumption C(c) A A is carried along.
o The equality symbol for numbers, =, is replaced with ~.

¢ If pis an uninterpreted predicate symbol then the atom p(t1,...,tx, m) is replaced
with O(e[m) A p(ta, ..., k).

¢ The axioms about numbers are no longer treated as axioms, but they are proved
from C(c) A A (as in step 2). Note that since all formulas in the proof of Q(u)
are c-formed, the substitutivity and induction properties we obtain suffice.

This concludes the proof of the completeness theorem. As a corollary, we can show
that T} is strictly less powerful than Ty and T is strictly less powerful than T,. Of course,
all systems are incomplete in the standard sense.

Corollary 7.5.

br, C kb, Chr, C E.
Proof:

The inclusion of all the proof concepts in = is a consequence of their soundness. Since
they are all effective, they are incomplete; hence their inclusion in [= is proper.

It is trivial that bz, C br, C b1y, since Tp is a subsystem of T} and T is a subsystem
of T;. Also, there are formulas u; and u, to separate br, from Fr, and Fp, from br,,
respectively: '

For u,, take

(V2. Oa=a)A(Vz.((a =2 > QO a #z))
Ap(a) A (YaVy.(p(z) A Ola=z A Oa=y)) D py))]
D (Vz.p(z)).
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Note that u, is very similar to ug exhibited for the nonstandard incompleteness theorem 4.5
(we introduce a slight difference to make u; obviously arithmetical). In fact, the arguments
in the proof of theorem 4.5. show that kg, uy and ko P(u;), with no modification. Also,
the formula u; is arithmetical in T}, with clock (a = z). By the completeness theorem, it

follows that b1, u; and Fr, u;.

As for u2, Biré and Sain ([BS]) have produced a formula v of Lo such that Ko v and
Fp v. It is an immediate observation that v is the translation of a FTL formula, say u,.
By our soundness and completeness theorems, it follows that b, us and bz, uz. |

Remark: Consider the restrictions of T} and T, that do not operate on formulas with
U and P. The completeness theorem and its corollary hold for these restricted systems.
In fact, the proofs are special cases of the general proofs. Note, in particular, that we have
pointed out that all valid formulas are arithmetical in br, even when the logic does not

include ¢« and P. |

8. Related work

The intractability of FTL has been widely accepted for some time. However, no in-
tractability proof has been published to the best of our knowledge.

In dynamic logic, the intractability theorems initially led to an interest in completeness
results for arithmetical universes ([Hal]). We suspect these results do not carry over
directly to temporal logic. On the other hand, literature on nonstandard logics of programs
(e.g., [N], [BS], [Sal], [Sa2]) discusses notions of completeness similar to those we study.

Previous works on nonstandard temporal logics differ from ours in three major re-
spects. First, the logics under consideration often include the modal operator First, but
not U and P, and the only flexible symbols are constant symbols. Second, the works
focus on weak FTL proof systems, similar to Ty and Ty. Third, the main soundness and
completeness theorems given are for special classes of sentences, such as partial and total
correctness assertions for deterministic sequential programs. For instance, these theorems
do not directly apply to reasoning about concurrent systems.

There have been results analogous to ours for other modal logics. In particular,
Solovay ([So]) has provided an interpretation of the propositional logic of provability in
Peano Arithmetic. Although our main positive result seems close in style and form to
Solovay’s, the constructions used in the proofs have little in common. Another fundamental
difference is that the logic Solovay considers is axiomatizable, while temporal logic is highly
intractable.
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9. Open questions

The system we are most interested in is T,, because it corresponds well both to Peano
Arithmetic and to informal proof methods, and because it is the most powerful one of
those we have considered. Still, there are some intriguing open questions on Ty and T}:

o We have shown that Fr, is incomplete with respect to Fo. Is there any simple
characterization of T?

o We would like to know whether T} is actually complete for all formulas (and
not just for arithmetical formulas). Consider augmenting 7T with a rule to use
a clock, that is, to derive u from C(c) D u provided that the flexible predicate
symbol ¢ does not occur in u. As long as the domain of discourse is infinite, the
rule is harmless. With this rule, all formulas become arithmetical, and hence br,
becomes complete with respect to ko. Thus, we would like to know whether a
clock adds power to Tj.

