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The Systems Research Center (SRC) and three other research laboratories

are committed to �lling that need.

SRC began recruiting its �rst research scientists in l984|their charter, to

advance the state of knowledge in all aspects of computer systems research.

Our current work includes exploring high-performance personal computing,

distributed computing, programming environments, system modelling tech-

niques, speci�cation technology, and tightly-coupled multiprocessors.
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real systems so that we can investigate their properties fully. Complex

systems cannot be evaluated solely in the abstract. Based on this belief,
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Author's Abstract

Re�nement mappings are used to prove that a lower-level speci�cation cor-

rectly implements a higher-level one. We consider speci�cations consisting

of a state machine (which may be in�nite-state) that speci�es safety re-

quirements, and an arbitrary supplementary property that speci�es liveness

requirements. A re�nement mapping from a lower-level speci�cation S1 to

a higher-level one S2 is a mapping from S1's state space to S2's state space.

It maps steps of S1's state machine to steps of S2's state machine and maps

behaviors allowed by S1 to behaviors allowed by S2. We show that, un-

der reasonable assumptions about the speci�cations, if S1 implements S2,

then by adding auxiliary variables to S1 we can guarantee the existence of

a re�nement mapping. This provides a completeness result for a practical,

hierarchical speci�cation method.

Capsule Review

This report deals with the problem of proving that implementations satisfy

their speci�cations. Suppose, for example, that a client asks a circuit fabri-

cator to build a box with S inside and with certain external signals (inputs

and outputs). The circuit fabricator returns later with an epoxy brick that

has an appropriate number of wires sticking out for the external signals, but

that actually contains not S but some other ciruit I . In order to guarantee

that the client cannot detect the substitution without breaking open the

brick (and thereby voiding the warranty), the fabricator must be sure that

for any possible behavior of I there corresponds at least one behavior of S

that produces identical external signals.

In some cases, such a correspondence between behaviors can be proved

using a re�nement mapping, a function that maps states of I to states of

S and that satis�es certain conditions. The re�nment mapping technique

reduces a problem of proving something about arbitrary behaviors to one of

proving something about single state transitions. Unfortunately there are

many cases in which a correct implementation I cannot be related to its

speci�cation S by a re�nement mapping.

This report shows that it is possible in a very large class of cases to

augment a legal implementation with some extra state components (history

and prophecy variables) in a way that places no constraints on the behavior

of the implementation but that makes it possible to produce an appropriate

re�nement mapping to the speci�cation. This result broadens considerably

the domain of applicability of the re�nement mapping technique.

Jim Saxev



Contents

1 Introduction 1

1.1 Speci�cations : : : : : : : : : : : : : : : : : : : : : : : : : : : 1

1.2 Proving That One Speci�cation Implements Another : : : : : 3

2 Preliminaries 6

2.1 Sequences : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6

2.2 Properties : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 7

2.3 Speci�cations : : : : : : : : : : : : : : : : : : : : : : : : : : : 8

2.4 Re�nement Mappings : : : : : : : : : : : : : : : : : : : : : : 11

3 Finite Invisible Nondeterminism 12

4 Safety Properties 16

5 Auxiliary Variables 20

5.1 History Variables : : : : : : : : : : : : : : : : : : : : : : : : : 20

5.2 Simple Prophecy Variables : : : : : : : : : : : : : : : : : : : : 22

5.3 Prophecy Variables That Add Stuttering : : : : : : : : : : : : 25

6 Internal Continuity 28

7 The Completeness Theorem 30

8 Whence and Whither? 35

References 38

vi



1 Introduction

1.1 Speci�cations

A system may be speci�ed at many levels of abstraction, from a description

of its highest-level properties to a description of its implementation in terms

of microcode and circuitry. We address the problem of proving that a lower-

level speci�cation is a correct implementation of a higher-level one.

Unlike simple programs, which can be speci�ed by input/output rela-

tions, complex systems can be adequately speci�ed only by describing their

behaviors|that is, their possible sequences of inputs and outputs. We con-

sider speci�cation methods in which a behavior is represented by a sequence

of states and a system is speci�ed by a set of permitted behaviors. Input

and output are represented in the state|for example, by including a key-

board state describing which keys are currently depressed and a screen state

describing what is currently displayed.

A speci�cation should describe only the externally visible components

of a system's state. However, it is often helpful to describe its behavior in

terms of unobservable internal components. For example, a natural way to

specify a queue includes a description of the sequence of elements currently

in the queue, and that sequence is not externally visible. Although internal

components are mentioned, the speci�cation prescribes the behavior of only

the externally visible components. The system may exhibit the externally

visible behavior

hhe0; e1; e2; : : : ii

where ei is a state of the externally visible component, if there exist states

yi of the internal component such that the complete behavior

hh(e0; y0); (e1; y1); (e2; y2); : : : ii

is permitted by the speci�cation. (We use hh ii to denote a sequence.)

A speci�cation may allow steps in which only the internal state compo-

nent changes|for example, a sequence

hh(e0; y0); (e1; y1); (e1; y
0

1); (e1; y
00

1); (e2; y2); : : : ii
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Such internal steps are not externally visible, so the sequence of external

states hhe0; e1; e1; e1; e2; : : :ii should be equivalent to the sequence hhe0; e1;

e2; : : :ii obtained by removing the \stuttering" steps from e1 to e1. Let

�hhe0; e1; : : :ii be the set of all sequences obtained from hhe0; e1; : : :ii by re-

peating states and deleting repeated states|that is, by adding and remov-

ing �nite amounts of stuttering. We consider only speci�cations in which

a sequence hhe0; e1; : : :ii is allowed only if all sequences in �hhe0; e1; : : :ii are

allowed. Such speci�cations are said to be invariant under stuttering.

The behaviors permitted by a speci�cation can be described as the set

of sequences satisfying a safety and a liveness property [AS86, Lam77]. In-

tuitively, a safety property asserts that something bad does not happen and

a liveness property asserts that something good does eventually happen.

In specifying a queue, the safety property might assert that the sequence

of elements removed from the queue is an initial pre�x of the sequence of

elements added to the queue. The liveness property might assert that an

operation of putting an element into the queue is eventually completed if

the queue is not full, and an operation of removing an element from the

queue is eventually completed if the queue is not empty. (What operations

are in progress and what elements they are adding to or have removed from

the queue would be described by the externally visible state.)

We are concerned with speci�cations in which the safety property is de-

scribed by an \abstract" nondeterministic program; a behavior satis�es the

property if it can be generated by the program. Liveness properties are

described either directly by writing axioms or indirectly by placing fairness

constraints on the abstract program. In a speci�cation of a queue, the pro-

gram describes the sequence of actions by which an element is added to or

removed from the sequence of queued elements, ensuring the safety property

that the correct elements are removed from the queue. Additional fairness

constraints assert that certain actions must eventually occur, ensuring the

liveness property that operations that should complete eventually do com-

plete.

Many proposed speci�cation methods involve writing programs and

fairness conditions in this way [LS84, Lam83, LT87]. (Some methods do

not consider liveness at all and just specify safety properties with

programs.)

To describe speci�cations formally, we represent a program by a state

machine (whose set of states may be in�nite) and we represent the fairness

constraints by an arbitrary supplementary condition. For our results, it does

not matter if the supplementary condition speci�es a liveness property.
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1.2 Proving That One Speci�cation Implements Another

A speci�cation S1 implements a speci�cation S2 if every externally visible

behavior allowed by S1 is also allowed by S2. To prove that S1 implements

S2, it su�ces to prove that if S1 allows the behavior

hh(e0; z0); (e1; z1); (e2; z2); : : : ii

where the zi are internal states, then there exist internal states yi such that

S2 allows

hh(e0; y0); (e1; y1); (e2; y2); : : : ii

In general, each yi can depend upon the entire sequence hh(e0; z0); (e1; z1);

(e2; z2); : : :ii, and proving the existence of the yi may be quite di�cult. The

proof is easier if each yi depends only upon ei and zi, so there exists a

function f such that (ei; yi) = f(ei; zi). To verify that hhf(e0; z0); f(e1; z1);

f(e2; z2); : : :ii satis�es the safety property of S2, it su�ces to show that

f preserves state machine behavior|that is, it maps executions of S1's

state machine to executions (possibly with stuttering) of S2's state ma-

chine. Proving that f preserves state machine behavior involves reasoning

about states and pairs of states, not about sequences. Verifying that f

preserves liveness|meaning that hhf(e0; z0); f(e1; z1); f(e2; z2); : : :ii satis�es

the liveness property of S2|usually also requires only local reasoning, with

no explicit reasoning about sequences. A mapping f that preserves state

machine behavior and liveness is called a re�nement mapping.

In the example of a queue, the internal state yi of speci�cation S2 might

describe the sequence of elements currently in the queue, and the internal

state zi of speci�cation S1 might describe the contents of an array that im-

plements the queue. To prove that S1 implements S2, one would construct

a re�nement mapping f such that f(ei; zi) = (ei; yi), where yi describes the

state of the queue that is represented by the contents of the array described

by state zi.

Several methods for proving that one speci�cation implements another

are based upon �nding a re�nement mapping [LS84, Lam83]. In practice,

if S1 implements S2, then these methods usually can prove that the im-

plementation is correct|usually, but not always. The methods fail if the

re�nement mapping does not exist. Three reasons why the mapping might

not exist are:

� S2 may specify an internal state with \historical information" not

needed by S1. For example, suppose S2 requires that the system
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display up to three of the least-signi�cant bits of a three-bit clock.

This speci�cation is implemented by a lower-level speci�cation S1 that

alternately displays zero and one, with no internal state. A re�nement

mapping does not exist because there is no way to de�ne the internal

state of a three-bit clock as a function of its low-order bit.

� S2 may specify that a nondeterministic choice is made before it has

to be. For example, consider two speci�cations S1 and S2 for a sys-

tem that displays ten nondeterministically chosen values in sequence.

Suppose S2 requires that all values be chosen before any is displayed,

while S1 requires each value to be chosen as it is displayed. Both

speci�cations describe the same externally visible behaviors, so each

implements the other. However, S2 requires the internal state to con-

tain all ten values before any is displayed, while S1 does not specify

any internal state, so no re�nement mapping is possible.

