
[1]1

27

Concurrent Reading and
Writing of Clocks

Leslie Lamport

April 1, 1988, revised November 20, 1990

Systems Research Center

DEC’s business and technology objectives require a strong research program. The
Systems Research Center (SRC) and three other research laboratories are committed
to filling that need.

SRC began recruiting its first research scientists in l984—their charter, to advance
the state of knowledge in all aspects of computer systems research. Our current
work includes exploring high-performance personal computing, distributed com-
puting, programming environments, system modelling techniques, specification
technology, and tightly-coupled multiprocessors.

Our approach to both hardware and software research is to create and use real
systems so that we can investigate their properties fully. Complex systems cannot be
evaluated solely in the abstract. Based on this belief, our strategy is to demonstrate
the technical and practical feasibility of our ideas by building prototypes and using
them as daily tools. The experience we gain is useful in the short term in enabling
us to refine our designs, and invaluable in the long term in helping us to advance the
state of knowledge about those systems. Most of the major advances in information
systems have come through this strategy, including time-sharing, the ArpaNet, and
distributed personal computing.

SRC also performs work of a more mathematical flavor which complements our
systems research. Some of this work is in established fields of theoretical computer
science, such as the analysis of algorithms, computational geometry, and logics of
programming. The rest of this work explores new ground motivated by problems
that arise in our systems research.

DEC has a strong commitment to communicating the results and experience gained
through pursuing these activities. The Company values the improved understanding
that comes with exposing and testing our ideas within the research community.
SRC will therefore report results in conferences, in professional journals, and in
our research report series. We will seek users for our prototype systems among
those with whom we have common research interests, and we will encourage
collaboration with university researchers.

Robert W. Taylor, Director

Concurrent Reading and Writing of Clocks

Leslie Lamport

April 1, 1988
Revised November 20, 1990

iii

c
Digital Equipment Corporation 1988

This work may not be copied or reproduced in whole or in part for any commercial
purpose. Permission to copy in whole or in part without payment of fee is granted
for nonprofit educational and research purposes provided that all such whole or
partial copies include the following: a notice that such copying is by permission
of the Systems Research Center of Digital Equipment Corporation in Palo Alto,
California; an acknowledgment of the authors and individual contributors to the
work; and all applicable portions of the copyright notice. Copying, reproducing,
or republishing for any other purpose shall require a license with payment of fee to
the Systems Research Center. All rights reserved.

iv

Author’s Abstract

As an exercise in synchronization without mutual exclusion, algorithms are de-
veloped to implement both a monotonic and a cyclic multiple-word clock that is
updated by one process and read by one or more other processes.

Capsule Review

It is convenient for an operating system to maintain the system clock in shared
memory, so it can be read directly by user processes, without a system call. But
doing this is tricky if the clock has more than one word of precision, because
the system may update the clock while a user process is partway through reading
it. This paper presents a simple algorithm for maintaining the clock in shared
memory that requires no locking or retries. Theorists will find the algorithm and
its correctness proof interesting, while practitioners will find the algorithm useful
and easy to implement.

Tim Mann

v

Contents

1 Introduction 1

2 Notation and Theorems 2

3 A Monotonic Clock 3

4 A Cyclic Clock 6

References 7

vi

1 Introduction

In an asynchronous multiprocess system, consider a clock that is updated by one
process and read by one or more other processes. The clock is represented as a
sequence of digits, where reading or writing each digit is a separate operation. We
seek an algorithm to guarantee that a process reads a correct clock value, even
if the read is performed while the clock is being updated. A read that occurs
while the clock is being changed from 11:57 to 12:04 is allowed to return any
value between 11:57 and 12:04 (inclusive). However, it is not allowed to return
values such as 11:04, 12:07, or 12:57, which could be obtained if no attempt were
made to synchronize the reader and writer. The relevance of this problem to the
implementation of a multiword clock in an operating system should be obvious.