10. Appendix

In the following subsections 10.1 and 10.2 we prove two general propositions to show
how to replace function symbols with predicate symbols and predicates with sorts. These
are simple extensions of propositions well known in classical logic ([Kl], [Gal]).

In subsection 10.3 we argue that certain formulas can be proved within Tj.

1. Eliminating function symbols

Given a formula u and a set F' of uninterpreted function symbols in a given language,
we define the “unnesting” of u, u*, to be the formula obtained by repeatedly replacing
occurrences of

p(-- -t f(t1,- - tn))s-- )
with
dz.[f(t1,..-,tn) =2 A p(...,¢z],...)]

where f € F and z is a new variable, until all f’s in F occur only in atomic formulas of
the form f(t;,...,tn) = z. For the sake of uniqueness, we may choose a standard order
for this rewriting.
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Now u* can be transformed into a formula u™ with no function symbols in F: for each
f € F, wereplace f(t1,...,tn) = z with gf(¢1,...,%,,z). Let F, be the set of elements of
F that occur in . The formula

Aser, [OVz1 .. Veuy.qs(zy,. .., 70, y)]

expresses that all the predicate symbols introduced represent functions. (For rigid f’s, the
[ may be omitted.) Thus,

u't Agep, [OVzr... Veo3ly.gp(z1,...,20,y)] Dut
is equivalent to the original u.

When the language is sorted, u' is defined analogously and the new symbols introduced
are taken in the appropriate sorts.

Proposition 10.1.

Let F be one of o, tp, br,, F1,, and br,. For every formulau, Fu < Fu'.

Proof:

To prove that Fu = Fu', we assume that u has a proof and construct a proof for u’. The
construction proceeds by induction on the structure of a proof for u. More precisely, we
check that if v is an axiom then v’ is provable and that if a rule derives v from vy, ..., vk
then v’ can be obtained from vi,...,v;. The usual classical arguments are omitted. We
present only the arguments for the temporal axioms and rules.

o Ifvisaninstance of a valid PTL schema, of u = (O u (with u rigid), of (Vz. Qu) =
(OVz.u), or of [Vz.(ull v)] = [(Vz.u) U v], then vt is an instance of the same
schema, and, therefore, is an axiom. The axiom vt immediately yields v'.

e Suppose v is [Jw and is deduced from w. Clearly, [Jw' can be deduced from
w'. By propositional temporal reasoning, F ((Jw') = ((Jw)’, so ((Jw)' can be
deduced from w'.

e Suppose v is deduced from d D v, for a definition d. Since d is also a definition, v’
can be deduced from d* D v'. By propositional reasoning, I (d D v)' = (d* D v').
Therefore, v' can be deduced from (d D v)'.

To prove the other direction, Fu’' = I u, we assume that i «' and show that Fu. Let
v be u' with f(t1,...,t,) = tnt1 substituted for gs(t1,...,tn41), for all f € F. Clearly,
the same proof succeeds for v and u’, since they have the same structure; thus, Fv. In all
systems under consideration functions are provably functional. In particular,

FAser, [OVer .. Vaadly. f(z1,...,20) = y].
Since v = /\feFu[D Voy... Ve ly. f(r1,...,2n) = y] D u*, it follows that Fu*.
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Now, it suffices to show that F u = u*. It suffices to point out that each step of the
“unnesting” is provably correct, that is,

Fp(o. o tf(t, . t)], o) = 32 [f(tr, .- te) =2 A (oLt 2],.. ). |

This proposition guarantees that some proofs need to consider only formulas of re-
stricted forms, where some or all function symbols are forbidden:

Corollary 10.2.

Assume that Ty is complete for models of Ty for all sets of formulas with no flexible
function symbols, that is, if no function symbol occurs in the formulas in £ and if T

1s To-consistent then ¥ holds in some model of Ty. Then Ty is complete for models of
Ty.

Proof:

Consider a Ty-consistent set of formulas ¥ where flexible function symbols may occur. We
eliminate all flexible function symbols as in the proposition. More precisely, we define:

F = {f|f s a flezible function symbol occurring in X},
¥ ={ut|lue Z}U{OVz:...VapIly.qs(z1,...,2a,9)|f € F}.

By the proposition, ¥' is Tp-consistent. The assumption yields that %' has models. In
one of these models, the predicate symbols that replace the flexible function symbols are
interpreted as functions. Hence, a model for 3 can be read off immediately. [

Corollary 10.3.