� S2 may \run slower" than S1. For example, let S1 and S2 both specify

clocks in which hours and minutes are externally visible and seconds

are internal. Suppose that in S2 each step increments the clock by

one second, while in S1 each step increments the clock by ten seconds.

Both speci�cations allow the same externally visible behaviors. To

show that S2 implements S1, we can use the re�nement mapping f

that rounds the time down to the nearest multiple of ten seconds. For

any complete behavior hhs0; s1; s2; : : :ii allowed by S2, the behavior

hhf(s0); f(s1); f(s2); : : :ii is a complete behavior allowed by S1 that

contains nine \stuttering" steps for every step that changes the state.

On the other hand, a complete behavior hhs0; s1; s2; : : :ii speci�ed by

S1 may produce an externally visible change every six steps. For any

mapping f , the sequence hhf(s0); f(s1); f(s2); : : :ii may also produce

an externally visible change every six steps. This is not allowed by S2,

which requires �fty-nine internal steps for every externally visible one.

Hence, no re�nement mapping can prove that S1 implements S2.

If a re�nement mapping does not exist, it can often be made to exist

by adding auxiliary variables to the lower-level speci�cation. An auxiliary

variable is an internal state component that is added to a speci�cation with-

out a�ecting the externally visible behavior. The three situations described

above in which re�nement mappings cannot be found are handled as follows:

� Historical information missing from the internal state speci�ed by S1
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can be provided by adding a history variable|a well-known form of

auxiliary variable that merely records past actions [Owi75].

� If S2 requires that a nondeterministic choice be made before it has to

be, then S1 can be modi�ed so the choice is made sooner by adding

a prophecy variable. A prophecy variable is a new form of auxiliary

variable that is the mirror image of a history variable|its formal def-

inition is almost the same as the de�nition of a history variable with

past and future interchanged, but there is an asymmetry due to be-

haviors having a beginning but not necessarily an end.

� If S2 runs slower than S1, then an auxiliary variable must be added

to S1 to slow it down. We will de�ne prophecy variables in such a way

that they can perform this slowing.

Our main result is a completeness theorem. It states that, under three

hypotheses about the speci�cations, if S1 implements S2 then one can add

auxiliary history and prophecy variables to S1 to form an equivalent spec-

i�cation S
hp
1

and �nd a re�nement mapping from S
hp
1

to S2. The three

hypotheses, and their intuitive meanings, are:

S1 is machine closed. Machine closure means that the supplementary prop-

erty (the one normally used to specify liveness requirements) does not

specify any safety property not already speci�ed by the state machine.

In other words, the state machine does as much of the specifying as

possible.

S2 has �nite invisible nondeterminism. This denotes that, given any �nite

number of steps of an externally visible behavior allowed by S2, there

are only a �nite number of possible choices for its internal state com-

ponent.

S2 is internally continuous. A speci�cation is internally continuous if, for

any complete behavior that is not allowed, we can determine that it is

not allowed by examining only its externally visible part (which may

be in�nite) and some �nite portion of the complete behavior.

We will show by examples why these three hypotheses are needed.

We will prove that any safety property has a speci�cation with �nite

invisible nondeterminism, any speci�cation of a safety property is internally

continuous, and any property has a machine-closed speci�cation. Therefore,
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our completeness theorem implies that if the speci�cations are written in a

suitable form and S2 speci�es only a safety property then one can ensure

that a re�nement mapping exists. We will also show that, even when S2
is not internally continuous, a re�nement mapping exists to show that S1
satis�es the safety property speci�ed by S2. Therefore, by writing suitable

speci�cations, re�nement mappings can always be used to prove the safety

property of a speci�cation if not its liveness property. We do not know if

anything can be said about proving arbitrary liveness properties.

Throughout this report, proofs are written in a self-explanatory struc-

tured format. The format permits very careful proofs that can be read to

any desired level of detail by ignoring lower-level statements. Writing proofs

in this format helped us to eliminate many errors and greatly increased our

con�dence in the correctness of the results.

A glossary/index of notations and conventions appears at the end of this

report, along with an index. We hope they will help the reader cope with

the formalism.

2 Preliminaries

2.1 Sequences

We now de�ne some useful notations for sequences. In these de�nitions,

� denotes the sequence hhs0; s1; s2; : : :ii and � denotes the sequence hht0; t1;

t2; : : :ii. These sequences may be �nite or in�nite. If � is �nite, we let k�k

denote its length and last(�) denote its last element, so khhs0; : : : ; sm�1iik =

m and last(hhs0; : : : ; sm�1ii) = sm�1. An in�nite sequence is said to be

terminating i� (if and only if) it is of the form hhs0; s1; : : : ; sn; sn; sn; : : :ii|

in other words, if it reaches a �nal state in which it stutters forever.

As usual, a mapping on elements is extended to a mapping on sequences

of elements by de�ning g(�) to equal hhg(s0); g(s1); : : :ii, and to a mapping

on sets of elements by de�ning g(S) to equal fg(s) : s 2 Sg.

The sequence � is said to be stutter-free if, for each i, either si 6= si+1

or the sequence is in�nite and si = sj for all j � i. Thus, a nonterminating

sequence is stutter-free i� it never stutters, and a terminating sequence is

stutter-free i� it stutters only after reaching its �nal state. We de�ne \�

to be the stutter-free form of �|that is, the stutter-free sequence obtained

by replacing every maximal �nite subsequence si; si+1; : : : ; sj of identical
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elements with the single element si. For example,

\hh0; 1; 1; 2; 2; 2; 3; 3; 3; 3; 4 : : :ii = hh0; 1; 2; 3; 4; : : :ii

We de�ne � ' � to mean that \� = \� , so � ' � i� � and � are equivalent

up to stuttering, and we de�ne �� to be the set f� : � ' �g. If S is a set

of sequences, �(S) is the set f� : 9� 2 S:� 2 ��g. A set of sequences S is

closed under stuttering if S = �(S). Thus, S is closed under stuttering i�

for every pair of sequences �, � with � ' � , if � 2 S then � 2 S.

We use \�" to denote concatenation of sequences|that is, if k�k = m,

then � � � = hhs0; : : : ; sm�1; t0; t1; : : :ii. If k�k � m, we let �jm denote

hhs0; s1; : : : ; sm�1ii, the pre�x of � of length m.

For any set �, let �! denote the set of all in�nite sequences of elements

in �. An in�nite sequence hh�0; �1; �2; : : :ii of sequences in �! is said to

converge to the sequence � in �! i� for all m � 0 there exists an n � 0

such that �ijm = �jm for all i � n. In this case, we de�ne lim �i to be �.

This de�nition of convergence gives rise to a topology on �!. We now recall

some other de�nitions.

Let � be an element of �! and let S be a subset of �!. We say that � is

a limit point of S i� there exist elements �i in S such that lim �i = �. The

set S is closed i� S contains all its limit points. The closure of S, denoted

S, consists of all limit points of S; it is the smallest closed superset of S.

2.2 Properties

We can only say that one speci�cation implements another if we are given

a correspondence between the externally visible states of the two speci�ca-

tions. For example, if S2 asserts that the initial value of a particular register

is the integer �3 and S1 asserts that the register's initial value is the se-

quence of bits 1111100, then we can't say whether or not S1 implements

S2 without knowing how to interpret a sequence of bits as an integer. In

general, to decide if S1 implements S2, we must know how to interpret an

externally visible state of S1 as an externally visible state of S2. Given such

an interpretation, we can translate S1 into a speci�cation with the same

set of externally visible states as S2. Thus, there is no loss of generality in

requiring that S1 and S2 have the same set of externally visible states.

We therefore assume that all speci�cations under consideration have the

same �xed set �E of externally visible states. A state space � is a subset

of �E � �I for some set �I of internal states. We let �E be the obvious
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projection mapping from �E � �I onto �E. The set �E itself is considered

to be a state space for which �E is the identity mapping.

If � is a state space, then a �-behavior is an element of �!. A �E-

behavior is called an externally visible behavior. A �-property P is a set

of �-behaviors that is closed under stuttering. A �E-property is called

an externally visible property. If P is a �-property, then �E(P ) is a set

of externally visible behaviors but is not necessarily an externally visible

property because it need not be closed under stuttering. The externally

visible property induced by a �-property P is de�ned to be the set �(�E(P )).

If � is clear from context or is irrelevant, we use the terms behavior

and property instead of �-behavior and �-property. We sometimes add the

adjective \complete", as in \complete behavior", to distinguish behaviors

and properties from externally visible behaviors and properties.

A property P that is closed (P = P ) is called a safety property. In-

tuitively, a safety property is one asserting that something bad does not

happen. To see that our formal de�nition of a safety property as a closed

set captures this intuitive meaning, observe that if something bad happens,

then it must happen within some �nite period of time. Thus, P is a safety

property i�, for any sequence � not in P , one can tell that � is not in P by

looking at some �nite pre�x �ji of �. In other words, � 62 P i� there exists

an i such that for all � if � ji = �ji then � 62 P . Hence, � 2 P i� for all i

there exists a �i 2 P such that �iji = �ji. But lim �i = �, which implies that

� 2 P ; thus, � 2 P i� � 2 P . Therefore, P satis�es the intuitive de�nition

of a safety property only if P = P .

Even though we do not use the formal de�nition, it is interesting to note

that a �-property L can be de�ned to be a liveness property i� it is dense in

�!|in other words, if L = �!. This means that L is a liveness property i�

any �nite sequence of elements in � can be extended to a behavior in L. In

a topological space, every set can be written as the intersection of a closed

set and a dense set, so any property P can be written as M \ L, where M

is a safety property and L is a liveness property. Moreover,M can be taken

to be P .

2.3 Speci�cations

A state machine is a triple (�; F;N) where

� � is a state space. (Recall that this means � � �E � �I for some set

�I of internal states.)
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� F , the set of initial states, is a subset of �.

� N , the next-state relation, is a subset of � � �. (Elements of N are

denoted by pairs of states enclosed in angle brackets, like hs; ti.)

