(11

27

Concurrent Reading and
Writing of Clocks

L eslie Lamport

April 1, 1988, revised November 20, 1990

Systems Resear ch Center

DEC's business and technol ogy objectivesrequire a strong research program. The
Systems Research Center (SRC) and three other research laboratoriesarecommitted
to filling that need.

SRC began recruiting itsfirst research scientistsin 1984—their charter, to advance
the state of knowledge in all aspects of computer systems research. Our current
work includes exploring high-performance personal computing, distributed com-
puting, programming environments, system modelling techniques, specification
technology, and tightly-coupled multiprocessors.

Our approach to both hardware and software research is to create and use real
systemsso that wecaninvestigatetheir propertiesfully. Complex systemscannot be
evaluated soldly in the abstract. Based on thisbelief, our strategy isto demonstrate
the technical and practical feasibility of our ideas by building prototypesand using
them as daily tools. The experience we gain isuseful in the short term in enabling
usto refine our designs, and invaluablein thelong termin hel ping usto advance the
state of knowledgeabout those systems. Most of the major advancesininformation
systems have come through this strategy, including time-sharing, the ArpaNet, and
distributed persona computing.

SRC aso performs work of a more mathematical flavor which complements our
systemsresearch. Some of thiswork isin established fields of theoretical computer
science, such as the analysis of agorithms, computational geometry, and logics of
programming. The rest of thiswork explores new ground motivated by problems
that arise in our systemsresearch.

DEC has a strong commitment to communi cating the results and experience gained
through pursuing these activities. The Company vauestheimproved understanding
that comes with exposing and testing our ideas within the research community.
SRC will therefore report results in conferences, in professiona journals, and in
our research report series. We will seek users for our prototype systems among
those with whom we have common research interests, and we will encourage
collaboration with university researchers.

Robert W. Taylor, Director

Concurrent Reading and Writing of Clocks

Ledie Lamport

April 1, 1988
Revised November 20, 1990

©Digital Equipment Cor poration 1988

Thiswork may not be copied or reproduced in wholeor in part for any commercial
purpose. Permission to copy in whole or in part without payment of feeis granted
for nonprofit educational and research purposes provided that al such whole or
partial copies include the following: a notice that such copying is by permission
of the Systems Research Center of Digital Equipment Corporation in Palo Alto,
Cdlifornia; an acknowledgment of the authors and individua contributors to the
work; and all applicable portions of the copyright notice. Copying, reproducing,
or republishing for any other purpose shall require alicense with payment of feeto
the Systems Research Center. All rightsreserved.

Author’s Abstract

As an exercise in synchronization without mutual exclusion, algorithms are de-
veloped to implement both a monotonic and a cyclic multiple-word clock that is
updated by one process and read by one or more other processes.

Capsule Review

It is convenient for an operating system to maintain the system clock in shared
memory, so it can be read directly by user processes, without a system call. But
doing this is tricky if the clock has more than one word of precision, because
the system may update the clock while a user process is partway through reading
it. This paper presents a simple agorithm for maintaining the clock in shared
memory that requires no locking or retries. Theorists will find the algorithm and
its correctness proof interesting, while practitioners will find the a gorithm useful
and easy to implement.

Tim Mann

Contents

1 Introduction

2 Notation and Theorems
3 A Monotonic Clock

4 A Cyclic Clock

References

Vi

1 Introduction

In an asynchronous multiprocess system, consider a clock that is updated by one
process and read by one or more other processes. The clock is represented as a
sequence of digits, where reading or writing each digit is a separate operation. We
seek an agorithm to guarantee that a process reads a correct clock value, even
if the read is performed while the clock is being updated. A read that occurs
while the clock is being changed from 11:57 to 12:04 is alowed to return any
value between 11:57 and 12:04 (inclusive). However, it is not allowed to return
values such as 11:04, 12:07, or 12:57, which could be obtained if no attempt were
made to synchronize the reader and writer. The relevance of this problem to the
implementation of a multiword clock in an operating system should be obvious.

It iswiddy believed that this problem can be solved only by “locking”—that is, by
using amutual exclusion protocol to prevent thereader and writer from concurrently
accessing the clock. This belief iswrong. Using the results of [1], | will derive
a solution in which processes never wait. Such a solution is likely to be more
efficient than one that uses locking. It isthe goa of this paper not only to present
a potentially useful algorithm, but also to remind readers that one can sometimes
avoid the need for mutual exclusion by using the techniques of [1].

Itiscustomary to assumethat reading or writing asingledigit isan atomic operation.
The agorithms presented here and the theorems of [1] on which they are based are
valid under the weaker assumption that each digit is, in the terminology of [2], a
regular register. (Theversion of [1] submitted for publicationassumed only regul ar
registers, but the editor was afraid that the concept of nonatomic operations on
individual digitsmight be considered heretical and insistedthat it be removed from
the paper.) However, readers who wish to ignore the subtle distinction between
atomic and regular digits can simply think “atomic” when they read “regular”.