Assume that every valid formula with no function symbols is arithmetical in \r,, that
is, if no function symbol occurs in v and |= u then u is arithmetical in br,. Then
every valid formula is arithmetical in .

Proof:

Given a valid formula u, u' is also valid. Therefore, u' is arithmetical in Fp,. Let co
be a clock for u'. If br,C(co) D u' then Fpu’. We obtain a formula ¢; from ¢o by
replacing all occurrences of qf(t1,...,tn41) With f(#1,...,%,) = tnt+1. The formula ¢;
is our candidate clock for u. Assume that Fr,C(c1) D u to show that Fpu. By the
proposition, kr,[C(c1) D u]'. Also, Fr,[C(c1) D u)' = [C(eco) D '] by propositional
reasoning. Therefore, br,C(co) D u', and hence, since ¢p is a clock for v/, br,u’. By the
proposition, Fr,u follows. |

Corollary 10.4.

Assume that FoP(u) = bpu and FpP(u) = br,u for every arithmetical formula
u with no function symbols. Then FoP(u) = bFru and FpP(u) = kr,u for every
arithmetical formula u.
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Proof:
Assume that FoP(u) = kp,u for all arithmetical 4 with no function symbols and that for

some arithmetical v, Fo P(v). We show that Fr,v. Since FoP(v), the proposition yields
Fo(P(v))'. Note that Fo(P(v))' = P(v'), and hence o P(v").

Moreover, if v is arithmetical then so is v' (in fact, if ¢ is a clock for v then ¢t is a
clock for v'). Since v' contains no function symbols and is arithmetical, bz, v’ follows from
our assumption. By the proposition, b, v.

A similar argument handles kp and br,. |

2. From predicates to sorts

We show that treating a rigid predicate as a sort does not improve provability. This
very minor proposition on sorts can be extended in a number of ways, but the current
form suffices for our purposes.

Suppose that Vi.u[:] and 3i.u[i] are used as abbreviations for Vz.(p(Z) D u[Z]) and
3Z.(p(Z)Au[Z]), respectively, and that the usual rules for quantifiers are applied to formulas
with these special sorted variables. Thus, any provability concept I is extended to a new
provability concept k-, for formulas with this kind of sort abbreviations. As long as p
provably corresponds to a non-empty relation, b, is no more powerful than the original I

Proposition 10.5.

Let p be a rigid predicate symbol and + be one of by, and V1, . Suppose that

u[t1,...,%,] has a proof within &, that is, b, u[i1,...,i5]. In this proof, i1,...,in
are the only variables in the sort defined by p that may occur free. Let u' be the
formula

[(3Z.p(2)) Ap(Z1) A ... AP(Zn)] D ulfi,. .., Tnl.
Then Fu'.

Proof:

We show how to construct a proof of I u’ by induction on the structure of a proof of s u.
More precisely, we check that if v is an axiom in F, then F v’, and that if a rule derives
v from vy,..., v within b, then v’ can be obtained from vi,...,v} within . Again, we
spell out only the arguments for the temporal axioms and rules; the remaining arguments
are similar and totally classical.

o Ifv[iy,...,7,] is an instance of a valid PTL schema, of u = O u (with u rigid), of
(V2. Qu) = (O Vz.u), or of [V:c.(uu v)] = [(Vm.u)u v], then v[%1,...,Tx] is an
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instance of the same schema, and, therefore, is an axiom. The provability of v’
follows immediately.

o Suppose v is [Jw and is deduced from w. Clearly, [Jw' can be deduced from
w'. By propositional temporal reasoning,  ((Jw') = ((Qw)', so ((Jw)" can be
deduced from w'.

o Suppose v[iy,...,i,] is deduced from d[iy,...,i,] D v[i1,...,%s], for a defini-
tion d[iy,...,i,]. Since d[Z1,...,Zy] is also a definition, v' can be deduced from
d[Zy,...,%y] D v'. By propositional reasoning, the formulas (d[Z1,...,Zn] D v')

and (d[t1,...,is] D v)' are equivalent. Therefore, v' follows from (d D v)'. |

3. Some useful theorems

In steps 2 and 4 of the completeness theorem (section 7) we claim that certain formulas
are provable in T;. We justify the claim in this subsection. Most of the arguments are rou-
tine. Since T} is complete with respect to models of Tj, we are able to give some (slightly)
semantic proofs. The corresponding syntactic proofs are long but easy to reconstruct.