The (complete) property generated by a state machine (�; F;N) consists of

all in�nite sequences hhs0; s1; : : :ii such that s0 2 F and, for all i � 0, either

hsi; si+1i 2 N or si = si+1. This set is closed under stuttering, so it is a

�-property. The externally visible property generated by a state machine is

the externally visible property induced by its complete property.

We now show that the complete property P generated by a state machine

is a safety property. This requires proving that if lim �i = � and each �i 2 P ,

then � 2 P . For any behavior � = hhs0; s1; : : :ii and any j � 0, let � j be

the terminating behavior hhs0; s1; : : : ; sj ; sj; sj ; : : :ii. Then � is in P i� each

� j is in P . Since lim �i = �, each �j equals (�i)
j for some i. Since each �i

is in P , each (�i)
j is in P , which implies that � is also in P . Hence, P is

closed, so the complete property generated by a state machine is a safety

property. However, we will show in Section 3 that the externally visible

property generated by a state machine need not be a safety property.

A state machine (�; F;N) is a familiar type of nondeterministic automa-

ton, where F is the set of starting states and N describes the possible state

transitions. (However, remember that � may be an in�nite set.) The set of

sequences generated (or accepted) by such an automaton is usually de�ned

to be the set A of all sequences starting with a state in F and progressing by

making transitions allowed by N . However, we also allow stuttering transi-

tions, so we have de�ned the property generated by the state machine to be

�(A) together with all terminating sequences obtained from �nite pre�xes

of behaviors in �(A) by in�nite stuttering.

A speci�cation S is a four-tuple (�; F;N; L), where (�; F;N) is a state

machine and L is a �-property, called the supplementary property of the

speci�cation. The property M generated by the state machine (�; F;N)

is called the machine property of S. The (complete) property de�ned by

S is de�ned to be M \ L, and the externally visible property de�ned by S

is de�ned to be �(�E(M \ L)), the externally visible property induced by

M \ L.

State machines are easier to work with than arbitrary sets of sequences,

so one would like to specify a property purely in terms of state machines.

However, the complete property generated by a state machine is a safety

property. The supplementary property of a speci�cation is needed to in-

troduce liveness requirements. However, if we were to place no additional
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requirement on our speci�cations, we could use the supplementary property

to do all the specifying. To see why this leads to trouble, let S2 be a speci�-

cation consisting of any arbitrary state machine that generates an externally

visible safety property O together with the trivial supplementary property

that contains all behaviors. De�ne S1 to be the speci�cation with state space

�E whose state machine is the trivial one that generates all �E-behaviors

and whose supplementary property is O. Obviously S1 implements S2.

The existence of a re�nement mapping from S1 to S2 implies that S1's

state machine implements S2's state machine. However, S1 has the trivial

state machine and no internal state. As we will see, auxiliary variables are

added to a speci�cation's state machine without a�ecting or being a�ected

by the supplementary property. (This is what makes the addition of aux-

iliary variables practical.) No sound method of adding auxiliary variables

can transform the trivial machine into one that implements an arbitrary

state machine. Therefore, we need some constraint on the supplementary

property.

In practice, we specify a desired property P by writing P as the inter-

section M \ L of a safety property M and a liveness property L. We try to

construct L so that it does not specify any safety property, meaning that

it does not rule out any �nite behavior. More precisely, we try to choose L

to be a liveness property such that any �nite sequence of states generated

by the state machine is the pre�x of a behavior in P . For our results, it

is not necessary that L be a liveness property; we need only require that

L does not specify any safety property not implied by M . To express this

requirement formally, we say that a speci�cation S having machine property

M and supplementary property L is machine closed i� M =M \ L.

The following lemma implies that, for a machine-closed speci�cation, we

can ignore the supplementary property and consider only the state machine

when we are interested in �nite portions of behaviors.

Lemma 1 If M = P , then every pre�x of a behavior in M is the pre�x of

a behavior in P .

Proof of Lemma 1

Given: A1. M = P .

A2. � 2M .

A3. m � 0.

Prove: C1. There exists � 2 P such that � jm = �jm.

Pf : 1. Choose �i 2 P such that lim �i = �.
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Pf : A1, A2, and the de�nition of P .

2. Choose n � 0 such that, for all i � n, �ijm = �jm.

Pf : De�nition of convergence.

3. C1 holds.

Pf : Let � be �n.

End Proof of Lemma 1

The converse of this lemma is also true when M is generated by a state

machine, but we will not need it.

2.4 Re�nement Mappings

A speci�cation S1 implements a speci�cation S2 i� the externally visible

property induced by S1 is a subset of the externally visible property induced

by S2. In other words, S1 implements S2 i� every externally visible behavior

allowed by S1 is also allowed by S2.

A re�nement mapping from a speci�cation S1 = (�1; F1; N1; L1) to a

speci�cation S2 = (�2; F2; N2; L2) is a mapping f : �1 ! �2 such that

R1. For all s 2 �1: �E(f(s)) = �E(s). (f preserves the externally visible

state component.)

R2. f(F1) � F2. (f takes initial states into initial states.)

R3. If hs; ti 2 N1 then hf(s); f(t)i 2 N2 or f(s) = f(t). (A state transition

allowed by N1 is mapped by f into a [possibly stuttering] transition

allowed by N2.)

R4. f(P1) � L2, where P1 is the property de�ned by S1. (f maps be-

haviors allowed by S1 into behaviors that satisfy S2's supplementary

property.)

Conditions R1{R3 are local, meaning that they can be checked by reasoning

about states or pairs of states rather than about behaviors. Condition R4 is

not local, but checking it is simpli�ed by the fact that f is not an arbitrary

mapping on sequences, but is obtained from a mapping on states. Thus, one

can apply local methods like well-founded induction to prove R4.

Proposition 1 If there exists a re�nement mapping from S1 to S2, then

S1 implements S2.

11



Proof of Proposition 1.

Given: A1. Si = (�i; Fi; Ni; Li), for i = 1; 2.

A2. Mi is the machine property of Si, for i = 1; 2.

A3. f is a re�nement mapping from S1 to S2.

A4. � 2 �(�E(M1 \ L1))

Prove: C1. � 2 �(�E(M2 \ L2)).

Pf : 1. f(M1) �M2.

Given: A1.1. � = hhs0; s1; : : :ii 2M1.

Prove: C1.1. f(�) 2M2.

Pf : 1.1. f(s0) 2 F2.

Pf : By A1.1, A2, the de�nition of machine property (which per-

mits stuttering), A3, and property R2 in the de�nition of

re�nement mapping.

1.2. For all i � 0: hf(si); f(si+1)i 2 N2 or f(si) = f(si+1).

Pf : By A1.1, A2, the de�nition of machine property, A3, and

property R3.

1.3. C1.1 holds.

Pf : By 1.1, 1.2, the de�nition of f(�) (it equals hhf(s0);

f(s1); : : :ii), A2, and the de�nition of machine property.

2. f(M1 \ L1) �M2 \ L2.

Pf : By 1, A3, and R4, since g(S \ T ) � g(S)\ g(T ) for any sets S

and T and any mapping g.

3. Choose � = hhs0; s1; : : :ii 2M1 \ L1 such that �E(�) ' �.

Pf : Such a � exists by A4 and the de�nition of �.

4. �E(f(�)) = �E(�).

Pf : By A3 and R1.

5. �E(f(�)) ' �.

Pf : By 3 and 4.

6. �E(f(�)) 2 �E(M2 \ L2).

Pf : By 3 and 2.

7. C1 holds.

Pf : By 5, 6, and the de�nition of �.

End Proof of Proposition 1.

3 Finite Invisible Nondeterminism

The machine propertyM of a speci�cation is a safety property. However, the

property that is really being speci�ed by the speci�cation's state machine
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is the externally visible property �(�E(M)) induced by M . The following

example shows that this externally visible property is not necessarily a safety

property.

Let �E be the set N of natural numbers, and de�ne the state machine

(�; F;N) by:

� � equals �E �N.

� F equals f(0; 0)g.

� N is the union of the following two sets:

{ fh(0; 0); (1; n)i : n 2 Ng,

{ fh(m;n+ 1); (m+ 1; n)i :m;n 2 Ng.

A stutter-free behavior of this machine starts in state (0; 0), goes to state

(1; n) for some arbitrary n � 0, then goes through the sequence of states

(2; n�1), (3; n�2), : : : , (n�i+1; i) for some i � 0, and terminates (stutters

forever) in the state (n� i+ 1; i).

The set of externally visible behaviors induced by this state machine

consists of all sequences obtainable by stuttering from a sequence �n of

the form hh0; 1; 2; : : : ; n; n; n; : : :ii. This set is not closed, because lim �n =

hh0; 1; 2; 3; : : :ii, and hh0; 1; 2; 3; : : :ii is not in the set. The externally visible

property speci�ed by this state machine is the conjunction of two properties:

1. The set of all behaviors that start in state 0 and change state only by

adding 1 to the previous state.

2. The set of terminating behaviors.

The �rst property is a safety property, but the second is a liveness property;

their intersection is neither a safety nor a liveness property.

The purpose of a speci�cation is to specify an externally visible property.

We feel that the externally visible property speci�ed by a state machine

should be a safety property, so we want to restrict the class of allowed state

machines.

The reason the externally visible property de�ned by the state machine

in our example is not a safety property can be traced to the existence of

in�nitely many state transitions h(0; 0); (1; n)i that correspond to the same

externally visible transition h0; 1i. It is this type of in�nite invisible nonde-

terminism that allows the introduction of liveness into the externally visible

13



property of a state machine. To ensure that a state machine speci�es only

safety properties, we must restrict it to having �nite invisible nondetermin-

ism.

Instead of de�ning the concept of �nite invisible nondeterminism for a

state machine, it is more general to de�ne it for a property. A state machine

is de�ned to have �nite invisible nondeterminism i� the property it generates

does.

De�nition 1 Let P be a property and O its induced externally visible prop-

erty �(�E(P )). We say that P is �n (for �nitely invisibly nondeterministic)

i� for all � 2 O and all n � 0, the set

f\(�jm) : (m > 0) ^ (� 2 P ) ^ (�E(�jm) ' �jn)g

is �nite. We say that a speci�cation is �n i� the complete property of the

speci�cation is �n.