It is widely believed that this problem can be solved only by “locking”—that is, by
using a mutual exclusion protocol to prevent the reader and writer from concurrently
accessing the clock. This belief is wrong. Using the results of [1], I will derive
a solution in which processes never wait. Such a solution is likely to be more
efficient than one that uses locking. It is the goal of this paper not only to present
a potentially useful algorithm, but also to remind readers that one can sometimes
avoid the need for mutual exclusion by using the techniques of [1].

It is customary to assume that reading or writing a single digit is an atomic operation.
The algorithms presented here and the theorems of [1] on which they are based are
valid under the weaker assumption that each digit is, in the terminology of [2], a
regular register. (The version of [1] submitted for publication assumed only regular
registers, but the editor was afraid that the concept of nonatomic operations on
individual digits might be considered heretical and insisted that it be removed from
the paper.) However, readers who wish to ignore the subtle distinction between
atomic and regular digits can simply think “atomic” when they read “regular”.

There are two different kinds of clocks—monotonic clocks that never decrease and
cyclic clocks that cycle through a bounded set of values. Monotonic clocks are
commonly used in operating systems to encode the date and time, while cyclic
clocks that display the time of day are encountered in everyday life. I will first
present an algorithm to implement a monotonic clock and then indicate how it can
be extended to implement a cyclic clock.

1

2 Notation and Theorems

To begin, let us recall the notations and results of [1]. Write operations to a data
item v are assumed to be sequential; the sequence of values written to v is denoted
by v[0]; v[1]; : : : , where the write of v[i] precedes the write of v[iC1]. The 0th write,
which initializes the value, is assumed to precede all reads. A read of v is said to
see version v[i] if the read ended after the write of v[i] was begun and began before
the write of v[iC1] ended. A read that is concurrent with a write will see more than
one version.

In a somewhat illogical but useful notation, for natural numbers k and l with k � l,
let v[k;l] denote both the value obtained by a read and the assertion that the read saw
versions v[k] , v[kC1], : : : , v[l] and no other versions. Thus, if a read obtains the value
v[k;l] , then either k D l and the read overlapped no writes, or k < l and the read
overlapped the writes of v[kC1]; : : : ; v[l].

A data item v is said to be regular if the value v[k;l] obtained by a read equals v[i]

for some i with k � i � l. This is a somewhat weaker condition than requiring
that reads and writes of v be atomic.

An m-digit data item v is a sequence v1 Ð Ð Ðvm of digits, where the left-most digit
v1 is the most significant. The ranges of values of the vi need not all be the same;
mixed-radix representations are allowed. A read or write of v consists of a single
read or write of each digit, in any order. Thus, v[i] D v[i]

1 Ð Ð Ðv[i]
m . A read or write

of v is said to be from left to right if the digits are accessed in the order v1, v2, : : :,
vm ; it is said to be from right to left if the digits are accessed in the opposite order.
The following theorems and lemma are proved in [1]. (Theorem 2 will not be used
here, but is included for completeness.)

Theorem 1 If v D v1 Ð Ð Ðvm is always written from right to left, then a read from
left to right obtains a sequence of values v[k1;l1]

1 ; : : : ; v[km ;lm]
m with k1 � l1 � k2 �

: : : � km � lm.

Lemma Let v D v1 Ð Ð Ðvm and assume that v[0] � v[1] � Ð Ð Ð.
(a) If i1 � Ð Ð Ð � im � i then v[i1]

1 Ð Ð Ðv[im]
m � v[i].

(b) If i1 ½ Ð Ð Ð ½ im ½ i then v[i1]
1 Ð Ð Ðv[im]

m ½ v[i].

2

Theorem 2 Let v D v1 Ð Ð Ðvm and assume that v[0] � v[1] � Ð Ð Ð and the digits vi

are regular.

(a) If v is always written from right to left, then a read from left to right obtains
a value v[k;l] � v[l].

(b) If v is always written from left to right, then a read from right to left obtains
a value v[k;l] ½ v[k].

The reader who enjoys puzzles may wish to pause here and attempt his own
implementation of a monotonic clock using regular digits.