The formulas C(c) and A are defined as in section 7. Throughout, we consider a model

M of Ty where C(c) and A hold.

o Fr (C(c)AA) D IZn(F)

The model M satisfies (3%.¢[Z]), since it satisfies C(c). Hence, it satisfies (3Z. O ¢[7]).
Since n(&) is defined as O ¢[Z], M also satisfies (37.n(Z)).

o Fr(Ce)AA) D O(cfi] D u) = O(cft] Auw) (%)
(This “duality proposition” is a useful tool in proving the remaining theorems.)

Assume that (c[id] Au) holds in M. Suppose that (J(c[¢] D u) does not hold, that is,
that &(c[i]A—u) holds. By propositional temporal reasoning we obtain O (c[f]JAQ O ¢[i)),
in contradiction with C(c). Therefore, [](c[] D u) must hold.

Assume that [J(c[z] D u) holds. By the definition of n, { c[i] holds; propositional
temporal reasoning yields (cfi] A u).

o Fn(C()AA) D> O(Oc) du)= SOl Au)  (xx)

The proof is similar to the previous one.

o Fr, (Cle)AA) D 3ii.0,(i)
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The model M satisfies 3:.c[z], since it satisfies C(c). It follows that 3i.0,(¢) holds, by
the definition of 0,. Furthermore, if both 0,(¢) and 0,(7) hold, then c[z] and ¢[j] hold, so
O(eld] A cfj]) holds as well. It follows that i ~ j, by the definition of ~.

o 1, (C(c) AA) DVidij.sp(s, )

Consider an arbitrary i. By the definition of n, c[{] must hold at some world w; such
that woRw;. Then there is some j with property ¢ at some world wy such that w; Ryws:
since C'(c) must hold at wy, O 3¢.c[y] must hold at w;. By the definition of s,, this means
that : has a successor. To see that this successor is unique (as far as ~ can distinguish),
assume that both j and j' are successors to . Then both (O ¢[j] and O ¢[;'] hold at wy;
hence c[s] A c[j'] holds at w,.. It follows that <> O(c[f] A ¢[5']) and hence (c[5] A ¢[5'])
hold at wy. The definition of ~ yields that 7 ~ j'.

o bn (C(c) A A) D Vi¥jTik. +p (i, k)

We first show that p; defines a flexible function from numbers to numbers at all worlds
wy such that woRyw;. By the induction principle, it suffices to show that p; is a function
at wg and that if it is a function at some w; such that woRyw; then it is a function at
some wy such that wy Ryjwa. At wo, p1(,7) holds if and only if 0,(¢) holds; since 0, defines
a constant, p; defines a function. Now assume that p; is a function at w; and consider
wa. At wy, pi(7,7) holds if and only if for some j we have s,(j, k) and p;(, k) holds at w;.
Since p; is a function at w; and s, is a function, p; is a function at w,.

To show that +, is a function, consider arbitrary 7 and j. By the definition of n, there
must be some w,; that satisfies ¢[j] such that woRow;. For some ~-unique k, w; satisfies
p1(3, k), and hence +,(3, j, k). To finish, we need to check that if ¢[j] holds at both w; and
wj, then the same k gives us p1(7, k) at w; and w). Suppose that p; (2, k) holds at wy; then
O(els] A pi(d, k) holds at wy. By (), we obtain [J(c[j] D p1(i,k)). Therefore, pi(, k)
holds at wj. If p; (¢, k') holds at w| for some other k', we have k ~ k' because p; defines a
function.

o k1 (C(c) A A) DViViIik. x, (3,7, k)

The argument is exactly analogous to the one for +, (using +, instead of sp).
o bp (Clc)NA)DVi(i~1)

Consider an arbitrary ¢. By the definition of n, {(c[i] A cfi]), that is, ¢ ~ 7, holds.
o Fr (Clc)NA)DViVj.(i~jDjx~r)

Consider arbitrary : and j such that ¢ ~ j, that is, {(c[t] A ¢[j]). By commutativity,
O(eff] A cle]), that is, § ~ 4, holds.
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o Fr (Cle)AA) DViViVk((i~jAj~ k) Dirk)

Consider arbitrary ¢, j, and k such that 7 ~ j and j ~ k, that is, O(c[7] A ¢[f]) and
O(celg] A elk]). By (x), [(els] O c[k]) follows. By propositional temporal reasoning, we
obtain (c[i] A ¢[7] A c[k]), and then derive (c[i] A c[k]), that is, ¢ ~ k.