In other words, property P is �n i� every �nite pre�x �jn of any exter-

nally visible behavior � is the projection of only �nitely many inequivalent

(under ') �nite pre�xes �jm of complete behaviors � in P .

If a property M is �n then every stronger property P is also �n. (Prop-

erty P is stronger than property M i� P � M .) In our main theorem,

instead of requiring that the state machine of S2 is �n, we make the weaker

assumption that S2 is �n. This is strictly weaker only if S2 is not machine

closed, since a machine-closed speci�cation is �n i� its state machine is �n.

The following proposition asserts that the externally visible property

of a �n state machine is a safety property. It is a simple corollary of the

subsequent lemma, which will be used later as well.

Proposition 2 If a safety property P is �n, then the externally visible prop-

erty �(�E(P )) that it induces is also a safety property.

Lemma 2 (Closure and nondeterminism) Let property P be �n and let

O be the externally visible property that it induces. If � is a limit point of O

then there is a limit point � of P such that �E(�) ' �.

Proof of Lemma 2

Given: A1. P is �n.

A2. O = �(�E(P )).

A3. � is a limit point of O.
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Prove: C1. There exists � such that:

C1a. � is a limit point of P .

C1b. �E(�) ' �.

Pf : 1. Let �n equal f\(�jm) : (m > 0) ^ (� 2 P ) ^ (�E(�jm) ' �jn)g. For

all n, the set �n is �nite. (�n is the set of stutter-free pre�xes of

behaviors in P that are externally equivalent to �jn.)

Pf : By A3, we can choose � 2 O such that �jn = �jn. Statement 1

then follows from A1 and De�nition 1.

2. For all n, the set �n is nonempty.

Pf : 2.1. Choose � 2 O such that �jn = �jn.

Pf : A3 implies the existence of �.

2.2. Choose � 2 P such that �E(�) ' �.

Pf : A2 and de�nition of � imply the existence of �.

2.3. There exists m such that �E(�jm) ' �jn.

Pf : 2.2 and the de�nition of '.

2.4. \(�jm) 2 �n, so �n is nonempty.

Pf : � 2 P (by 2.2), and �E(�jm) ' �jn (by 2.3 and 2.1), so 2.4

follows from 1 (the de�nition of �n).

3. For �nite sequences � and � , let � � � i� there is a (possibly empty)

sequence � such that � = � � �. For all n and all � 2 �n+1 there

exists �0 2 �n such that �0 � �.

Pf : By 1 (the de�nition of �n), since if � jm ' �jn+1, then there

exists m0 � m such that � jm0 ' �jn.

4. There is an in�nite sequence �1 � �2 � �3 � : : : with each �i 2 �i.

Pf : By 1, 2, 3 and K�onig's Lemma [Knu73, pages 381{383].

5. For all i, choose �0i such that:

5a. �0i ' �i.

5b. k�0ik � i.

5c. �01 � �02 � �03 � : : : .

Pf : The existence of the �0i is proved by induction using 4, where

the length of �0i is increased by stuttering the last element when

necessary.

6. Let b�i be an element of P such that �0i is a pre�x of b�i.

Pf : Since �i 2 �i (by 4), the de�nition of �i (1) implies that there

exists a stutter-free sequence  i 2 P such that �i is a pre�x of  i.

By 5a and the assumption that P (like all properties) is invariant

under stuttering, b�i can be obtained by adding stuttering to  i.

7. Let � equal lim b�i.

Pf : � exists by 6 (�0i a pre�x of b�i), 5b, and 5c.
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8. C1a holds.

Pf : Follows immediately from 7, 6 ( b�i 2 P ), and the de�nition of

limit point.

9. For every i there exists an m � i such that �E( b�ijm) ' �ji.

Pf : 5a, 5b, 6, 4 (�i 2 �i), and 1 (the de�nition of �i).

10. lim �E( b�i) ' �.

Pf : Follows immediately from 9.

11. C1b holds.

Pf : By 6 ( b�i 2 P ), 7, and 10, since lim �i = � implies lim�E(�i) =

�E(�) .

End Proof of Lemma 2

For a state machine to be �n, it may not make an in�nite nondetermin-

istic choice unless all but a �nite part of that choice is immediately revealed

in the externally visible state. We can weaken our de�nition by requiring

only that the choice eventually be revealed. Formally, this means de�ning a

property P with induced externally visible property O to be �n i� for every

� in O and n � 0 there exists an n0 � n such that the set

f\(�jm) : (m > 0) ^ (� 2 P ) ^ (�E(�jm) ' �jn)

^ 9m0 : (�E(�jm0) ' �jn0)g

is �nite. However, using this weaker de�nition of �nite invisible nonde-

terminism would require somewhat more powerful prophecy variables and

would complicate our proofs, so we will stick with our original de�nition.

4 Safety Properties

Alpern and Schneider [AS87] and others have observed in the �nite-state

case that there is a correspondence between state machines and externally

visible safety properties. We extend their results to the in�nite-state case

for state machines with �nite invisible nondeterminism. We also prove a

result that allows us to apply our completeness theorem to safety properties

even when the internal continuity hypothesis de�ned later is not satis�ed.

Proposition 2 implies that the externally visible property generated by

a �n state machine is a safety property. We now prove the converse.

Proposition 3 Every externally visible safety property can be generated by

a state machine with �nite invisible nondeterminism.

16



Proof of Proposition 3

Given: A1. O is a �E-property.

A2. O = O.

Prove: C1. There exists a state machine (�; F;N) generating a (complete)

property M such that

C1a. M is �n.

C1b. O � �(�E(M)).

C1c. �(�E(M)) � O.

Pf : 1. De�ne the state machine (�; F;N) as follows:

� � = f(last(�jn); �jn) : n � 1 ^ � 2 Og. (� consists of all pairs

(ei; hhe0; e1; : : : ; eiii) such that hhe0; e1; : : : ; eiii is a pre�x of a

sequence in O.)

� F = f(e; hheii) 2 �g. (The starting states are ones whose inter-

nal components have length one.)

� N = fh(e; h); (e0; h � hhe0ii)i 2 ���g (The machine can go from

state (ei; hhe0; : : : ; eiii) only to state (ei+1; hhe0; : : : ; ei; ei+1ii) for

some ei+1.)

2. A stutter-free sequence hh(e0; h0); (e1; h1); : : :ii is inM i�, for all i � 0,

hi = hhe0; e1; : : : ; eiii and there exists �i 2 O such that hi = �iji+1.

Pf : Follows easily by induction from the de�nition of the state ma-

chine (�; F;N) and of the property that it generates.

3. C1a holds.

Pf : By De�nition 1, we must show that for any � 2 O and all n � 0

the set

f\(�jm) : (m > 0) ^ (� 2M) ^ (�E(�jm) ' �jn)g

is �nite. However, it follows from 2 that if � = hhe0; e1; : : :ii then

this set contains only the single element

hh(e0; hhe0ii); (e1; hhe0; e1ii); : : : ; (en�1; hhe0; : : : ; en�1ii)ii

4. C1b holds.

Pf : For any � = hhe0; e1; : : :ii in O, statement 2 implies that � = hh: : : ;

(ei; �ji+1); : : :ii is in M , and obviously �E(�) = �.

5. �E(M) � O.

Given: A5.1. hh(e0; h0); (e1; h1); : : :ii 2M .

Prove: C5.1. hhe0; e1; : : :ii 2 O.

Pf : 5.1. For all i � 0 choose �i 2 O such that �iji+1 = hhe0; : : : ; eiii.

Pf : By 2, the �i exist.

5.2. lim �i = hhe0; e1; : : :ii.

Pf : Follows immediately from 5.1.
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5.3. C5.1 holds.

Pf : By 5.1 (which asserts that �i 2 O), 5.2, A2, and the de�ni-

tion of O.

6. C1c holds.

Pf : By 5 and the assumption thatO is a property (A1), so �(O) = O.

End Proof of Proposition 3

If speci�cation S2 is not internally continuous, it is possible for it to be

implemented by a speci�cation S1 without there being a re�nement mapping

from S1 to S2. (Internal continuity was mentioned in the introduction and

will be de�ned formally in Section 6.) However, since safety properties are

internally continuous, we would expect to be able to prove that, whenever S1
implements S2, the externally visible machine property of S1 implements

the externally visible machine property of S2. Combined with our main

theorem, the following result shows that this is always possible if S1 is

machine closed and the machine property of S2 is �n.

Theorem 1 (Separate safety proofs) Let P1 =M1\L1 and P2 =M2\

L2, where the Li are arbitrary properties and the Mi are safety properties;

and let Oi and O
M
i be the externally visible properties induced by Pi andMi,

respectively. If M1 = P1, M2 is �n, and O1 � O2, then O
M
1 � OM

2 .

Proof of Theorem 1

Given: A1. For i = 1; 2:

A1a. Pi =Mi \ Li.

A1b. Mi closed.

A1c. Oi = �(�E(Pi)).

A1d. OM
i = �(�E(Mi)).

A2. M1 = P1.

A3. M2 is �n.

A4. O1 � O2.

Prove: C1. OM
1 � OM

2 .

Pf : 1. For any set Q of behaviors �(Q) � �(Q).

Given: A1.1. � 2 �(Q).

Prove: C1.1. � 2 �(Q).

Pf : 1.1. There exists �0 2 Q such that �0 ' �.

Pf : A1.1 and the de�nition of �.

1.2. There exists a function r such that, for all i � 0, �ji ' �0jr(i).

Pf : 1.1 and the de�nition of '.
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1.3. For all i � 0 there exists � 0i 2 Q such that � 0i jr(i) = �0jr(i).

Pf : De�nition of Q and 1.1.

1.4. �ji ' � 0i jr(i).

Pf : 1.2 and 1.3.

1.5. For each i, let � 0i = hhti;0; ti;1; : : :ii and de�ne �i to equal �ji �

hhti;r(i); ti;r(i)+1; : : :ii. Then �i ' � 0i .

Pf : 1.4.