3 A Monotonic Clock

A monotonic clock is a data item c D c1 Ð Ð Ðcm such that c[0] � c[1] � c[2] � Ð Ð Ð.
The correctness condition for such a clock asserts that if a read obtains the value
c[k;l] , then c[k] � c[k;l] � c[l] . The individual digits ci are assumed to be regular.

To implement a monotonic clock c, two copies c1 and c2 of the clock are maintained.
The writer updates c by first writing c2 from left to right and then writing c1 from
right to left. The reader first reads c1 from left to right and then reads c2 from right
to left. In the following analysis, we deduce what value the reader should return.

Let r1 and r2 denote the values of c1 and c2 read by the reader. By Theorem 1
applied to the 2m-digit data item c11 Ð Ð Ð c1mc2m Ð Ð Ðc21,

r1 D c1[k11;l11]
1 Ð Ð Ð c1[k1m ;l1m]

m (1)

r2 D c2[k21;l21]
1 Ð Ð Ð c2[k2m ;l2m]

m (2)

with
k11 � l11 � k12 � Ð Ð Ð � k1m � l1m

� k2m � l2m � k2m�1 � Ð Ð Ð � k21 � l21 (3)

The regularity assumption and (1)–(3) imply the existence of integers iq and jq

such that

r1 D c1[i1]
1 Ð Ð Ð c1[im]

m (4)

r2 D c2[j1]
1 Ð Ð Ð c2[jm]

m (5)

and
k11 � i1 � Ð Ð Ð � im � jm � Ð Ð Ð � j1 � l21 (6)

3

The definition of c[k;l] implies that k � k11 and l21 � l, so a correct read is allowed
to return any value in the interval [c[i1]; c[j1]].

Applying part (a) of the lemma to c1 with im substituted for i, and part (b) to c2
with jm substituted for i, using (4) and (5), we get r1 � c1[im] and c2[jm] � r2. The
monotonicity assumption and (6) then imply

r1 � c1[im] � c2[jm] � r2 (7)

Monotonicity, (6), and the assumption that c1 and c2 are just two copies of c imply

c[i1] D c1[i1] � c1[im] � c2[jm] � c2[j1] D c[j1] (8)

If r1 D r2, then (7) and (8) imply that the read can return the value r1, since it can
return any value in the interval [c[i1]; c[j1]]. Because (7) implies that r1 � r2, we
need now consider only the case of r1 < r2.

For 1 � q � m, let v1ÐÐÐq denote v1 Ð Ð Ðvq , and let v1ÐÐÐ0 D 0. Define v#q and v"q

to be the smallest and largest m-digit values w such that w1ÐÐÐq D v1ÐÐÐq . Thus, v1ÐÐÐq
consists of the left-most q digits of v, and, if the vi are decimal digits, then v#q

and v"q are the values obtained by replacing the right-most m � q digits of v with
0’s or 9’s, respectively. In general, we have

v#q � v � v"q (9)

for 1 � q � m.

Since we are assuming that r1 < r2, there exists a unique p, with 0 � p < m,
such that

r11ÐÐÐp D r21ÐÐÐp (10)

r1pC1 < r2pC1 (11)

From (11) we have
r1"pC1 < r2#pC1 (12)

Applying part (a) of the lemma to c11ÐÐÐp with ipC1 substituted for i and p substituted
for m, and part (b) to c21ÐÐÐp with jpC1 substituted for i and p substituted for m, we
obtain

r11ÐÐÐp � c1[ipC1]
1ÐÐÐp (13)

r21ÐÐÐp ½ c2[jpC1]
1ÐÐÐp (14)

4

Reader

r1 :=
�!
c1 ;

r2 :=
 �
c2 ;

if r1 D r2
then return r1
else p := maxfi : r11ÐÐÐi D r21ÐÐÐig;

return any value in [r1"pC1; r2#pC1]
fi

Writer
�!
c2 := any value ½ c2;
 �
c1 := c2

Figure 1: The Monotonic-Clock Algorithm

Since ipC1 � jpC1 by (6), monotonicity implies that c1[ipC1] � c2[jpC1], so c1[ipC1]
1ÐÐÐp �

c2[jpC1]
1ÐÐÐp . Hence, (10), (13), and (14) imply

r11ÐÐÐp D c1[ipC1]
1ÐÐÐp D c2[jpC1]