o tr, (Clc)ANA) DViVh.(i ~ 3 D O(clt] Aa) = O(c[j] A a)) if a is atomic

Consider arbitrary ¢ and j such that ¢ ~ j, that is, O(c[i] A ¢[j]), and assume that
O(clf) Aa). By (%), O(c[z] D ¢[j]) follows. By propositional temporal reasoning we obtain
{(c[j] A a). The other direction of the equivalence is similar.

ot (C(c)AA) DViVi(i~j D afi] = afj])

if a is atomic with relation symbol n, 0,, s, <, =, +,, or X,.

We prove a more general proposition instead:

o br, (Clc)AA)DViVy.(i 5 D [(ali] = afj]))

if @ is atomic with relation symbol n, 0,, sp, <, ~, p1, +p, P2, OF Xp.

We first prove the property for a atomic with relation symbol n, 0,, sp, <, or ~.
Consider arbitrary ¢ and j such that ¢ ~ j, that is, (c[i] A ¢[5]). By (), O(ci] = ¢[s])
follows. Let d[i] and d[j] be the formulas obtained from a[z] and a[j] when the symbols n,
0p, $p, <, and =~ are replaced with their definitions. Note that a[i] and a[j] are provably
equivalent to d[i] and d[j], respectively. Since ¢ and j occur in d[i] and d[j] only as
arguments to ¢, [(c[t] = c[j]) yields (O(d[:] = d[j]). It follows that a[i] = a[j], and then,
since all symbols involved are rigid, (1(a[t] = a[j]).

For p;, the proof is inductive. It suffices to show that substitutivity holds at we and
that if it holds at some w; such that woRow; then it holds at some w, such that w; Rywa.
At wy, substitutivity holds because p; is defined in terms of 2, for which we have already
proved substitutivity. Now assume that substitutivity holds at w; to prove that it holds
at some successor world w,. The meaning of p; at w, is defined in terms of s, and p; at
wy; we have proved substitutivity for s, and assumed it for p; at w;. Therefore, we have
substitutivity for p; at ws.

Now substitutivity for +, follows because +, is defined in terms of ¢ and p;. A similar
argument enables us to prove substitutivity for ps from substitutivity for 0, and +,, and
substitutivity for x, from substitutivity for p,.

o b1 (Clc)AA) DVi(s(s) % 0)

Consider an arbitrary 7 and a successor of i, . By the definition of n, we obtain
& O clj). We have that O [0 —¢f[0] (from C(c) and the definition of 0,). Propositional
temporal reasoning yields (c[5] A —¢[0]); () yields [I(e[j] D —¢[0]), that is, 7 % 0.



10. APPENDIX 49

o I (C(c)ANA) DViVy(s(e) ~s(j) Di~y)

Consider arbitrary ¢ and j and their respective successors k and k', and assume that
k ~ k'. We obtain O(c[i)AQ c[k]) and O(c[j]AQ c[k]) by substitutivity and the definition

of s,. Propositional temporal reasoning yields

Ol Acls]) v O Olelk] A O O k).

The second disjunct does not hold since C(c) holds. Hence, O(c[i] A ¢[j]), that is, ¢ ~ 7,
holds.

o b (Cle)AA) DVi((i <0)= (i ~0))

Consider an arbitrary ¢ and assume that « < 0, that is, O(c[i] A O ¢[0]). Propositional
temporal reasoning yields c[i] V O  ¢[0]. Since we have (O [0 —¢[0], we can eliminate the
first disjunct and derive c[f]. The definition of 0, implies ¢[0], and we obtain {>(c[i] A ¢[0]),
that is, ¢ ~ 0.

Now assume that ¢ >~ 0, that is, (c[i] Ac[0]). Propositional temporal reasoning yields
O(cft] A O €[0]), that is, 7 < 0.

o Fr, (Cle)AA)DViVi(i <s(3) = (i = s(j) Vi< 7))

Consider arbitrary ¢ and j such that ¢ < s(j), that is, for some k such that (c[f] A
O c[k]), O(efi] A & c[k]). Propositional temporal reasoning yields

O] A elk]) vV O(efa] A & O clk).