1.6. �i 2 �(Q).

Pf : �i ' � 0i (by 1.5), � 0i 2 Q (by 1.3), and the de�nition of �.

1.7. lim �i = �.

Pf : By 1.5 and the de�nition of convergence.

1.8. C1.1 holds.

Pf : 1.6, 1.7, and the de�nition of closure.

2. For any set Q of behaviors �E(Q) � �E(Q).

Given: A2.1. � 2 �E(Q).

Prove: C2.1. � 2 �E(Q).

Pf : 2.1. There exists � 2 Q such that � = �E(�).

Pf : A2.1.

2.2. For all i � 0 choose �i in Q such that �iji = �ji.

Pf : 2.1 and the de�nition of Q.

2.3. For all i � 0, �E(�i)ji = �ji.

Pf : 2.1 and 2.2, since �E( ji) = (�E( ))ji for any sequence  .

2.4. �E(�i) 2 �E(Q).

Pf : By 2.2 (�i 2 Q).

2.5. C2.1 holds.

Pf : By 2.3, which implies lim �E(�i) = �, and 2.4.

3. OM
1 � O1.

Pf : 3.1. OM
1 = �(�E(P1)).

Pf : A2 and A1d.

3.2. O1 = �(�E(P1)).

Pf : A1c.

3.3. �E(P1) � �E(P1).

Pf : 2.

3.4. OM
1 � �(�E(P1))

Pf : 3.1, 3.3, and monotonicity of �.

3.5. �(�EP1) � �(�E(P1)).

Pf : 1.

3.6. 3 holds.
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Pf : 3.4, 3.5, and 3.2.

4. O1 � O2.

Pf : A4 and monotonicity of the closure operation.

5. O2 � OM
2 .

Pf : A1a, A1c, A1d, and the monotonicity of �E and �.

6. O2 � OM
2 .

Pf : 5 and monotonicity of closure.

7. OM
2 = OM

2 .

Pf : A1b, A1d, A3, and Proposition 2.

8. C1 holds.

Pf : 3, 4, 6, and 7.

End Proof of Theorem 1

5 Auxiliary Variables

Although in practice re�nement mappings usually exist, they do not always

exist. To construct a re�nement mapping, it may be necessary to add auxil-

iary variables. We now formally de�ne two types of auxiliary variables: the

well-known history variable and the new prophecy variable. These auxiliary

variables are added to a speci�cation's state machine; the supplementary

property is essentially left unchanged.

5.1 History Variables

Adding a history variable means augmenting the state space with an ad-

ditional component �H and modifying the state machine in such a way

that this additional component records past information but does not af-

fect the behavior of the original state components. Formally, a speci�ca-

tion Sh = (�h; Fh; Nh; Lh) is said to be obtained from the speci�cation

S = (�; F;N; L) by adding a history variable i� the following �ve condi-

tions are satis�ed. In these conditions, we identify (�E � �I) � �H with

�E � (�I � �H) (so H1 implies that �h is a state space), and we let �[H]

be the obvious projection mapping from � � �H onto �. (In the intuitive

explanation, we say that a �h-behavior � simulates the �-behavior �[H](�).)

H1. �h � �� �H for some set �H .

H2. �[H](F
h) = F . (A state in � is an initial state of S i� it is the �rst

component of an initial state of Sh.)
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H3. If h(s; h); (s0; h0)i 2 Nh then hs; s0i 2 N or s = s0. (Every step of

Sh's state machine simulates a [possibly stuttering] step of S's state

machine.)

H4. If hs; s0i 2 N and (s; h) 2 �h then there exists h0 2 �H such that

h(s; h); (s0; h0)i 2 Nh. (From any state, Sh's state machine can simu-

late any possible step of S's state machine.)

H5. Lh = ��1
[H]

(L). (A �h-behavior is in Lh i� the �-behavior that it

simulates is in L.)

The following result shows that adding a history variable leaves an im-

plementation essentially unchanged.

Proposition 4 (Soundness of history variables) If Sh is obtained from

S by adding a history variable, then the two speci�cations de�ne the same

externally visible property.

Proof of Proposition 4

Given: A1. S = (�; F;N; L), Sh = (�h; Fh; Nh; Lh), and H1{H5 hold.

A2. M andMh are the machine properties of S and Sh, respectively.

A3. P =M \ L and Ph =Mh \ Lh.

A4. O = �(�E(P )) and O
h = �(�E(P

h)).

Prove: C1. Oh � O.

C2. O � Oh.

Pf : 1. �[H](M
h) �M .

Pf : Follows from A2, A1 (conditions H2 and H3), and the de�nition

of the machine property of a speci�cation.

2. �[H](P
h) � P .

Pf : From A3, 1, and H5, since g(S\T ) � g(S)\g(T ) for any function

g and sets S and T .

3. C1 holds.

Pf : From 2, A4, and the fact that �E(�[H](s)) = �E(s) for any

s 2 �h.

4. P � �[H](P
h).

Given: A4.1. � = hhs0; s1; : : :ii in P .

Prove: C4.1. There exists � 2 Ph such that �[H](�) = �.

Pf : 4.1. s0 2 F and, for all i � 0, hsi; si+1i 2 N .

Pf : A3 and the de�nition of machine property.
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4.2. For all i � 0 choose hi inductively such that (s0; h0) 2 Fh and

h(si; hi); (si+1; hi+1)i 2 N
h.

Pf : The existence of h0 follows from 4.1 (s0 2 F ) and H2; for

i � 0, the existence of hi+1 follows from 4.1 (hsi; si+1i 2 N)

and H4.

4.3. Let � = hh(s0; h0); (s1; h1); : : :ii. Then � 2M
h.

Pf : 4.2, A2, and the de�nition of machine property.

4.4. �[H](�) = �.

Pf : By de�nition of � (4.3).

4.5. � 2 Lh.

Pf : 4.4, H5, and A4.1.

4.6. C4.1 holds.

Pf : 4.5, 4.3, and A3, which imply that � 2 Ph, and 4.4.

5. C2 holds.

Pf : From 4, A4, the monotonicity of � and �E , and the fact that

�E(�[H](s)) = �E(s) for any s 2 �h.

End Proof of Proposition 4

5.2 Simple Prophecy Variables

A prophecy variable is the dual of a history variable; its de�nition is almost

that of a history variable with time running backwards. Intuitively, whereas

a history variable records past behavior, a prophecy variable guesses future

behavior. Using notation similar to that used in de�ning history variables,

we de�ne a speci�cation Sp = (�p; F p; Np; Lp) to be obtained from S =

(�; F;N; L) by adding a prophecy variable i� the following conditions are

satis�ed. (Conditions P20 and P40 will be replaced in Section 5.3.)

P1. �p � �� �P for some set �P .

P20. F p = ��1
[P ]
(F ). (This is the expected correspondence between the

initial states of the two speci�cations.)

P3. If h(s; p); (s0; p0)i 2 Np then hs; s0i 2 N or s = s0. (Every step of

Sp's state machine simulates a [possibly stuttering] step of S's state

machine.)

P40. If hs; s0i 2 N and (s0; p0) 2 �p then there exists p 2 �P such that

h(s; p); (s0; p0)i 2 Np. (From every state in �p, the state machine of

Sp can take a backwards step that simulates any possible backwards
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step of S's state machine. This is the time-reversed version of condition

H4.)

P5. Lp = ��1
[P ]
(L). (The supplementary property of Sp is the set of behav-

iors that simulate behaviors in the supplementary property of S.)

P6. For all s 2 �, the set ��1
[P ]
(s) is �nite and nonempty. (To every state

of S there corresponds some nonzero �nite number of states of Sp.)

Condition P6 is the only one not corresponding to any condition for history

variables. It is needed because time reversal is asymmetric|all behaviors

have initial states but only terminating behaviors have �nal states. The

second example below indicates why it is needed.

We now give two examples to illustrate the de�nition of prophecy vari-

ables. We mention only the state machines; the supplementary property can

be taken to be the trivial one containing all behaviors.

For our �rst example, we take a state machine that nondeterministically

generates an integer between 0 and 9. To do this, the machine counts up by

one until it either decides to stop or else reaches 9, at which point it stutters

forever. The set �E of externally visible states is the set N of natural

numbers, and the internal state component is a Boolean that becomes true

when the �nal value is reached. (The Boolean values are written t and f .)

� � = N� ft; fg.

� F = f(0; f)g.

� N is the union of the following two sets:

{ fh(i� 1; f); (i; f)i : 0 < i < 10g,

{ fh(i; f); (i; t)i : i 2 Ng.

The set of stutter-free behaviors generated by this state machine consists of

all sequences of the forms

hh(0; f); (1; f); : : : ; (n; f); (n; t); (n; t); (n; t); : : :ii

and

hh(0; f); (1; f); : : : ; (n; f); (n; f); (n; f); : : :ii

with 0 � n < 10.

We now add a prophecy variable whose value is a natural number. This

variable \predicts" the maximum number of nonstuttering steps that the

state machine will take. The precise de�nition of the new state machine is:
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� �p is the union of the following two sets:

{ f(i; f; j) : 0 � i; 0 � j; and i+ j < 10g,

{ f(i; t; 0) : 0 � i < 10g.

� F p = f(0; f; j) 2 �pg.

� Np is the union of the following two sets:

{ fh(i� 1; f ; j + 1); (i; f; j)i 2 �p � �pg,

{ fh(i; f; 0); (i; t; 0)i 2 �p � �pg.

The reader can check that the conditions P1{P40 and P6 given above are

satis�ed. (Condition P5 is satis�ed if L and Lp are the trivial properties

that contain all behaviors.) Observe that although condition P40 is satis�ed,

condition H4 is not. The state machine can take a backwards step from the

state (6; f; 0) but not a forward step.

The only stutter-free behaviors of (�p; F p; Np) starting from the state

(0; f ; n) are of the forms

hh(0; f; n); (1; f; n� 1); : : : ; (n; f ; 0); (n; t; 0); (n; t; 0); : : :ii

and

hh(0; f; n); (1; f; n� 1); : : : ; (i; f; n� i); (i; f; n� i); : : :ii

with 0 � i � n. The set of externally visible behaviors generated by the

two state machines is the same; the stutter-free behaviors have the form

hh0; 1; : : : ; n; n; n; : : :ii for some n less than 10. State machine (�; F;N) de-

cides nondeterministically when it is going to stop counting, while in state

machine (�p; F p; Np) this choice is made by the initial value of the prophecy

variable.