1ÐÐÐp D r21ÐÐÐp

By (4) and (5), this implies

r11ÐÐÐpC1 D c1[ipC1]
1ÐÐÐpC1 (15)

c2[jpC1]
1ÐÐÐpC1 D r21ÐÐÐpC1 (16)

Combining (9), (15), (16), and (12) yields

c1[ipC1] � c1[ipC1]"pC1 D r1"pC1 < r2#pC1 D c2[jpC1]#pC1 � c2[jpC1]

Hence, the reader can return any value in the interval [r1"pC1; r2#pC1].

The algorithm that has just been derived is shown in Figure 1, where an arrow over a
variable name means that the corresponding read or write is performed left-to-right
or right-to-left, as indicated by the arrow’s direction. Note that it does not matter
how the writer reads c2, since it is the only process that changes c2.

As a final optimization, observe that the reader reads c1m immediately before
reading c2m, while the writer writes c2m immediately before writing c1m . The
algorithm remains correct if the two reads or writes are performed as a single
operation. Hence, the two digits c1m and c2m can be implemented by the same
digit, which is read and written just once. In the most common application, m D 2
and reading or writing the clock requires only three single-digit reads or writes. A
version of the algorithm for a two-digit clock is shown in Figure 2. A clock value
is a pair .l; r/ where l is the left digit and r the right digit, and 0 is assumed to be
the smallest possible right digit.

5

Reader

v1 := l1;
w := r ;
v2 := l2;
if v1 D v2 then return .v2; w/

else return .v2; 0/
fi

Writer

.l0; r 0/ := any value ½ .l2; r/;
l2 := l0;
r := r 0;
l1 := l0

Figure 2: A Two-Digit Monotonic-Clock Algorithm

4 A Cyclic Clock

A cyclic clock c is a data item that can assume any sequence of values. A write
that decreases the value of c is said to cycle c. The cycling of c is interpreted to
mean that c has “passed midnight”. For notational convenience, assume that 0 is
the smallest value c can assume.

We can convert a cyclic clock c to a monotonic clock c by adding a fictitious left-
hand part that is incremented whenever the value of c is decreased. The correctness
condition for c is that the value returned by a read is the right-hand part of a correct
value for a read of c. Thus, if c is cycled during the read, then the read may return
the value 0. If c is cycled twice during the read, then the read may return any value.

To construct an algorithm for implementing an m-digit cyclic clock c D c1 Ð Ð Ð cm ,
we first augment c to an m C 1-digit cyclic clock c by adding an extra left-most
binary digit c0, so c D c0 Ð Ð Ð cm . The left-most bit c0 of c is thus incremented
(complemented) whenever the clock c is cycled. The digits c0, : : : , cm are assumed
to be regular.

The reads and writes of c are performed as in the monotonic-clock algorithm, so
the writer begins by writing c20 and ends by writing c10, while the reader reads c10

first and c20 last. If the reader finds c10 6D c20, then the read overlapped a write
that cycled c, so the read can return the value 0. If the reader finds c10 D c20, then
either c was not cycled during the read or else it was cycled two or more times.
In the first case, the monotonic-clock algorithm returns a correct value because it
returns the value it would have obtained had it seen the entire fictitious clock c; in
the second case, the read is permitted to return any value. Hence, in either case,
the (right-most m digits of the) value obtained by the monotonic-clock algorithm
is correct.

The reader should be suspicious of this kind of informal argument because it often

6

leads to errors. However, since I know of no practical application of the cyclic-
clock algorithm, I will leave its precise statement and rigorous correctness proof to
the reader.

Acknowledgments

Tim Mann discovered an error in my original correctness proof of the monotonic
clock algorithm and suggested several improvements to the presentation.

References

[1] Leslie Lamport. Concurrent reading and writing. Communications of the ACM,
20(11):806–811, November 1977.

[2] Leslie Lamport. On interprocess communication. Distributed Computing,
1:77–101, 1986.

7