If the first disjunct holds, we have ¢ ~ k, that is, 1 ~ s(j). If the second disjunct holds,
we have [J((QO c[k]) D c[j]) (by (*#)), and hence propositional temporal reasoning yields

O(cli] A O cly]), that is, ¢ < 5.

Now assume that 1 ~ s(j), that is, O(cff] Ac[s()]). Propositional temporal reasoning
yields O(clf) A O c[s(7)]), that is, ¢ < s(j). Finally, assume that 7 < j, that is, O(cfz] A
> ¢[j]). Consider a successor k of j. By the definition of s,, we have O(e[j]AQ c[k]), and,
by (*), (J(c[s] D O ¢[k]). Propositional temporal reasoning yields (c[i]A O O c[k]), and
then $(cfi] A O clk]), that is, 7 < k.

o bkp, (Cle)ANA)DVi(i+0~1)

Consider an arbitrary 7. Suppose k =~ i + 0, that is, O(c[0] A pi(i,k)). By (%),
[3(c[0] D p1(7,k)) follows, and then p; (7, k), by the definition of 0,. The definition of p;
immediately yields ¢ ~ k.

o br, (Cle)NA) DViVi(t+3s(j) ~s(i+7))
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Consider arbitrary 7 and j. Suppose k ~ i + j, that is, O(c[f] A pi(i, k)). The
definitions of s, and p; imply

OO els()D) A O i3, s(k)))).-

By propositional temporal reasoning we obtain

O(els()] A pi(i, s(k))),
that is, 7 + s(j) >~ s(k).

o Fr (C(c)AA) D Vi(ix 0~ 0)

The argument is exactly analogous to the one for i + 0 =~ 1.

o, (C(e)ANA) DViVj.(s x s(j) 24 x j +1)

Consider arbitrary : and j. Suppose k ~ i x j, that is, (c[j] A p2(i,k)). The
definitions of s, and p; imply

OO els( A (O pais b +19))).

By propositional temporal reasoning we obtain

Oels(7)] A pa(s, k +1)),

that is, ¢ x s(j) ~ k + 1.

o b1, (C(c) A A) D [uf0] A (Vi.ufi] D uls(:)]) D (Vi.ufi])] if u is c-formed

Given a c-formed formula u[Z], assume u[0] and (Vi.u[¢] D u[s(3)]). Define the rigid
predicate symbol p to be u at the initial world, that is, VZ.(p(Z) = u[Z]), and expand M
with a relation for the defined rigid symbol p. Now we prove that [1V:.(c[i] D p(z)). By
the induction principle, it suffices to show that Vi.(c[i] D p(z)) holds at wo and that if it
holds at some w; such that woRyw; then it holds at some wy such that wy Ryws.

Since u[0] holds at wo, u[z] holds at wq for any 7 such that : ~ 0 (by substitutivity).
If c[7] holds at wp, then i ~ 0 (by the definition of ~) and hence u[i] holds at wo. The
definition of p immediately yields p().

Now assume that Vi.(c[¢] D p(7)) holds at w; to show that it holds at some successor
world ws. Consider an arbitrary ¢ such that c[i] holds at w;, and hence p(7) holds at w;.
Since p is rigid, p(z) holds at wy as well. The definition of p guarantees that u[i] holds at
wo, and hence that u[s(7)] holds at wy. Consider an arbitrary j such that ¢[j] holds at w,,
and hence j ~ s(¢) holds at wg. Substitutivity yields u[j]. From the definition of p we
obtain that p(j) holds at wo, and hence at w, as well.
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The definition of n implies that Vi. { c[i]. We obtain Vi. $ p(i). Since p is a rigid
symbol, this entails Vi.p(¢), that is, Vi.u[¢].

o Fr(C(c)NA)Dp(t,...,t) = O(e[m] A p(ty, ..., ) if p is rigid

Assume that p(t;,...,t;) holds. Since p is rigid, [1p(¢1,...,tx) holds as well. For
any m, <{>c[m] holds (by the definition of n). Propositional temporal reasoning yields

Ole[m] A p(ta, ..., tk)).

Assume that O(c[m] Ap(ty,. .., ¢)) holds. Then p(t1,...,tx) holds at some world w;
such that woRyw;. Since p is rigid, p(¢;,...,t;) must also hold at wp.
o Fr(C(e) A A) D~ O(e[m] Au) = O(e[m] A —u)

Propositional temporal reasoning yields this syntactic variant of (x).

o Fn(Ce) A 4) D (Olem] Aur) A Olem] Auz)) = Olefm] A (u Auz))

Assume that both (¢[m] A up) and <(c[m] A uz) hold. Then [J(¢[m] D u;) holds
(by (*)); O(e[m] A (u1 A uz)) follows by propositional temporal reasoning,.