As our second example, replace \10" by \1" in the de�nitions of the

two state machines. Conditions P1{P40 still hold, but P6 does not; for each

state (i; f) of � there are an in�nite number of states (i; f; j) in �p. The

externally visible stutter-free behaviors of (�p; F p; Np) consist of sequences

of the form hh0; 1; : : : ; n; n; n; : : :ii for any natural number n. The state ma-

chine (�; F;N) generates all these behaviors plus the additional behavior

hh0; 1; 2; 3; : : :ii that never terminates. Because the �niteness condition P6

is not satis�ed, adding the auxiliary variable changed the speci�cation by

ruling out this nonterminating behavior|e�ectively adding a liveness con-

dition.
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We can use our last example to indicate why we need the hypothesis

of �nite invisible nondeterminism for our completeness theorem. Let S2
be the speci�cation consisting of the state machine (�p; F p; Np) we just

constructed (the one with \10" replaced by \1") and the trivial supple-

mentary property containing all �p-behaviors. Let S1 be the speci�cation

with state machine (�; F;N) and supplementary property L consisting of

all terminating behaviors. Both speci�cations de�ne the same set of exter-

nally visible behaviors|all behaviors obtainable by stuttering from ones of

the form hh0; 1; : : : ; n; n; nii. To construct a re�nement mapping, we would

have to add to S1 a prophecy variable that \guesses" the value of the last

component of a state of �p. However, no such prophecy variable can be

constructed that satis�es P6, since for any starting state of S1 there are an

in�nite number of corresponding starting states of S2.

The complete property P2 de�ned by this speci�cation S2 is a safety

property, and we will see that this implies that S2 is internally continuous.

Moreover, speci�cation S1 is machine closed. Nevertheless, adding auxiliary

variables to S1 will not allow us to construct a re�nement mapping to prove

that it implements S2. Our completeness theorem does not apply because

P2 is not �n.

In this example, the prophecy variable we wanted to add would not

satisfy P6. However, the supplementary property happened to ensure that

adding the prophecy variable did not change the externally visible behavior.

If we were to replace P6 by the weaker requirement that Sp have the same

externally visible property as S, then we could �nd a re�nement mapping.

However, this requirement is precisely what we had to prove in the �rst

place|namely, that S1 implements S2.

5.3 Prophecy Variables That Add Stuttering

We now generalize our de�nition of a prophecy variable to allow it to intro-

duce stuttering. Condition P20 asserts that a state (s; p) 2 �p is an initial

state of Sp's state machine i� s is an initial state of S's state machine. We

relax this condition by requiring only that such a state (s; p) be reachable

from an initial state by steps that simulate stuttering steps. Formally, we

replace P20 by:

P2. (a) �[P ](F
p) � F .

(b) For all (s; p) 2 ��1
[P ]
(F ) there exist p0; p1; : : : ; pn = p such that

(s; p0) 2 F
p and, for 0 � i < n, h(s; pi); (s; pi+1)i 2 N

p.
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Similarly, we relax condition P40 by allowing Sp's state machine to sim-

ulate the step in S's state machine from state s to state s0 by a sequence

of n + 1 steps, the last n of which simulate stuttering steps. The precise

condition that replaces P40 is:

P4. If hs; s0i 2 N and (s0; p0) 2 �p then there exist p, p00, : : : , p
0

n�1, p
0

n = p0

such that h(s; p); (s0; p00)i 2 N
p and, for 0 � i < n, h(s0; p0i); (s

0; p0i+1)i 2

Np.

As with history variables, the addition of prophecy variables leaves an

implementation essentially unchanged.

Proposition 5 (Soundness of prophecy variables) If Sp is obtained

from S by adding a prophecy variable, then the two speci�cations de�ne

the same externally visible property.

Proof of Proposition 5

Given: A1. S = (�; F;N; L), Sp = (�p; F p; Np; Lp), and P1{P6 hold.

A2. M andMp are the machine properties of S and Sp, respectively.

A3. P =M \ L and P p =Mp \ Lp.

A4. O = �(�E(P )) and O
p = �(�E(P

p)).

Prove: C1. Op � O.

C2. O � Op.

Pf : 1. C1 holds.

Pf : The proof is identical to the proof of the corresponding condition

for history variables in Proposition 4.

2. P � �[P ](P
p).

Given: A2.1. � = hhs0; s1; : : :ii 2 P .

Prove: C2.1. There exists � 2 P p such that �[P ](�) ' �.

Pf : 2.1. Let G be the directed graph with

Nodes: the set �p �N.

Edges: there is an edge between ((si; p); i) and ((sj ; p
0); j) i�

j = i + 1 and either (si; p) = (si+1; p
0) or there exist

p0; p1; : : : ; pn = p0 in �P such that h(si; p); (si+1; p0)i 2 N
p

and, for all 0 � k < n, h(si+1; pk); (si+1; pk+1)i 2 N
p.

Let G0 be the subgraph of G reachable from nodes of the form

((s0; p); 0). Then G
0 is acyclic, with �nite branching and a �nite

set of sources.

Pf : It is obviously acyclic, since there is an edge from ((s; p); i)

to ((s0; p0); i0) only if i0 = i+ 1. Its sources are all the nodes
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of the form ((s0; p); 0). For each j, P6 implies that there are

only a �nite set of p such that (sj ; p) 2 �p, so G0 has a �nite

set of sources and is �nitely branching.

2.2. For all n � 0 and all (sn; pn) 2 �p there exist elements p0, : : : ,

pn�1 in �P such that hh((s0; p0); 0); : : : ; ((sn; pn); n)ii is a path in

G0.

Pf : The proof is by induction on n. The case n = 0 is trivial.

For n > 0, condition P4 implies the existence of the required

pn�1, and the induction hypothesis provides p0, : : : , pn�2.

2.3. Choose elements pi 2 �P such that hh((s0; p0); 0); ((s1; p1); 1);

: : :ii is an in�nite path in G0.

Pf : The existence of this path follows from 2.1, 2.2, and K�onig's

Lemma.

2.4. Let � = hh(s0; p0); : : : ; (si; pi); : : :ii. Choose a sequence �0 =

hh(s00; p
0

0); : : : ; (s
0

i; p
0

i); : : :ii such that:

2.4a. �[P ](�
0) ' �.

2.4b. For all i � 0: h(s0i; p
0

i); (s
0

i+1; p
0

i+1)i 2 Np or (s0i; p
0

i) =

(s0i+1; p
0

i+1).

2.4c. (s00; p
0

0) = (s0; p0).

Pf : Let �0 be the supersequence of � obtained by inserting

between (si; pi) and (si+1; pi+1) the sequence hh(si+1; p
0

0);

(si+1; p
0

1); : : : ; (si+1; p
0

k�1)ii of elements in �p whose exis-

tence is guaranteed by 2.3 and the de�nition of edges in

G0 (2.1). (Recall that � = hhs0; s1; : : :ii.)

2.5. Choose � = hh(t0; q0); (t1; q1); : : :ii such that:

2.5a. �[P ](�) ' �.

2.5b. For all i � 0: h(ti; qi); (ti+1; qi+1)i 2 Np or (ti; qi) =

(ti+1; qi+1).

2.5c. (t0; q0) 2 F
p.

Pf : By A2.1, we have s0 2 F . By P2, there exists a �nite

sequence hh(s0; p
00

0); : : : ; (s0; p
00

n)ii of elements in �p such that

(s0; p
00

0) 2 F p, each h(s0; p
00

i ); (s0; p
00

i+1)i 2 Np, and p00n = p0.

Let � = hh(s0; p
00

0); : : : ; (s0; p
00

n�1)ii � �
0.

2.6. � 2Mp.

Pf : By A2, 2.5b, and 2.5c.

2.7. � 2 P p.

Pf : By A3, 2.6, and P5.

2.8. C2.1 holds.

Pf : 2.7, 2.5a.
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3. C2 holds.

Pf : From 2, A1{A4, and the fact that �E(�[P ](t)) = �E(t) for any

t 2 �p.

End Proof of Proposition 5

6 Internal Continuity

We now de�ne internal continuity, which appears in the third hypothesis of

our main theorem. But �rst, we give an example that indicates why the

hypothesis is needed for our completeness theorem.

Let �E = N, let �i be the terminating sequence hh0; 1; : : : ; i; i; i; : : :ii,

and let � be the nonterminating sequence hh0; 1; 2; : : :ii. Let hhe0; e1; : : :ii � x

denote the sequence hh(e0; x); (e1; x); : : :ii. We construct a speci�cation S2
that de�nes the property whose stutter-free sequences consist of all sequences

�i � t together with the sequence � � f . Formally, S2 = (�2; F2; N2; L2),

where

� �2 = N� ft; fg. (The internal component is a Boolean.)

� F2 = f(0; t); (0; f)g. (Behaviors start with their visible components

equal to 0.)

� N2 = fh(i; b); (i+ 1; b)ig. (The external component is incremented by

1 and the internal component remains constant.)

� L2 consists of all behaviors except ones of the form � � f with �

terminating, and � � t with � nonterminating.

The externally visible property O2 de�ned by S2 consists of the behaviors

�i, the behavior �, and all behaviors obtained from them by stuttering.

Speci�cation S2 is �n and machine closed.

The externally visible property O2 is also de�ned by the simpler speci�-

cation S1 = (�1; F1; N1; L1), where

� �1 = �E = N. (There is no internal component.)

� F1 = f0g. (All behaviors start at 0.)

� N1 = fhi; i+ 1ig. (The state is incremented by 1.)

� L1 = �!
1 (the trivial property that allows all behaviors).
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Obviously, S1 implements S2. Let S
p
1 = (�

p
1; F

p
1 ; N

p
1 ; L

p
1) be any speci�ca-

tion obtained from S1 by adding a prophecy variable. We now show that

there does not exist a re�nement mapping from S
p
1 to S2; in fact there does

not exist any mapping from �
p
1 to �2 that proves that S

p
1 implements S2.