There are two different kindsof clocks—monotonic clocksthat never decrease and
cyclic clocks that cycle through a bounded set of values. Monotonic clocks are
commonly used in operating systems to encode the date and time, while cyclic
clocks that display the time of day are encountered in everyday life. | will first
present an algorithm to implement a monotonic clock and then indicate how it can
be extended to implement a cyclic clock.

2 Notation and Theorems

To begin, let us recall the notations and results of [1]. Write operations to a data
item v are assumed to be sequential; the sequence of values writtento v is denoted
by v, v, .., where the write of v['! precedes the write of vl*1. The 0" write,
which initializesthe value, is assumed to precede al reads. A read of v issaid to
see version vl'l if the read ended after the write of vl was begun and began before
the write of vI'*1 ended. A read that is concurrent with awrite will see more than
oneversion.

Inasomewhat illogical but useful notation, for natural numbersk and | withk <,
let vI*! denote both the val ue obtained by aread and the assertion that the read saw
versionsvl¥, pI+U ol and no other versions. Thus, if aread obtainsthevalue
o[kl then either k = | and the read overlapped no writes, or k < | and the read
overlapped the writes of vlk+3, .l

A dataitem v is said to be regular if the value vI*!l obtained by aread equals vt
for somei withk < i <. Thisis asomewhat weaker condition than requiring
that reads and writes of v be atomic.

An m-digit dataitem v is a sequence v, - - - vy, Of digits, where the left-most digit
vy isthe most significant. The ranges of values of the v; need not all be the same;
mixed-radix representations are allowed. A read or write of v consists of asingle
read or write of each digit, in any order. Thus, vl = v{1...0ll. A read or write
of v issaid to be from left to right if the digits are accessed in the order vy, vy, . . .,
vm; itissaid to befrom right to left if the digits are accessed in the opposite order.
Thefollowing theorems and lemma are proved in [1]. (Theorem 2 will not be used
here, but isincluded for completeness.)

Theorem 1 If v = vy - - - vy, iS@wayswritten fromright to left, then a read from
|eft to right obtains a sequence of values v, . ylklnl with kg < 1) < ky <

o <kn <l

Lemmalet v = v; - - - vy, and assume that v[4 < ol < ...,

@ Ifiy <. <ip<ithenvld.. ylinl <yl

(b) Ifiy>--->in>ithenol...ylinl >l

Theorem 2 Let v = vy - - - vy, and assume that 019 < v < ... and the digits v;
areregular.

(a) If visalwayswritten fromright to left, then a read fromleft to right obtains
avalue vt < ol

(b) If visalwayswritten fromleft to right, then a read fromright to left obtains
avalue vt > pld,

The reader who enjoys puzzles may wish to pause here and attempt his own
implementation of a monotonic clock using regular digits.

3 A Monotonic Clock

A monotonic clock isadataitemc = ¢, - - - ¢, such that c® < ¢l < @ < ...,
The correctness condition for such a clock asserts that if aread obtains the value
clkll then M < c*l < ¢!, Theindividual digitsc; are assumed to be regular.

Toimplement amonotonic clock ¢, two copiescl and c2 of theclock aremaintained.
The writer updates c by first writing c2 from left to right and then writing c1 from
right to left. Thereader first reads c1 from left to right and then reads c2 from right
to left. Inthefollowing analysis, we deduce what value the reader should return.

Let r1 and r 2 denote the values of ¢l and c2 read by the reader. By Theorem 1
applied to the 2m-digit dataitem c1; - - - ¢1,,C2y, - - - C2,

ri = C15k11,|11] .. C].H?lm’llm] (1)
r2 — C25_k21’|21] .. C2L|§2m,|2m] (2)
with

kKl; <11; <kl, <-- - <Kl <I1,
<k2n <12n<k2y1<---<k2 <12 ©)

The regularity assumption and (1)—3) imply the existence of integers iy and jq
such that

ri = cip--.c1fy! 4
r2 = c2i...colil (5)

and
Kl; <i; < Sip < Jjm < <=2 (6)

The definition of ¢l impliesthat k < k1, and12; < |, soacorrect read isallowed
to return any valuein theinterval [cf'*], cl4].

Applying part (a) of the lemma to cl1 with i,, substituted for i, and part (b) to c2
with j,, substituted for i, using (4) and (5), we get r 1 < c1li»l and c2l! < r2. The
monotonicity assumption and (6) then imply

r1<cllinl < c2lnl <2 (7)
Monotonicity, (6), and the assumption that c1 and c2 are just two copies of cimply

If r1=r2, then(7)and (8) imply that theread can return thevaluer 1, sinceit can
return any vaue in the interval [clid], cliil]. Because (7) impliesthat r1 < r2, we
need now consider only thecaseof rl1 < r2.

Forl <qg <m,letvy.qdenotev,---vq, andlet vy = 0. Definev |q and v 1y
to be the smallest and largest m-digit values w such that wy..q = v1..q. Thus, v1..4
consists of the left-most q digits of v, and, if the v; are decimal digits, then v |
and v 1, are the values obtained by replacing the right-most m — q digitsof v with
O'sor 9's, respectively. In general, we have

Vg SV < vl 9)

forl<qg=<m.