Assume that (c[m] A (u1 A uz)) holds. Then both (c[m] A u1) and O(c[m] A uz)
follow trivially, and so does their conjunction.

e 1, (Clc) A A) DV . O(c[m] Aufz']) = O(e[m] A Vz.u[z])

{z' does not occur in c[m])

Assume that Vz'. O(c[m] A u[z']) holds. By (x), Vz'.[(c[m] D u[z']) holds. This
formula is equivalent to [(JVz'.(c[m] D u[z']). Since the variable z' does not occur in c[m],

we can derive [J(c[m] D Vz.u[z]). By (), O(c[m] A Vz.u[z]) holds.

Assume that <{>(c[m] A Vz.u[z]) holds. By (%), [J(c[m] D Vz.u[z]) holds. For a new
variable z', we obtain [(JVz'.(c[m] D u[z']). This formula is equivalent to Vz'. ((c[m] D
u(z']). By (x), Vz'. O(e[m] A ulz']) holds.

o Fr(C()AA) D Oes(m)] Au) = Olefm]A Qu)

Assume that (c¢f[s(m)] Au) holds. By (x), [(c[s(m)] D u) holds. Together with the
definition of s,, this yields & (¢[m] A O(c[s(m)] A u)), and hence also (c[m] A O ).

Assume that (c[m] A Qu) holds. Together with the definition of s,, this yields
OO e[s(m))A(Ow)). The conclusion >(¢[s(m)] Au) follows by propositional temporal

reasoning.

Vi > m.[O(eli] Aw) v Ij(m < j <iAO([f] Av))]
o Fn(Clc)AA)D | =

Olefm] Auld v)
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Assume that

Vi 2 m.[(eli] Aw)V Fji(m <5 < i A O(els] Av)))

holds. Suppose that - (c[m] A uld v) holds, to derive a contradiction. By (%), we obtain
O(e[m] A—(uid v)), and then (e[m] A ((=u) P v)). Since C(c) holds, for some k we have

Olelm] A ((c[k] A—u) Po)]. (1)
It follows that (c[k] A —u) and k > m. Hence, our assumption yields
Olelk]Au) v 3j(m < j < kA O(clf] Av)).

Since we have (c[k] A ~u), (%) enables us to eliminate the first disjunct. Thus, for some

J such that m < j <k, O(¢[j] A v) holds, and then (1) yields
Olelml A ((cfk] A ~u) P o) A O(c[j] Av)].

By propositional temporal reasoning, we obtain
[(cls] A v A O(e[k] A ~u)) P o] v O(elk] A O O cls)).

The first disjunct leads to v P v, an unsatisfiable formula. The second disjunct is ruled out
by j < k together with C(c). In both cases we have contradictions.

Now assume that (c[m] A ull v) holds. Suppose that
Vi 2 m[O(elil Au) vV Ij(m < < i A O(elf] Av)))]

holds, to derive a contradiction. Then for some ¢ > m we have [J(c[¢] D —u), and hence
O(cli] A —u) (by (x)), and for all j between m and i we have [J(c[j] D —v). We derive

Olelm] A uld v A O(eli]) A ((O eli) U cli])]
from 2 > m and C(c), and then

Olelm] A utl v A O(eli]) A ((Fj-c[i] A O T =elm] A O cli]) U cli])]
from C(c). The definition of < enables us to conclude

Qluth v A O(eli) A((Fjm <5 < in iU c[i])].

Since [J(cfz] D ~u) and m < j <1 D O(c[j] O —w) (and [J(c[;] D —w) in particular),
propositional temporal reasoning yields

Olull v A O(=u) A ((Fj.~0) U (=u A —0))).

This is equivalent to

Olullv A O(~u) A (=0 U (~u A )],
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an unsatisfiable formula.

o Fr(Cle)AA) D (u= (0] Au)) for all u
Assume that u holds. Since ¢[0] holds, c[0] A u holds, and so does >(c[0] A u).
Assume that (c[0] A u) holds. By (x), [J(c[0] D u) holds as well. Since c[0] holds,

u follows.
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