Let P
p
1 be the property de�ned by S

p
1 . We show by contradiction that

there does not exist any mapping f : �
p
1 ! �2 such that (i) �E(f(i; p)) = i

and (ii) f(P
p
1 ) � P2. For each i let �

0

i 2 P
p
1 be a behavior with �[P ](�

0

i) ' �i.

Moreover, P5 implies that we can choose �0i to have no repeated non�nal

states, meaning that for j < i and k > 1, there is no segment hh(j; p1); (j; p2);

: : : ; (j; pk)ii of �
0

i with p1 = pk. By (i), we then have that for every i and

m with i < m there is an l such that �E(�
0

mjl) ' �iji+1. Moreover, P6

and the absence of repeated non�nal states imply that for each i there is an

integer �(i) > i such that l � �(i) for all such m. We can choose � so that

�(i+ 1) � �(i) for all i.

For any n, the set f�0j j�(n)g is �nite (by P6). Therefore, we can induc-

tively construct the sequence �n of length �(n) such that �n is a pre�x of

in�nitely many of the �0j and is also a pre�x of �n+1. Let �
0 = lim �n; then

�E(�
0) ' �. Since each �n is a pre�x of some �0j , clearly �

0 is in the machine

property of S
p
1 . Property P5 then implies that �0 2 P p

1 . By de�nition of �0i,

assumption (ii) implies that f(�0i) ' �i�t, which implies that f(�0) ' ��t.

We then have �0 2 P p
1 and f(�0) 62 P2, which contradicts assumption (ii).

This proof can be extended to the case where S1 is replaced by any

speci�cation Sh1 obtained from it by adding a history variable. We just

replace � with any behavior allowed by Sh1 that simulates it, and replace �i
with an initial pre�x of this new �. Thus, �rst adding a history variable still

does not allow one to construct the re�nement mapping.

The problem with speci�cation S2 is that �� t is not in P2 even though

�E(� � t) is in O2 and any �nite portion of � � t is the same as the cor-

responding portion of some behavior �i � t in P2. The sequence � � t is

not in P2 even though we cannot tell that it isn't by looking either at its

externally visible component or at any �nite part of the complete behavior.

To rule out this possibility, we must add to our completeness theorem the

hypothesis that P2 is internally continuous.

De�nition 2 A �-property P with induced externally visible property O

is internally continuous i�, for any �-behavior �, if �E(�) 2 O and � 2

P , then � 2 P . A speci�cation is internally continuous i� the (complete)

property it de�nes is internally continuous.
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Suppose P = M \ L and M = P . Then lim �i = � for �i 2 P i�

� 2M . It follows from this that, for a machine-closed speci�cation, internal

continuity is equivalent to the condition that a complete behavior is allowed

i� it is generated by the state machine and its externally visible component

is allowed. In particular, safety properties are internally continuous.

Since the machine property M is closed, if lim �i = � for �i 2 M \ L,

then � 2 L i� � 2 M \ L. This implies that if L is internally continuous,

then M \ L is internally continuous. Hence, for any speci�cation, if the

supplementary property is internally continuous, then the speci�cation is

internally continuous. The converse is not true, since if M is the empty

property, then M \ L is internally continuous for any L.

Any speci�cation can be made internally continuous by adding to L all

sequences � in M such that �E(�) 2 O. Expanding L in this way obvi-

ously adds no new externally visible behaviors, so the resulting speci�cation

is equivalent to the original one. The expansion could introduce in�nite

internal nondeterminism, but not if M is �n.

7 The Completeness Theorem

We can now prove our main result.

Theorem 2 (Completeness) If the machine-closed speci�cation S1 im-

plements the internally continuous, �n speci�cation S2, then there is a spec-

i�cation Sh1 obtained from S1 by adding a history variable and a speci�cation

S
hp
1 obtained from Sh1 by adding a prophecy variable such that there exists

a re�nement mapping from S
hp
1 to S2.

Proof of Theorem 2

Given: A1. For i = 1; 2: Si = (�i; Fi; Ni; Li), Mi is the machine property

of Si, Pi =Mi \ Li, and Oi = �(�E(Pi)).

A2. O1 � O2.

A3. S1 is machine closed.

A4. S2 is �n.

A5. S2 is internally continuous.

Prove: C1. There exist speci�cations Sh1 and S
hp
1 such that:

C1a. Sh1 is obtained from S1 by adding a history variable.

C1b. S
hp
1 is obtained from Sh1 by adding a prophecy variable.

C1c. There exists a re�nement mapping f from S
hp
1 to S2.
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Pf : 1. Let Sh1 equal (�h
1 ; F

h
1 ; N

h
1 ; L

h
1), where

� �h
1 = f(last(�jn); �jn) : n > 0 and � 2 P1g. (The history

component h of any state (s; h) is a �nite pre�x of a behavior

in P1 that ends in state s.)

� Fh
1 = f(s; h) 2 �h

1 : khk = 1g.

� Nh
1 = fh(s; h); (s0; h0)i 2 �h

1 � �h
1 : h0 = h � hhs0iig. (A step of

Sh1 's state machine simulates a step of S1's state machine and

adds the new state to the history component.)

� Lh1 = ��1
[H]

(L1). (As required by H5.)

Then C1a holds.

Pf : 1.1. H1, H3, and H5 hold.

Pf : Follows immediately from the de�nition of Sh1 .

1.2. �[H](F
h
1 ) � F1.

Pf : Immediate from the de�nition of Fh
1 .

1.3. F1 � �[H](F
h
1 )

Pf : For any s 2 F1, the sequence hhs; s; s; : : :ii 2M1. Therefore,

A3 and Lemma 1 imply that hhsii is a pre�x of a behavior

in P1, so (s; hhsii) 2 F
h
1 and s = �[H]((s; hhsii)).

1.4. H2 holds.

Pf : 1.2 and 1.3.

1.5. H4 holds.

Pf : For any hs; s0i 2 N1 and (s; h) 2 �h
1 , let h

0 = h � hhs0ii. Then

A3 and Lemma 1 imply that h0 is the pre�x of a behavior in

P1, so (s
0; h0) 2 �h

1 by de�nition of �h
1 , and h(s; h); (s

0; h0)i 2

Nh
1 by de�nition of Nh

1 .

2. Let S
hp
1 equal (�hp

1 ; F
hp
1 ; N

hp
1 ; L

hp
1 ), where

� �hp
1 equals the set of triples (s; h; \(�jm)) with (s; h) 2 �h

1 ,

� 2 P2, m > 0, and �E(�jm) ' �E(h), where we write (s; h; p)

instead of ((s; h); p). (The prophecy component p of (s; h; p) is

an initial stutter-free pre�x of a behavior in P2 such that p and

h are externally equivalent.)

� F
hp
1 = f(s; h; p) 2 �hp : (s; h) 2 Fh

1 and kpk = 1g. (Note that

this implies s 2 F1 and p = hhtii with t 2 F2.)

� N
hp
1 is the set of pairs h(s; h; p); (s0; h0; p0)i in �hp

1 � �hp
1 such

that either

(a) p0 = p � hhlast(p0)ii and either h(s; h); (s0; h0)i 2 Nh
1 or

(s; h) = (s0; h0), or
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(b) p0 = p and h(s; h); (s0; h0)i 2 Nh
1 .

(A step of S
hp
1 's state machine either increases the length of

the prophecy component by one and simulates a [possibly stut-

tering] step of Sh1 's state machine, or else leaves the prophecy

component unchanged and simulates a nonstuttering step of

Sh1 's state machine.)

� Lh1 = ��1
[H]

(L1). (As required by P5.)

Then C1b holds.

Pf : 2.1. P1, P3, and P5 hold.

Pf : Immediate from the de�nition of S
hp
1 .

2.2. �[P ](F
hp
1 ) � Fh

1 .

Pf : Immediate from the de�nitions of Fhp
1 and Fh

1 .

2.3. For all (s; h; p) 2 ��1
[P ]
(Fh

1 ) there exist p0; p1; : : : ; pn = p such that

(s; h; p0) 2 F
hp
1 and, for 0 � i < n, h(s; h; pi); (s; h; pi+1)i 2 N

hp
1 .

Pf : 2.3.1. Let (s; h; p) 2 ��1
[P ]
(Fh

1 ), and let p = hht0; t1; : : : ; tnii. Then

h = hhsii and �E(p) ' �E(hhsii).

Pf : By de�nitions of Fh
1 and �hp

1 .

2.3.2. Let pi = hht0; : : : ; tiii. Then �E(pi) ' �E(h).

Pf : By 2.3.1.

2.3.3. (s; h; p0) 2 F
hp
1 and h(s; h; pi); (s; h; pi+1)i 2 N

hp
1 for 0 �

i < n.

Pf : By 2.3.2 and the de�nitions of Fhp
1 and Nhp

1 .

2.4. P2 holds.

Pf : By 2.2 and 2.3.

2.5. P4 holds.

Given: A2.5.1. h(s; h); (s0; h0)i 2 Nh
1 and (s0; h0; p0) 2 �

hp
1 .

Prove: C2.5.1. There exist p, p00, : : : , p
0

n�1, p
0

n = p0 in �P such

that h(s; h; p); (s0; h0; p00)i 2 N
hp
1 and, for 0 � i < n,

h(s0; h0; p0i); (s
0; h0; p0i+1)i 2 N

hp
1 .

Pf : 2.5.1. p0 = \(�jm) for some � 2 P2, and �E(p
0) ' �E(h

0).

Pf : By A2.5.1 and the de�nition of �hp
1 .

2.5.2. h0 = h � hhs0ii.

Pf : By A2.5.1 (h(s; h); (s0; h0)i 2 Nh
1 ) and the de�nition

of Nh
1 .

2.5.3. Let p be the longest pre�x of p0 such that �E(p) ' �E(h).

Pf : The existence of p follows from 2.5.1 and 2.5.2.