Since we are assuming that r1 < r2, there existsa unique p, with0O < p < m,
such that

r 11,,,p == r 2]_,,,p (10)

r 1p+1 < r 2p+1 (11)
From (11) we have

F1pr <r2{pn 12)

Applying part (a) of thelemmato c1;..., withi,,,; substitutedfor i and p substituted
for m, and part (b) to c2;..., with j,,, substitutedfor i and p substituted for m, we
obtain

iy,

A

caird (13)
c2”] (14)

\Y

r21.p

N

Reader Writer

rlzza); c?::anyvaluez c2;
r2:= <c_2; el=c2
ifrl=r2

then returnrl
ese pi=max{i :rly.; =r2.;};
return any valuein[r14,.1, r2J 44
fi

Figure 1. The Monotonic-Clock Algorithm

Sinceip1 < jpra by (6), monotonicity impliesthat c1li==! < c2lr+l, so clE.pf;] <

c2!". Hence, (10), (13), and (14) imply

rlip,= clE.pf;] = 02[1’:?*5] =121

By (4) and (5), thisimplies
1y, = cli”d, (15)
Cz[lj..pfplil = T21.p1 (16)
Combining (9), (15), (16), and (12) yields
caled < calieal p =114,y < 12} g, = c2leal |) < c2lewd]

Hence, the reader can return any valuein theinterval [r11,.1, 12 p41].

Thealgorithmthat hasjust been derived isshownin Figure 1, wherean arrow over a
variable name means that the corresponding read or writeis performed | eft-to-right
or right-to-left, as indicated by the arrow’s direction. Note that it does not matter
how the writer reads c2, sinceit isthe only processthat changes c2.

As a fina optimization, observe that the reader reads cl,, immediately before
reading c2,,, while the writer writes c2,, immediately before writing c1,,. The
algorithm remains correct if the two reads or writes are performed as a single
operation. Hence, the two digits c1,, and c2,, can be implemented by the same
digit, whichis read and written just once. In the most common application, m = 2
and reading or writing the clock requires only three single-digit reads or writes. A
version of the algorithm for atwo-digit clock is shown in Figure 2. A clock value
isapair (I, r) wherel istheleft digit and r theright digit, and O is assumed to be
the smallest possibleright digit.

Reader Writer

vl:=11; (', r) :==any vaue> (12, r);
w =T, 12:=1;
v2:=12; r:=r’
if vl = v2then return (v2, w) 1=l

dse return (v2, 0)
fi

Figure 2: A Two-Digit Monotonic-Clock Algorithm

4 A Cyclic Clock

A cyclic clock ¢ is a data item that can assume any sequence of values. A write
that decreases the value of ¢ is said to cycle c. The cycling of c isinterpreted to
mean that ¢ has “passed midnight”. For notational convenience, assume that 0 is
the smallest value ¢ can assume.

We can convert a cyclic clock ¢ to amonotonic clock T by adding a fictitious | eft-
hand part that isincremented whenever the value of cisdecreased. The correctness
conditionfor cisthat thevalue returned by aread istheright-hand part of acorrect
value for aread of T. Thus, if ¢ is cycled during the read, then the read may return
thevalueO. If ciscycled twiceduring theread, then the read may return any value.

To construct an algorithm for implementing an m-digit cyclic clock c = ¢; - - - G,
we first augment ¢ to an m + 1-digit cyclic clock ¢ by adding an extra left-most
binary digit ¢y, SO ¢ = ¢y---Cy. The left-most bit ¢ of c is thus incremented
(complemented) whenever theclock ciscycled. Thedigitsc,, . . ., ¢, are assumed
to be regular.

The reads and writes of ¢ are performed as in the monotonic-clock agorithm, so
the writer begins by writing c2, and ends by writing c1,, whilethe reader reads c1,
first and c2, last. If the reader finds cly # c2,, then the read overlapped a write
that cycled ¢, so theread can return the value 0. If the reader finds cly = ¢2,, then
either ¢ was not cycled during the read or else it was cycled two or more times.
In the first case, the monotonic-clock agorithm returns a correct value because it
returns the value it would have obtained had it seen the entire fictitious clock €; in
the second case, the read is permitted to return any value. Hence, in either case,
the (right-most m digits of the) value obtained by the monotonic-clock algorithm
iscorrect.

The reader should be suspiciousof thiskind of informal argument becauseit often

leads to errors. However, since | know of no practica application of the cyclic-
clock algorithm, | will leave its precise statement and rigorous correctness proof to
the reader.

Acknowledgments

Tim Mann discovered an error in my original correctness proof of the monotonic
clock algorithm and suggested several improvementsto the presentation.

References

[1] LeslieLamport. Concurrent reading and writing. Communicationsof the ACM,
20(11):806-811, November 1977.

[2] Leslie Lamport. On interprocess communication. Distributed Computing,
1:77-101, 1986.