2.5.4. p0 = p � hht0; : : : ; tnii where �E(ti) ' �E(s
0) for 0 � i � n.
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Pf : By 2.5.3, 2.5.1, and 2.5.2.

2.5.5. Let p0i = p � hht0; : : : ; tiii. Then (s0; h0; p0i) 2 �
hp
1 for 0 � i �

n.

Pf : By 2.5.4 and 2.5.1, we have �E(p
0

i) ' �E(h
0). The

result then follows from the de�nition of �
hp
1 , since

A2.5.1 implies (s0; h0) 2 �h
1 .

2.5.6. C2.5.1 holds.

Pf : Follows easily from 2.5.5, 2.5.1, and the de�nition of

N
hp
1 .

2.6. P6 holds.

Given: A2.6.1. (s; h) 2 �h
1 .

Prove: C2.6.1. fp : (s; h; p) 2 �hp
1 g is �nite.

C2.6.2. There exists p 2 �P such that (s; h; p) 2 �hp
1 .

Pf : 2.6.1. Choose  2 P1 such that h =  jn, and let � = �E( ).

Pf :  exists by A2.6.1 and the de�nition of �h
1 .

2.6.2. C2.6.1 holds.

Pf : By de�nition of �hp
1 and � (in 2.6.1), A4, and De�ni-

tion 1.

2.6.3. Choose � 2 P2 such that �E(�) ' �.

Pf : Such a � exists since � 2 O1 (by 2.6.1) and O1 � O2

(by A2).

2.6.4. C2.6.2 holds.

Pf : By 2.6.3 and the de�nition of � (in 2.6.1), we can

choose m such that �E(�jm) ' �E(h). Let p =

\(�jm). The de�nition of �hp
1 implies that (s; h; p) 2

�hp
1 .

3. De�ne f : �
hp
1 ! �2 by f((s; h; p)) = last(p). Then f is a re�nement

mapping.

Pf : 3.1. f satis�es R1.

Pf : By de�nition of �hp
1 , if (s; h; p) 2 �hp

1 then (s; h) 2 �h
1

and �E(p) ' �E(h). But (s; h) 2 �h
1 implies s = last(h)

(by de�nition of �h
1), so �E(p) ' �E(h) implies �E(s) =

�E(last(p)).

3.2. f satis�es R2.

Pf : By de�nition of Fhp
1 , its elements are of the form (s;

hhsii; hhtii) where t 2 F2, so f((s; hhsii; hhtii)) = t 2 F2.

3.3. f satis�es R3.

Given: A3.3.1. h(s; h; p); (s0; h0; p0)i 2 N
hp
1 .
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Prove: C3.3.1. hlast(p); last(p0)i 2 N2 or last(p) = last(p0).

Pf : By de�nition of N
hp
1 , A3.3.1 implies p0 = hht0; : : : ; tnii for

some in�nite sequence hht0; t1; : : :ii 2 P2, and either p = p0,

in which case C3.3.1 is immediate, or p = hht0; : : : ; tn�1ii.

In the latter case, we must prove htn�1; tni 2 N2. However,

this follows immediately from the fact that hht0; t1; : : :ii 2

P2 � M2 and the de�nition of the machine property of a

speci�cation.

3.4. f satis�es R4.

Given: A3.4.1. � = hh(s0; h0; p0); (s1; h1; p1); : : :ii 2 P
hp
1 .

Prove: C3.4.1. f(�) = hhlast(p0); last(p1); : : :ii 2 L2.

Pf : 3.4.1. Let � = hhs0; s1; : : :ii. Then �E(�) = �E(�).

Pf : Follows immediately from R1 (by 3.1).

3.4.2. �E(�) 2 O1.

Pf : C1a (proved in 1), C1b (proved in 2), and Proposi-

tions 4 and 5 imply that �E(�) 2 O1, so 3.4.2 follows

from 3.4.1.

3.4.3. For all n � 0, f(�)jn ' pn.

Pf : By A3.4.1, h(si; hi; pi); (si+1; hi+1; pi+1)i 2 N
hp
1 or

(si; hi; pi) = (si+1; hi+1; pi+1) for all i � 0. By def-

inition of Nhp
1 , this implies pi+1 = pi or pi+1 =

pi � hhlast(pi)ii for all i. A simple induction proof then

shows that pn ' hhlast(p0); : : : ; last(pn)ii.

3.4.4. For all n � 0 there exists  n 2 P2 such that  njn = f(�)jn.

Pf : By de�nition of �hp
1 , there exists a sequence �n such

that pn � �n 2 P2. Let  n = f(�)jn � �n. By 3.4.3,

 n ' pn � �n, so  n is in P2.

3.4.5. C3.4.1 holds.

Pf : 3.4.4 implies that lim n = f(�) and  n 2 P2. By

3.4.1, 3.4.2, R1 (proved in 3.1), and A2, we have

�E(f(�)) 2 O2. Since S2 is internally continuous

(by A5) and the  n are in P2 (by 3.4.4), De�nition 2

implies that f(�) 2 P2. This proves C3.4.1, since

P2 � L2 (by A1).

End Proof of Theorem 2

The converse of this completeness theorem is not true. For instance, no

matter how pathological a speci�cation is, we can use the identity re�nement

mapping to prove that it implements itself.
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The hypotheses of the internal continuity and �nite invisible nondeter-

minism of S2 can be removed from our completeness theorem by general-

izing the de�nition of a prophecy variable|namely, by replacing condition

P6 with the explicit requirement that the externally visible behaviors of Sp

be the same as those of S. This result is proved by de�ning Sh1 as in the

proof of Theorem 2, and de�ning S
hp
1 such that

� �
hp
1 is the set of 4-tuples (s; h; n; �) with (s; h) 2 �h

1 , � 2 P2, and

�E(h) ' �E(� jn).

� F
hp
1 is the set of all states of the form (s; h; 1; �).

� N
hp
1 is the set of pairs h(s; h; n; �); (s0; h0; n+ 1; �)i with either h(s; h);

(s0; h0)i 2 Nh
1 or (s; h) = (s0; h0).

� The re�nement mapping is de�ned by letting f((s; h; n; �)) be the nth

element of � .

However, the condition that replaces P6 asserts that speci�cation Sp im-

plements S, which is precisely the type of condition we are trying to prove

in the �rst place. This generalization of Theorem 2 is therefore of little

practical value, so we will not bother to state it and prove it formally.

There is one simple way to strengthen the completeness theorem that

is of some interest. The speci�cation S2 is �n and internally continuous

i� the property P2 that it de�nes is �n and internally continuous. We can

weaken the hypothesis by requiring only that there exist a �n and internally

continuous property P 0

2 contained in P2 that induces the same externally-

visible property as P2. Let S02 be the speci�cation obtained from S2 by

replacing L2 with L2 \ P
0

2. The correctness of this result follows easily from

Theorem 2 by replacing S2 with S02.

8 Whence and Whither?

Re�nement mappings are not new. They form the basis of the methods

advocated by Lam and Shankar [LS84] and by us [Lam83], and they are

used by Lynch and Tuttle [LT87] to prove that one automaton implements

another. However, none of this work addresses the issue of completeness.

Jonsson [Jon87] and Stark [Sta88] did prove completeness results similar to

ours, but for smaller classes of speci�cations.
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Complete methods for checking that a program implements a speci�ca-

tion, without constructing re�nement mappings, have been developed. Some

of the most general are those of Alpern and Schneider [AS87], Manna and

Pnueli [MP87], and Vardi [Var87]. Their methods di�er from our approach

in at least two important ways:

� They do not consider behaviors with di�erent amounts of \stutter-

ing" to be equivalent, so their de�nition of what constitutes a correct

implementation is weaker than ours.

� They require constructing the negation of speci�cations. In practice,

the negation of a speci�cation may be hard to �nd and hard to under-

stand.

Because of these di�erences, the methods may not o�er practical alternatives

to the use of re�nement mappings for proving correctness.

Our exposition has been purely semantic. We have considered speci�-

cations, but not the languages in which they are expressed. We proved the

existence of re�nement mappings, but said nothing about whether they are

expressible in any language. We do not know what languages can describe

the necessary auxiliary variables and resulting re�nement mappings.

Our results also raise the question of what properties can be described

by speci�cations that are �n and internally continuous. If the speci�ca-

tion language is expressive enough, then all properties can be de�ned by

speci�cations without internal state, which are trivially �n and internally

continuous. At the other extreme, one can easily invent arti�cially impov-

erished languages that do not allow any �n or internally continuous speci�-

cations. The question becomes interesting only for interesting speci�cation

languages, such as various forms of temporal logic. In addition, recall that

the hypotheses of our completeness theorem can be weakened by requiring

only that S2's complete property be equivalent to a �n and internally contin-

uous subproperty. This raises the more general question of what expressible

properties have equivalent �n and continuous subproperties.
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Glossary/Index of Notations and Conventions

e The externally visible component of a state, 7

f A re�nement mapping, 11

h A history variable, 20

p A prophecy variable, 22

s, t States, 7

y, z Internal components of states, 7

F The set of initial states of a state machine, 9

L A supplementary property, 9

M A property, usually generated by a state machine, 9

N The next-state relation of a state machine, 9

O An externally visible property, 8

P A complete property, 8

S A set|typically a set of sequences, 7

S A speci�cation, 9

�, �, � Externally visible behaviors, 8

�, �, � ,  Sequences, usually representing complete behaviors, 8

�� The set of all behaviors equivalent to � up to stuttering, 7

�S The set of all behaviors equivalent to behaviors in S up to stutter-

ing, 7

�E The projection from states onto their external components, 7

�[X] The projection from states that eliminates the X component, 20

� A set of states, 7

�E A set of externally visible states, 7
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�I A set of internal states, 7

�! The set of all in�nite sequences of elements of �, 7

hhs1; s2; : : :ii The sequence whose �rst element is s1, whose second element

is s2, etc., 1

\� The stutter-free form of �, 6

' Equivalence of sequences up to stuttering, 7

� � � The concatenation of the sequences � and � , 7

�jm The pre�x of sequence � of length m, 7

hs; ti A pair of states that is an element of the next-state relation of a

state machine, 9

S The closure of the set S, 7
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